
ORB Portability Layer

Programmer's Guide

OPL-PG-2/26/10

Error: Reference source not found



Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the 
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for 
errors contained herein or for incidental or consequential damages in connection with the furnishing, 
performance, or use of this material. 

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are 
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™, 
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as 
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in 
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as 
indicated by the @authors tag.  All rights reserved. 

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted 
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms 
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it 
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A  PARTICULAR PURPOSE. 

See the GNU General Public License for more details. You should have received a copy of the GNU 
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation, 
Inc., 51 Franklin Street, Fifth Floor, Boston,  * MA  02110-1301, USA.

Software Version

ORB Portability Layer

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the 
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2010 JBoss Inc.



Contents

Table Of Contents

About This Guide................................................ 4
What This Guide Contains................................4
Audience............................................................ 4
Organization...................................................... 5
Documentation Conventions............................. 5
Contacting Us.................................................... 5

ORB Portability API..........................................6
Using the ORB and OA..................................... 6
ORB and OA Initialisation
...........................................................................
10
ORB and OA shutdown

...........................................................................
11
Specifying the ORB to use
...........................................................................
11
Initialisation code
...........................................................................
12
Locating Objects and Services
...........................................................................
13
ORB location mechanisms
...........................................................................
15

Index..................................................................... 17



About This Guide

What This Guide Contains

The  Programmer's  Guide contains information on how to use the  ORB Portability  Layer. 
Although the CORBA specification is a standard, it is written in such a way that allows for a 
wide variety of implementations. Unless writing extremely simple applications, differences 
between ORB implementations tend to produce code which cannot easily be moved between 
ORBs. This is especially true for server-side code, which suffers from the widest variation 
between ORBs. There have also been a number of revisions of the Java language mapping for 
IDL  and  for  CORBA itself.  Many  ORBs  currently  in  use  support  different  versions  of 
CORBA and/or the Java language mapping.

The Arjuna Transaction  Service  only  supports  the  new Portable  Object  Adapter  (POA) 
architecture described in the CORBA 2.3 specification as a replacement for the Basic Object 
Adapter  (BOA).  Unlike  the  BOA,  which  was  weakly  specified  and  led  to  a  number  of 
different  (and  often  conflicting)  implementations,  the  POA was  deliberately  designed  to 
reduce the differences between ORB implementations, and thus minimize the amount of re-
coding that would need to be done when porting applications from one ORB to another. 
However, there is still scope for slight differences between ORB implementations, notably in 
the area of threading. Note, instead of talking about the POA, this manual will consider the 
Object Adapter (OA).

Because the JBoss Transaction Service must be able to run on a number of different ORBs, 
we  have  developed  an  ORB portability  interface  which  allows  entire  applications  to  be 
moved between ORBs with little or no modifications. This portability interface is available to 
the  application  programmer  in  the  form of  several  Java  classes.  Note,  the  classes  to  be 
described in this document are located in the com.arjuna.orbportability package.

Audience

This document provides a detailed look at the ORB Portability layer and how it can be used 
to facilitate the implementation of ORB portable applications. This guide provides a guide as 
to the best practices of using the ORB portability layer.

4



Organization

This guide contains the following chapters:

• Chapter 1, ORB Portability API: An overview of the ORB portability API and 
how it can be used to achieve portability.

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being 
referenced.  When used in conjunction with the Code text described 
below, italics identify a variable that should be replaced by the user 
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface.  For example, 

“Select File | Open.” indicates that you should select the Open function 
from the File menu.

( ) and | Parentheses enclose optional items in command syntax. The vertical 
bar separates syntax items in a list of choices. For example, any of the 
following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate | 
NoMoreOftenThan)

Note: and

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to 
avoid damage to equipment, damage to software, loss of data, or 
invalid test results.

Table 1 Formatting Conventions

Contacting Us

Questions or comments about the  ORB Portability Layer should be directed to our support 
team.

