The Common Logging Framework

[image: image6.wmf]Application

Logger

LogManager

LoggerFactory

initilialise LogLevel

Values

Handler

Log messages

Set Log Level

Add/Remove Handler

Create Logger

Create

LoggerFactory

Output

HP ARJUNA LABS

The Common Logging Framework

Version No. 1.0

HP Restricted
Approvers

	Function
	Name
	Approvers comments

	
	
	

Reviewers

	Function
	Name
	Reviewers comments

	
	
	

	
	
	

REFERENCE :

000037
CLASSIFICATION:
Information

AUTHOR :

Malik Saheb

OWNER :

Arjuna Lab
CONTENTS
Page

31
Introduction

31.1
Scope

31.2
History

31.3
Terminology

31.4
References

42
Internationalization

83
Logging

83.1
The value of logging

93.2
Features

93.3
Relevant Logging Framework

93.3.1
Overview of Log4j

113.3.2
HP Logging Mechanism

133.3.3
JDK 1.4’s logging API

144
The Common Logging Framework

144.1
How does it work? Overview of control flow

144.2
CommonLogger, LoggerFactory and LogManager

154.3
Logs Levels

164.4
Logging Requests

174.5
Debugging Granularity Extension

184.5.1
Common Values

194.5.2
Defining its own finer debugging classes

204.5.3
CommonLogger Debugging Values

214.5.4
A simple scenario

214.6
Handler and Output Format

214.6.1
Output Destination

234.6.2
Message Formatting

244.7
Internationalisation

264.8
Logging Configuration

274.9
Mapping on logging implementations

1 Introduction
1.1 Scope

This document describes the HP Common Logging Framework providing an API to log messages with their importance and to hide the underlying logging implementations. That is it provides portability on top of existing implementations allowing moving an application without changing its source code.

The document is organized as follow; the section 2 describes the concept of internationalisation. Internationalisation is abbreviated as i18n, because there are 18 letters between the first "i" and the last "n”. Section 3 gives an overview of the Logging concept, then the logging service considered by the Common Logging Framework are briefly described. Finally the section 4

1.2 History

	Date
	Ver No.
	Description
	Updated By

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1.3 Terminology

	Term
	Description

	
	

1.4 References

	References
	Description

	CSF logging
	http://usage.fc.hp.com/partners/bluestone/common_javadoc/index.html

	JDK 1.4
	http://java.sun.com/j2se/1.4/docs/guide/util/logging/index.html

	Log4j
	http://jakarta.apache.org/log4j/docs/index.html

2 Internationalization

An application is internationalized, if it can correctly handle different encodings of character data. An application is localized, if it formats and interprets data (dates, times, timezones, currencies, messages and so on) according to rules specific to the user's locale (country and language).

Internationalization (I18N) is the process of designing an application so that it can be adapted to various languages and regions without engineering changes. Localization (L10N) is the use of locale-specific language and constructs at run time.
The Java Internationalization API

Java Internationalization shows how to write software that is multi-lingual, using Unicode, a standard system that supports hundreds of character sets.

The Java Internationalization API is a comprehensive set of APIs for creating multilingual applications. The JDK internationalization features, from its version 1.1, include:

· Classes for storing and loading language-specific objects.

· Services for formatting messages, date, times, and numbers.

· Services for comparing and collating text.

· Support for finding character, word, and sentence boundaries.

· Support for display, input, and output of Unicode characters.

Java Interfaces for Internationalization

Users of the Java internationalization interfaces should be familiar with the following interfaces included in the Java Developer's Kit (JDK):

· java.util.Locale
Represents a specific geographical, political, or cultural region.

· java.util.ResourceBundle
Containers for locale-specific objects

· java.text.MessageFormat
A means to produce concatenated messages in a language-neutral way.

Set the Locale

The concept of a Locale object, which identifies a specific cultural region, includes information about the country or region. If a class varies its behavior according to Locale, it is said to be locale-sensitive. For example, the NumberFormat class is locale-sensitive; the format of the number it returns depends on the Locale. Thus NumberFormat may return a number as 902 300 (France), or 902.300 (Germany), or 902,300 (United States). Locale objects are only identifiers.

Most operating systems allow to indicate their locale or to modify it. For instance Windows NT does this through the control panel, under the Regional Option icon. In Java, you can get the Locale object that matches the user's control-panel setting using myLocale = Locale.getDefault();. You can also create Locale objects for specific places by indicating the language and country you want, such as myLocale = new Locale("fr", "CA"); for "Canadian French."

The next example creates Locale objects for the English language in the United States and Great Britain:

bLocale = new Locale("en", "US");

cLocale = new Locale("en", "GB");

The strings you pass to the Locale constructor are two-letter language and country codes, as defined by ISO standards (put here reference)

Isolate your Locale Data

The first step in making an international Java program is to isolate all elements of your Java code that will need to change in another country. This includes user-interface text -- label text, menu items, shortcut keys, messages, and the like.

The ResourceBundle class is an abstract class that provides an easy way to organize and retrieve locale-specific strings or other resources. It stores these resources in an external file, along with a key that you use to retrieve the information. You'll create a ResourceBundle for each locale your Java program supports.

[image: image1.png]
The ResourceBundle class is an abstract class in the java.util package. You can provide your own subclass of ResourceBundle or use one of the subclass implementations, as in the case of PropertyResourceBundle or ListResourceBundle.

Resource bundles inherit from the ResourceBundle class and contain localized elements that are stored external to an application. Resource bundles share a base name. The base name TeT_Bundle, to display transactional messages such “Transaction Commited”, might be selected because of the resources it contains. Locale information further differentiates a resource bundle. For example, TeT_Bundle_it means that this resource bundle contains locale-specific transactional messages for Italian.

To select the appropriate ResourceBundle, invoke the ResourceBundle.getBundle method. The following example selects the TeT_Bundle ResourceBundle for the Locale that matches the French language, the country of Canada.

Locale currentLocale = new Locale("fr", "CA");

ResourceBundle introLabels =

 ResourceBundle.getBundle("TeT_Bundle", currentLocale);

Java loads your resources based on the locale argument to the getBundle method. It searches for matching files with various suffixes, based on the language, country, and any variant or dialect to try to find the best match. Java tries to find a complete match first, and then works its way down to the base filename as a last resort.

