JUDCon

JBoss Users & Developers Conference

Boston:/

Zen of Modules:
Class Loading in JBoss AS 7

David M. Lloyd

Senior Software Engineer, Red Hat, Inc.

JBoss Users & Developers Conference Jum 201 1 : BOSton

What Is a Class?

* The object representing a class, interface, enum, annotation,
or primitive marker type which has been loaded into the JVM

« Consumes memory In both the regular heap and the
permanent generation

* Represented on the file system by “.class” files
e Class names are unique per class loader

e Class instances keep a strong reference to their initiating
ClasslLoader instance

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

What I1s a ClassLoader?

 Instances are responsible for loading classes by converting
bytes to Class instances

e Keeps a strong reference to all Class instances that are
loaded by Iit, as a unique mapping of class name to Class
Instance

e Has a parent which may be used for delegation

e Provides a basis for checking access between classes within
a package

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Class Loader Basics

e Important Terminology

e Initiating Class Loader - The class loader which Is
responsible for loading a Class (clazz.getClassLoader())

e Parent Class Loader - In a hierarchical model, the class
loader to which unsatisfied requests are delegated

e System Class Loader - The default delegation parent for
new class loader instances

* Application Class Loader - The class loader which Is
defined when invoking the Jjava command

Class Loader Basics

 More Important Terminology

e Aclass Is loaded (a.k.a. defined) by a class loader via the
ClassLoader.defineClass() method

e Aclass Is linked (a.k.a. resolved) via the
ClasslLoader.resolveClass() method

e A class Is initialized when 1t Is used at runtime, or via the
Class.forName(name, true, classLoader) method

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Understanding Uniqueness

URLClasslLoader cll =

new URLClassLoader(foolJar, null);
URLClassLoader cl2 =

new URLClassLoader(foo2Jar, null);

Class<?> fooClassil
Class<?> fooClass?

cll.loadClass("Foo");
cl2.loadClass("Foo");

fooClassl.equals(fooClass2) // FALSE!
fooClassl.1sAssignableFrom(fooClass?2) // FALSE'!
fooClass2.1sAssignableFrom(fooClassl) // FALSE!

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Class Loader Basics

e Hierarchical Model, a.k.a.

parent-child delegation System Class Loader

e Each Class Loader has 1 1
exactly one parent (often
shared) Application Loader URLClasslLoader
e Standard Java Model f f f
e Classes in child class User ClassLoader User ClassLoader User ClasslLoader

loaders can “see” parent but
not siblings or children

- JUDCon20T1:Boston

S & 96 PR
Tuesday, April 26, 2011

Problems with Hierarchical Model

e Difficult to share classes between class loaders

e Shared classes must be on the common parent of all
Interested class loaders

e Or, additional delegation step must be introduced

e Danger! Mixing locking between hierarchies risks
deadlock unless carefully planned (many bugs at
bugs.sun.com)

 Encourages large, monolithic class loaders which contain
everything
e Cannot load JARs on demand

JBoss Users & Developers Conference Jum 201 1 : BOStOn

What I1s JBoss Modules?

e A standalone implementation of modular (non-hierarchical)
class loading and program execution

 Amodule Is a named set of classes (typically just a single
JAR) coupled with information about what other modules it
uses, as well as what classes and resources it exports,
usually in the form of an XML descriptor file

e JBoss Modules is not a container: more like a class loader
environment bootstrap which just runs a main() method
within a modularized environment

JUDCon2011:Boston
Y A St~ h o S PN SN R AR S AR T L
10

Bt - LR | PIRTN NARIR VW PR y T N ot 7 .,.,;'h, A ¥ '7"”
: §. - e =t d = .-

Tuesday, April 26, 2011

What I1s JBoss Modules?

 Module names are dot-separated, a bit like package names

or Maven group IDs. Examples:
org.jboss.shrinkwrap.api
org.apache.xalan
org.dom4j

A module Is typically stored on the filesystem in a directory
whose name Is derived from the module name as a simple
XML descriptor alongside one or more JARS or directories

 Each module has a unique corresponding ClassLoader
Instance

JBoss Users & Developers Conference Jum 201 1 : BOStOn

Tuesday, April 26, 2011

Module Delegation

Modules delegate to one
another as peers (no parents)

A graph, not a tree

Much like how multi-module
projects are configured in an
IDE

JDK classes are a Module too

All modules “see” java. *

Module

Module

Module

Module

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Module Delegation

e No more “big ball of mud”

® Every module is isolated from Module —

every other module Module

e A module imports only the Module \

modules that it directly uses —
(and does not “see” classes or Module

resources that it does not use)
Module

e |n particular, modules do not I
normally “see” their transitive Module
dependencies

- JUDCon2011:Boston

5 AT L
Tuesday, April 26, 2011

Why Modules In JBoss AS?

e Lightwelight - very small memory footprint per module

e NO extra caches or blacklists - module class loaders
need only what the JDK provides

e Simplified Mode|

 No domains or shared caching

e EXceptions, logging, and structure are much less cryptic
e Only load what you need

e Concurrency - allows classes to be loaded from multiple
threads at once

e Fast, fast, fast - O(1) class resolution

Modules in JBoss AS

e Every JAR shipped with JBoss AS 7 Is a module and can be
found In the jboss-7.0.xx/modules directory

e Internally, the standalone server Is booted simply by
executing the org.jboss.as.standalone module (with a couple
extra command-line options)

java -jar jboss-modules.jar [..] org.jboss.as.standalone
 However this Is normally encapsulated by our
“standalone.sh” or “standalone.bat” scripts