5



Chapter 1

ORB Portability API

Using the ORB and OA

The ORB class shown below provides a uniform way of using the ORB. There are methods for 
obtaining a reference to the ORB, and for placing the application into a mode where it listens 
for incoming connections. There are also methods for registering application specific classes 
to be invoked before or after ORB initialisation. Note, some of the methods are not supported 
on all ORBs, and in this situation, a suitable exception will be thrown.  The ORB class is a 
factory class which has no public constructor.  To create an instance of an ORB you must call 
the getInstance method passing a unique name as a parameter.  If this unique name has not 
been passed in a previous call to getInstance you will be returned a new ORB instance.  Two 
invocations of getInstance made with the same unique name, within the  same JVM, will 
return the same ORB instance.

public class ORB

{

public static ORB getInstance(String uniqueId);

public synchronized void initORB () throws SystemException;

public synchronized void initORB (Applet a, Properties p)

                                 throws SystemException;

public synchronized void initORB (String[] s, Properties p)

                                  throws SystemException;

public synchronized org.omg.CORBA.ORB orb ();

public synchronized boolean setOrb (org.omg.CORBA.ORB theORB);

 

public synchronized void shutdown ();

 

6



public synchronized boolean addAttribute (Attribute p); 

public synchronized void addPreShutdown (PreShutdown c);

public synchronized void addPostShutdown (PostShutdown c);

public synchronized void destroy () throws SystemException;

public void run ();

public void run (String name);

};

We shall now describe the various methods of the ORB class.

• initORB: given the various parameters, this method initialises the ORB and retains a 
reference to it within the ORB class. This method should be used in preference to 
the raw ORB interface since the JBoss Transaction Service requires a reference to 
the ORB. If this method is not used, setOrb must be called prior to using JBoss  
Transaction Service.

• orb: this method returns a reference to the ORB. After shutdown is called this 
reference may be null.

• shutdown: where supported, this method cleanly shuts down the ORB. Any pre- and 
post- ORB shutdown classes which have been registered will also be called. See the 
section titled ORB and OA Initialisation. This method must be called prior to 
application termination. It is the application programmer’s responsibility to ensure 
that no objects or threads continue to exist which require access to the ORB. It is 
ORB implementation dependant as to whether or not outstanding references to the 
ORB remain useable after this call.

• addAttribute: this method allows the application to register classes with JBoss 
Transaction Service which will be called either before, or after the ORB has been 
initialised. See the section titled ORB and OA Initialisation. If the ORB has already 
been initialised then the attribute object will not be added, and false will be returned.

• run: these methods place the ORB into a listening mode, where it waits for 
incoming invocations.

The OA classes shown below provide a uniform way of using Object Adapters (OA). There 
are  methods for  obtaining a reference to  the  OA. There  are  also methods for  registering 

7



application specific classes to be invoked before or after OA initialisation. Note, some of the 
methods are not supported on all ORBs, and in this situation, a suitable exception will be 
thrown.  The OA class is  an abstract  class and provides  the basic interface to an Object 
Adapter.   It has two sub-classes  RootOA and  ChildOA,  these classes expose the interfaces 
specific to the root Object Adapter and a child Object Adapter respectively.  From the RootOA 
you can  obtain  a  reference to  the  RootOA for  a  given  ORB by using the  static  method 
getRootOA. To create a ChildOA instance use the createPOA method on the RootOA.

public abstract class OA

{ 

public synchronized static RootOA getRootOA(ORB associatedORB);

public synchronized void initPOA () throws SystemException;

public synchronized void initPOA (String[] args) throws SystemException;

public synchronized void initOA () throws SystemException;

public synchronized void initOA (String[] args) throws SystemException;

public synchronized ChildOA createPOA (String adapterName,

                                       PolicyList policies)

