
Monday, April 25, 2011

John Bailey
Red Hat Core Developer for JBoss Application Server

Optimizing Performance
with JBoss Application Server 7

Monday, April 25, 2011

Agenda

•Aspects of Performance
•AS7 Architecture Background
•Application Server Trimming
•Thread Pool Tuning
•Connection Pools Tuning
•Questions / Comments

Monday, April 25, 2011

Aspects of Performance

•Boot time - time it takes to get up and running
•Increases developer productivity
•Improves on-demand scaling in cloud environments
•Reduces cost in pay-for-usage environments

•Throughput - how much can be done at a given time
•Increased throughput can reduce the number of
instances required to run a workload

•Can reduce the amount of time to run a workload
through concurrency

Monday, April 25, 2011

Aspects of Performance
cont.

•Memory footprint - how much memory does the
system require to run
•Leads to lower hardware costs
•Decreases time required for garbage collection

•Disk space - how much disk space is required
•Leads to lower hardware costs
•Reduces the amount of time needed to provision
servers by requiring less bandwidth to get media in
place

Monday, April 25, 2011

AS7 Architecture

•Redesigned from the ground up with performance as a
first class design goal

•Based on the MSC (Modular Service Container) -
advanced dependency management system

•Utilizes a modular classloading system
•Extensible management of application server core
facilities

•Centralized configuration - limited to a small number
of configuration files

SHow of hands. How
many know about AS7

Monday, April 25, 2011

MSC and Performance

•Supports multiple service modes allowing services to
start and stop immediately, on-demand or lazily

•Service life-cycles are processed in parallel whenever
possible

•Proper service definitions and creation will lead to
improved performance out of the box by dynamically
tuning required services

•Capable of managing extreme numbers of services
with a linear performance cost

Monday, April 25, 2011

JBoss Modules and
Performance

•No more flat classloader!
•Relies on fine-grained inter-module dependencies
•Capable of supporting complex module graphs with
little overhead

•Modules are loaded on-demand and un-loaded when
no longer needed

•Only JAR files which are currently in use will occupy
runtime memory

Monday, April 25, 2011

AS Extensions

•Application server building blocks
•Backed by one or more modules
•Enable additional functionality to be loaded into the AS
•Provide custom schema support for enhancing the
configuration files

Monday, April 25, 2011

Subsystems

•Configuration for a specific aspect of the application
server (transactions, logging, security, etc)

•Utilize a subsystem specific XML schema
•Responsible for adding required services into the MSC
•Invoked by the application server during the bootstrap
process

Monday, April 25, 2011

Profiles

•Grouping of related subsystems
•Can be extended to provide an inherited set of
subsystems
•eg. <profile name=”default”><include
profile=”web”/></profile>

•Applied to a server group to establish a base set of
services for a server or group of servers

Monday, April 25, 2011

Example Configuration
${jboss-server-root}/domain/configuration/domain
...
 <extensions>
 <extension module="org.jboss.as.logging"/>
 ...
 </extensions>
 <profiles>
 <profile name="default">
 <subsystem xmlns="urn:jboss:domain:logging:1.0">
 <console-handler name="CONSOLE" autoflush="true">
 <level name="INFO"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 </console-handler>
 ...
 </subsystem>
 ...
 </profile>
 ...
</profiles>
...

Monday, April 25, 2011

Application Server Trimming

•Goal #1: Reduce the number of running services
•Goal #2: Reduce the amount of configuration
•Goal #3: Reduce the number of loaded extensions
•Goal #4: Reduce the number of modules

Monday, April 25, 2011

Reduce Running Services

•Reduce boot time by not starting unneeded services
•Reduce memory footprint by eliminating memory used
by unneeded services

•Reduce the amount of configuration
•Accomplished by disabling unneeded configuration
•Can be isolated to configuration within a subsystem or
a whole subsystem

•Will cause runtime dependency errors if services are
removed which are depended on by other services

