
JBTS-AG-3/13/08 i

JBoss Transactions 4.3.0

Administration Guide

JBTS-AG-3/13/08

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are

registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,

Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here

as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in

the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as

indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted

material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms

and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it

will be useful, but WITHOUT A WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU

General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions 4.3.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2008 JBoss Inc.

Contents
About This Guide..5

What This Guide Contains.............................5
Audience...5
Prerequisites..5
Organization..5
Documentation Conventions..........................5
Additional Documentation.............................6
Contacting Us..6

Administering JBossTS7

Introduction...7
JBossTS runtime information7
How to manage the JBossTS Object Store7
OTS/J2EE Transaction service management ..8
Starting the run-time system8
XA specific management.............................10
Selecting the JTA implementation10
Web Service Transaction service

management...11
The Transaction Manager11
Failure recovery administration13
The Recovery Manager14
Configuring the Recovery Manager14
Periodic Recovery17
Expired entry removal18
ORB specific configurations........................19
JacORB...19
Orbix 2000 ..19
Initialising JBossTS applications..................21
Errors and Exceptions..................................21

JBossTS-AG-3/13/08 5

About This Guide

What This Guide Contains

The Administration Guide contains information on how to use JBoss Transactions 4.3.0.

Audience

This guide is most relevant to engineers who are responsible for administration of JBoss

Transactions 4.3.0 installations.

Prerequisites

In order to administer JBossTS it is first necessary to understand that it relies on TxCore for a

lot of the transaction functionality. As such, it is important to read the TxCore Administration

Guide before attempting to administer JBossTS.

Organization

This guide contains the following chapters:

• Chapter 1, Administration of JBossTS: This chapter describes how to administer

and configure JBossTS.

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.

Code Text that represents programming code.

Function
|

A path to a function or dialog box within an interface. For example,
“Select File | Open.” indicates that you should select the Open function

Administration Guide

6 JBossTS-AG-03/13/08

Function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |

NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.3.0

documentation set:

• JBoss Transactions 4.3.0 Release Notes: Provides late-breaking information about

JBoss Transactions 4.3.0.

• JBoss Transactions 4.3.0 Installation Guide: This guide provides instructions for

installing JBoss Transactions 4.3.0.

• JBoss Transactions 4.3.0 Programmer’s Guide: Provides guidance for writing

applications.

• JBoss Transactions 4.3.0 Quick Start Guide: Getting started with JBossTS; not for a

novice user.

• JBoss Transactions API Programmer’s Guide: Provides guidance when using the

JTA for building transactional applications.

• TxCore Failure Recovery Guide: Describes the failure recovery aspects of JBossTS.

• TxCore Programmer’s Guide: Describes how to write transactional applications

using the non-distributed transaction engine at the heart of JBossTS.

Contacting Us

Questions or comments about JBoss Transactions 4.3.0 should be directed to our support

team.

JBossTS-AG-3/13/08 7

Chapter 1

Administering JBossTS
Introduction

In this chapter we shall discuss how to administer an JBossTS installation.

With the release of JBossTS 4.1, we have merged the separate Web Services Transaction

product into JBoss Transactions. This provides a single product that is compliant with all of

the major distributed transaction standards and specifications. However, performing product

administration for JBossTS 4.2 does not mean that you must know about Web Services if all

you are interested in is the CORBA/J2EE component and vice versa. As a result, where

appropriate we have separated the administration functions into separate sections.

JBossTS runtime information

Each module that comprises JBossTS possesses a class called Info. These classes all provide

a single toString method that returns an XML document representing the configuration

information for that module. So, for example:

<module-info name="arjuna"><source-identifier>unknown</source-

identifier><build-information>Arjuna Technologies [mlittle] (Windows 2000

5.0)</build-information><version>unknown</version><date>2002/06/15 04:06

PM</date><notes></notes><configuration><properties-file

dir="null">arjuna.properties</properties-file><object-store-

root>null</object-store-root></configuration></module-info>

How to manage the JBossTS Object Store

Within the transaction service installation, the object store is updated regularly whenever

transactions are created, or when Transactional Objects for Java is used. In a failure free

environment, the only object states which should reside within the object store are those

representing objects created with the Transactional Objects for Java API. However, if

failures occur, transaction logs may remain in the object store until crash recovery facilities

have resolved the transactions they represent. As such it is very important that the contents of

the object store are not deleted without due care and attention, as this will make it impossible

to resolve in doubt transactions. In addition, if multiple users share the same object store it is

important that they realize this and do not simply delete the contents of the object store

assuming it is an exclusive resource.

