
JBoss Transactions 4.11.0

Failure Recovery Guide

TX-FRG-5/11/10

TX-FRG-5/11/10

JBoss Transactions 4.11.0 Failure Recovery Guide

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions 4.11.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2010 JBoss Inc.

2 TX-FRG-06/16/08

Contents
Table of Contents

About This Guide... 4

What This Guide Contains................................4
Audience.. 4
Prerequisites.. 4
Organization.. 4
Documentation Conventions.............................4
Additional Documentation................................5
Contacting Us.. 5

 Architecture of the Recovery Manager.....6

Crash Recovery Overview................................. 6
Recovery Manager... 7
Embedding the Recovery Manager...................9
Managing recovery directly............................... 9
Separate Recovery Manager.............................. 9
In process Recovery Manager...........................9
Recovery Modules... 10
JBossTS Recovery Module Classes................10
A Recovery Module for XA Resources...........12
Assumed complete... 15
Writing a Recovery Module............................15
A basic scenario... 15
Another scenario.. 19
TransactionStatusConnectionManager............19
Expired Scanner Thread..................................20
Application Process... 21
TransactionStatusManager..............................21
Object Store... 22
Socket free operation....................................... 22

 How JBossTS manages the OTS Recovery
Protocol... 24

Recovery Protocol in OTS - Overview...........24

RecoveryCoordinator in JBossTS................... 25
Understanding POA .. 25
The default RecoveryCoordinator in JacOrb...27
How Does it work.. 27

 Configuration Options..................................30

TX-FRG-06/16/08 3

JBoss Transactions 4.11.0 Failure Recovery Guide

About This Guide
What This Guide Contains

The Failure Recovery Guide contains information on how to use JBoss Transactions 4.11.0

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
Transactions 4.11.0 installations.

Prerequisites

You should have installed JBoss Transactions 4.11.0

Organization

This guide contains the following chapters:

• Chapter 1, Architecture of the Recovery Manager: explains the internal
architecture of the Recovery Manager.

• Chapter 2, How JBossTS manages the OTS Recovery Protocol: explains how
JBossTS deals with particular features of Object Request Brokers to implement the
recovery defined by the OTS specification in a optimistic way.

Documentation Conventions

The following conventions are used in this guide:

4 TX-FRG-06/16/08

About This Guide

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the
following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.11.0
documentation set:

• JBoss Transactions 4.11.0 Release Notes: Provides late-breaking information about
JBoss Transactions 4.11.0.

• JBoss Transactions 4.11.0 Installation Guide: This guide provides instructions for
installing JBoss Transactions 4.11.0.

• JBoss Transactions 4.11.0 Users Guide: Provides guidance for writing applications.

Contacting Us

Questions or comments about JBoss Transactions 4.11.0 should be directed to our support
team.

TX-FRG-06/16/08 5

JBoss Transactions 4.11.0 Failure Recovery Guide

Chapter 1

Architecture of the
Recovery Manager

Crash Recovery Overview

The main architectural components within Crash Recovery are illustrated in the diagram below:

Object Store

../Recovery/TransactionStatusManager

../StateManager/BasicAction/AtomicACtion

Recovery Manager deamon
(one per node)

TransactionStatus
ConnectionManager

TransactionStatus
Connector 1

TransactionStatus
Connector 2

TransactionStatus
Connector 3

Recovery
Module

Expired Scanner
Thread

Periodic Recovery Thread
1st

Pass
BackoffPeriod

2nd Pass

Recovery Period

Application Process(es)
Transaction 1

begin()
doWorkd()
commit()

Transaction 2
begin()

doWorkd()
commit()

Transaction 3
begin()

…

Listener
Thread

ArjunaTS

Local Transaction Tables

Transaction 1

Transaction 2

Transaction 3

Committing

Aborting

Preparing

TransactionStatusManager

Connection
Thread

AtomicActionStatusService

1

2 4

3

Crash Recovery
Architecture

1. Transaction Logs Written to Object Store
2. Recovery Manager scans Object Store for failed transactions
3. Transaction status checked in originator Application Process
4. Failed Transactions are activated in the TransactionCache
5. Failed transaction commit replayed synchronously

5

The Recovery Manager is a daemon process responsible for performing crash recovery. Only one
Recovery Manager runs per node. The Object Store provides persistent data storage for transactions
to log data. During normal transaction processing each transaction will log persistent data needed for

6 TX-FRG-06/16/08

Architecture of the Recovery Manager

the commit phase to the Object Store. On successfully committing a transaction this data is
removed, however if the transaction fails then this data remains within the Object Store.

Architecture of the Recovery ManagerThe Recovery Manager functions by:

• Periodically scanning the Object Store for transactions that may have failed. Failed
transactions are indicated by the presence of log data after a period of time that the
transaction would have normally been expected to finish.

• Checking with the application process which originated the transaction whether the
transaction is still in progress or not

• Recovering the transaction by re-activating the transaction and then replaying phase
two of the commit protocol.

The following sections describe the architectural components in more detail

Recovery Manager

On initialization the Recovery Manager first loads in configuration information via a properties file.
This configuration includes a number of recovery activators and recovery modules, which are then
dynamically loaded.

Since the version 3.0 of JBossTS, the Recovery Manager is not specifically tied to an Object Request
Broker or ORB. Hence, the OTS recovery protocol is not implicitly enabled. To enable such
protocol, we use the concept of recovery activator, defined with the interface RecoveryActivator,
which is used to instantiate a recovery class related to the underlying communication protocol. For
instance, when used with OTS, the RecoveryActivitor has the responsibility to create a
RecoveryCoordinator object able to respond to the replay_completion operation.

All RecoveryActivator instances inherit the same interface. They are loaded via the following
recovery extension property:

<entry key="RecoveryEnvironmentBean.recoveryActivators"/>list of class
names</entry>

For instance the RecoveryActivator provided in the distribution of JTS/OTS, which shall not be
commented, is as follow:

<entry key="RecoveryEnvironmentBean.recoveryActivators">
com.arjuna.ats.internal.jts.orbspecific.recovery.RecoveryEnablement</entry>

When loaded all RecoveryActivator instances provide the method startRCservice invoked by the
Recovery Manager and used to create the appropriate Recovery Component able to receive recovery
requests according to a particular transaction protocol. For instance the RecoveryCoordinator defined
by the OTS protocol.