You should always supply a base resource bundle with no suffixes, so that your program will still work if the user's locale does not match any of the resource bundles you supply. The default file can contain the U.S. English strings. Then you should provide properties files for each additional language you want to support.

Basically, a resource bundle is a container for key/value pairs. The key is used to identify a locale-specific resource in a bundle. If that key is found in a particular resource bundle, its value is returned.

The jdk API defines two kinds of ResourceBundle subclasses -- the PropertyResourceBundle and ListResourceBundle.

A PropertyResourceBundle is backed by a properties file. A properties file is a plain-text file that contains translatable text. Properties files are not part of the Java source code, and they can contain values for String objects only. A simple default properties file, named hpts_Bundle.properties, for messages sent by HPTS could be.

Sample properties file for demonstrating PropertyResourceBundle

Text to inform on transaction outcomes in English (by default)

trans_committed= Transaction Committed

trans_rolledback= Transaction Rolled Back

…

The equivalent properties file, hpts_Bundle_fr_FR.properties, for French would be:

Sample properties file for demonstrating PropertyResourceBundle

Text to inform on transaction outcomes in French

trans_committed = La Transaction a été Validée

trans_rolledback = La Transaction a été Abandonnée

…

The ListResourceBundle class manages resources with a convenient list. Each ListResourceBundle is backed by a class file. You can store any locale-specific object in a ListResourceBundle. Resources in a ListResourceBundle are not limited to text strings, as are the resources in a PropertyResourceBundle. For example, images are one example of resources that can be localized, but can't be stored as text strings. To add support for an additional Locale, you create another source file and compile it into a class file as described below where the first file, hpts_Bundle.java defines the default English messages and the second file, hpts_Bundle_fr_FR.java, its equivalent for French.

import java. util.*;

public class TeT_Bundle extends ListResourceBundle {

 public Object [][] getContents() {

 return contents;

 }

 static final Object [][] contents = {

 {" trans_committed", “Transaction Committed”},

 {" trans_rolledback", “Transaction Rolled Back”},

 };

}

import java. util.*;

public class TeT_Bundle_fr extends ListResourceBundle {

 public Object [][] getContents() {

 return contents;

 }

 static final Object [][] contents = {

 {" trans_committed", “La Transaction a été Validée”},

 {" trans_rolledback", “La Transaction a été Abandonnée”},

 };

}

Note that the ResourceBundle class is flexible. If you first put your locale-specific String objects in a PropertyResourceBundle and then later decided to use ListResourceBundle instead, there is no impact on the code.

Example

The following example illustrates how to use the internationalization API allowing separating the text with a language specified by the user, from the source code.

import java.util.*;

import Demo.*;

import java.io.*;

import com.arjuna.OrbCommon.*;

import com.arjuna.CosTransactions.*;

import org.omg.CosTransactions.*;

import org.omg.*;

public class TransDemoClient

{

 public static void main(String[] args)

 {

 String language;

 String country;

 if (args.length != 2) {

 language = new String("en");

 country = new String("US");

 } else {

 language = new String(args[0]);

 country = new String(args[1]);

 }

 Locale currentLocale;

 ResourceBundle messages;

 currentLocale = new Locale(language, country);

 trans_message = ResourceBundle.getBundle(
 "hpts_Bundle", currentLocale);
 try

 {

 ORBInterface.initORB(args, null);

OAInterface.initOA();

String ref = new String();

BufferedReader file = new BufferedReader(new
 FileReader("DemoObjReference.tmp"));

ref = file.readLine();

file.close();

org.omg.CORBA.Object obj = ORBInterface.orb().string_to_object(ref);

 DemoInterface d = (DemoInterface)
 DemoInterfaceHelper.narrow(obj);

 OTS.get_current().begin();

d.work();

OTS.get_current().commit(true);

System.out.println(tran_message.getString("trans_committed"));

}

catch (Exception e)

{

 System.out.println(tran_message.getString("trans_rolledback"));

}

 }

}

In the following example the language code is fr (French) and the country code is FR (France), so the program displays the messages in French:

% java TransDemoClient fr FR

La Transaction a été validée

Rather to specify explicitly the language to be used to display messages, a property variable can be defined in a properties files (such TransactionService-2.2.properties).

3 Logging

3.1 The value of logging

One can say that using a debugger may help to verify the execution of an application. However, in addition to the fact that a debugger decreases performance of an application, it is difficult to use it in a distributed computing environment.

This most basic form of logging involves developers manually inserting code into their applications to display small (or large) pieces of internal state information to help understand what's going on. It's a useful technique that every developer has used at least once. The problem is that it doesn't scale. Using print statements for a small program is fine, but for a large, commercial-grade piece of software there is far too much labor involved in manually adding and removing logging statements.

C programmers know, of course, that the way to conditionally add and remove code is via the C preprocessor and the #ifdef directive. Unfortunately, Java doesn't have a preprocessor. How can we make logging scale to a useful level in Java?
A simple way to provide logging in your program is to use the Java compiler's ability to evaluate boolean expressions at compile time, provided that all the arguments are known. For example, in this code, the println statements will not be executed if DEBUG not set to true.

class foo {

 public bar() {

 if(DEBUG) {

 System.out.println("Debugging enabled.");

 }

 }

}

A much better way, and the way that most logging is done in environments where the logged output is important, is to use a logging class.

A logging class collects all the messages in one central place and not only records them, but can also sort and filter them so that you don't have to see every message being generated. A logging class provides more information than just the message. It can automatically add information such as the time the event occurred, the thread that generated the message, and a stack trace of where the message was generated.

Some logging classes will write their output directly to the screen or a file. More advanced logging systems may instead open a socket to allow the log messages to be sent to a separate process, which is in turn responsible for passing those messages to the user or storing them. The advantage with this system is that it allows for messages from multiple sources to be aggregated in a single location and it allows for monitoring remote systems.

The format of the log being generated should be customisable. This could start from just allowing setting the Log "level" - which means that each log message is assigned a severity level and only messages of greater importance than the log level are logged - to allowing more flexible log file formatting by using some sort LogFormatter objects that do transformations on the logging information.

The logging service should be able to route logging information to different locations based on the type of the information. Examples might be printing certain messages to the console, writing to a flat file, to a number of different flat files, to a database and so on. Examples of different types information could be for example errors, access information etc.