Monday, April 25, 2011

Reduce the Amount of
Configuration

•Reduce boot time by eliminating the need for
additional configuration parsing

•Reduce memory footprint by eliminating additional
configuration maintained in-memory by the server

•Eliminate the need to load extensions when all
services and configuration provided by an extension
are no longer needed

Monday, April 25, 2011

Reduce the Number of
Loaded Extensions

•Reduce boot time and memory footprint
•No longer registering additional schemas
•No longer registering additional subsystem
configuration handlers

•Reduce the number of modules required

Monday, April 25, 2011

Example: Reduce Services
1. Remove the unneeded datasources

 <extension module="org.jboss.as.connector"/>
...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:/H2DS" pool-name="H2DS" enabled="false"
 use-java-context="true">
 <connection-url>dbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver-class>org.h2.Driver</driver-class>
 <module>org.h2.Driver#1.2</module>
 <pool>
 <prefill>true</prefill>
 <use-strict-min>false</use-strict-min>
 </pool>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
 </datasources>
 <drivers>
 <driver module="com.h2database.h2"/>
 </drivers>
 </subsystem>

Monday, April 25, 2011

Example: Reduce Services
2. Remove the unneeded drivers

 <extension module="org.jboss.as.connector"/>
 ...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <drivers>
 <driver module="com.h2database.h2"/>
 </drivers>
 </subsystem>

Monday, April 25, 2011

Example: Reduce Services
3. Remove the unneeded subsystem

 <extension module="org.jboss.as.connector"/>
 ...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 </datasources>
 </subsystem>

Monday, April 25, 2011

Example: Reduce Services
4. Remove the unneeded extension

 <extension module="org.jboss.as.connector"/>

Monday, April 25, 2011

Demo Removing
Services

Monday, April 25, 2011

Custom Profiles

•Preferable to removing existing subsystem
configurations

•Custom built to include only the subsystem
configurations needed

•Reusable configurations that can simplify the
configuration of a new server

•Can be targeted to support a specific set of
requirements

Monday, April 25, 2011

Example: Basic Web Profile

•Contains only the most basic
subsystems used by web

•Can be easily applied to a
new server to greatly reduce
what the server starts up

•Additional services such as
EJB can be enabled by adding
the additional subsystem
config

<profile name="web">
 <subsystem xmlns="urn:jboss:domain:logging:1.0">
 ...
 </subsystem>
 <subsystem xmlns="urn:jboss:domain:ee:1.0"/>
 <subsystem xmlns="urn:jboss:domain:naming:1.0"/>
 <subsystem xmlns="urn:jboss:domain:web:1.0">
 <connector name="http" protocol="http"
 socket-binding="http" scheme="http"/>
 <virtual-server name="localhost">
 <alias name="example.com"/>
 </virtual-server>
 </subsystem>
</profile>

Monday, April 25, 2011

Demo Custom Profile

Monday, April 25, 2011

Questions on AS
Trimming?

Monday, April 25, 2011

Thread Pool Tuning
•Thread pools are primarily used to increase or
decrease the number of concurrent tasks executing on
an application server

•Gained throughput for an application server can be
obtained by properly controlling the concurrent
execution of tasks

•Thread pools reduce the cost associated with creating
threads

•Thread pools have a number of tuning parameters
which allow the thread pool to achieve desired
performance characteristics

Monday, April 25, 2011

Thread Pool Types

•Unbounded Queue
•Has a core and maximum size
•Will create new threads until the core size is reached
•Will queue tasks beyond the core size

•Bounded Queue
•Core and maximum size and a specified queue length
•Will create new threads until the core size is reached
•Will queue tasks beyond the core size until queue
length is reached

Monday, April 25, 2011

Thread Pool Types, cont.