Each recovery module is used to recover a different type of transaction/resource, however each
recovery module inherits the same basic behavior.

Recovery consists of two separate passes/phases separated by two timeout periods. The first pass
examines the object store for potentially failed transactions; the second pass performs crash recovery

TX-FRG-06/16/08 7

JBoss Transactions 4.11.0 Failure Recovery Guide

on failed transactions. The timeout between the first and second pass is known as the backoff period.
The timeout between the end of the second pass and the start of the first pass is the recovery period.
The recovery period is larger than the backoff period.

The Recovery Manager invokes the first pass upon each recovery module, applies the backoff period
timeout, invokes the second pass upon each recovery module and finally applies the recovery period
timeout before restarting the first pass again.

The recovery modules are loaded via the following recovery extension property:

<entry key="RecoveryEnvironmentBean.recoveryExtenstions">
list of class names</entry>

The backoff period and recovery period are set using the following properties:

<entry key="RecoveryEnvironmentBean.recoveryBackoffPeriod">10</entry>
<entry key="RecoveryEnvironmentBean.periodicRecoveryPeriod">120</entry>

The following java classes are used to implement the Recovery Manager:

• package com.arjuna.ats.arjuna.recovery :

RecoveryManager – The d aemon process that starts up by instantiating an instance
of the RecoveryManagerImple class.

RecoveryEnvironment - Properties used by the recovery manager.

RecoveryConfiguration - Specifies the name of the Recovery Manager property file.
(ie RecoveryManager-properties.xml)

• package com.arjuna.ats.internal.ts.arjuna.recovery :

RecoveryManagerImple - Creates and starts instances of the RecActivatorLoader,
the PeriodicRecovery thread and the ExpiryEntryMonitor thread.

RecActivatorLoader - Dynamically loads in the RecoveryActivator specified in the
Recovery Manager property file. Each RecoveryActicator is specified as a recovery
extension in the properties file

PeriodicRecovery - Thread which loads each recovery module, then calls the first
pass method for each module, applies the backoff period timeout, calls the second
pass method for each module and applies the recovery period timeout.

RecoveryClassLoader - Dynamically loads in the recovery modules specified in the
Recovery Manager property file. Each module is specified as a recovery extension in
the properties file (i.e., com.arjuna.ats.arjuna.recovery.recoveryExtension1=
com.arjuna.ats.internal.ts.arjuna.recovery.AtomicActionRecoveryModule).

8 TX-FRG-06/16/08

Architecture of the Recovery Manager

Caution:By default, the recovery manager listens on the first available port on a
given machine. If you wish to control the port number that it uses, you can
specify this using the com.arjuna.ats.arjuna.recovery.recoveryPort attribute.

Embedding the Recovery Manager

In some situations it may be required to embed the RecoveryManager in the same process as
the transaction service. In this case you can create an instance of the RecoveryManager
through the manager method on
com.arjuna.ats.arjuna.recovery.RecoveryManager. A RecoveryManager can be
created in one of two modes, selected via the parameter to the manager method:

i. INDIRECT_MANAGEMENT: the manager runs periodically but can also be
instructed to run when desired via the scan operation or through the RecoveryDriver
class to be described below.

ii. DIRECT_MANAGEMENT: the manager does not run periodically and must be
driven directly via the scan operation or RecoveryDriver.

Managing recovery directly

As already mentioned, recovery typically happens at periodic intervals. If you require to
drive recovery directly, then there are two options, depending upon how the
RecoveryManager has been created.

Separate Recovery Manager

You can either use the com.arjuna.ats.arjuna.tools.RecoveryMonitor program to send a
message to the Recovery Manager instructing it to perform recovery, or you can create an
instance of the com.arjuna.ats.arjuna.recovery.RecoveryDriver class to do likewise. There
are two types of recovery scan available:

i. ASYNC_SCAN: here a message is sent to the RecoveryManager to instruct it to
perform recovery, but the response returns before recovery has completed.

ii. SYNC: here a message is sent to the RecoveryManager to instruct it to perform
recovery, and the response occurs only when recovery has completed.

In process Recovery Manager

You can invoke the scan operation on the RecoveryManager. This operation returns only
when recovery has completed. However, if you wish to have an asynchronous interaction
pattern, then the RecoveryScan interface is provided:

public interface RecoveryScan
{
 public void completed ();
}

TX-FRG-06/16/08 9

JBoss Transactions 4.11.0 Failure Recovery Guide

An instance of an object supporting this interface can be passed to the scan operation and its
completed method will be called when recovery finishes. The scan operation returns
immediately, however.

Recovering For Multiple Transaction Coordinators

Sometimes a single Recovery Manager can be made responsible for recovering transactions
executing on behalf of multiple transaction coordinators. Conversely, due to specific
configurations it may be that multiple Recovery Managers share the same Object Store and
in which case should not conflict with each other, e.g., roll back transactions that they do not
understand. Therefore, when running recovery it is necessary to tell JBossTS which types of
transactions it can recover and which transaction identifiers it should ignore.

When necessary each transaction identifier that JBossTS creates may have a unique node
identifier encoded within it and JBossTS will only recover transactions and states that match
a specified node identifier. The node identifier for each JBossTS instance should be set via
the com.arjuna.ats.arjuna.nodeIdentifier property. This value must be
unique across JBossTS instances. The contents of this should be alphanumeric and not
exceed 10 bytes in length. If you do not provide a value, then JBossTS will fabricate one and
report the value via the logging infrastructure.

How this value is used will depend upon the type of resources being recovered and will be
discussed within the relevant sections for the Recovery Modules.

