

Migrating to JBoss from
Oracle Tuxedo using the

BlackTie project

Speaker overview

• Tom Jenkinson

• BlackTie project lead since 2008
• Previously a consultant specializing in

integration projects 2005-2008

• Prior to that, an Arjuna JTS developer
between 2000-2005

Agenda
• Compare the features offered by Oracle Tuxedo and

those provided by JBoss BlackTie

• Illustrate the steps to migrate applications from Oracle
Tuxedo to JBoss BlackTie

• Discuss some of the difficulties involved and walk
through examples of how these may be addressed
using BlackTie today

• Highlight some of the features to assist users with
migration that are being worked on for BlackTie 3

BlackTie

What is BlackTie?

• BlackTie is an implementation of
X/Open XATMI and TX

• Provides bindings for Java and C

• Co-ordinates access to XA aware
datasources such as Oracle and DB2

• Most of the services are provided by
JBoss AS
– Messaging, transactions, RHQ

What does BlackTie facilitate?

Application Program (AP)

Resource
Managers

(RMs)

Communication
Resource
Managers
(CRMs)

Transaction
Manager

(TM)

S
Q

L etc

X
A

T
M

I

T
X

 XA

Client AP

How does BlackTie fit in the
AS?

JBoss AS
•Messaging
•Transactions
•RHQ

BT Server

BT

BlackTie Adapter
MDB, Timer, MBean

Svc
 AP

What isn't addressed by the
specs

• Scalability

• Administration
• Performance

• Security
• These qualities and features help to

distinguish vendors

Why should I be interested?

• BlackTie provides an open source
alternative to a previously difficult
domain to migrate applications from

• Consultancies specialising in JBoss
technologies now have an easier
migration path to recommend to their
customers currently deployed to
Tuxedo

Migration Guide

Migrating from Tuxedo to
BlackTie

• Simplified checklist:
– Functional comparison
– Build tool support
– Deployment considerations

• Hardware

– Runtime capabilities
• Administration

Tuxedo BlackTie

Jolt JAB

WTC jatmibroker-xatmi

View X_C_TYPE

FML Not currently available

tmadmin btadmin

/Q XATMI

Eventing API XATMI

First stop: Functional
Comparison

• Identifying dependencies on proprietary
Tuxedo APIs:

What type of user are you?

• After this analysis, you will be in one of
the following positions:
1)You have developed purely against the

XATMI API and are in good luck!

2)You have made use of proprietary
extensions which BlackTie already
provides equivalents for

3)You have used proprietary extensions
where no equivalent is currently available

What type of user are you?

• To turn case 2 into case 1, we can
usually do this by either:
– Provide an adapter which maps Oracle API

calls to the BlackTie equivalent – clearly
not open source!

– Search and replace where straight
mappings are present, e.g. usage of the
CARRAY buffer

What type of user are you?

• Given a case 1 or 2 (with the
modifications for case 2 made), the
showstoppers are already done!

• All that remains is to migrate the
Tuxedo configuration files to BlackTie
ones and start the actual phasing in of
BlackTie servers.

Java Porting

Jolt vs JAB

• Simple Java API for clients

• Javadoc available:
– http://docs.jboss.org/blacktie/docs/2.0.0.Fin

al/javadoc/jatmibroker-xatmi/overview-
summary.html

WTC vs jatmibroker-xatmi

• Pure Java implementations of the
XATMI API

• Allow clients and services to be
developed

• Example available:
– example-mdb-xatmi-service

Buffers

Buffer Support

• Tuxedo
– X_OCTET [CARRAY, STRING],

X_C_TYPE, X_COMMON [VIEW(32)]
– FML(32)

• BlackTie
– X_OCTET, X_C_TYPE, X_COMMON
– XML – coming soon!

• https://jira.jboss.org/browse/BLACKTIE-327

VIEWS

• Described in a view descriptor file
ending .v.

