
 

Error! Reference source not found.-5/31/03 i 

 
 
 
 
 
ORB Portability Layer 

Programmer's Guide 
OPL-PG-5/31/03 

 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

Legal Notices 

The information contained in this documentation is subject to change without notice. 

Arjuna Technologies Limited makes no warranty of any kind with regard to this material, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose. Arjuna 
Technologies Limited shall not be liable for errors contained herein or for incidental or consequential 
damages in connection with the furnishing, performance, or use of this material.  

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are 
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™, 
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here 
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in 
the United States and other countries, licensed exclusively through X/Open Company Limited. 

Software Version 

ORB Portability Layer 

Restricted Rights Legend 

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the 
Rights in Technical Data and Computer Software clause 52.227-FAR14. 

Arjuna Technologies Limited 
Nanotechnology Centre 
Herschel Building 
Newcastle Upon Tyne 
NE1 7RU 
United Kingdom 

© Copyright 2003 Arjuna Technologies Limited 



 

 

 

Contents
About This Guide .............................................5 

What This Guide Contains..............................5 
Audience .........................................................5 
Organization ...................................................5 
Documentation Conventions...........................6 
Contacting Us .................................................6 

ORB Portability API........................................7 

Using the ORB and OA ..................................7 
ORB and OA Initialisation ...........................10 
ORB and OA shutdown ................................10 
Specifying the ORB to use............................11 
Initialisation code..........................................11 
Locating Objects and Services......................12 
ORB location mechanisms............................14 

Index ................................................................16 





 

Error! Reference source not found.-5/31/03 5 

 

 
About This Guide 

What This Guide Contains 

The Programmer's Guide contains information on how to use the ORB Portability Layer. 
Although the CORBA specification is a standard, it is written in such a way that allows for a 
wide variety of implementations. Unless writing extremely simple applications, differences 
between ORB implementations tend to produce code which cannot easily be moved between 
ORBs. This is especially true for server-side code, which suffers from the widest variation 
between ORBs. There have also been a number of revisions of the Java language mapping for 
IDL and for CORBA itself. Many ORBs currently in use support different versions of 
CORBA and/or the Java language mapping. 

The Arjuna Transaction Service only supports the new Portable Object Adapter (POA) 
architecture described in the CORBA 2.3 specification as a replacement for the Basic Object 
Adapter (BOA). Unlike the BOA, which was weakly specified and led to a number of 
different (and often conflicting) implementations, the POA was deliberately designed to 
reduce the differences between ORB implementations, and thus minimise the amount of re-
coding that would need to be done when porting applications from one ORB to another. 
However, there is still scope for slight differences between ORB implementations, notably in 
the area of threading. Note, instead of talking about the POA, this manual will consider the 
Object Adapter (OA). 

Because the Arjuna Transaction Service must be able to run on a number of different ORBs, 
we have developed an ORB portability interface which allows entire applications to be 
moved between ORBs with little or no modifications. This portability interface is available to 
the application programmer in the form of several Java classes. Note, the classes to be 
described in this document are located in the com.hp.mw.orbportability package. 

Audience 

This document provides a detailed look at the ORB Portability layer and how it can be used 
to facilitate the implementation of ORB portable applications. This guide provides a guide as 
to the best practices of using the ORB portability layer. 

Organization 

This guide contains the following chapters: 



ORB Portability Layer Programmer's Guide 

6 Error! Reference source not found.-05/31/03  

•  Chapter 1, ORB Portability API: An overview of the ORB portability API and 
how it can be used to achieve portability. 

Documentation Conventions 

The following conventions are used in this guide: 

Convention Description 

Italic In paragraph text, italic identifies the titles of documents that are 
being referenced.  When used in conjunction with the Code text 
described below, italics identify a variable that should be replaced by 
the user with an actual value. 

Bold Emphasizes items of particular importance. 
Code Text that represents programming code. 

Function 
| 
Function 

A path to a function or dialog box within an interface.  For example, 
“Select File | Open.” indicates that you should select the Open function 
from the File menu. 

( ) and | Parentheses enclose optional items in command syntax. The vertical 
bar separates syntax items in a list of choices. For example, any of 
the following three items can be entered in this syntax: 

persistPolicy (Never | OnTimer | OnUpdate | 
NoMoreOftenThan) 

Note: 
 
Caution: 

A note highlights important supplemental information. 

A caution highlights procedures or information that is necessary to 
avoid damage to equipment, damage to software, loss of data, or 
invalid test results. 

