

Running a JBoss cluster in the
cloud

Bela Ban

“JBoss Clustering uses IP
multicasting, so it doesn't

work on EC2 !@#$@”

WRONG !
Of course it DOES !

We'll look at the 5 different
ways of running a JBoss

cluster in the cloud

Agenda

• Clouds and IP multicasting
• The discovery problem
• JGroups as cluster communication

backbone
• The different discovery configs

– Static, lookup service, shared directory,
S3, database

• Demo

Re: demo

• If you want to participate in the demo
later, download it from
http://www.jgroups.org → Downloads →
JUDCon2010Demo

• To run it:
– java -jar JUDConDemo.jar -host x.x.x.x -user

yourname

http://www.jgroups.org/

So why doesn't a JBoss
cluster run out of the box in

the cloud ?

• JBoss clustering uses IP multicasting by
default
– It is the simplest way to discover nodes in

a cluster, no configuration required
– Most folks run clusters off of a single

switch
– Cluster nodes immediately find each other

• However: most cloud hosters don't
support IP multicasting !

• So let's take a look at the alternatives

Before we do that, let's take
a step back and look at the

architecture of JBoss
clustering

A cluster in JBoss

JGroups

Infinispan JBC

JBoss Clustering

JGroups

Infinispan JBC

JBoss Clustering

JGroups

• Reliable cluster transport
• Tasks

– Discovers nodes in a cluster
– Joins new nodes, removes left or crashed

nodes
– Retransmission, ordering, duplicate

removal
– Transports: UDP (IP multicasting), TCP

JGroups architecture

JChannel

Fragmentation

Retransmission

Membership

Failure
detection

Discovery

Transport

JChannel

Fragmentation

Retransmission

Membership

Failure
detection

Discovery

Transport

JChannel

Fragmentation

Retransmission

Membership

Failure
detection

Discovery

Transport

Network

So where in JBoss are the
configs located ?

… and how do I tell JBoss to
use a specific
configuration ?

Cluster configuration

• All configs are in one XML file:
– JBOSS/server/CONFIG/deploy/cluster/jgro

ups-channelfactory.sar/META-INF/jgroups-
channelfactory-stacks.xml

• We have configs for UDP and TCP

Sample configuration
<protocol_stacks>
 <stack name="udp">
 <config>
 <UDP bind_port="${jboss.jgroups.udp.bind_port:55200}" />
 <PING timeout="2000" num_initial_members="3"/>
 <MERGE2 max_interval="100000" min_interval="20000"/>
 <FD_SOCK/>
 <FD timeout="6000" max_tries="5"/>
 <VERIFY_SUSPECT timeout="1500"/>
 <BARRIER/>
 <pbcast.NAKACK retransmit_timeout="300,600,1200" />
 <UNICAST timeout="300,600,1200,2400,3600"/>
 <pbcast.STABLE desired_avg_gossip="50000" max_bytes="400k"/>
 <pbcast.GMS join_timeout="3000" />
 <FC max_credits="2m" min_threshold="0.10" />
 <FRAG2 frag_size="60k"/>
 </config>
 </stack>

 <stack name="tcp">
 <config>
 <TCP start_port="${jboss.jgroups.tcp.tcp_port:7600}"/>
 <TCPPING timeout="3000"
 initial_hosts="Host-A[7600],Host-B[7600]”/>
 ...
 </config>
 </stack>
</protocol_stacks>

How to start JBoss with a
specific config

• Pass a system property to run.sh:
– run.sh -Djboss.default.jgroups.stack=tcp

• Voila: we run a TCP based stack now !

• This is how we're going to start a JBoss
cluster in the cloud

• Of course, we could also create a virtual
image (e.g. an AMI) with a hard coded
config

What are the 5 different
discovery configurations ?

Method #1: static list of nodes

• Provide a list of the cluster nodes:
<TCP … />
<TCPPING initial_hosts=”192.168.1.5[7800],192.168.1.3[7800]” />

• However, we don't know the IP address
of a node before startup...
– Use elastic IP addresses (EC2)
– Map IP address to an ad-hoc DNS

(dyndns.org)

Method #2: use a lookup
service

• Each node registers with a lookup
service
<TCP … />
<TCPGOSSIP initial_hosts=”http1.dyndns.org[12001]” />

• We ask the lookup service for a list of cluster nodes
• There can be multiple lookup services
• Disadvantage: an external process

Lookup service architecture

“Cluster1”

“Cluster2”

“Cluster3”

Host1, Host2, Host3

Host4, Host5, Host6

Host7, Host8, Host9

GossipRouter

Host1 Host2 Host5 Host9

register(“Cluster1”, “Host1”)

register(“Cluster3”, “Host9”)

Method #3: place node info
into a shared directory

• Discovery done through parsing of files
in a directory

• 1 directory per cluster, 1 file per node
– Directory name == cluster name

• For cluster discovery, the directory
should be on a shared drive (e.g. NFS)

• Config:
<TCP … />
<FILE_PING location=”/mnt/nas/jgroups” />

Method #4: place node info in
an S3 bucket

• EC2 specific, 'location' == bucket name
– Bucket name needs to be unique !

• With access_key and secret_access_key
– Can be null if bucket is public

<TCP … />
<FILE_PING location=”jgroups” acccess_key=”xxx”
 secret_access_key=”xxx” />

• We can also generate unique buckets
<TCP … />
<FILE_PING location=”jgroups” prefix=”jgroups-2.11”
 acccess_key=”xxx” secret_access_key=”xxx” />

Method #5: place node info
into a database

• Assumes we have a DB somewhere,
accessible by all cluster nodes
– Node info stores in a table
– Table name == cluster name

• Not yet done:
– https://jira.jboss.org/browse/JGRP-1231

https://jira.jboss.org/browse/JGRP-1231

Conclusion

• There are 5 different ways of running a
JBoss cluster in the cloud !

• JBoss-supplied virtual instances
(StormGrind, CirrAS) use the presented
discovery mechanisms

Links

• JGroups: jgroups.org
• StormGrind: jboss.org/stormgrind
• JBoss appliances:

http://community.jboss.org/wiki/CirrASA
ppliances

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