3.2 Features

An appropriate logging library should provide these features

· Control over which logging statements are enabled or disabled,

· Define importance or severity for logging statement via a set of levels

· Manage output destinations,

· Manage output format.

· Manage internationalisation (i18n)

· Configuration

3.3 Relevant Logging Framework

According to features (described above) a logging framework should provide, we have considering the most common logging service is use.

3.3.1 Overview of Log4j

WARNING: The version of Log4j considered by the Common Logging Framework is Log4j 1.1.3. A beta version 1.2 is in progress and can be considered in next version of the Common Logging Framework. The following overview of log4j is based on the version 1.1.3.

Categories, Appenders, and Layout

Log4j has three main components:

· Categories

· Appenders

· Layouts

Category Hierarchy

The org.log4j.Category class figures at the core of the package. Categories are named entities. In a naming scheme familiar to Java developers, a category is said to be a parent of another category if its name, followed by a dot, is a prefix of the child category name. For example, the category named com.foo is a parent of the category named com.foo.Bar. Similarly, java is a parent of java.util and an ancestor of java.util.Vector.

The root category, residing at the top of the category hierarchy, is exceptional in two ways:

· It always exists

· It cannot be retrieved by name

In the Category class, invoking the static getRoot() method retrieves the root category. The static getInstance() method instantiates all other categories. getInstance() takes the name of the desired category as a parameter. Some of the basic methods in the Category class are listed below:

package org.log4j;

public Category class {
 // Creation & retrieval methods:
 public static Category getRoot();
 public static Category getInstance(String name);
 // printing methods:
 public void debug(String message);
 public void info(String message);
 public void warn(String message);
 public void error(String message);
 // generic printing method:
 public void log(Priority p, String message);
}
Categories may be assigned priorities from the set defined by the org.log4j.Priority class. Five priorities are defined: FATAL, ERROR, WARN, INFO and DEBUG, listed in decreasing order of priority. New priorities may be defined by subclassing the Priority class.

· FATAL: The FATAL priority designates very severe error events that will presumably lead
the application to abort.

· ERROR: The ERROR priority designates error events that might still allow the application to continue running.

· WARN: The WARN priority designates potentially harmful situations.

· INFO: The INFO priority designates informational messages that highlight the progress of the application.

· DEBUG: The DEBUG priority designates fine-grained informational events that are most useful to debug an application.

To make logging requests, invoke one of the printing methods of a category instance. Those printing methods are: fatal(), error(), warn(), info(), debug(), log().

By definition, the printing method determines the priority of a logging request. For example, if c is a category instance, then the statement c.info("..") is a logging request of priority INFO.

A logging request is said to be enabled if its priority is higher than or equal to the priority of its category. Otherwise, the request is said to be disabled. A category without an assigned priority will inherit one from the hierarchy.

Appenders and layouts
Log4j also allows logging requests to print to multiple output destinations called appenders in log4j speak. Currently, appenders exist for the console, files, GUI components, remote socket servers, NT Event Loggers, and remote UNIX Syslog daemons.

A category may refer to multiple appenders. Each enabled logging request for a given category will be forwarded to all the appenders in that category as well as the appenders higher in the hierarchy. In other words, appenders are inherited additively from the category hierarchy. For example, if you add a console appender to the root category, all enabled logging requests will at least print on the console. If, in addition, a file appender is added to a category, say C, then enabled logging requests for C and C's children will print on a file and on the console.

More often than not, users want to customize not only the output destination but also the output format, a feat accomplished by associating a layout with an appender. The layout formats the logging request according to the user's wishes, whereas an appender takes care of sending the formatted output to its destination.

For example, the PatternLayout with the conversion pattern %r [%t]%-5p %c - %m%n will output something like:

176 [main] INFO org.foo.Bar – Hello World.
In the output above:

· The first field equals the number of milliseconds elapsed since the start of the program

· The second field indicates the thread making the log request

· The third field represents the priority of the log statement

· The fourth field equals the name of the category associated with the log request

The text after the - indicates the statement's message.

Configuration

The log4j environment can be fully configured programmatically. However, it is far more flexible to configure log4j by using configuration files. Currently, configuration files can be written in XML or in Java properties (key=value) format.

Interactions

[image: image2.wmf]Application

Category

Output World

Layout

Appender1

Appender2

Appender3

Filter

Appender

Associated with the Category

Statically in Configuration File

Dynamically with

addAppender

operation

The following figure summarizes the different components when using log4j. Applications make logging calls on Category objects. The Category forwards to Appender logging requests for publication. Appender are registered with a Category with the addAppender method on the Category class. Invoking the addAppender method is made either by the Application or by Configurator objects. Log4j provides Configurator such BasicConfigurator, which registers to the category the ConsoleAppender responsible to send logging requests to the console, or the PropertyConfigurator, which registers Appender objects based on Appender classes defined in a configuration file. Both Category and Appender may use logging Priority and (optionally) Filters to decide if they are interested in a particular logging request. An Appender can use a Layout to localize and format the message before publishing it to the output world.

Basic interactions within log4j

3.3.2 HP Logging Mechanism

The HP Logging Mechanism consists of a log handler, zero or more log writers, and one or more log channels, as illustrated in Figure below.

[image: image3.wmf]TeT_Bundle

TeT_Bundle_de

TeT_Bundle_fr

TeT_Bundle_it

…

Resource

Bundles

User Interface

Application

Logic

Input

Output

Log Handler

The log handler is implemented as a singleton Java Bean. It is accessible from the com.hp.mw.common.util.LogHandlerFactory which returns the single instance of com.hp.mw.common.util.LogHandler.

The following code illustrates how to obtain the loghandler:

LogHandler handler;

handler = LogHandlerFactory.getHandler();

Log Channel

Log channels are virtual destinations; they receive messages and pass them to the log writers that are registered to receive them. They are not aware of the message formatting that might occur and are not aware of the logging tools that are used to view or store the messages. Log writers are registered for channels. When a log channel receives a message, and if that channel has a registered log writer(s), the message is passed along to that writer.

A client may obtain a channel with a specific name as follows.