Recovery Modules

As stated before each recovery module is used to recover a different type of
transaction/resource, but each recovery module must implement the following
RecoveryModule interface, which defines two methods: periodicWorkFirstPass and
periodicWorkSecondPass invoked by the Recovery Manager.

public interface RecoveryModule
{
 /**
 * Called by the RecoveryManager at start up, and then
 * PERIODIC_RECOVERY_PERIOD seconds after the completion, for all
 * RecoveryModules of the second pass
 */
 public void periodicWorkFirstPass ();

 /**
 * Called by the RecoveryManager RECOVERY_BACKOFF_PERIOD seconds
 * after the completion of the first pass
 */
 public void periodicWorkSecondPass ();
}

10 TX-FRG-06/16/08

Architecture of the Recovery Manager

JBossTS Recovery Module Classes

JBossTS provides a set of recovery modules that are responsible to manage recovery
according to the nature of the participant and its position in a transactional tree. The provided
classes (that all implements the RecoveryModule interface) are:

• com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule

Recovers AtomicAction transactions.

• com.arjuna.ats.internal.txoj.recovery.TORecoveryModule

Recovers Transactional Objects for Java.

• com.arjuna.ats.internal.jts.recovery.transactions.TransactionRecoveryModule

Recovers JTS Transactions. This is a generic class from which TopLevel and Server
transaction recovery modules inherit, respectively

• com.arjuna.ats.internal.jts.recovery.transactions.TopLevelTransactionRecoveryMod
ule

• com.arjuna.ats.internal.jts.recovery.transactions.ServerTransactionRecoveryModule

To illustrate the behavior of a recovery module, the following pseudo code describes the
basic algorithm used for Atomic Action transactions and Transactional Objects for java.

AtomicAction pseudo code

First Pass:

< create a transaction vector for transaction Uids. >
< read in all transactions for a transaction type AtomicAction. >
while < there are transactions in the vector of transactions. >
do
 < add the transaction to the vector of transactions. >
end while.
Second Pass:
while < there are transactions in the transaction vector >
do
 if < the intention list for the transaction still exists >
 then
 < create new transaction cached item >
 < obtain the status of the transaction >

 if < the transaction is not in progress >
 then
 < replay phase two of the commit protocol >
 endif.
 endif.
end while.

Transactional Object pseudo code

TX-FRG-06/16/08 11

JBoss Transactions 4.11.0 Failure Recovery Guide

First Pass:

< Create a hash table for uncommitted transactional objects. >
< Read in all transactional objects within the object store. >
while < there are transactional objects >
do
 if < the transactional object has an Uncommited status in the object
store >
 then
 < add the transactional Object o the hash table for uncommitted
transactional objects>
 end if.
end while.
Second Pass:
while < there are transactions in the hash table for uncommitted
transactional objects >
do
 if < the transaction is still in the Uncommitted state >
 then
 if < the transaction is not in the Transaction Cache >
 then
 < check the status of the transaction with the original application
process >
 if < the status is Rolled Back or the application process is
inactive >
 < rollback the transaction by removing the Uncommitted status
from the Object Store >
 endif.
 endif.
 endif.
end while.

A Recovery Module for XA Resources

To manage recovery, we have seen in the previous chapter that the Recovery Manager
triggers a recovery process by calling a set of recovery modules that implements the two
methods defined by the RecoveryModule interface.

To enable recovery of participants controlled via the XA interface, a specific recovery
module named XARecoveryModule is provided. The XARecoveryModule, defined in the
packages com.arjuna.ats.internal.jta.recovery.arjunacore and
com.arjuna.ats.internal.jta.recovery.jts, handles recovery of XA resources (databases etc.)
used in JTA.

Caution:JBossTS supports two JTA implementations: a purely local version (no
distributed transactions) and a version layered on the JTS. Recovery for the
former is straightforward. In the following discussion we shall implicitly consider
on the JTS implementation.

Its behavior consists of two aspects: “transaction-initiated” and “resource-initiated” recovery.
Transaction-initiated recovery is possible where the particular transaction branch had
progressed far enough for a JTA Resource Record to be written in the ObjectStore, as
illustrated in Figure 2.

12 TX-FRG-06/16/08

Architecture of the Recovery Manager

Figure 2 – JTA/JDBC information stored in the ObjectStore

A JTA Resource record contains the information needed to link the transaction, as known to
the rest of JBossTS, to the database. Resource-initiated recovery is necessary for branches
where a failure occurred after the database had made a persistent record of the transaction,
but before the JTA ResourceRecord was persisted. Resource-initiated recovery is also
necessary for datasources for which it is not possible to hold information in the JTA
Resource record that allows the recreation in the RecoveryManager of the
XAConnection/XAResource that was used in the original application.

Note: The node identifier to use for recovery should be provided to JBossTS via a
property that starts with the name com.arjuna.ats.jta.xaRecoveryNode;
multiple values may be provided. A value of ‘*’ will force JBossTS to recover
(and possibly rollback) all transactions irrespective of their node identifier and
should be used with caution. The contents of
com.arjuna.ats.jta.xaRecoveryNode should be alphanumeric and
match the values of com.arjuna.ats.arjuna.nodeIdentifier.

Transaction-initiated recovery is automatic. The XARecoveryModule finds the JTA
Resource Record that need recovery, then uses the normal recovery mechanisms to find the
status of the transaction it was involved in (i.e., it calls replay_completion on the
RecoveryCoordinator for the transaction branch), (re)creates the appropriate XAResource
and issues commit or rollback on it as appropriate. The XAResource creation will use the
same information, database name, username, password etc., as the original application.

TX-FRG-06/16/08 13

XAResource

Recovery
Manager

ObjectStore
JTA_Resource

XA Log
XID, É

DatabaseConnection

JBoss Transactions 4.11.0 Failure Recovery Guide

Figure 3 - Transaction-Initiated Recovery and XA Recovery

Resource-initiated recovery has to be specifically configured, by supplying the Recovery
Manager with the appropriate information for it to interrogate all the databases
(XADataSources) that have been accessed by any JBossTS application. The access to each
XADataSource is handled by a class that implements the
com.arjuna.ats.jta.recovery.XAResourceRecovery interface, as illustrated in Figure 4.
Instances of classes that implements the XAResourceRecovery interface are dynamically
loaded, as controlled by properties with names beginning
“com.arjuna.ats.jta.recovery.XAResourceRecovery”.