•Queueless
•No queue, but still maintains a maximum number of
threads

•Will create a new thread up until the max size is hit
and then will either block or fail

•Scheduled
•Has a max size
•Allows tasks to be submitted on a scheduled basis

Monday, April 25, 2011

Thread Pool Attributes
•max-threads - The maximum threads this pool will
have in use at any given time

•queue-length - The queue length for a bounded queue
thread pool

•core-threads - The default number of threads to keep
in a bounded queue pool to execute tasks

•keepalive-time - The amount of time to keep an
unused thread alive in the pool before destroying it

•blocking - Determines whether the pool will wait for a
thread to be returned to the pool when a thread is

Monday, April 25, 2011

Scaled Count

•All thread pool size attributes are configured as scaled
counts

•Uses a base size and a per-CPU size to determine the
actual size

•The actual size is determine by taking the count
attribute and adding it to the per-cpu attribute times
the number of CPUs in the system

Eg. <max-threads count="10" per-cpu="20"/>
For a two CPU system, the actual count would be 50

Monday, April 25, 2011

Tuning max-threads

•Sized using a scaled count
•The max threads count should be tuned when you
want to limit the number of concurrent tasks executing

•A max threads count that is too low will result in tasks
either failing to execute or blocking waiting for a
thread, resulting in reduced throughput

•A max threads count that is too high will allow too
many tasks to run currently and possible exhaust other
resources (db connections, filesystem handles, etc)

Eg. <max-threads count="10" per-cpu="20"/>

Monday, April 25, 2011

Tuning core-threads

•Sized using a scaled count
•Represents the minimum pool size
•The core threads count should be tuned when you
have a good idea of the typical number of concurrently
executing tasks

•A core threads count that is too low will result in
somewhat reduced concurrency

•A core threads count that is too high will keep
unnecessary, idle threads in memory at a give time
(wastes memory, adds overhead)

Eg. <core-threads count="10" per-cpu="20"/>

Monday, April 25, 2011

Tuning Queue Length

•Sized using a scaled count
•Represents the number of tasks that can be queued
while waiting for a core thread

•A queue size that is too low will cause a unnecessary
number of tasks blocking or failing to execute

•A queue size too large will cause delays in the task
execution and will not be maintained by the blocking
characteristics

Eg. <queue-length count="10" per-cpu="20"/>

Monday, April 25, 2011

Tuning keepalive-time

•The keep alive parameter should be tuned to help keep
threads alive as needed based on current work-loads

•A keep alive time that is too low will cause threads to
be destroyed earlier and possible miss the opportunity
to reuse a thread for the next task

•A keep alive time that is too high will keep threads
open longer than necessary and can possible keep the
pool full of unused threads

Eg. <keepalive-time time="10" unit="SECONDS"/>

Monday, April 25, 2011

Thread Pool Example
• Example uses a queue to

hold onto tasks when core
threads are not available

• The core threads will be 5
on a dual core machine

• The queue length will be
50 on a dual core machine

• The max threads will be 50
on a dual core machine

• The pool will hold onto a
thread for 10 seconds once
not in use

<bounded-queue-thread-pool name="jca-short-running"
 blocking="true" allow-core-timeout="false">
 <core-threads count="1" per-cpu="2"/>
 <queue-length count="10" per-cpu="20"/>
 <max-threads count="10" per-cpu="20"/>
 <keepalive-time time="10" unit="SECONDS"/>
</bounded-queue-thread-pool>

Monday, April 25, 2011

Questions on Thread
Pool Tuning

Monday, April 25, 2011

Connection Pool Tuning

•Used to control the number of active connections to a
database

•Proper configuration of a connection pool can increase
application server throughput

•Can reduce the time it takes for an application to gain
access to a database

•Can also restrict the number of active connections to a
database

Monday, April 25, 2011

Connection Pool Parameters

•min-pool-size - The minimum number of connections
to keep in the pool

•max-pool-size - The maximum number of
connections to keep in the pool

•prefill- Whether the pool should be pre-filled with the
minimum number of connections

•use-strict-min - Whether idle connections below the
min-pool-size should be close

Monday, April 25, 2011

Connection Pool Parameters
cont.