LogChannel channel;

channel = LogChannelFactory.getChannel("myapplication");
Log Writers

In order to abstract the destination of a log message (e.g., console, file, database), the Logging Mechanism relies on log writers. Log writers are defined by the com.hp.mw.common.util.logging.LogWriter interface and are given messages by the channel(s) they service. They are responsible for formatting messages and outputting to the actual destination.
Log Formatters

A log formatter is responsible for formatting a log message into a Java String. Since many log writers do not require the String representation, log formatters are not required for every log writer. As a result, the com.hp.mw.common.util.logging.LogMessageFormat interface would be used for formatting messages into Strings when applicable and necessary.

Log Levels and Thresholds

All log channels are created, initially, with a default log threshold. The threshold is the minimum severity of a log message that should be processed for that log channel. The log levels defined by the HP logging mechanisms are as follows:

Log Level Description

· LOG_LEVEL_NONE This log level should be used to turn off all messages to a channel.

· LOG_LEVEL_FLOW Flow messages indicate program flow and can be extremely frequent.

· LOG_LEVEL_DEBUG Debug messages are fairly low-level messages that provide the developer(s) with information about events occurring within the application

· LOG_LEVEL_INFO Informational messages are of higher severity than debug and should provide information that any user could understand, as opposed to debug messages, which provide code-specific information.

· LOG_LEVEL_WARNING Warning messages are typically used to report an unusual or unexpected occurrence from which recovery is possible (e.g., a missing or incorrect configuration value that has a reasonable default).
· LOG_LEVEL_ERROR Error messages are used to report an unusual or unexpected occurrence from which recovery is not possible. This does not indicate that the entire application or framework is incapable of continuing, but that the component involved might be defunct or the operation it was asked to perform is aborted.

· LOG_LEVEL_CRITICAL Critical messages are typically used to report a very unusual or unexpected occurrence. For example, a component that was functioning correctly but suddenly experiences an unrecoverable error that prevents it from continuing should emit a critical message.
Interactions

The following figure summarizes the different components when using log4j. Applications make logging calls on Channel objects. The Channel forwards to LogWriter logging requests for publication. LogWriter are registered with the handler associated to a Channel. Both LogChannel and LogWritter may use logging LogLevel to decide if they are interested in a particular logging request. A LogWriter can use a LogFormatter to format the message before publishing it to the output world.

[image: image4.wmf]Log

Writer

1

Log

Writer

1

Log

Writer

1

Log

Writer

1

Log

Writer

1

Log

Writer

1

Root

Log Channel

Log

Handler

Basic interactions within the HP logging Mechanism

3.3.3 JDK 1.4’s logging API

To be completed

Not supported yet by the Common Logging Framework

4 The Common Logging Framework

The aim of the Common Logging Framework is to provide a high level interface hiding the type of an underlying logging API in order to offer a portability of a source code, which requires logging.

According to the different components described in previous sections, the Common Logging Framework provides a set of interfaces and classes which are mapped to those defined by existing logging mechanisms.

4.1 How does it work? Overview of control flow

Applications make logging calls on commonLogger objects. These commonLogger objects pass log messages to Handler for publication. Both commonLoggers and Handlers may use logging Levels to decide if they are interested in a particular log message. Since a commonLogger object is tied with an underlying logger tool, such a category or a channel according to the underlying logging service, the Handler responsible to manage the output is also tied with the respective mechanism managing the output as defined by the same underlying logging service such an Appender or a LogWriter. That is a Handler can use appropriate mechanism to format and localize a log message before publishing it to the output.

[image: image5.wmf]Application

LogChannel

Output World

LogFormatter

LoWriter1

LogWriter2

LogWriter3

LogWriter

Registered registered with the handler

associated with the

LogChannel

4.2 commonLogger, LoggerFactory and LogManager
CommonLogger objects are provided by a LoggerFactory object, which hides the type of the underlying logging implementation. The Log Manager object, which in general builds an appropriate LoggerFactory according to the LogFac property used by the application creates LoggerFactory object. By default, the underlying logging service is the HP logging mechanism (value is CSFLOG) unless the application defines another value such LOG4J.

The following example illustrates how a LoggerFactory object and a commonLogger object are created:

import com.hp.mw.common.util.logging.LogManager;

import com.hp.mw.common.util.logging.LoggerFactory;

import com.hp.mw.common.util.logging.commonLogger;

 ..

 static LoggerFactory log_fac = LogManager.getLogFactory();

 static commonLogger mylogger = (commonLogger)log_fac.getLogger("TestLogLevels");

An application an be executed as follows where the property specifying the underlying logging service is provided:

java –DlogFac=<logvalue> MyApplication

 Where <logvalue> may have one of the following value:

· CSFLOG

· LOG4J

4.3 Logs Levels

Each log message has an associated log Level. The Level gives the importance and urgency of a log message. Log level objects encapsulate an integer value, with higher values indicating higher priorities.

Similarly commonLogger may be assigned log Levels. The set of possible Log Levels are DEBUG, INFO, WARN, ERROR and FATAL defined in the com.hp.mw.common.util.logging.CommonLevel class. Since Log Levels are assumed to be associated to the underlying levels or priorities defined by the underlying logging service, they are defined as static but no final variables in such way that their final values will be assigned at initialisation by the appropriate LoggerFactory.

The table below describes how is mapped the concept of the Level interface and the CommonLevel values to the underlying logging service.

	Common Logging Framework
	Log4j
	HP CSF Logging
	JDK 1.4 Logging API*

	Level
	Priority
	LogLevel
	Level

	FATAL
	FATAL
	CRITICAL
	SEVERE

	ERROR
	ERROR
	ERROR
	SEVERE

	WARN
	WARN
	WARNING
	WARNING

	INFO
	INFO
	INFO
	INFO

	DEBUG
	DEBUG
	DEBUG
	FINEST

*Not Implemented yet

Clients should normally use the predefined Common Level such as CommonLevel.FATAL or CommonLevel.INFO.

As stated earlier, client code sends log requests to commonLogger objects. Each commonLogger keeps track of a log level that it is interested in, and discards log requests that are below this level. In other words, a logging request is said to be enabled if its log Level is higher than or equal to the Log Level of its commonLogger. Otherwise, the request is said to be disabled. By default, a CommonLogger is assigned with the CommonLevel.DEBUG, the lowest value allowing the commonLogger to accept any log request. The Level associated with the commonLogger can be changed with the setLogLevel method defined in the commonLogger interface.