JBoss Users & Developers Conference Jum 201 1 : BOStOn

Modules and JavakEE Deployments

e In AS 7+, every deployment consists of one or more
modules

 Thus JavakEE modules are implemented as, well, modules

e JavakE specification specifies that some deployment types
employ so-called “child-first” class loading

e Implemented simply by loading from the module itself
before Its imports rather than after

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Modules and JavakEE Deployments

 Each deployment module has a set of implicit imports
e Java EE APIs
e Java SE APlIs
e JBoss Modules APIs

 Each deployment module has a set of optional imports
e Logging APIs
e JBoss-specific APIs (Infinispan, Remoting, VFS, etc.)
e User-installed modules

JBoss Users & Developers Conference Jum 2011 : BOSton

Modules and JavakEE Deployments

e To add a module dependency, use a simple directive In

MANIFEST.MF:
Dependency: org.apache.commons.logging

e |n addition, Class-Path and Extension-List references are
treated as modular imports of deployments and installed
extensions

e Sibling deployments
o Arbitrary external JARS

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Common Problems

 Many of the same kinds of problems are possible as before,
due to the nature of class loading

* New tools to identify and solve problems cleanly

JBoss Users & Developers Conference Jum 201 1 : BOSton

Common Problem #1
OutOfMemoryError: PermGen Space

e At run time?
e Overuse of String.intern()

* Overuse of bytecode generation libraries or user-created
class loaders (or both)

e On first boot?

e ToO many classes loaded; they don't fit

e Solution: adjust sizing of permanent generation via
configuration

JBoss Users & Developers Conference Jumm 201 1 : BOStOn

Common Problem #1
OutOfMemoryError: PermGen Space

o After a few redeploys?
e Probably a memory leak!

e Deployment will create new modules and release
references to old modules to be GC'd

e If a class from another class loader keeps a reference
(directly or indirectly) to any deployment class or instance,
none of the classes In the deployment can be GC'd, and
thus are leaked

Common Problem #1

OutOfMemoryError: PermGen Space
Common Leak Causes

e Static fleld in another deployment class containing an instance
of the removed deployment class

e Frameworks which maintain caches
e Persistent Thread-locals

e Automatic cleaning is very infrequent; threads are often long-
lived (especially in thread pools)

 Thread pools iIn AS7 will generally auto-clean thread locals
more aggressively

 Framework bugs

e Old versions of Apache Commons Logging and other
frameworks

JUDCon2011:Boston
Y A St~ h o S PN SN R AR S AR T L
22

RS . . 3

Common Problem #2

ClassNotFoundException

e Or sometimes, NoClassDefFoundError

e Occurs when a class Is not visible to the loading module

« CNFE when loading a missing class using Class.forName()
* NCDFE when a linking class has a missing dependency

 Most common cause: missing Class-Path, Dependency, or
Extension-List entry

 The EE spec requires that portable applications use Class-
Path to express dependencies between most sibling
modules within an application (EAR)!

JUDCon2011:Boston

SR PN SN~

i 3] ST D T S ” s Py S s = A e g 3 ;
be N . ! ~ < A e
- .*'?' Lubeedole - .AL (3 m wbius * L & .

What???

e ['s true!

e |n particular, by spec, a WAR cannot normally see:
 EJB JARSsS or other WARS, even In the same EAR
e Vendor-specific APIs

e Likewise, an EJB JAR cannot normally see:
« WARS or other EJB JARS, even In the same EAR
* Vendor-specific APIs

JBoss Users & Developers Conference Jum 2011 : BOSton

Common Problem #3

ClassCastException

e Sometimes, you get a ClassCastException between two
types of the same name

e Because the two classes come from different modules (l.e. it
IS duplicated between them)

e Usually a packaging problem

« Common scenario: bundling EJB local interfaces into WARS
within an EAR

 The WAR'’s version Is passed to the EJB which has the
EAR’s version

e The classes come from different modules, so CCE

Common Problem #3

ClassCastException

e Best Practice

e Look for nested JARs which are duplicated between your
EAR and WARS

« Remove extra copies and use Class-Path instead

e Or, factor out common libraries into external JARS or
modules, and use Class-Path or Dependency In your
MANIFEST.MF to load them

e Other Solutions

e [f you require that the versions differ, for some reason, use
@Remote (and make sure call-by-reference Is disabled)

Modules and OSGi

 The JBoss OSGI implementation shipping with JBoss AS 7
uses JBoss Modules at Its core

e Bundles are Modules
e Allows new levels of interaction between JavakEE and OSGi

e Excellent performance

JBoss Users & Developers Conference Jum 2011 : BOSton

Modules and Future Java EE

¢ JSR-294 and Project Jigsaw hope to bring modularity
directly into the Java language by Java SE 8

e |t IS likely that a future Java EE specification will “go
modular”

JBoss Users & Developers Conference Jum 2011 : BOSton

Modules and You

e See direct performance benefits in your Application Server
deployments

 Make some sense of the JBoss AS class loading
architecture

e Later session (2:30pm today) focuses on using JBoss
Modules for your applications

JBoss Users & Developers Conference Jum 2011 : BOStOﬂ

Q0 &A

« JBoss Users & Developers Conference Jum 201 1 : BOStOﬂ f

JUDCon

JBoss Users & Developers Conference

Boston:/