•blocking-timeout-millis - the maximum time in
milliseconds to block while waiting for a connection
before throwing an exception

•idle-timeout-minutes - maximum time in minutes a
connection may be idle before being closed

•allocation-retry - the number of times that allocating a
connection should be tried before throwing an
exception

•allocation-retry-wait-millis - time in milliseconds to
wait between retrying to allocate a connection

Monday, April 25, 2011

Tuning min-pool-size

•Controls the minimum number of connections
managed by the pool

•A minimum size too low can cause increased
connection acquisition time for applications

•A minimum size that is too high will hold unneeded
connections and waist resources on both the
application server and the database server

Monday, April 25, 2011

Tuning max-pool-size

•Controls the maximum number of connections
managed by the pool

•A maximum size too low can cause callers to block or
receive and exception while waiting for a connection to
be available

•A maximum size that is too high will can cause the
number of connections to overrun the available
resources on the application or database server

Monday, April 25, 2011

Tuning prefill and use-
strict-min

•Enable prefill if the pool should be filled with the
minimum number of connections upon creation

•Prefilling can reduce the time it takes for the initial
requesters to get a connection

•Enable use-strict-min if the pool should never drop
below the minimum number of connections

•Use strict minimum can reduce the time it takes to get
a connection after an idle period

•Both prefill and use-strict-min can cause unneeded
connections to be maintained

Monday, April 25, 2011

Tuning blocking-timeout-
millis

•Lower blocking timeout can cause a requests to fail
more frequently, but can give additional control back
to the application to maintain a higher
responsiveness under heavy load

•A higher blocking timeout can allow more requests to
succeed, but cause the application to have lower
responsiveness when a high number of requests start
blocking

Monday, April 25, 2011

Tuning idle-timeout-
minutes

•The amount of time a connection is allowed to be idle
before being closed and removed from the pool

•A longer idle timeout will allow less re-connections by
keeping more connections alive

•A shorter idle timeout will help reduce the number of
application and database server resources in use at a
given time

Monday, April 25, 2011

Tuning allocation-retry

•Number of times that allocating a connection should
be tried before throwing an exception.

•A higher number of allocation retries will help reduce
the number of connection failures if short outages
occur

•A lower number of allocations will give control back to
the application faster when failures occur

Monday, April 25, 2011

Tuning allocation-retry-
wait-millis

•Time in milliseconds to wait between retrying to
allocate a connection

•A longer retry wait will reduce the number of attempts
to retry when a outage occurs, but will cause a longer
connection time for short outages

•A shorter wait time will acquire a connection faster
when an outage is resolved, but will use more
resources attempting to connect

Monday, April 25, 2011

Connection Pool Example
• Example datasource that will

maintain at least one connection
throughout its lifetime

• The datasource will not allow more
than ten concurrent connections

• If the pool is exhausted requesters
will block for up to 30 seconds

• Each connection can remain idle in
the pool for up to 15 minutes

• A connection failure will be retried
up to two times 5 seconds apart

<datasource jndi-name="java:/H2DS" pool-name="H2DS">
 <pool>
 <min-pool-size>1</min-pool-size>
 <max-pool-size>10</max-pool-size>
 <prefill>true</prefill>
 <use-strict-min>false</use-strict-min>
 </pool>
 <timeout>
 <blocking-timeout-millis> 30000</blocking-timeout-millis>
 <idle-timeout-minutes>15</idle-timeout-minutes>
 <allocation-retry>2</allocation-retry>
 <allocation-retry-wait-millis>5000</allocation-retry-wait-millis>
 </timeout>
</datasource>

Monday, April 25, 2011

Questions on
Connection Pool Tuning

Monday, April 25, 2011

Thanks!

Monday, April 25, 2011