In addition to specify its Level, a commonLogger may be disabled and enabled. Disabling a CommonLogger, with the DisableLog method on the commonLogger interface, means that it any log message is discarded whatever its Level. Enabling a commonLogger, the EnableLog method on the commonLogger interface, means that log messages with same or higher priority are enabled. The method IsEnabled on the commonLogger interface allows determining if the commonLogger is enabled or not.

Defined Levels are ordered according to their integer values as follows: DEBUG < INFO < WARN < ERROR < FATAL. The following example illustrates how logging request are enabled or disabled:

. . .

 static LoggerFactory log_fac = LogManager.getLogFactory();

// get a commonLogger instance named "TestLogLevels"

 static commonLogger mylogger = (commonLogger)log_fac.getLogger("TestLogLevels");

// Set the commonLogger Level to INFO

mylogger.setLogLevel(CommonLevel.INFO);

// This request is enabled, because FATAL > INFO

mylogger.log(CommonLevel.FATAL, "This is the first FATAL Message");

// This request is disabled, because DEBUG < INFO

mylog.log(CommonLevel.DEBUG, "This is the first DEBUG Message");

// This CommonLogger is disabled the two next request are disabled

mylogger.DisableLog();

mylogger.log(CommonLevel.INFO, "This is the first Info Message");

mylogger.log(CommonLevel.FATAL, "This is the second FATAL Message");

/* This CommonLogger is enabled the two next request are enabled since their values
 >= INFO */

mylogger.EnableLog();

mylogger.log(CommonLevel.INFO, "This is the second INFO Message");

mylogger.log(CommonLevel.FATAL, "This is the third FATAL Message");

 . . .

4.4 Logging Requests

The commonLogger interface provides the log method with a variety of arguments as described hereafter:

/** Log a message, with no arguments if the the commonLogger is enabled for

 * the given message level */

 void log(Level level, Object message);

/** Log a throwable arguments message */

 void log(Level level, Throwable throwable);

/** Log a message, with a throwable arguments */

 void log(Level level, Object message, Throwable throwable);

/** Log a message, with arguments */

 void log(Level level, Object message, Object[] params);

/** Log a message, with arguments and with a throwable arguments */

 void log(Level level, Object message, Object[] params,
 Throwable throwable);

Rather than calling the log method on the commonLogger interface, for convenience the Common Logging Framework provides methods associated with Level. That is rather than to invoke “commonLogger.log(CommonLevel.FATAL, …” a programmer will invoke “commonLogger.fatal(…”.

4.5 Debugging Granularity Extension

The Common Logging Framework provides an extension to filter logging messages according to finer granularity an application may define. That is, when a log message is provided to the commonLogger with the DEBUG level, additional conditions can be specified to determine if the log message is enabled or not. Note that these conditions are applied if and only the DEBUG level is enabled and the log request performed by the application specifies debugging granularity.

When enabled, Debugging is filtered conditionally on three variables:

· Debugging level: this is where the log request with the DEBUG Level is generated from, e.g., constructors or basic methods.

· Visibility level: the visibility of the constructor, method, etc. that generates the debugging.

· Facility code: for instance the package or sub-module within which debugging is generated, e.g., the object store.

According to these variables the Common Logging Framework defines three interfaces. A particular product may implement its own classes according to its own finer granularity.

public interface DebugLevel {

 /** return the value of the Debug level. */

 long getLevel (String level);

 /** return the string representation of the Debug level. */

 String printString (long level);

}

public interface FacilityCode {

 /** return the value of the facility level. */

 long getLevel (String level);

 /**return the string representation of the facility level. */

 String printString (long level);

}

public interface VisibilityLevel{

 /** return the value of the visibility level. */

 long getLevel (String level);

 /** return the string representation of the visibility level. */

 String printString (long level);

}

To permit the possibility to associate finer granularity values for a debug messages, the commonLogger interface provide the following operation:

 void debug(Object message, long dl, long vl, long fl);

The debug message is sent to the output only if the specified debug level (dl), visibility level (vl), and facility code (fl) match those allowed by the commonLogger. Finer levels assigned to the commonLogger are initialised at its creation or can be defined dynamically via a set of operations provided by the commonLogger interface. An application can specify its own values, however the Common Logging Framework provides default level values, per finer class, to indicate that no possible debug message is permitted or all debug messages are permitted.

4.5.1 Common Values

1. The CommonDebugLevel class provides two enumerated types as described below:

public class CommonDebugLevel

{

 public static final long NO_DEBUGGING = 0;

 public static final long FULL_DEBUGGING = 0xffffffff;

}

· NO_DEBUGGING:

No diagnostics.

A commonLogger object assigned with this values discard all debug requests

· FULL_DEBUGGING:
Full diagnostics.

A CommonLogger object assigned with this value allows all debug requests if the facility code and the visibility level match those allowed by the commonLogger.

2. The CommonFacilityCode class provides two enumerated types as described below:

public class CommonFacilityCode

{

 public static final long FAC_NONE = 0x00000000;

 public static final long FAC_ALL = 0xfffffff;

}

· FAC_NONE:

No Diagnostic

A commonLogger object assigned with this values discard all debug requests

· FAC_ALL:

Full Diagnostic

A commonLogger object assigned with this value allows all debug requests if the debug level and the visibility level match those allowed by the commonLogger.

3. The CommonFacilityCode class provides two enumerated types as described below:

public class CommonVisibilityLevel

{

 public static final long VIS_NONE = 0x00000000;

 public static final long VIS_ALL = 0xffffffff;

}

· VIS_NONE:

No Diagnostic

A commonLogger object assigned with this values discard all debug requests

· VIS_ALL:

Full Diagnostic

A commonLogger object assigned with this value allows all debug requests if the debug level and the facility code match those allowed by the commonLogger.

4.5.2 Defining its own finer debugging classes

For each type of variable an application may define its own class providing its own enumerated values, which shall differ those described above - In other words different from 0x00000000 or 0xffffffff. However, to avoid any confusion between finer values, the application should take benefit from the bit representation by defining its values as follow.