Table 1  Formatting Conventions 

Contacting Us 

Questions or comments about the ORB Portability Layer should be directed to our support 
team. Send email to support@arjuna.com. 

 



 

Error! Reference source not found.-5/31/03 7 

Chapter 1  

ORB Portability API 
Using the ORB and OA 

The ORB class shown below provides a uniform way of using the ORB. There are methods for 
obtaining a reference to the ORB, and for placing the application into a mode where it listens 
for incoming connections. There are also methods for registering application specific classes 
to be invoked before or after ORB initialisation. Note, some of the methods are not supported 
on all ORBs, and in this situation, a suitable exception will be thrown.  The ORB class is a 
factory class which has no public constructor.  To create an instance of an ORB you must call 
the getInstance method passing a unique name as a parameter.  If this unique name has not 
been passed in a previous call to getInstance you will be returned a new ORB instance.  Two 
invocations of getInstance made with the same unique name, within the same JVM, will 
return the same ORB instance. 

public class ORB 
{ 
public static ORB getInstance(String uniqueId); 
 
public synchronized void initORB () throws SystemException; 
public synchronized void initORB (Applet a, Properties p) 
                                 throws SystemException; 
public synchronized void initORB (String[] s, Properties p) 
                                  throws SystemException; 
 
public synchronized org.omg.CORBA.ORB orb (); 
public synchronized boolean setOrb (org.omg.CORBA.ORB theORB); 
  
public synchronized void shutdown (); 
  
public synchronized boolean addAttribute (Attribute p);  
 
public synchronized void addPreShutdown (PreShutdown c); 
public synchronized void addPostShutdown (PostShutdown c); 
 
public synchronized void destroy () throws SystemException; 
 
public void run (); 
public void run (String name); 
}; 

We shall now describe the various methods of the ORB class. 

•  initORB: given the various parameters, this method initialises the ORB and retains a 
reference to it within the ORB class. This method should be used in preference to 
the raw ORB interface since the Arjuna Transaction Service requires a reference to 
the ORB. If this method is not used, setOrb must be called prior to using Arjuna 
Transaction Service. 

 



 

8 Error! Reference source not found.-05/31/03  

•  orb: this method returns a reference to the ORB. After shutdown is called this 
reference may be null. 

 

•  shutdown: where supported, this method cleanly shuts down the ORB. Any pre- and 
post- ORB shutdown classes which have been registered will also be called. See the 
section titled ORB and OA Initialisation. This method must be called prior to 
application termination. It is the application programmer’s responsibility to ensure 
that no objects or threads continue to exist which require access to the ORB. It is 
ORB implementation dependant as to whether or not outstanding references to the 
ORB remain useable after this call. 

 

•  addAttribute: this method allows the application to register classes with Arjuna 
Transaction Service which will be called either before, or after the ORB has been 
initialised. See the section titled ORB and OA Initialisation. If the ORB has already 
been initialised then the attribute object will not be added, and false will be returned. 

 

•  run: these methods place the ORB into a listening mode, where it waits for 
incoming invocations. 

The OA classes shown below provide a uniform way of using Object Adapters (OA). There 
are methods for obtaining a reference to the OA. There are also methods for registering 
application specific classes to be invoked before or after OA initialisation. Note, some of the 
methods are not supported on all ORBs, and in this situation, a suitable exception will be 
thrown.  The OA class is an abstract class and provides the basic interface to an Object 
Adapter.  It has two sub-classes RootOA and ChildOA, these classes expose the interfaces 
specific to the root Object Adapter and a child Object Adapter respectively.  From the RootOA 
you can obtain a reference to the RootOA for a given ORB by using the static method 
getRootOA. To create a ChildOA instance use the createPOA method on the RootOA. 

public abstract class OA 
{  
public synchronized static RootOA getRootOA(ORB associatedORB); 

 
public synchronized void initPOA () throws SystemException; 
public synchronized void initPOA (String[] args) throws SystemException; 
public synchronized void initOA () throws SystemException; 
public synchronized void initOA (String[] args) throws SystemException; 
public synchronized ChildOA createPOA (String adapterName, 
                                       PolicyList policies) 
                                        throws AdapterAlreadyExists, 
InvalidPolicy; 
 
 
public synchronized org.omg.PortableServer.POA rootPoa (); 
public synchronized boolean setPoa (org.omg.PortableServer.POA thePOA); 
 
public synchronized org.omg.PortableServer.POA poa (String adapterName); 
public synchronized boolean setPoa (String adapterName, 
                                    org.omg.PortableServer.POA thePOA); 
  
public synchronized boolean addAttribute (OAAttribute p); 
 