Apart from ensuring that the run-time system is executing normally, there is little continuous

administration needed for the JBossTS software. There are a few points however, that should

be made:

8 JBossTS-AG-03/13/08

• The present implementation of the JBossTS system provides no security or

protection for data. It is recommended that the objects stored in the JBossTS are

owned by user arjuna. The Object Store and Object Manager facilities make no

attempt to enforce even the limited form of protection that Unix/Windows provides.

There is no checking of user or group IDs on access to objects for either reading or

writing.

• Persistent objects created in the Object Store never go away unless the

StateManager.destroy method is invoked on the object or some application

program explicitly deletes them. This means that the Object Store gradually

accumulates garbage (especially during application development and testing

phases). At present we have no automated garbage collection facility. Further, we

have not addressed the problem of dangling references. That is, a persistent object,

A, may have stored a Uid for another persistent object, B, in its passive

representation on disk. There is nothing to prevent an application from deleting B

even though A still contains a reference to it. When A is next activated and attempts

to access B, a run-time error will occur.

• There is presently no support for version control of objects or database

reconfiguration in the event of class structure changes. This is a complex research

area that we have not addressed. At present, if you change the definition of a class

of persistent objects, you are entirely responsible for ensuring that existing instances

of the object in the Object Store are converted to the new representation. The

JBossTS software can neither detect nor correct references to old object state by new

operation versions or vice versa.

• Object store management is critically important to the transaction service.

OTS/J2EE Transaction service management

Starting the run-time system

The JBossTS run-time support consists of run-time packages and the OTS transaction

manager server. By default JBossTS does not use a separate transaction manager server:

transaction managers are co-located with each application process to improve performance

and improve application fault-tolerance (the application is no longer dependant upon another

service in order to function correctly).

When running applications which require a separate transaction manager, you must set the

com.arjuna.ats.jts.transactionManager environment variable to have the value

YES. The system will then locate the transaction manager server in a manner specific to the

ORB being used. The server can be located in a number of ways: by being registered with a

name server, added to the ORB’s initial references, via a JBossTS specific references file, or

by the ORB’s specific location mechanism (if applicable).

It is possible to override the default registration mechanism by using the

com.arjuna.orbportability.resolveService environment variable. This can have

one of the following values:

Administering JBossTS

JBossTS-AG-3/13/08 9

• CONFIGURATION_FILE: the default, this causes the system to use the

CosServices.cfg file.

• NAME_SERVICE: JBossTS will attempt to use a name service to register the

transaction factory. If this is not supported, an exception will be thrown.

• BIND_CONNECT: JBossTS will use the ORB-specific bind mechanism. If this is

not supported, an exception will be thrown.

• RESOLVE_INITIAL_REFERENCES: JBossTS will attempt to register the

transaction service with the ORBs initial service references.

Note: this may not be supported on all ORBs. An exception will be thrown in
that case and another option will have to be used.

OTS configuration file

Similar to the resolve_initial_references, JBossTS supports an initial reference file

where references for specific services can be stored and used at runtime. The file,

CosServices.cfg, consists of two columns: the service name (in the case of the OTS

server TransactionService) and the IOR, separated by a single space. CosServices.cfg

normally resides in the etc directory of the JBossTS installation; the actual location is

determined at runtime by searching the CLASSPATH for an old copy of the file resident

within an etc directory, or, if one is not found, the location of the TransactionService

properties file directory.

The OTS server will automatically register itself in this file (creating it if necessary) if this

option is being used. Stale information is also automatically removed. Machines which wish

to share the same transaction server should have access to (or a copy of) this file.

The name and location of the file can be overridden using the

com.arjuna.orbportability.initialReferencesFile and

com.arjuna.orbportability.initialReferencesRoot property variables,

respectively. It is recommended that the

com.arjuna.orbportability.initialReferencesRoot variable is set. For example:

com.arjuna.orbportability.initialReferencesFile=myFile

com.arjuna.orbportability.initialReferencesRoot=c:\\temp

Name Service

If the ORB you are using supports a name service, and JBossTS has been configured to use it,

then the transaction manager will automatically be registered with it. There is no further work

required. This option is currently available for Orbix 2000 and HP-ORB.

resolve_initial_references

Currently this option is only supported for Orbix 2000 and JacORB.

10 JBossTS-AG-03/13/08

Resolution service table

The following table summarizes the different ways in which the OTS transaction manager

may be located on specific ORBs:

Resolution Mechanism ORB

OTS configuration file All available ORBs

Name Service Orbix 2000, HP-ORB, JacORB

resolve_initial_references Orbix 2000, JacORB

Table 2: Locating the OTS transaction manager server.