Level_1 = 0x00000001

Level_2 = 0x00000002

. . .

public class MyDebugValues

public static final long

Since each debugging level is represented by a single bit in the controller, debugging of multiple levels can be produced by OR-ing together the fields. For instance a new value can be defined as follow:

Level_3 = Level_1 | Level_2

If for instance, a CommonLogger object is assigned the Level_3, it enables a debug message only if the debug request is provided either with Level_3 or with Level_1 | Level_2.

As a template the following example illustrates how to build its own debugging classes providing a finer granularity.

import com.hp.mw.common.util.logging.DebugLevel;

import com.hp.mw.common.util.logging.CommonDebugLevel;

public class MyDebugLevel implements DebugLevel

{

 public static final long DEBUG_LEVEL_1 = 0x00000001;

 public static final long DEBUG_LEVEL_2 = 0x00000002;

 public static final long DEBUG_LEVEL_3 = 0x00000004

 . . .

 public final long getLevel (String level)

 {

if (level.equals("N0_DEBUGGING"))

 return CommonDebugLevel.NO_DEBUGGING;

if (level.equals("DEBUG_LEVEL_1"))

 return DEBUG_LEVEL_1;

if (level.equals("DEBUG_LEVEL_2"))

 return DEBUG_LEVEL_2;

. . .

if (level.equals("FULL_DEBUGGING"))

 return CommonDebugLevel.FULL_DEBUGGING;

return CommonDebugLevel.NO_DEBUGGING; //Default
 }

 public final String printString (long level)

 {

if (level == CommonDebugLevel.NO_DEBUGGING)

 return "NO_DEBUGGING";

if (level == CommonDebugLevel.FULL_DEBUGGING)

 return "FULL_DEBUGGING";

String sLevel = null;

if ((level & DEBUG_LEVEL_1) != 0)

 sLevel = ((sLevel == null) ? "DEBUG_LEVEL_1" : " & DEBUG_LEVEL_1");

if ((level & DEBUG_LEVEL_2) != 0)

 sLevel = ((sLevel == null) ? "DEBUG_LEVEL_2" : " & DEBUG_LEVEL_2");

. . .

return ((sLevel == null) ? "NO_DEBUGGING" : sLevel);

 }

}

In a similar way the application may define its own classes implementing the classes FacilityCode and VisibilityLevel.

4.5.3 commonLogger Debugging Values

Finer debugging values are assigned to a commonLogger object dynamically through the following methods on the commonLogger interface:

public interface CommonLogger extends Handler {

 . . .

 // All Level

 void setLevels (long dl, long vl, long fl);

 // Debug Level

 long getDebugLevel ();

 void setDebugLevel (long level);

 void mergeDebugLevel (long level);

 // Visibility Level

 long getVisibilityLevel ();

 void setVisibilityLevel (long level);

 void mergeVisibilityLevel (long level);

 // FacilityCode Levels

 long getFacilityCode ();

 void setFacilityCode (long level);

 void mergeFacilityCode (long level);

· getXXX methods are used to obtain the current level assigned to a CommonLogger object.

· setXXX methods are used to set the level of a CommonLogger object

· mergeXXX methods are used to add a level value to CommonLogger.

4.5.4 A simple scenario

The following example illustrates how finer granularity extension is used when the DEBUG is enabled by the commonLogger. The application provides its own finer classes. We assume that the default finer values used to initialise the commonLogger are defined a configuration file (see section 4.8 – Logging Configuration)

import com.hp.mw.common.util.logging.CommonLevel;

import com.hp.mw.common.util.logging.commonLogger;

import com.hp.mw.common.util.logging.LoggerFactory;

import com.hp.mw.common.util.logging.LogManager;

import com.hp.mw.common.util.logging.Level;

import com.hp.mw.common.util.logging.CommonDebugLevel;

public class DebugExt{

 static LoggerFactory log_fac = LogManager.getLogFactory();

 static commonLogger mylog = (commonLogger)log_fac.getLogger("TestLogLevels");

 public static void main(String[] args) {

 mylog.debug("This is a DEBUG Message");

 mylog.debug("This debug message is enabled since it matches default
 Finer Values", MyDebugLevel.DEBUG_LEVEL_1,
 MyVisibilityLevel.VIS_LEVEL_1, MyFacilityCode.LEVEL_1);

 mylog.debug("This debug message is discarded since it does'nt match
 default Finer Values", MyDebugLevel.DEBUG_LEVEL_2,
 MyVisibilityLevel.VIS_LEVEL_1, MyFacilityCode.FAC_LEVEL_1);

 mylog.mergeDebugLevel(CommonDebugLevel.FULL_DEBUGGING);

 mylog.debug("This debug message is enabled since it the CommonLogger allows
 full debugging", MyDebugLevel.DEBUG_LEVEL_3,
 MyVisibilityLevel.VIS_LEVEL_1, MyFacilityCode.FAC_LEVEL_1);

 }

}

4.6 Handler and Output Format

4.6.1 Output Destination

The Common Logging Framework allows logging requests to print to multiple destinations. Rather than defining a particular class responsible to manage the output, the Common Logging Framework relies on the underlying logging service to manage the output via the appropriate class or interface they define. For instance, log4j provide the Appender interface and the set of classes implementing this interface. Among these classes there are the ConsoleAppender class, which sends log events to the console, or the FileAppender class, which sends the log requests to the file. Similarly, the HP logging service provides the LogWriter interface, and the classes ConsoleLogWriter or TextFileLogWriter.

Once created by LogManager, the LoggerFactory is associated with an appropriate “output class
”. By default any CommonLogger object created by that LoggerFactory is associated with an output class that sends logging messages to the console. The application can send logging messages to the file using the property output as follow:

java –Doutput=<output_value> MyApplication

Where the property output_value may have one of the following values:

· console – this the default value

· file
As said above logging messages are y default sent to the console. An application may require to send logging messages to a particular output in addition to the console. The commonLogger provides the AddHandler method, which takes as an argument an object implementing the Handler interface. The Handler interface is an “empty” interface without methods and represents a generic name given for an output such a console or a text file. This interface is used to hide the nature of the similar underlying handler.

Two classes are provided to the application to define additional output classes:

· The CommonLogWriter to build a Handler object associated to a LogWriter object recognized by the HP logging service

· The CommonAppender to a Handler object associated to an Appender object recognized by log4j

Let us give examples to illustrate how these classes are used.