14 TX-FRG-06/16/08

Architecture of the Recovery Manager

Figure 4 – Resource-initiated recovery and XA Recovery

The XARecoveryModule will use the XAResourceRecovery implementation to get a
XAResource to the target datasource. On each invocation of periodicWorkSecondPass, the
recovery module will issue an XAResource.recover request – this will (as described in the
XA specification) return a list of the transaction identifiers (Xid’s) that are known to the
datasource and are in an indeterminate (in-doubt) state. The list of these in-doubt Xid’s
received on successive passes (i.e. periodicWorkSecondPass-es) is compared. Any Xid that
appears in both lists, and for which no JTA ResourceRecord was found by the intervening
transaction-initiated recovery is assumed to belong to a transaction that was involved in a
crash before any JTA ResourceRecord was written, and a rollback is issued for that
transaction on the XAResource.

This double-scan mechanism is used because it is possible the Xid was obtained from the
datasource just as the original application process was about to create the corresponding
JTA_ResourceRecord. The interval between the scans should allow time for the record to be
written unless the application crashes (and if it does, rollback is the right answer).

An XAResourceRecovery implementation class can be written to contain all the information
needed to perform recovery to some datasource. Alternatively, a single class can handle
multiple datasources. The constructor of the implementation class must have an empty
parameter list (because it is loaded dynamically), but the interface includes an initialise
method which passes in further information as a string. The content of the string is taken
from the property value that provides the class name: everything after the first semi-colon is
passed as the value of the string. The use made of this string is determined by the
XAResourceRecovery implementation class.

For further details on the way to implement a class that implements the interface
XAResourceRecovery, read the JDBC chapter of the JTA Programming Guide. An
implementation class is provided that supports resource-initiated recovery for any
XADataSource. This class could be used as a template to build your own implementation
class.

TX-FRG-06/16/08 15

JBoss Transactions 4.11.0 Failure Recovery Guide

Assumed complete

If a failure occurs in the transaction environment after the transaction coordinator had told
the XAResource to commit but before the transaction log has been updated to remove the
participant, then recovery will attempt to replay the commit. In the case of a Serialized
XAResource, the response from the XAResource will enable the participant to be removed
from the log, which will eventually be deleted when all participants have been committed.
However, if the XAResource is not recoverable then it is extremely unlikely that any
XAResourceRecovery instance will be able to provide the recovery sub-system with a fresh
XAResource to use in order to attempt recovery; in which case recovery will continually fail
and the log entry will never be removed.

There are two possible solutions to this problem:

• Rely on the relevant ExpiryScanner to eventually move the log elsewhere. Manual
intervention will then be needed to ensure the log can be safely deleted. If a log entry
is moved, suitable warning messages will be output.

• Set the com.arjuna.ats.jta.xaAssumeRecoveryComplete to true. This option is
checked whenever a new XAResource instance cannot be located from any
registered XAResourceRecovery instance. If false (the default), recovery assumes
that there is a transient problem with the XAResourceRecovery instances (e.g., not
all have been registered with the sub-system) and will attempt recovery periodically.
If true then recovery assumes that a previous commit attempt succeeded and this
instance can be removed from the log with no further recovery attempts. This option
is global, so needs to be used with care since if used incorrectly XAResource
instances may remain in an uncommitted state.

Writing a Recovery Module

In order to recover from failure, we have seen that the Recovery Manager contacts recovery
modules by invoking periodically the methods periodicWorkFirstPass and
periodicWorkSecondPass. Each Recovery Module is then able to manage recovery according
the type of resources that need to be recovered. The JBoss Transaction product is shipped
with a set of recovery modules (TOReceveryModule, XARecoveryModule…), but it is
possible for a user to define its own recovery module that fit his application. The following
basic example illustrates the steps needed to build such recovery module

A basic scenario

This basic example does not aim to present a complete process to recover from failure, but
mainly to illustrate the way to implement a recovery module.

The application used here consists to create an atomic transaction, to register a participant
within the created transaction and finally to terminate it either by commit or abort. A set of
arguments are provided:

 to decide to commit or abort the transaction,

16 TX-FRG-06/16/08

Architecture of the Recovery Manager

 to decide generating a crash during the commitment process.

The code of the main class that control the application is given below

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.AtomicAction;
import com.arjuna.ats.arjuna.coordinator.*;

public class TestRecoveryModule
{
 public static void main(String args[])
 {

 try
 {

 AtomicAction tx = new AtomicAction();
 tx.begin(); // Top level begin

 // enlist the participant
 tx.add(SimpleRecord.create());

 System.out.println("About to complete the transaction ");
 for (int i = 0; i < args.length; i++)
 {

 if ((args[i].compareTo("-commit") == 0))
 _commit = true;
 if ((args[i].compareTo("-rollback") == 0))
 _commit = false;
 if ((args[i].compareTo("-crash") == 0))
 _crash = true;

 }
 if (_commit)

 tx.commit(); // Top level commit
 else

 tx.abort(); // Top level rollback
 } catch(Exception e) {
 e.printStackTrace();
 }

 }
 protected static boolean _commit = true;
 protected static boolean _crash = false;
}

The registered participant has the following behavior:

 During the prepare phase, it writes a simple message - “I’m prepared”- on the disk
such The message is written in a well known file

 During the commit phase, it writes another message - “I’m committed”- in the
same file used during prepare

 If it receives an abort message, it removes from the disk the file used for prepare if
any.

 If a crash has been decided for the test, then it crashes during the commit phase –
the file remains with the message “I’m prepared”.

The main portion of the code illustrating such behavior is described hereafter.