XA specific management

Each XA Xid that JBossTS creates must have a unique node identifier encoded within it and

JBossTS will only recover transactions and states that match a specified node identifier. The

node identifier to use should be provided to JBossTS via the

com.arjuna.ats.arjuna.xa.nodeIdentifier property. You must make sure this

value is unique across your JBossTS instances. If you do not provide a value, then JBossTS

will fabricate one and report the value via the logging infrastructure.

When running XA recovery it is therefore necessary to tell JBossTS which types of Xid it

can recover. Each Xid that JBossTS creates has a unique node identifier encoded within it

and JBossTS will only recover transactions and states that match a specified node identifier.

The node identifier to use should be provided to JBossTS via a property that starts with the

name com.arjuna.ats.jta.xaRecoveryNode; multiple values may be provided. A

value of ‘*’ will force JBossTS to recover (and possibly rollback) all transactions irrespective

of their node identifier and should be used with caution.

Selecting the JTA implementation

Two variants of the JTA implementation are now provided and accessible through the same

interface. These are:

• A purely local JTA, which only allows non-distributed JTA transactions to be

executed. This is the only version available with the JBossJTA product.

• A remote, CORBA-based JTA, which allows distributed JTA transactions to be

executed. This version is only available with the JBossTS product and requires a

supported CORBA ORB.

Note: both of these implementations are fully compatible with the transactional
JDBC driver provided with JBossTS.

In order to select the local JTA implementation it is necessary to perform the following steps:

1. make sure the property com.arjuna.ats.jta.jtaTMImplementation is set to

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple.

2. make sure the property com.arjuna.ats.jta.jtaUTImplementation is set to

com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple.

Administering JBossTS

JBossTS-AG-3/13/08 11

Note: these settings are the default values for the properties and do not need to
be specified if the local implementation is required.

In order to select the remote JTA implementation it is necessary to perform the following

steps:

3. make sure the property com.arjuna.ats.jta.jtaTMImplementation is set to

com.arjuna.ats.internal.jta.transaction.jts..TransactionManagerImple.

4. make sure the property com.arjuna.ats.jta.jtaUTImplementation is set to

com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple.

Web Service Transaction service management

Note: The Web Services transactions component is not available in the 4.2
release of JBossTransactions, but will be available in the 4.2.1 release.

The basic building blocks of a transactional Web Services application are the application

itself, the Web services that the application consumes, the Transaction Manager, and the

transaction participants which support those Web services. Though it is unlikely in a typical

deployment that a single developer will be expected to support all of these roles, the concepts

are presented here so that a global model can be visualized. It will often be the case that

developers will produce services, or applications that consume services, whilst system

administrators will run the transaction-management infrastructure.

The Transaction Manager

The transaction manager is a Web service which coordinates JBossTS transactions. It is the

only software component in JBossTS that is meant to be run directly as a network service,

rather than to support end-user code. The transaction manager runs as a JAXM

request/response Web service.

Note: When starting up an application server instance that has JBossTS
deployed within it, you may see various “error” messages in the console
or log. For example 16:53:38,850 ERROR [STDERR] Message Listener
Service: started, message listener jndi name activationcoordinator".
These are for information purposes only and are not actual errors.

Configuring the Transaction Manager

The Transaction Manager and related infrastructure are configured by means of properties

files: wscf.xml, wst.xml and wstx.xml. These files can be found in the conf directory and

are used for configuring the demo application and the standalone module.

For the most part the default values in these files need not be altered. However, the

com.arjuna.ats.arjuna.objectstore.objectStoreDir property determines the

location of the persistent store used to record transaction state. The default value of

C:/temp/ObjectStore should be changed to a value appropriate to your system. For

12 JBossTS-AG-03/13/08

production environments this directory should reside on fault tolerant media such as a RAID

array.

When a standalone coordinator is being used by an application it is necessary to enable and

modify two further properties in wstx.xml, com.arjuna.mw.wst.coordinatorURL and

com.arjuna.mw.wst.terminatorURL. These contain the URLs necessary for the client

application to contact the standalone coordinator and should be configured with the correct

hostname and port of the standalone coordinator.

Please note that JBossTS is highly modular. In order to allow flexible deployment of

individual components, the same property values are sometimes required to appear in more

than one configuration file. For the majority of configurations, you should maintain

consistent values for properties that are defined in more than one file.