1) Add a LogWriter

As seen above a created commonLogger sends log messages to the console. The HP logging service used by the CSF framework has defined a class named TextFileLogWriter, which implements the LogWriter interface. The following example illustrates how an application adds a TextFileLogWriter object to the commonLogger to send log messages to a file in addition to the console.

. . .

import com.hp.mw.common.util.logging.csf.CommonLogWriter;

import com.hp.mw.common.util.logging.TextFileLogWriter;

import java.io.File;

public class AddLogWriter{

 static LoggerFactory log_fac = LogManager.getLogFactory();

 static commonLogger mylog = (commonLogger)log_fac.getLogger("TestAddLogWriter");

 static CommonLogWriter MyLogWriter;

 static TextFileLogWriter filewriter;

 . . .

 java.io.File the_directory = new File(“MyDirectory”);

 filewriter = new TextFileLogWriter(); // (1)

 filewriter.setName(“MyLogFile”);

 filewriter.setDirectory(the_directory);

 MyLogWriter = new CommonLogWriter(filewriter); // (2)

 mylog.addHandler(MyLogWriter);
 // (3)

 mylog.log(CommonLevel.FATAL, "This is the first FATAL Message");//(4)

 mylog.removeHandler(MyLogWriter); // (5)

 log_fac.releaseResource();

 ...

}

The application creates a TextFileLogWriter object (1) and uses it as argument to create a CommonLogWriter object (2), which implements the Handler interface. The CommonLogWriter object is registered with the commonLogger object (3). The commonLogger object will use all Handler or output class registered to forward the log message (4). Before leaving, the application un-registers the Handler from the commonLogger object.

2) Add an Appender

Log4j defines a class named FileAppender, which implements the Appender interface. The following example illustrates how an application adds a FileAppender object to the commonLogger to send log messages to a file in addition to the console.

. . .

import org.apache.log4j.PatternLayout;

import org.apache.log4j.FileAppender;

import com.hp.mw.common.util.logging.log4j.CommonAppender;

public class AddAppender{

 static LoggerFactory log_fac = LogManager.getLogFactory();

 static commonLogger mylog = (commonLogger)log_fac.getLogger("TestAddAppender");

 static CommonAppender MyAppender;

 static FileAppender fileAppender;

 static PatternLayout theLayout;

 theLayout = new PatternLayout(PatternLayout.TTCC_CONVERSION_PATTERN);// (1)

 fileAppender = new FileAppender(theLayout, “theLogFileName”); // (2)

 MyAppender = new CommonAppender(fileAppender); // (3)

 mylog.addHandler(MyAppender); // (4)

 mylog.log(CommonLevel.FATAL, "This is the first FATAL Message"); // (5)
 log_fac.releaseResource();

 . . .

}

The log4j.PatternLayout is a particular class implementing the log4j.Layout responsible to format a message before sending it to output (1). The application uses the created PatternLayout object to instantiate a FileAppender object (2). That all log messages sent to the file managed by the FileAppender object will be printed using the format defined for the PatternLayout object. The FileAppender object is used as an argument to instantiate a CommonAppender object (3), which implements the Handler interface. The CommonAppender object is registered with the commonLogger object (4). The commonLogger object will use all Handler or output class registered to forward the log message (5).

3) Remove/Add the default output

As described above, a default output destination can be defined by specifying the value of the “output” property – “console” or “file”. However an application may wish to remove this default output in such that only its own output provided via the method addHandler on the commonLogger interface. For this aim, the commonLogger interface provides two methods to remove the default output destination from the list of output destination and to add if needed, after removing, the default output; respectively these methods are:

void removeDefaultOutput();

and

void addDefaultOutput();

4.6.2 Message Formatting

Similarly to the output destination, formatting log messages before their sending to the output relies on interface or classes provided by the underlying logging service. That is, an application may use provided classes to format the message, as done in the previous example where the application uses the PatternLayout class, or develop its own classes but implementing interface defined by the underlying service.

4.7 Internationalisation

A commonLogger may have a Resource Bundle name associated with it. The corresponding Resource Bundle can be used to map between raw message strings and localized message strings.

The Common Logging Framework relies on the underlying logging implementation to take into account the Resource Bundle by requesting the appropriate API. When instantiated a commonLogger object can be associated with a ResourceBundle name by provided in the getLogger method on the LoggerFactory.

The following example illustrates how the Common Logging Framework manages i18n.

import com.hp.mw.common.util.logging.CommonLevel;

import com.hp.mw.common.util.logging.commonLogger;

import com.hp.mw.common.util.logging.LoggerFactory;

import com.hp.mw.common.util.logging.LogManager;

import java.util.*;

public class logi18n{

 static LoggerFactory log_fac = LogManager.getLogFactory();

 static String language = System.getProperty("language", "en");

 static String country = System.getProperty("country", "US");

 private static Locale currentLocale = new Locale(language,country); //(1)

 private static ResourceBundle log_mesg =

 ResourceBundle.getBundle("logging_msg", currentLocale); // (2)

 static commonLogger mylog = (CommonLogger)log_fac.getLogger(logi18n.class.getName(),
 "logging_msg_"+language+"_"+country);

 public static void main(String[] args) {

 mylog.log(CommonLevel.FATAL,"FATAL_Message");

 mylog.log(CommonLevel.INFO,"INFO_Message");

 }

}

Within the logi18n class, messages defined with specific keys are displayed according to the language or Locale object specified by the application (1). As mentioned the US English is chosen by default. To determine the national text associated with a key (given with the log request), The ResourceBundle object is then created (3) and associated with the “logging_msg” which indicates to the ResourceBundle to seek a file beginning with its name as a prefix, where the rest of the file name is obtained with the Locale object. For instance, if the language chosen by the application is the US English, the file name to be considered is “logging_msg_en_US.properties”, while for the French used in France, the file name to be considered will be “logging_msg_fr_FR.properties”. Such properties file contains a national corresponding a key provided in the logging request.

The following files illustrate how national texts are provided for the English and the French. Additional files appropriate to other languages can be defined in a similar way.