Caution:that the location of the file given in variable filename can be changed

TX-FRG-06/16/08 17

JBoss Transactions 4.11.0 Failure Recovery Guide

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.coordinator.*;
import java.io.File;

public class SimpleRecord extends AbstractRecord {
 public String filename = "c:/tmp/RecordState";
 public SimpleRecord() {

 System.out.println("Creating new resource");
 }

 public static AbstractRecord create()
 {

 return new SimpleRecord() ;
 }

 public int topLevelAbort()
 {

 try {
 File fd = new File(filename);
 if (fd.exists()){

 if (fd.delete())
 System.out.println("File Deleted");

 }
 }
 catch(Exception ex){…}

 return TwoPhaseOutcome.FINISH_OK;
 }

 public int topLevelCommit()
 {

 if (TestRecoveryModule._crash)
 System.exit(0);

 try {
 java.io.FileOutputStream file = new

 java.io.FileOutputStream(filename);
 java.io.PrintStream pfile = new java.io.PrintStream(file);
 pfile.println("I'm Committed");
 file.close();

 }
 catch (java.io.IOException ex) {...}
 return TwoPhaseOutcome.FINISH_OK ;

 }

 public int topLevelPrepare()
 {

 try {
 java.io.FileOutputStream file = new

 java.io.FileOutputStream(filename);
 java.io.PrintStream pfile = new java.io.PrintStream(file);
 pfile.println("I'm prepared");
 file.close();

 }
 catch (java.io.IOException ex) {...}
 return TwoPhaseOutcome.PREPARE_OK ;

 }
 …
}

18 TX-FRG-06/16/08

Architecture of the Recovery Manager

The role of the Recovery Module in such application consists to read the content of the file
used to store the status of the participant, to determine that status and print a message
indicating if a recovery action is needed or not.

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.recovery.RecoveryModule;

public class SimpleRecoveryModule implements RecoveryModule
{
 public String filename = "c:/tmp/RecordState";
 public SimpleRecoveryModule ()
 {

 System.out.println("The SimpleRecoveryModule is loaded");
 };

 public void periodicWorkFirstPass ()
 {

 try
 {
 java.io.FileInputStream file = new
 java.io.FileInputStream(filename);
 java.io.InputStreamReader input = new
 java.io.InputStreamReader(file);
 java.io.BufferedReader reader = new java.io.BufferedReader(input);
 String stringState = reader.readLine();

 if (stringState.compareTo("I'm prepared") == 0)
 System.out.println("The transaction is in the prepared state");
 file.close();

 }
 catch (java.io.IOException ex)
 { System.out.println("Nothing found on the Disk"); }
 }

 public void periodicWorkSecondPass ()
 {

 try
 {
 java.io.FileInputStream file = new
 java.io.FileInputStream(filename);
 java.io.InputStreamReader input = new
 java.io.InputStreamReader(file);
 java.io.BufferedReader reader = new java.io.BufferedReader(input);
 String stringState = reader.readLine();
 if (stringState.compareTo("I'm prepared") == 0)
 {
 System.out.println("The record is still in the prepared state –
 Recovery is needed");
 }

 else if (stringState.compareTo("I'm Committed") == 0)
 {
 System.out.println("The transaction has completed and committed");
 }
 file.close();
 }
 catch (java.io.IOException ex)
 { System.out.println("Nothing found on the Disk - Either there was
 no transaction or it as been rolled back"); }
 }
}

TX-FRG-06/16/08 19

JBoss Transactions 4.11.0 Failure Recovery Guide

The recovery module should now be deployed in order to be called by the Recovery
Manager. To do so, we just need to add an entry in the the config file for the extension:

 <entry key="RecoveryEnvironmentBean.recoveryExtenstions">
com.arjuna.demo.recoverymodule.SimpleRecoveryModule</entry>

Once started, the Recovery Manager will automatically load the listed Recovery modules.

Caution:The source of the code can be retrieved under the trailmap directory of the
JBossTS installation.

Another scenario

As mentioned, the basic application presented above does not present the complete process
to recover from failure, but it was just presented to describe how the build a recovery
module. In case of the OTS protocol, let’s consider how a recovery module that manages
recovery of OTS resources can be configured.

To manage recovery in case of failure, the OTS specification has defined a recovery
protocol. Transaction’s participants in a doubt status could use the RecoveryCoordinator to
determine the status of the transaction. According to that transaction status, those participants
can take appropriate decision either by roll backing or committing. Asking the
RecoveryCoordinator object to determine the status consists to invoke the replay_completion
operation on the RecoveryCoordinator.

For each OTS Resource in a doubt status, it is well known which RecoveyCoordinator to
invoke to determine the status of the transaction in which the Resource is involved – It’s the
RecoveryCoordinator returned during the Resource registration process. Retrieving such
RecoveryCoordinator per resource means that it has been stored in addition to other
information describing the resource.

A recovery module dedicated to recover OTS Resources could have the following behavior.
When requested by the recovery Manager on the first pass it retrieves from the disk the list
of resources that are in the doubt status. During the second pass, if the resources that were
retrieved in the first pass still remain in the disk then they are considered as candidates for
recovery. Therefore, the Recovery Module retrieves for each candidate its associated
RecoveryCoordinator and invokes the replay_completion operation that the status of the
transaction. According to the returned status, an appropriate action would be taken (for
instance, rollback the resource is the status is aborted or inactive).

TransactionStatusConnectionManager

The TransactionStatusConnectionManager object is used by the recovery modules to retrieve
the status of transactions and acts like a proxy for TransactionStatusManager objects. It
maintains a table of TransactionStatusConnector obects each of which connects to a
TransactionStatusManager object in an Application Process.

20 TX-FRG-06/16/08

Architecture of the Recovery Manager

The transactions status is retrieved using the getTransactionStatus methods which take a
transaction Uid and if available a transaction type as parameters. The process Uid field in the
transactions Uid parameter is used to lookup the target TransactionStatusManagerItem
host/port pair in the Object Store. The host/port pair are used to make a TCP connection to
the target TransactionStatusManager object by a TransactionStatusConnector object. The
TransactionStatusConnector passes the transaction Uid/transaction type to the
TransactionStatusManager in order to retrieve the transactions status.