Deploying the Transaction Manager

The JBossTS Web Service Transaction Manager component consists of a number of .jar files

containing the application’s class files, plus Web service (.war) files which expose the

necessary services. Programmers will typically include all these components in their

application .ear file during application development, simplifying deployment of the

transaction infrastructure. For production usage the Transaction Manager may be installed as

an application in its own right, allowing for centralized configuration and management at the

server level, independent of specific applications. The demonstration application shipped

with JBossTS provides a sample deployment descriptor illustrating how the Transaction

Manager components can be included in an application.

JBossTS 4.0 uses fixed endpoints for its underlying protocol communication. Therefore,

problems may arise if multiple applications using JBossTS are deployed to the same server

concurrently. If you wish to deploy several transactional applications in the same server, the

Transaction Manger must be deployed as a separate application and not embedded within the

deployment of individual applications.

The coordinator directory in the JBossTS installation has been provided to assist in the

configuration and deployment of a stand-alone transaction manager. In order to use this, you

must:

• Have installed JBossTS 4.0.

• Have a separate application server installation for the coordinator; this can be on a

separate machine. If you are using JBoss, then see
http://www.yorku.ca/dkha/jboss/docs/MultipleInstances.htm

• Install ant 1.4 or later.

Note: It is important that a separate application server installation be used from
the one that clients and services are deployed into since otherwise
conflicts may occur between the various JBossTS components.

You must then edit the build.xml included with coordinator to point to the application

server installation where the transaction coordinator will be deployed and the location of the

JBossTS installation. The files ws-c_jaxm_web-app.xml and ws-t_jaxm_web-app.xml in the

Administering JBossTS

JBossTS-AG-3/13/08 13

dd directory of coordinator are the deployment descriptors for the WS-C and WS-T war

files. These files contain templated URLs. During the build phase, ant will substitute the

hostname and port values you specify in the build.xml into these files.

Run ant, with target deploy-weblogic, deploy-jboss or deploy-webmethods, to create and

deploy a new coordinator into the correct application server installation.

Now all you need to do is point your client at the required coordinator. To do this, generate

the demo application specifying the port and hostname of the coordinator.

Deployment descriptors

In general, it should not be necessary to change the contents of the various deployment

descriptors used by JBossTS. However, if you do need to modify them they are all included

in the coordinator module.

Not all JBossTS components have ready access to the information in the deployment

descriptors. Therefore, if you modify the JNDI names used by any of the WS-C or WS-T

deployment descriptors you may need to inform other JBossTS components at runtime. This

can be accomplished by setting an appropriate property in the wstx.xml configuration file.

The following table shows the default JNDI name used by the deployment descriptors and

the corresponding property to set if the default value is changed.

JNDI Name Property

Activationrequester com.arjuna.mw.wst.at.activationrequester

Activationcoordinator com.arjuna.mw.wst.at.activationcoordinator

Completionparticipant com.arjuna.mw.wst.at.completionparticipant

Registrationrequester com.arjuna.mw.wst.at.registrationrequester

durable2pcdispatcher com.arjuna.mw.wst.at.durable2pcdispatcher

durable2pcparticipant com.arjuna.mw.wst.at.durable2pcparticipant

volatile2pcdispatcher com.arjuna.mw.wst.at.volatile2pcdispatcher

volatile2pcparticipant com.arjuna.mw.wst.at.volatile2pcparticipant

businessagreementwithparticipantcompletiondispatcher com.arjuna.mw.wst.ba.businessagreementwpcdispatcher

businessagreementwithparticipantcompletionparticipant com.arjuna.mw.wst.ba.businessagreementwpcparticipant

businessagreementwithcoordinatorcompletiondispatcher com.arjuna.mw.wst.ba.businessagreementwccdispatcher

Businessagreementwithcoordinatorcompletionparticipant com.arjuna.mw.wst.ba.businessagreementwccparticipant

Table 3: Deployment descriptor values and properties.

Failure recovery administration

The failure recovery subsystem of JBossTS will ensure that results of a transaction are

applied consistently to all resources affected by the transaction, even if any of the application

processes or the machine hosting them crash or lose network connectivity. In the case of

machine (system) crash or network failure, the recovery will not take place until the system

or network are restored, but the original application does not need to be restarted – recovery

responsibility is delegated to the Recovery Manager process (see below). Recovery after

failure requires that information about the transaction and the resources involved survives the

14 JBossTS-AG-03/13/08

failure and is accessible afterward: this information is held in the ActionStore, which is part

of the ObjectStore.