                                        throws AdapterAlreadyExists, 
InvalidPolicy;

public synchronized org.omg.PortableServer.POA rootPoa ();

public synchronized boolean setPoa (org.omg.PortableServer.POA thePOA);

public synchronized org.omg.PortableServer.POA poa (String adapterName);

public synchronized boolean setPoa (String adapterName,

                                    org.omg.PortableServer.POA thePOA);

 

public synchronized boolean addAttribute (OAAttribute p);

public synchronized void addPreShutdown (OAPreShutdown c);

public synchronized void addPostShutdown (OAPostShutdown c);

8



};

public class RootOA extends OA

{ 

public synchronized void destroy() throws SystemException;

public org.omg.CORBA.Object corbaReference (Servant obj);

public boolean objectIsReady (Servant obj, byte[] id);

public boolean objectIsReady (Servant obj);

public boolean shutdownObject (org.omg.CORBA.Object obj);

public boolean shutdownObject (Servant obj);

};

public class ChildOA extends OA

{ 

public synchronized boolean setRootPoa (POA thePOA);

public synchronized void destroy() throws SystemException;

public org.omg.CORBA.Object corbaReference (Servant obj);

public boolean objectIsReady (Servant obj, byte[] id) throws 
SystemException;

public boolean objectIsReady (Servant obj) throws SystemException;

public boolean shutdownObject (org.omg.CORBA.Object obj);

public boolean shutdownObject (Servant obj);

};

We shall now describe the various methods of the OA class.

• initPOA: this method activates the POA, if this method is called on the RootPOA the 
POA with the name RootPOA will be activated. 

• createPOA: if a child POA with the specified name for the current POA has not 
already been created then this method will create and activate one, otherwise 
AdapterAlreadyExists will be thrown. This method returns a ChildOA object.

9



• initOA: this method calls the initPOA method and has been retained for backwards 
compatibility.

• rootPoa: this method returns a reference to the root POA. After destroy is called on 
the root POA this reference may be null.

• poa: this method returns a reference to the POA. After destroy is called this 
reference may be null.

• destroy: this method destroys the current POA, if this method is called on a 
RootPOA instance then the root POA will be destroyed along with its children.

• shutdown: this method shuts down the POA.

• addAttribute: this method allows the application to register classes with JBoss  
Transaction Service which will be called either before or after the OA has been 
initialised. See below. If the OA has already been initialised then the attribute object 
will not be added, and false will be returned.

ORB and OA Initialisation

It is possible to register application specific code with the ORB portability library which can 
be executed either before or after the ORB or OA are initialised. Application programs can 
inherit  from  either  com.arjuna.orbportability.orb.Attribute or 
com.arjuna.orbportability.oa.Attribute and pass these instances to the addAttribute 
method of the ORB/OA classes respectively:

package com.arjuna.orbportability.orb;

public abstract class Attribute

{

public abstract void initialise (String[] params);

public boolean postORBInit ();

};

package com.arjuna.orbportability.oa;

public abstract class OAAttribute

{

10



public abstract void initialise (String[] params);

public boolean postOAInit ();

};

By  default,  the  postORBInit/postOAInit methods  return  true,  which  means  that  any 
instances of derived classes will be invoked after either the ORB or OA have been initialised. 
By redefining this to return false, a particular instance will be invoked before either the ORB 
or OA have been initialised.

When invoked, each registered instance will be provided with the exact String parameters 
passed to the initialise method for the ORB/OA.

ORB and OA shutdown

It is possible to register application specific code (via the addPreShutdown/addPostShutdown 
methods) with the ORB portability library which will be executed prior to, or after, shutting 
down the ORB. The pre/post interfaces which are to be registered have a single work method, 
taking no parameters and returning no results. When the ORB and OA are being shut down 
(using shutdown/destroy), each registered class will have its work method invoked.  

public abstract class PreShutdown

{

public abstract void work();

}

public abstract class PostShutdown

{

public abstract void work();