ORB Portability API 

Error! Reference source not found.-5/31/03 9 

public synchronized void addPreShutdown (OAPreShutdown c); 
public synchronized void addPostShutdown (OAPostShutdown c); 
}; 
 
public class RootOA extends OA 
{  
public synchronized void destroy() throws SystemException; 
public org.omg.CORBA.Object corbaReference (Servant obj); 
public boolean objectIsReady (Servant obj, byte[] id); 
public boolean objectIsReady (Servant obj); 
public boolean shutdownObject (org.omg.CORBA.Object obj); 
public boolean shutdownObject (Servant obj); 
}; 
 
public class ChildOA extends OA 
{  
public synchronized boolean setRootPoa (POA thePOA); 
public synchronized void destroy() throws SystemException; 
public org.omg.CORBA.Object corbaReference (Servant obj); 
public boolean objectIsReady (Servant obj, byte[] id) throws 
SystemException; 
public boolean objectIsReady (Servant obj) throws SystemException; 
public boolean shutdownObject (org.omg.CORBA.Object obj); 
public boolean shutdownObject (Servant obj); 
}; 

We shall now describe the various methods of the OA class. 

•  initPOA: this method activates the POA, if this method is called on the RootPOA the 
POA with the name RootPOA will be activated.  

 

•  createPOA: if a child POA with the specified name for the current POA has not 
already been created then this method will create and activate one, otherwise 
AdapterAlreadyExists will be thrown. This method returns a ChildOA object. 

 

•  initOA: this method calls the initPOA method and has been retained for backwards 
compatibility. 

 

•  rootPoa: this method returns a reference to the root POA. After destroy is called on 
the root POA this reference may be null. 

 

•  poa: this method returns a reference to the POA. After destroy is called this 
reference may be null. 

 

•  destroy: this method destroys the current POA, if this method is called on a 
RootPOA instance then the root POA will be destroyed along with its children. 

 

•  shutdown: this method shuts down the POA. 

 



 

10 Error! Reference source not found.-05/31/03  

•  addAttribute: this method allows the application to register classes with Arjuna 
Transaction Service which will be called either before or after the OA has been 
initialised. See below. If the OA has already been initialised then the attribute object 
will not be added, and false will be returned. 

ORB and OA Initialisation 

It is possible to register application specific code with the ORB portability library which can 
be executed either before or after the ORB or OA are initialised. Application programs can 
inherit from either com.hp.mw.orbportability.orb.Attribute or 
com.hp.mw.orbportability.oa.Attribute and pass these instances to the addAttribute 
method of the ORB/OA classes respectively: 

package com.hp.mw.orbportability.orb; 
public abstract class Attribute 
{ 
public abstract void initialise (String[] params); 
public boolean postORBInit (); 
}; 
 
package com.hp.mw.orbportability.oa; 
 
public abstract class OAAttribute 
{ 
public abstract void initialise (String[] params); 
public boolean postOAInit (); 
}; 

By default, the postORBInit/postOAInit methods return true, which means that any 
instances of derived classes will be invoked after either the ORB or OA have been initialised. 
By redefining this to return false, a particular instance will be invoked before either the ORB 
or OA have been initialised. 

When invoked, each registered instance will be provided with the exact String parameters 
passed to the initialise method for the ORB/OA. 

ORB and OA shutdown 

It is possible to register application specific code (via the addPreShutdown/addPostShutdown 
methods) with the ORB portability library which will be executed prior to, or after, shutting 
down the ORB. The pre/post interfaces which are to be registered have a single work method, 
taking no parameters and returning no results. When the ORB and OA are being shut down 
(using shutdown/destroy), each registered class will have its work method invoked.   

public abstract class PreShutdown 
{ 
 public abstract void work(); 
} 
public abstract class PostShutdown 
{ 
 public abstract void work(); 
} 