Caution: If the ObjectStore is destroyed or modified, recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction that was in

progress at the time of the failure may be inaccessible. For database resources, this may be

reported as tables or rows held by “in-doubt transactions”. For TransactionalObjects for Java

resources, an attempt to activate the Transactional Object (as when trying to get a lock) will

fail.

The Recovery Manager

The failure recovery subsystem of JBossTS requires that the stand-alone Recovery Manager

process be running for each ObjectStore (typically one for each node on the network that is

running JBossTS applications). The RecoveryManager class is located in the JAR

<ats_root>/lib/arjunacore.jar within the package com.arjuna.ats.arjuna.recovery.

To start the Recovery Manager issue the following command:

java com.arjuna.ats.arjuna.recovery.RecoveryManager

If the -test flag is used with the Recovery Manager then it will display a “Ready” message

when initialised, i.e.,

java com.arjuna.ats.arjuna.recovery.RecoveryManager -test

Configuring the Recovery Manager

The RecoveryManager reads the properties defined in the arjuna.properties file and then also

reads the property file RecoveryManager.properties, from the same directory as it found the

arjuna properties file. An entry for a property in the RecoveryManager properties file will

override an entry for the same property in the main TransactionService properties file. Most

of the entries are specific to the Recovery Manager.

A default version of RecoveryManager.properties is supplied with the distribution – this can

be used without modification, except possibly the debug tracing fields (see below, Output).

The rest of this section discusses the issues relevant in setting the properties in the jbossts-

properties.xml file to other values (in the order of their appearance in the default version of

the file).

Output

It is likely that installations will want to have some form of output from the

RecoveryManager, to provide a record of what recovery activity has taken place.

RecoveryManager uses the logging tracing mechanism provided by the Arjuna Common

Logging Framework (CLF), which provides a high level interface that hides differences that

exist between existing logging APIs such Jakarta log4j or JDK 1.4 logging API. CLF

indirects all logging via the Apache Commons Logging framework and configuration is

assumed to occur through that framework.

Administering JBossTS

JBossTS-AG-3/13/08 15

With the CLF applications make logging calls on logger objects. Loggers may use logging

Levels to decide if they are interested in a particular log message. Each log message has an

associated log Level, that gives the importance and urgency of a log message. The set of

possible Log Levels are DEBUG, INFO, WARN, ERROR and FATAL. Defined Levels are

ordered according to their integer values as follows: DEBUG < INFO < WARN < ERROR

< FATAL.

The CLF provides an extension to filter logging messages according to finer granularity an

application may define. That is, when a log message is provided to the logger with the

DEBUG level, additional conditions can be specified to determine if the log message is

enabled or not.

Note: These conditions are applied if and only the DEBUG level is enabled and
the log request performed by the application specifies debugging
granularity.

When enabled, Debugging is filtered conditionally on three variables:

• Debugging level: this is where the log request with the DEBUG Level is generated

from, e.g., constructors or basic methods.

• Visibility level: the visibility of the constructor, method, etc. that generates the

debugging.

• Facility code: for instance the package or sub-module within which debugging is

generated, e.g., the object store.

According to these variables the CLF defines three interfaces. A particular product may

implement its own classes according to its own finer granularity. JBossTS uses the default

Debugging level and the default Visibility level provided by CLF, but it defines its own

Facility Code. JBossTS uses the default level assigned to its logger objects (DEBUG).

However, it uses the finer debugging features to disable or enable debug messages. Finer

debugging values used by the JBossTS are defined below:

Debugging level – JBossTS uses the default values defined in the class
com.arjuna.common.util.logging.DebugLevel

• NO_DEBUGGING: No diagnostics.

A logger object assigned with this values discard all debug requests

• FULL_DEBUGGING: Full diagnostics.

A Logger object assigned with this value allows all debug requests if the facility code and

the visibility level match those allowed by the logger.

Additional Debugging Values are:

• CONSTRUCTORS: Diagnostics from constructors.

• DESTRUCTORS: Diagnostics from finalizers.

• CONSTRUCT_AND_DESTRUCT: Diagnostics from constructors and finalizers.

• FUNCTIONS: Diagnostics from functions.

• OPERATORS: Diagnostics from operators, such as equals.

• FUNCS_AND_OPS: Diagnostics from functions and operations.

16 JBossTS-AG-03/13/08

• ALL_NON_TRIVIAL: Diagnostics from all non-trivial operations.

• TRIVIAL_FUNCS: Diagnostics from trivial functions.

• TRIVIAL_OPERATORS: Diagnostics from trivial operations, and operators.