· logging_msg_en_US.properties

FATAL_Message = This is a Fatal message

INFO_Message = This is an Info message

· logging_msg_fr_FR.properties

FATAL_Message = Ceci est un message Fatal

INFO_Message = Ceci est un message pour information

A log message provided with a string key, used as an entry by the ResourceBundle object to determine the corresponding text in a properties file, may be associated with a set of arguments for which their positions have previewed in the properties files. The following example illustrates how a set of arguments is associated with a key in the properties file. Assume that the logging_msg_en_US and logging_msg_fr_FR file contain respectively the following entry:

· English

IDENTIFICATION = The FirstName is {0} and the LastName is {1}

· French

IDENTIFICATION = Le prenom est {0} et le nom est {1}

The class logi18n may extended with:

public class logi18n{

 . . .

 public static void main(String[] args) {

 Object[] myParams = new Object[2];

 myParams[0]= “Foo”;

 myParams[1]= “Bar”;

 mylog.info("IDENTIFICATION",myParams);

 . . .

 }

}

When the logi18n class is executed the variable replacement, defined with the key named IDENTIFICATION, are specified with the arguments provided in myParams.

Missing Ressource
If a commonLogger object is used to manage i18n, any string key provided in a logging request should have an entry in the properties file. If not the commonLogger object accepts the provided key, but uses this key as a text to be logger in addition to mention that the associated entry does not exist in the provided bundle name. The following example is an illustration. In the class logi18n described above we assume that an additional logging request is invoked on the commonLogger object but using an entry which does not exist in the properties files

public class logi18n{

 . . .

 public static void main(String[] args) {

 mylog.log(CommonLevel.FATAL,"Test_Message");

 . . .

 }

}

Assuming that the FATAL log level is enabled, and the language is the French, the produced log message is.

[19 mars 2002 - 10:51:26][main][FATAL] - String "FATAL_Message" not found in bundle "logging_msg_fr_FR".

Note that the message is “String “Test Message” is in English”

4.8 Logging Configuration

The APIs are structured so that an initial set of configuration information is read as properties from a configuration file named “CommonLogging_1_0.properties” - This logging configuration file is in standard java.util.Properties format. The configuration information may then be changed programmatically by calls on the various logging classes and objects.

By default the CommonLogging_1_0.properties file is located in the etc directory, however when running an application may specify another location using the property “com.hp.mw.common.util.logging.propertiesFile”. If the configuration file cannot be found default properties or those defined with the –D option are considered as illustrated previously in some scenarios.

Warning

If the CommonLogging_1_0.properties file is present, any property specified with –D is not considered.

If the default properties file, CommonLogging_1_0.properties, is used, the etc directory in which it resides shall appear in the CLASSPATH.

Default Configuration

This CommonLogging.properties file should be located by default in the

current directory "."

The location can be changed by specifying the complete path via the

LogDir property which should be used with the option -D used the

java command as follow

java -D com.hp.mw.common.util.logging.propertiesFile
=<logging_directory> Application_class

The name of the underlying logging service to use.

The default is the HP logging mechanism used by CSF

Possible Values are:

- "CSFLOG" : By default

- "LOG4J"

LogFac=LOG4J

If the Common Logging Framework is used with CSF, the creation of an

Handler object (in CSF terms) and its registration with the

LogHandlerFactory should be avoided. Rather, the Handler created by CSF

should be used by the Common Logging Framework. Then set CSF=YES –

default is NO

CSF=NO

Any CommonLogger created by the Logger Factory is by default enabled.

To disable logging requests the following property shall be set to YES

#LOG_DISABLED=YES

Any CommonLogger created by the Logger Factory is by default set to the DEBUG

Level. The following property allows to modify it default level.

Possible Values are: DEBUG, INFO, WARN, ERROR, FATAL

If LOG_DISABLED is set to YES, logging requests are discarded whatever

the value assigned to LOGGER_LEVEL

#LOGGER_LEVEL=DEBUG

The locale language chosen by the aplication. By default the language

is set to en_US. Then language=en and country=US

#language=

#country=

The output considered to forward log meesages

by default log messages are sent to the console

Possibles values are:

- "console"

- "file"

#output=file

The name given to the output file.

Used if output=file

The way the name is used in HP CSF logging and LOG4j is different.

- Log4j:

The Default name given for the output file is "loggingFile.log",

which can be changed by the <file_name> if provided.

- CSF Log

The Default name given for the output file is active.log.

- The property "logfile" is the name of file to log

- The property "logdir" is the name of the directory where he log file

is stored. The default is the current directory

#logfile=

#logdir=

Specify if a finer debugging granularity should be provided by the

CommonLogger.

By default the granularity extention is not provided and is set to "NO"

If you set YES, you should provide finer debugging classes

#DebugExtention=

If the DebugExtention is set to "YES", the following finer debugging

classes should be provided, where

- dClass is the name (with complete path) of the class implementing

the DebugLevel interface

- fClass is the name (with complete path) of the class implementing

the FacilityCode interface

- vClass is the name (with complete path) of the class implementing

the VisibilityLevel interface

#dClass=

#fClass=

#vClass=

If Finer debugging classes provided, the following properties define

default Finer debugging values a CommonLogger should have. These values shall

be defined in finer debugging classes provided as described above.

Default values assigned for the CommonLogger are:

- For debuggingLevel

CommonDebugLevel.NO_DEBUGGING
- The value (long) is : 0

- For FacilityCode

CommonFacilityCode.FAC_ALL

- The value (long) is : 0xffffffff

- For VisibilityLevel

CommonVisibilityLevel.VIS_ALL
- The value (long) is : 0xffffffff

#DEBUG_VAL=

#FACIL_VAL=

#VISIB_VAL=

4.9 Mapping on logging implementations

The following table summarizes the underlying classes or interfaces which correspond to interfaces defined by the Common Logging Framework.

	Common Logging Framework
	Log4J
	HP CSF Logging
	JDK 1.4 Logging API*

	Handler
	Appender
	LogWriter
	Handler

	Level
	Priority
	LogLevel
	Level

	commonLogger
	Category
	LogChannel
	Logger

	LoggerFactory
	CategoryFactory
	LogChannelFactory
	LogManager

	LogManager
	No
	No
	No

*Not Implemented yet

� The output class does not exist, we use it here as a generic name representing the underlying class responsible to manage an output.

	Version No. 1.0
	000037
	10 January 2002

	HP Restricted
	The Common Logging Framework
	Page 27 of 28