Expired Scanner Thread

When the Recovery Manager initialises an expiry scanner thread ExpiryEntryMonitor is
created which is used to remove long dead items from the ObjectStore. A number of scanner
modules are dynamically loaded which remove long dead items for a particular type.

Scanner modules are loaded at initialisation and are specified as properties beginning with

 <entry key="RecoveryEnvironmentBean.expiryScanners">
list of class names</entry>

All the scanner modules are called periodically to scan for dead items by the
ExpiryEntryMonitor thread. This period is set with the property:

 <entry key="RecoveryEnvironmentBean.expiryScanInterval">number_of_hours
</entry>

All scanners inherit the same behaviour from the java interface ExpiryScanner as illustrated
in diagram below:

A scan method is provided by this interface and implemented by all scanner modules, this is
the method that gets called by the scanner thread.

The ExpiredTransactionStatusManagerScanner removes long dead
TransactionStatusManagerItems from the Object Store. These items will remain in the
Object Store for a period of time before they are deleted. This time is set by the property:

<entry
key="RecoveryEnvironmentBean.transactionStatusManagerExpiryTime">number_of_h
ours
</entry> (default 12 hours)

The AtomicActionExpiryScanner moves transaction logs for AtomicActions that are
assumed to have completed. For instance, if a failure occurs after a participant has been told
to commit but before the transaction system can update the log, then upon recovery JBossTS
recovery will attempt to replay the commit request, which will obviously fail, thus
preventing the log from being removed. This is also used when logs cannot be recovered
automatically for other reasons, such as being corrupt or zero length. All logs are moved to a
location based on the old location appended with /Expired.

TX-FRG-06/16/08 21

JBoss Transactions 4.11.0 Failure Recovery Guide

Note: AtomicActionExpiryScanner is disabled by default. To enable it simply add it
to the JBossTS properties file. You do not need to enable it in order to cope
with (move) corrupt logs.

Application Process

This represents the user transactional program. A Local transaction (hash) table, maintained
within the running application process keeps trace of the current status of all transactions
created by that application process, The Recovery Manager needs access to the transaction
tables so that it can determine whether a transaction is still in progress, if so then recovery
does not happen.

The transaction tables are accessed via the TransactionStatusManager object. On application
program initialisation the host/port pair that represents the TransactionStatusManager is
written to the Object Store in ‘../Recovery/TransactionStatusManager’ part of the Object
Store file hierarchy and identified by the process Uid of the application process.

The Recovery Manager uses the TransactionStatusConnectionManager object to retrieve the
status of a transaction and a TransactionStatusConnector object is used to make a TCP
connection to the TransactionStatusManager.

TransactionStatusManager

This object acts as an interface for the Recovery Manager to obtain the status of transactions
from running JBossTS application processes. One TransactionStatusManager is created per
application process by the class com.arjuna.ats.arjuna.coordinator.TxControl. Currently a tcp
connection is used for communication between the RecoveryManager and
TransactionStatusManager. Any free port is used by the TransactionStatusManager by
default, however the port can be fixed with the property:

<entry key="RecoveryEnvironmentBean.transactionStatusManagerPort">value
</entry>

On creation the TransactionStatusManager obtains a port which it stores with the host in the
Object Store as a TransactionStatusManagerItem. A Listener thread is started which waits
for a connection request from a TransactionStatusConnector. When a connection is
established a Connection thread is created which runs a Service
(AtomicActionStatusService) which accepts a transaction Uid and a transaction type (if
available) from a TransactionStatusConnector, the transaction status is obtained from the
local thransaction table and returned back to the TransactionStatusConnector

Object Store

All objects are stored in a file path which is equivalent to their class inheritance. Thus
AtomicAction transactions are stored in file path
../StateManager/BasicAction/AtomicAction.

22 TX-FRG-06/16/08

Architecture of the Recovery Manager

All objects are identified by a unique identifier Uid. One of the values of which is a process
id in which the object was created. The Recovery Manager uses the process id to locate
transaction status manager items when contacting the originator application process for the
transaction status. Therefore, exactly one recovery manager per ObjectStore must run on
each nodes and ObjectStores must not be shared by multiple nodes.

Socket free operation

The use of TCP/IP sockets for TransactionStatusManager and RecoveryManager provides
for maximum flexibility in the deployment architecture. It is often desirable to run the
RecoveryManager in a separate JVM from the Transaction manager(s) for increased
reliability. In such deployments, TCP/IP provides for communication between the
RecoveryManager and transaction manager(s), as detailed in the preceding sections.
Specifically, each JVM hosting a TransactionManager will run a TransactionStatusManager
listener, through which the RecoveryManager can contact it to determine if a transaction is
still live or not. The RecoveryManager likewise listens on a socket, through which it can be
contacted to perform recovery scans on demand. The presence of a recovery listener is also
used as a safety check when starting a RecoveryManager, since at most one should be
running for a given ObjectStore.

There are some deployment scenarios in which there is only a single TransactionManager
accessing the ObjectStore and the RecoveryManager is co-located in the same JVM. For
such cases the use of TCP/IP sockets for communication introduces unnecessary runtime
overhead. Additionally, if several such distinct processes are needed for e.g. replication or
clustering, management of the TCP/IP port allocation can become unwieldy. Therefore it
may be desirable to configure for socketless recovery operation.

The property CoordinatorEnvironmentBean.transactionStatusManagerEnable can be set to a
value of NO to disable the TransactionStatusManager for any given TransactionManager.
Note that this must not be done if recovery runs in a separate process, as it may lead to
incorrect recovery behavior in such cases. For an in-process recovery manager, the system
will use direct access to the ActionStatusService instead.

The property RecoveryEnvironmentBean.recoveryListener can likewise be used to disable
the TCP/IP socket listener used by the recovery manager. Care must be taken not to
inadvertently start multiple recovery managers for the same ObjectStore, as this error, which
may lead to significant crash recovery problems, cannot be automatically detected and
prevented without the benefit of the socket listener.