• ALL_TRIVIAL: Diagnostics from all trivial operations.

Visibility level – JBossTS uses the default values defined in the class
com.arjuna.common.util.logging.VisibilityLevel

• VIS_NONE: No Diagnostic

• VIS_PRIVATE : only from private methods.

• VIS_PROTECTED only from protected methods.

• VIS_PUBLIC only from public methods.

• VIS_PACKAGE only from package methods.

• VIS_ALL: Full Diagnostic

Facility Code – JBossTS uses the following values defined in the class
com.arjuna.common.util.logging.VisibilityLevel

• FAC_ATOMIC_ACTION = 0x0000001 (atomic action core module).

• FAC_BUFFER_MAN = 0x00000004 (state management (buffer) classes).

• FAC_ABSTRACT_REC = 0x00000008 (abstract records).

• FAC_OBJECT_STORE = 0x00000010 (object store implementations).

• FAC_STATE_MAN = 0x00000020 (state management and StateManager).

• FAC_SHMEM = 0x00000040 (shared memory implementation classes).

• FAC_GENERAL = 0x00000080 (general classes).

• FAC_CRASH_RECOVERY = 0x00000800 (detailed trace of crash recovery module and

classes).

• FAC_THREADING = 0x00002000 (threading classes).

• AC_JDBC = 0x00008000 (JDBC 1.0 and 2.0 support).

• FAC_RECOVERY_NORMAL = 0x00040000 (normal output for crash recovery

manager).

To ensure appropriate output, it is necessary to set some of the finer debug properties

explicitly in the CommonLogging.xml file, to enable logging messages issued by the

JBossTS module.

Messages describing the start and the periodical behavior made by the RecoveryManager are

output using the INFO level. If other debug tracing is wanted, the finer debugging level

should be set appropriately. For instance, the following configuration, in the

CommonLogging.xml, enables all debug messages related to the Crash Recovery protocol

and issued by the JBossTS module.

<!-- Common logging related properties. -->

 <property

 name="com.arjuna.common.util.logging.DebugLevel"

 value="0x00000000"/>

 <property

 name="com.arjuna.common.util.logging.FacilityLevel"

 value="0xffffffff"/>

 <property

 name="com.arjuna.common.util.logging.VisibilityLevel"

Administering JBossTS

JBossTS-AG-3/13/08 17

 value="0xffffffff"/>

Note: Two logger objects are provided, one manages I18N messages and a
second does not.

Setting the normal recovery messages to the INFO level allows the RecoveryManager

producing a moderate level of reporting. If nothing is going on, it just reports the entry into

each module for each periodic pass. To disable INFO messages produced by the Recovery

Manager, the logging level could be set to the higher level: ERROR. Setting the level to

ERROR means that the RecoveryManager will only produce error, warning or fatal

messages.

Periodic Recovery

The RecoveryManager scans the ObjectStore and other locations of information, looking for

transactions and resources that require, or may require recovery. The scans and recovery

processing are performed by recovery modules, (instances of classes that implement the

com.arjuna.ats.arjuna.recovery.RecoveryModule interface), each with responsibility for a

particular category of transaction or resource. The set of recovery modules used are

dynamically loaded, using properties found in the RecoveryManager property file.

The interface has two methods: periodicWorkFirstPass and periodicWorkSecondPass. At an

interval (defined by property com.arjuna.ats.arjuna.recovery.periodicRecoveryPeriod), the

RecoveryManager will call the first pass method on each property, then wait for a brief

period (defined by property com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod), then call

the second pass of each module. Typically, in the first pass, the module scans (e.g. the

relevant part of the ObjectStore) to find transactions or resources that are in-doubt (i.e. are

part way through the commitment process). On the second pass, if any of the same items are

still in-doubt, it is possible the original application process has crashed and the item is a

candidate for recovery.

An attempt, by the RecoveryManager, to recover a transaction that is still progressing in the

original process(es) is likely to break the consistency. Accordingly, the recovery modules use

a mechanism (implemented in the com.arjuna.ats.arjuna.recovery.TransactionStatusManager

package) to check to see if the original process is still alive, and if the transaction is still in

progress. The RecoveryManager only proceeds with recovery if the original process has

gone, or, if still alive, the transaction is completed. (If a server process or machine crashes,

but the transaction-initiating process survives, the transaction will complete, usually

generating a warning. Recovery of such a transaction is the RecoveryManager’s

responsibility).