ORB Portability API 

Error! Reference source not found.-5/31/03 11 

Specifying the ORB to use 

JDK releases from 1.2.2 onwards include a minimum ORB implementation from Sun. If 
using such a JDK in conjunction with another ORB it is necessary to tell the JVM which 
ORB to use. This happens by specifying the org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass properties. The ORB Portability classes will ensure 
that these properties are automatically set when required, i.e., during ORB initialisation. Of 
course it is still possible to specify these values explicitly (and necessary if not using the 
ORB initialisation methods). Note: if you do not use the ORB Portability classes for ORB 
initialisation then it will still be necessary to set these properties.  The ORB portability library 
attempts to detect which ORB is in use, it does this by looking for the ORB implementation 
class for each ORB it supports.  This means that if there are classes for more than one ORB in 
the classpath the wrong ORB can be detected.  Therefore it is best to only have one ORB in 
your classpath.  If it is necessary to have multiple ORBs in the classpath then the property 
com.hp.mw.orbportability.orbImplementation must be set to the value specified in the 
table below. 

ORB Property Value 
IONA Orbix 2000 v1.2 com.hp.mwlabs.orbportability.orbspecific.orbix2000.

orb.implementations.orbix2000_1_2 

HP-ORB v1.0 com.hp.mwlabs.orbportability.hporb. 
orb.implementations.hporb_1_0 

JacORB v1.4.1 com.hp.mwlabs.orbportability.jacorb. 
orb.implementations.jacorb_1_4_1 

Initialisation code 

The Arjuna Transaction Service requires specialised code to be instantiated before and after 
the ORB and the OA are initialised. This code can be provided at runtime through the use of 
Java properties (e.g., -Dfoo=bar). This mechanism is also available to programmers who can 
register arbitrary code which the ORB Portability will guarantee to be instantiated either 
before or after ORB/OA initialisation. For each application (and each execution of the same 
application) the programmer can simultaneously provide multiple Java classes which are 
instantiated before and after the ORB and or OA is initialised.  There are few restrictions on 
the types and numbers of classes which can be passed to an application at execution time. All 
classes which are to be instantiated must have a public default constructor, i.e., a constructor 
which takes no parameters. The classes can have any name.  The property names used must 
follow the format specified below: 

•  com.hp.mw.orbportability.orb.PreInit – this property is used to specify a 
global pre-initialisation routine which will be run before any ORB is initialised. 

 

•  com.hp.mw.orbportability.orb.PostInit – this property is used to specify a 
global post-initialisation routine which will be run after any ORB is initialised. 

 



 

12 Error! Reference source not found.-05/31/03  

•  com.hp.mw.orbportability.orb.<ORB NAME>.PreInit – this property is used to 
specify a pre-initialisation routine which will be run when an ORB with the given 
name is initialised. 

 

•  com.hp.mw.orbportability.orb.<ORB NAME>.PostInit – this property is used to 
specify a post-initialisation routine which will be run after an ORB with the given 
name is initialised. 

 

•  com.hp.mw.orbportability.oa.PreInit – this property is used to specify a global 
pre-initialisation routine which will be run before any OA is initialised. 

 

•  com.hp.mw.orbportability.oa.PostInit – this property is used to specify a 
global post-initialisation routine which will be run after any OA is initialised, 

 

•  com.hp.mw.orbportability.oa.<OA NAME>.PreInit – this  property is used to 
specify a pre-initialisation routine which will be run before an OA with the given 
name is initialised 

 

•  com.hp.mw.orbportability.oa.<OA NAME>.PostInit – this  property is used to 
specify a pre-initialisation routine which will be run after an OA with the given 
name is initialised 

Pre and post initialisation can be arbitrarily combined, for example: 

Java –Dcom.hp.mw.orbportability.orb.PreInit=org.foo.AllORBPreInit   
–Dcom.hp.mw.orbportability.orb.MyORB.PostInit=org.foo.MyOrbPostInit  
-Dcom.hp.mw.orbportability.oa.PostInit=orb.foo.AllOAPostInit 
org.foo.MyExample 

Locating Objects and Services 

Locating and binding to distributed objects within CORBA can be ORB specific. For 
example, many ORBs provide implementations of the naming service, whereas some others 
may rely upon proprietary mechanisms. Having to deal with the many possible ways of 
binding to objects can be a difficult task, especially if portable applications are to be 
constructed. ORB Portability provides the Services class in order to provide a more 
manageable, and portable binding mechanism. The implementation of this class takes care of 
any ORB specific locations mechanisms, and provides a single interface to a range of 
different object location implementations. 

public class Services 
{ 
/** 
 * The various means used to locate a service. 
 */ 
 
public static final int RESOLVE_INITIAL_REFERENCES = 0; 