TX-FRG-06/16/08 23

JBoss Transactions 4.11.0 Failure Recovery Guide

Chapter 1

How JBossTS manages
the OTS Recovery

Protocol
Recovery Protocol in OTS - Overview

To manage recovery in case of failure, the OTS specification has defined a recovery
protocol. Transaction’s participants in a doubt status could use the RecoveryCoordinator to
determine the status of the transaction. According to that transaction status, those participants
can take appropriate decision either by roll backing or committing.

A reference to a RecoveryCoordinator is returned as a result of successfully calling
register_resource on the transaction Coordinator. This object, which is implicitly
associated with a single Resource, can be used to drive the Resource through recovery
procedures in the event of a failure occurring during the transaction.

Resource

RecoveryCoordinator

1

1

replay_completion(Resource):Status

prepare():Vote
commit()
rollback()

Figure 5: Resource and RecoveryCoordinator relationship.

24 TX-FRG-06/16/08

How JBossTS manages the OTS Recovery Protocol

RecoveryCoordinator in JBossTS

On each resource registration a RecoveryCoordinator Object is expected to be created and
returned to the application that invoked the register_resource operation. Behind each
CORBA object there should be an object implementation or Servant object, in POA terms,
which performs operations made on a RecoveryCoordinator object. Rather than to create a
RecoveryCoordinator object with its associated servant on each register_resource, JBossTS
enhances performance by avoiding the creation of servants but it relies on a default
RecoveryCoordinator object with it’s associated default servant to manage all
replay_completion invocations.

In the next sections we first give an overview of the Portable Object Adapter architecture,
then we describe how this architecture is used to provide RecoveryCoordinator creation with
optimization as explained above.

Understanding POA

Basically, the Portable Object Adapter, or POA is an object that intercepts a client request
and identifies the object that satisfies the client request. The Object is then invoked and the
response is returned to the client.

Figure 6 - Overview of the POA

The object that performs the client request is referred as a servant, which provides the
implementation of the CORBA object requested by the client. A servant provides the
implementation for one or more CORBA object references. To retreive a servant, each POA
maintains an Active Object Map that maps all objects that have been activated in the POA to
a servant. For each incoming request, the POA looks up the object reference in the Active
Object Map and tries to find the responsible servant. If none is found, the request is either
delegated to a default servant, or a servant manager is invoked to activate or locate an

TX-FRG-06/16/08 25

S e r v a n t

P O A

P O A

R o o t P O A

A c t i v e O b j e c t M a p

O b j e c t I D

O b j e c t I D

O b j e c t I D

S e r v a n t

S e r v a n t

S e r v a n t M a n a g e r

S e r v a n t M a n a g e r

C l i e n t r e q u e s t

S e r v e r

JBoss Transactions 4.11.0 Failure Recovery Guide

appropriate servant. In addition to the name space for the objects, which are identified by
Object Ids, a POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.

Each POA has a set of policies that define its characteristics. When creating a new POA, the
default set of policies can be used or different values can be assigned that suit the application
requirements. The POA specification defines

• Thread policy – Specifies the threading model to be used by the POA. Possible
values are:

 ORB_CTRL_MODEL – (default) The POA is responsible for assigning
requests to threads.

 SINGLE_THREAD_MODEL – the POA processes requests sequentially
• Lifespan policy - specifies the lifespan of the objects implemented in the POA. The

lifespan policy can have the following values:
 TRANSIENT (Default) Objects implemented in the POA cannot outlive the

process in which they are first created. Once the POA is deactivated, an
OBJECT_NOT_EXIST exception occurs when attempting to use any object
references generated by the POA.

 PERSISTENT Objects implemented in the POA can outlive the process in
which they are first created.

• Object ID Uniqueness policy - allows a single servant to be shared by many abstract
objects. The Object ID Uniqueness policy can have the following values:

 UNIQUE_ID (Default) Activated servants support only one Object ID.
 MULTIPLE_ID Activated servants can have one or more Object IDs. The

Object ID must be determined within the method being invoked at run time.
• ID Assignment policy - specifies whether object IDs are generated by server

applications or by the POA. The ID Assignment policy can have the following
values:

 USER_ID is for persistent objects, and
 SYSTEM_ID is for transient objects

• Servant Retention policy - specifies whether the POA retains active servants in the
Active Object Map. The Servant Retention policy can have the following values:

 RETAIN (Default) The POA tracks object activations in the Active Object
Map. RETAIN is usually used with ServantActivators or explicit activation
methods on POA.

 NON_RETAIN The POA does not retain active servants in the Active Object
Map. NON_RETAIN is typically used with ServantLocators.

• Request Processing policy - specifies how requests are processed by the
POA.

 USE_ACTIVE_OBJECT_MAP (Default) If the Object ID is not
listed in the Active Object Map, an OBJECT_NOT _EXIST
exception is returned. The POA must also use the RETAIN
policy with this value.

26 TX-FRG-06/16/08

How JBossTS manages the OTS Recovery Protocol

 USE_DEFAULT_SERVANT If the Object ID is not listed in the
Active Object Map or the NON_RETAIN policy is set, the
request is dispatched to the default servant. If no default
servant has been registered, an OBJ_ADAPTER exception is
returned. The POA must also use the MULTIPLE_ID policy with
this value.

 USE_SERVANT_MANAGER If the Object ID is not listed in the
Active Object Map or the NON_RETAIN policy is set, the
servant manager is used to obtain a servant.

• Implicit Activation policy - specifies whether the POA supports implicit activation of
servants. The Implicit Activation policy can have the following values:

 IMPLICIT_ACTIVATION The POA supports implicit activation of servants.
Servants can be activated by converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() or by
invoking _this()on the servant. The POA must also use the SYSTEM_ID and
RETAIN policies with this value.

 NO_IMPLICIT_ACTIVATION (Default) The POA does not support implicit
activation of servants.