It is clearly important to set the interval periods appropriately. The total iteration time will be

the sum of the periodicRecoveryPeriod, recoveryBackoffPeriod and the length of time it

takes to scan the stores and to attempt recovery of any in-doubt transactions found, for all the

recovery modules. The recovery attempt time may include connection timeouts while trying

to communicate with processes or machines that have crashed or are inaccessible (which is

why there are mechanisms in the recovery system to avoid trying to recover the same

transaction for ever). The total iteration time will affect how long a resource will remain

inaccessible after a failure – periodicRecoveryPeriod should be set accordingly (default is

120 seconds). The recoveryBackoffPeriod can be comparatively short (default is 10 seconds)

18 JBossTS-AG-03/13/08

– its purpose is mainly to reduce the number of transactions that are candidates for recovery

and which thus require a “call to the original process to see if they are still in progress

Note: In previous versions of TxCore there was no contact mechanism, and the
backoff period had to be long enough to avoid catching transactions in
flight at all. From 3.0, there is no such risk.

Two recovery modules (implementations of the

com.arjuna.ats.arjuna.recovery.RecoveryModule interface) are supplied with

JBossTS, supporting various aspects of transaction recovery including JDBC recovery. It is

possible for advanced users to create their own recovery modules and register them with the

Recovery Manager. The recovery modules are registered with the RecoveryManager using

properties that begin with “com.arjuna.ats.arjuna.recovery.RecoveryExtension”. These will

be invoked on each pass of the periodic recovery in the sort-order of the property names – it

is thus possible to predict the ordering (but note that a failure in an application process might

occur while a periodic recovery pass is in progress). The default Recovery Extension settings

are:

com.arjuna.ats.arjuna.recovery.recoveryExtension1 =

com.arjuna.ats.internal.ts.arjuna.recovery.AtomicActionRecoveryModule

com.arjuna.ats.arjuna.recovery.recoveryExtension2 =

com.arjuna.ats.txoj.recovery.TORecoveryModule

Expired entry removal

The operation of the recovery subsystem will cause some entries to be made in the

ObjectStore that will not be removed in normal progress. The RecoveryManager has a

facility for scanning for these and removing items that are very old. Scans and removals are

performed by implementations of the com.arjuna.ats.arjuna.recovery.ExpiryScanner

interface. Implementations of this interface are loaded by giving the class name as the value

of a property whose name begins with “com.arjuna.ats.arjuna.recovery.expiryScanner”. The

RecoveryManager calls the scan() method on each loaded Expiry Scanner implementation at

an interval determined by the property “com.arjuna.ats.arjuna.recovery.expiryScanInterval”.

This value is given in hours – default is 12. An expiryScanInterval value of zero will

suppress any expiry scanning. If the value as supplied is positive, the first scan is performed

when RecoveryManager starts; if the value is negative, the first scan is delayed until after the

first interval (using the absolute value)

The kinds of item that are scanned for expiry are:

TransactionStatusManager items : one of these is created by every application process that

uses TxCore – they contain the information that allows the RecoveryManager to determine if

the process that initiated the transaction is still alive, and what the transaction status is. The

expiry time for these is set by the property

com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime (in hours – default is

12, zero means never expire). The expiry time should be greater than the lifetime of any

single JBossTS-using process.

The Expiry Scanner properties for these are:

Administering JBossTS

JBossTS-AG-3/13/08 19

com.arjuna.ats.arjuna.recovery.expiryScannerTransactionStatusManager =

com.arjuna.ats.internal.ts.arjuna.recovery.ExpiredTransactionStatusManagerS

canner

ORB specific configurations

JacORB

For JacORB to function correctly it is necessary to ensure there is a valid

jacorb.properties or .jacorb_properties file in one of the following places:

• The classpath.

• The home directory of the user running the JBoss Transaction Service. The home

directory is retrieved using System.getProperty(“user.home”);

• The current directory.

• The lib directory of the JDK used to run your application. This is retrieved using
System.getProperty(“java.home”);

The above places are searched in the order given. A template jacorb.properties file can

be found in the JacORB installation directory.

Within the JacORB properties file there are two important properties which must be tailored

to suit your application, they are:

• jacorb.poa.thread_pool_max

• jacorb.poa.thread_pool_min

These properties specify the minimum and maximum number of request processing threads

that JacORB will use in its thread pool. If there aren’t a sufficient number of threads

available in this thread pool then the application may appear to become deadlocked. For

more information on configuring JacORB please reference the JacORB documentation.