ORB Portability API 

Error! Reference source not found.-5/31/03 13 

public static final int NAME_SERVICE = 1; 
public static final int CONFIGURATION_FILE = 2; 
public static final int FILE = 3; 
public static final int NAMED_CONNECT = 4; 
public static final int BIND_CONNECT = 5; 
 
public static org.omg.CORBA.Object getService (String serviceName, 
                                               Object[] params, 
                   int mechanism)  
     throws InvalidName, CannotProceed, NotFound, IOException; 
 
public static org.omg.CORBA.Object getService (String serviceName, 
                Object[] params)  
     throws InvalidName, CannotProceed, NotFound, IOException; 
 

 

public static void registerService (org.omg.CORBA.Object objRef, 
                                    String serviceName, Object[] params, 
                         int mechanism)  
      throws InvalidName, IOException, CannotProceed, NotFound; 
 
public static void registerService (org.omg.CORBA.Object objRef, 

                                 String serviceName, Object[] 
params) throws InvalidName, IOException, CannotProceed, NotFound;  

}; 

There are currently 5 different object location and binding mechanisms supported by Services 
(not all of which are supported by all ORBs, in which case a suitable exception will be 
thrown): 

1) RESOLVE_INITIAL_REFERENCES: if the ORB supported resolve_initial_references, 
then Services will attempt to use this to locate the object. 

2) NAME_SERVICE: Services will contact the name service for the object. The name service 
will be located using resolve_initial_references. 

3) CONFIGURATION_FILE: as described in the Using the OTS Manual, the Arjuna 
Transaction Service supports an initial reference file where references for specific services 
and objects can be stored and used at runtime. The file, CosServices.cfg, consists of two 
columns: the service name (in the case of the OTS server TransactionService) and the IOR, 
separated by a single space. CosServices.cfg normally resides in the etc directory of the 
Arjuna Transaction Service installation; it is located at runtime by searching for an old 
version within any etc directory specified in the CLASSPATH, or the same directory as the 
TransactionService properties file. This is the default name and location of the configuration 
file. The name of the file can be specified at runtime using the 
com.hp.mw.orbportability.initialReferencesFile property, and its location can be 
changed using the com.hp.mw.orbportability.initialReferencesRoot variable (it is 
recommended that this variable is set):   

java –D com.hp.mw.orbportability.initialReferencesFile=ref  
–D com.hp.mw.orbportability.initialReferencesRoot=c:\\temp\ 



 

14 Error! Reference source not found.-05/31/03  

4) FILE: object IORs can be read from, and written to, application specific files. The service 
name is used as the file name. 

5) NAMED_CONNECT: some ORBs support proprietary location and binding mechanisms. 

6) BIND_CONNECT: some ORBs support the bind operation for locating services. 

We shall now describe the various methods supported by the Services class: 

•  getService: given the name of the object or service to be located (serviceName), 
and the type of mechanism to be used (mechanism), the programmer must also 
supply location mechanism specific parameters in the form of params. If the name 
service is being used, then params[0] should be the String kind field. 

•  getService: the second form of this method does not require a location mechanism 
to be supplied, and will use an ORB specific default. The default for each ORB is 
shown in Table 2. 

 

•  registerService: given the object to be registered, the name it should be 
registered with, and the mechanism to use to register it, the application programmer 
must specify location mechanism specific parameters in the form of params. If the 
name service is being used, then params[0] should be the String kind field. 

ORB location mechanisms 

The following table summarises the different location mechanisms that ORB Portability 
supports for each ORB via the Services class: 

Location Mechanism ORB 
RESOLVE_INITIAL_REFERENCES Orbix 2000 
NAME_SERVICE Orbix 2000 
CONFIGURATION_FILE All available ORBs 
FILE All available ORBs 
BIND_CONNECT None 

If a location mechanism isn’t specified then the default is the configuration file. 

 

 

 

 

 



ORB Portability API 

Error! Reference source not found.-5/31/03 15 

 

 

 

 

 

 

 

 

 

 

 



 

16 Error! Reference source not found.-05/31/03  

Appendix A  

Index 
Configuration 

Supported Orbs ........................................5 
CPP..............................................................5 
General Information ....................................5 

 


	What This Guide Contains
	Audience
	Organization
	Documentation Conventions
	Contacting Us
	Using the ORB and OA
	ORB and OA Initialisation
	ORB and OA shutdown
	Specifying the ORB to use
	Initialisation code
	Locating Objects and Services
	ORB location mechanisms