It appears that to redirect replay_completion invocations to a default servant we need to
create a POA with the Request Processing policy assigned with the value set to
USE_DEFAULT_SERVANT. However to reach that default Servant we should first reach
the POA that forward the request to the default servant. Indeed, the ORB uses a set of
information to retrieve a POA; these information are contained in the object reference used
by the client. Among these information there are the IP address and the port number where
resides the server and also the POA name. To perform replay_completion invocations, the
solution adopted by JBossTS is to provide one Servant, per machine, and located in the
RecoveryManager process, a separate process from client or server applications. The next
section explains how the indirection to a default Servant located on a separate process is
provided for JacORB.

The default RecoveryCoordinator in JacOrb

JacORB does not define additional policies to redirect any request on a RecoveryCoordinator
object to a default servant located in the Recovery Manager process. However it provides a
set of APIs that allows building object references with specific IP address, port number and
POA name in order to reach the appropriate default servant.

How Does it work

When the Recovery Manager is launched it seeks in the configuration the RecoveryActivator
that need be loaded. Once done it invokes the startRCservice method of each loaded
instances. As seen in in the previous chapter (Recovery Manager) the class to load that
implements the RecoveryActivator interface is the class RecoveryEnablement. This generic
class, located in the package com.arjuna.ats.internal.jts.orbspecific.recovery, hides the nature
of the ORB being used by the application (JacORB). The following figure illustrates the

TX-FRG-06/16/08 27

JBoss Transactions 4.11.0 Failure Recovery Guide

behavior of the RecoveryActivator that leads to the creation of the default servant that
performs replay_completion invocations requests.

In addition to the creation of the default servant, an object reference to a
RecoveryCoordinator object is created and stored in the ObjectStore. As we will see this
object reference will be used to obtain its IP address, port number and POA name and assign
them to any RecoveryCoordinator object reference created on register_resource.

Figure 10 – Default RecoveryCoordinator created in the RecoveryManager

When an application registers a resource with a transaction, a RecoveryCoordinator object
reference is expected to be returned. To build that object reference, the Transaction Service
uses the RecoveryCoordinator object reference created within the Recovery Manager as a
template. The new object reference contains practically the same information to retrieve the
default servant (IP address, port number, POA name, etc.), but the Object ID is changed;
now, it contains the Transaction ID of the transaction in progress and also the Process ID of
the process that is creating the new RecoveryCoordinator object reference, as illustrated in
Figure 11.

28 TX-FRG-06/16/08

R e c o v e r y
M a n a g e r

R o o t P O A

C h i l d P O A

D e f a u l t S e r v a n t

P o l i c i e s :
- P E R S I S T E N T
- U S E _ D E F A U L T _ S E R V A N T
- U S E R _ I D , M U L T I P L E _ I D

s t a r t R C s e r v i c e
o n R e c o v e r y A c t i v a t o r

L o a d
R e c o v e r y A c t i v a t o r

(T h e R e c o v e y E n a b l m e n t
c l a s s t h a t i m p l e m e n t s t h e
R e c o v e r t A C t i v a t o r
d e t e r m i n e s t h a t t h e
O R B t o u s e i s O r b i x)

C r e a t e a n o b j e c t r e f e r e n c e w i t h
t h e O b j e c t I D “ R e c o v e r y M a n a g e r”

S t o r e t h e c r e a t e d o b j e c t r e f e r e n c e
i n t h e O b j e c t S t o r e/

How JBossTS manages the OTS Recovery Protocol

Figure 11 - Resource registration and returned RecoveryCoordinator Object reference build
from a reference stored in the ObjectStore.

Since a RecoveryCoordintaor object reference returned to an application contains all
information to retrieve the POA then the default servant located in the Recovery Manager,
all replay_completion invocation, per machine, are forwarded to the same default
RecoveryCoordinator that is able to retreive the Object ID from the incoming request to
extract the transaction identifier and the process identifier needed to determine the status of
the requested transaction.

TX-FRG-06/16/08 29

r e g i s t e r _ r e s o u r c e C o o r d i n a t o r I m p l e m e n t a t i o n

C r e a t e o b j e c t r e f e r e n c e , w i t h o u t a n a s s o c i a t e d s e r v a n t
- r e t r e i v et h e s t o r e d R e c o v e r y C o o r d i n a t o rf r o m t h e
O b j e c t S t o r e
- U s e t h e d e f a u l t o b j e c t r e f e r e n c e a n d a s s i g n t h e
T r a n s a c t i o n I D a n d P r o c e s s a s O b j e c t I D f o r t h e n e w
o b j e c t r e f e r e n c e
- R e t u r n t h e O b j e c t R e f e r e n c e o f t h e R e c o v e r y C o o r d i n a t o rO b j e c t R e f e r e n c e

R e c o v e r y
M a n a g e r

S t o r e t h e c r e a t e d R e c o v e r y C o r r d i n a t o r
o b j e c t r e f e r e n c e i n t h e O b j e c t S t o r e/

…

JBoss Transactions 4.11.0 Failure Recovery Guide

Configuration Options
JBossTS is highly configurable. For full details of the configuration mechanism used, see the
ArjunaCore Programmer's Guide.

The following table shows the configuration features, with default values shown in italics.
More details about each option can be found in the relevant sections of this document.

Configuration Name Possible Values Description

com.arjuna.ats.arjuna.recovery.peri
odicRecoveryPeriod

120/any positive integer Interval between
recovery attempts, in
seconds.

com.arjuna.ats.arjuna.recovery.reco
veryBackoffPeriod

10/any positive integer Interval between first and
second recovery passes,
in seconds.

com.arjuna.ats.arjuna.recovery.expi
ryScanInterval

12/any integer Interval between expiry
scans, in hours. 0
disables scanning.
Negative values
postpone the first run.

com.arjuna.ats.arjuna.recovery.tran
sactionStatusManagerExpiryTime

12/any positive integer Interval after which a
non-contactable process
is considered dead. 0 =
never.

30 TX-FRG-06/16/08

	
About This Guide
			Architecture of the Recovery Manager
	How JBossTS manages the OTS Recovery Protocol
	Understanding POA

	Configuration Options