Note: JacORB comes with its own implementation of the classes defined in the
CosTransactions.idl file. Unfortunately these are incompatible with the
version shipped with JBossTS. Therefore, it is important that the JBossTS

jar files appear in the CLASSPATH before any JacORB jars.

When running the recovery manager it is important that it always uses the same well known

port for each machine on which it runs. You should not use the OAPort property provided by

JacORB unless the recovery manager has its own jacorb.properties file or this is provided on

the command line when starting the recovery manager. If the recovery manager and other

components of JBossTS share the same jacorb.properties file, then you should use the

com.arjuna.ats.jts.recoveryManagerPort property.

Orbix 2000

It is necessary to register all idl files with the Orbix 2000 interface repository.

20 JBossTS-AG-03/13/08

The following configuration modifications are necessary to support transaction context

propagation and interposition; it may be necessary to consult the Orbix 2000 documentation

to determine how to accomplish this. A new orb name domain called arjuna should be

created within the main Orbix 2000 domain being used by the application. It requires the

following format:

arjuna

{

 portable_interceptor

 {

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop",

 "portable_interceptor"];

 ots_recovery_coordinator

 {

 recovery_coordinator:iiop:addr_list = [“<name>:<port>”];

 };

 ots_transaction

 {

 transaction:iiop:addr_list = [“+<name>:<port>”];

 };

 ots_context

 {

 binding:client_binding_list = ["OTS_Context",

"OTS_Context+GIOP+SIOP", "GIOP+SIOP", "OTS_Context+GIOP+IIOP",

"GIOP+IIOP"];

 binding:server_binding_list = ["OTS_Context", ""];

 };

 ots_interposition

 {

 binding:client_binding_list = ["OTS_Interposition",

"OTS_Interposition+GIOP+SIOP", "GIOP+SIOP", "OTS_Interposition+GIOP+IIOP",

"GIOP+IIOP"];

 binding:server_binding_list = ["OTS_Interposition", ""];

 };

 };

};

The <name> field should be substituted by the name of the machine on which JBossTS is

being run. The <port> field should be an unused port on which the JBossTS recovery

manager may listen for recovery requests.

When using transaction context propagation only, the –ORBname

arjuna.portable_interceptor.ots_context parameter should be passed to the client

and server. When using context propagation and interposition, the –

ORBname.arjuna.portable_interceptor.ots_interposition parameter should be

used. For example:

java mytest –ORBname arjuna.portable_interceptor.ots_context

Note: Orbix2000 comes with its own implementation of the classes defined in
the CosTransactions.idl file. Unfortunately these are incompatible with
the version shipped with JBossTS. Therefore, it is important that the
JBossTS jar files appear in the CLASSPATH before any Orbix2000 jars.

Administering JBossTS

JBossTS-AG-3/13/08 21

Note: Because of the way in which Orbix works with persistent POAs, if you
want crash recovery support for your applications you must use one of
the Arjuna ORB names provided (context or interposition) when running
your clients and services.

Initialising JBossTS applications

It is important that JBossTS is correctly initialized prior to any application object being

created. In order to guarantee this, the programmer should use the initORB and

create_POA methods described in the Orb Portability Guide. Consult the Orb Portability

Guide if direct use of the ORB_init and create_POA methods provided by the underlying

ORB is required.

Errors and Exceptions

In this section we shall cover the types of errors and exceptions which may be thrown or

reported during a transactional application and give probable indications of their causes.

• NO_MEMORY: the application has run out of memory (thrown an

OutOfMemoryError) and JBossTS has attempted to do some cleanup (by running

the garbage collector) before re-throwing the exception as a standard CORBA

exception. This is probably a transient problem and retrying the invocation should

succeed.

• com.arjuna.ats.arjuna.exceptions.FatalError: an error has occurred

which means that the transaction system must shut down. Prior to this error being

thrown the transaction service will have ensured that all running transactions have

rolled back. If caught, the application should tidy up and exit. If further work is

attempted, application consistency may be violated.

• com.arjuna.ats.arjuna.exceptions.LicenceError: an attempt has been

made to use the transaction service in a manner inconsistent with the current license.

The transaction service will not allow further forward progress for existing or new

transactions.

• com.arjuna.ats.arjuna.exceptions.ObjectStoreError: an error

occurred while the transaction service attempted to use the object store. Further

forward progress is not possible.

• com.arjuna.ats.jts.exceptions.OTS_Error: an error occurred within the

transaction service core which means that further progress cannot be made.

• Object store warnings about access problems on states may occur during the normal

execution of crash recovery. This is the result of multiple concurrent attempts to

perform recovery on the same transaction. It can be safely ignored.