}

11



Specifying the ORB to use

JDK releases from 1.2.2 onwards  include a  minimum ORB implementation  from Sun.  If 
using such a JDK in conjunction with another ORB it is necessary to tell the JVM which 
ORB  to  use.  This  happens  by  specifying  the  org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass properties.  The  ORB Portability  classes  will  ensure 
that these properties are automatically set when required, i.e., during ORB initialisation. Of 
course it is still  possible to specify these values explicitly (and necessary if not using the 
ORB initialisation methods). Note: if you do not use the ORB Portability classes for ORB 
initialisation then it will still be necessary to set these properties.  The ORB portability library 
attempts to detect which ORB is in use, it does this by looking for the ORB implementation 
class for each ORB it supports.  This means that if there are classes for more than one ORB in 
the classpath the wrong ORB can be detected.  Therefore it is best to only have one ORB in 
your classpath.  If it is necessary to have multiple ORBs in the classpath then the property 
OrbPortabilityEnvironmentBean.orbImplementation must be set to the value specified in 
the table below.

ORB Property Value

JacORB v2 com.arjuna.orbportability.internal.orbspecific.jacor
b.orb.implementations.jacorb_2_0

JDK miniORB com.arjuna.orbportability.internal.orbspecific.javaidl.orb.imple
mentations.javaidl_1_4

Initialisation code

The  JBoss Transaction Service  requires specialised code to be instantiated before and after 
the ORB and the OA are initialised. This code can be provided at runtime through the use of 
OrbPortabilityEnvironmentBean.orbInitializationProperties This mechanism is also available 
to programmers who can register arbitrary code which the ORB Portability will guarantee to 
be instantiated either before or after ORB/OA initialisation. For each application (and each 
execution of the same application) the programmer can simultaneously provide multiple Java 
classes which are instantiated before and after the ORB and or OA is initialised.  There are 
few restrictions on the types and numbers of classes which can be passed to an application at 
execution  time.  All  classes  which  are  to  be  instantiated  must  have  a  public  default 
constructor, i.e., a constructor which takes no parameters. The classes can have any name. 
The property names used must follow the format specified below:

• com..orbportability.orb.PreInit – this property is used to specify a global pre-
initialisation routine which will be run before any ORB is initialised.

• com..orbportability.orb.PostInit – this property is used to specify a global 
post-initialisation routine which will be run after any ORB is initialised.

• com..orbportability.orb.<ORB NAME>.PreInit – this property is used to specify 
a pre-initialisation routine which will be run when an ORB with the given name is 
initialised.



• com..orbportability.orb.<ORB NAME>.PostInit – this property is used to 
specify a post-initialisation routine which will be run after an ORB with the given 
name is initialised.

• com..orbportability.oa.PreInit – this property is used to specify a global pre-
initialisation routine which will be run before any OA is initialised.

• com..orbportability.oa.PostInit – this property is used to specify a global 
post-initialisation routine which will be run after any OA is initialised,

• com..orbportability.oa.<OA NAME>.PreInit – this  property is used to specify a 
pre-initialisation routine which will be run before an OA with the given name is 
initialised

• com..orbportability.oa.<OA NAME>.PostInit – this  property is used to specify 
a pre-initialisation routine which will be run after an OA with the given name is 
initialised

Pre and post initialisation can be arbitrarily combined, for example:

Java –
DorbPortabilityEnvironmentBean.orbInitializationProperties=”com..orbporta
bility.orb.PreInit=org.foo.AllORBPreInit 
com..orbportability.orb.MyORB.PostInit=org.foo.MyOrbPostInit 
com..orbportability.oa.PostInit=orb.foo.AllOAPostInit” 
org.foo.MyMainClass

Locating Objects and Services

Locating  and  binding  to  distributed  objects  within  CORBA  can  be  ORB  specific.  For 
example, many ORBs provide implementations of the naming service, whereas some others 
may rely  upon proprietary  mechanisms.  Having to  deal  with the  many possible  ways of 
binding  to  objects  can  be  a  difficult  task,  especially  if  portable  applications  are  to  be 
constructed.  ORB  Portability  provides  the  Services  class  in  order  to  provide  a  more 
manageable, and portable binding mechanism. The implementation of this class takes care of 
any  ORB  specific  locations  mechanisms,  and  provides  a  single  interface  to  a  range  of 
different object location implementations.

public class Services

{

/**

 * The various means used to locate a service.

 */

13



public static final int RESOLVE_INITIAL_REFERENCES = 0;

public static final int NAME_SERVICE = 1;

public static final int CONFIGURATION_FILE = 2;

public static final int FILE = 3;

public static final int NAMED_CONNECT = 4;

public static final int BIND_CONNECT = 5;

public static org.omg.CORBA.Object getService (String serviceName,

                                               Object[] params,

        int mechanism) 

throws InvalidName, CannotProceed, NotFound, IOException;

public static org.omg.CORBA.Object getService (String serviceName,

     Object[] params) 

throws InvalidName, CannotProceed, NotFound, IOException;

public static void registerService (org.omg.CORBA.Object objRef,

                                    String serviceName, Object[] params,

                    int mechanism) 

throws InvalidName, IOException, CannotProceed, NotFound;

public static void registerService (org.omg.CORBA.Object objRef,

                                String serviceName, Object[] 
params) throws InvalidName, IOException, CannotProceed, NotFound; 

};

There are currently 5 different object location and binding mechanisms supported by Services 
(not all  of  which are supported by all  ORBs,  in  which case a suitable exception will  be 
thrown):



1) RESOLVE_INITIAL_REFERENCES:  if  the  ORB  supported 
resolve_initial_references, then Services will attempt to use this to locate the object.

2) NAME_SERVICE:  Services  will  contact  the  name  service  for  the  object.  The  name 
service will be located using resolve_initial_references.

3) CONFIGURATION_FILE:  as  described  in  the  Using  the  OTS  Manual,  the  JBoss 
Transaction Service supports an initial reference file where references for specific services 
and objects can be stored and used at runtime. The file,  CosServices.cfg,  consists of two 
columns: the service name (in the case of the OTS server TransactionService) and the IOR, 
separated  by  a  single  space.  CosServices.cfg  is  located  at  runtime  by  the 
OrbPortabilityEnvironmentBean properties initialReferencesRoot (a directory, defaulting to 
the  current  working  directory)  and  initialReferencesFile  (a  name  relative  to  the 
directory,'CosServices.cfg' by default).

4) FILE: object IORs can be read from, and written to, application specific files. The 
service name is used as the file name.

5) NAMED_CONNECT: some ORBs support proprietary location and binding mechanisms.

6) BIND_CONNECT: some ORBs support the bind operation for locating services.

We shall now describe the various methods supported by the Services class:

• getService: given the name of the object or service to be located (serviceName), 
and the type of mechanism to be used (mechanism), the programmer must also 
supply location mechanism specific parameters in the form of params. If the name 
service is being used, then params[0] should be the String kind field.

• getService: the second form of this method does not require a location mechanism 
to be supplied, and will use an ORB specific default. The default for each ORB is 
shown in Table 2.

• registerService: given the object to be registered, the name it should be 
registered with, and the mechanism to use to register it, the application programmer 
must specify location mechanism specific parameters in the form of params. If the 
name service is being used, then params[0] should be the String kind field.

ORB location mechanisms

The  following  table  summarises  the  different  location  mechanisms  that  ORB Portability 
supports for each ORB via the Services class:

Location Mechanism ORB

CONFIGURATION_FILE All available ORBs

FILE All available ORBs

BIND_CONNECT None

If a location mechanism isn’t specified then the default is the configuration file.

15





Appendix A

Index

CPP......................................................................4 General Information............................................4

17


	ORB and OA Initialisation
	ORB and OA shutdown
	Specifying the ORB to use
	Initialisation code
	Locating Objects and Services
	ORB location mechanisms