• Ran through the viewc compiler to
create the .V and .h files

• Each view file is composed of the
following:
– VIEW <name>
– #type cname fbname count flag size null

Purpose of VIEWS

• This information allows Tuxedo to
perform the following major functions:
1)Header creation

2)NULL initialization

3)Maximise platform support – endian etc

4)Routing

BlackTie equivalent

• X_C_TYPE and X_COMMON can be
used with the following caveats:
– Routing is not yet available – coming soon!
– Headers must be created by the user by

hand
– Buffers are described in the btconfig.xml

file
– Nulls are initialized to \0, no freedom here

– If it is required we have Jira!

Example comparison

<BUFFER name="dc_buf">
<ATTRIBUTE id="input" type="char[]" arrayLength="100" />
<ATTRIBUTE id="output" type="int" />
<ATTRIBUTE id="failTest" type="int" />

</BUFFER>

VIEW dc_buf
char input - 100 - 0
int output - 1 - 0
int failTest - 1 - 0

• BlackTie

• Tuxedo

FML

• Tuxedo provides the FML (Field
Manipulation Language) format buffers.

• FML has the following benefits over and
above those provided by VIEW:
– Array lengths need not be known
– Nested record sets are allowed

BlackTie equivalent of FML

• BlackTie does not support this format of
buffer. It is a proprietary extension to
XATMI provided by Tuxedo.

• We are working on providing a buffer
format with similar characteristics.
– https://jira.jboss.org/browse/BLACKTIE-330

• Provide an API for a nested buffer format

– https://jira.jboss.org/browse/BLACKTIE-334
• Allow array lengths to be determined at runtime

https://jira.jboss.org/browse/BLACKTIE-330
https://jira.jboss.org/browse/BLACKTIE-334

Current work

• Available from:
https://svn.jboss.org/repos/blacktie/trun
k/blacktie-nbf

• int btaddattribute(char* buf, char* id, char*
value, int len)

• int btgetattribute(char* buf, char* id, int index,
char* value, int* len)

• int btsetattribute(char* buf, char* id, int index,
char* value, int len)

• int btdelattribute(char* buf, char* id, int ind)

Queues

• Tuxedo provides an extension API
called /Q

• It provides the following:
• tpqctl – A control structure which encodes

priority etc
• int tpenqueue(char *qspace, char *qname,

TPQCTL *ctl, char *data, long len, long flags)
• int tpdequeue(char *qspace, char *qname,

TPQCTL *ctl, char **data, long *len, long flags)

BlackTie equivalent

• Due to the way that BlackTie is
architected with lightweight services
underpinned by JBoss queues, we are
able to provide a very similar API which
stays true to the original XATMI
specification

BlackTie queues
• The API (btxatmi.h) is composed of:

• char* btalloc(msg_opts_t* ctrl, char* type, char*
subtype, long size)

• msg_opts
– Priority supported

• int tpacall(char * svc, char* idata, long ilen, long
flags)

– TPNOREPLY should be set

• tpadvertise/tpservice/tpunadvertise

• To enqueue a message, simply tpacall
the service

Dequeuing a message

• To create a simple dequeue operation
with definition:

• int btdequeue(char *svc, msg_opts *ctl, char
**data, long *len, long flags)

Defining a dequeue operation
// Declare some variables to store the dequeued message

long mlen; char* message; SynchronizableObject lock = new SynchronizableObject();

// Define a simple service to accept incoming data

void dqservice (TPSVCINFO* tpsvcinfo) {

 mlen = svcinfo->len;

 message = svcinfo->data;

 int err = tpunadvertise(SERVICE);

 lock.notify(); // Notify the dequeue call that a message has been received

}

// Define a method

int btdequeue(char *svc, msg_opts *ctl, char **data, long *len, long flags) {

 int err = tpadvertise(SERVICE, dqservice);

 lock.wait();

 *len = mlen;

 memcpy(*data, message, len);

 return 0;

}

Eventing

• Tuxedo provides an API to allow clients
to set unsolicited message handlers

• Allows actors to broadcast events to
these through the following methods:

• int tpbroadcast(char *lmid, char *usrname, char
*cltname, char *data, long len, long flags)

• void (*tpsetunsol (void (*func) (char *data, long
len, long flags)))

BlackTie equivalent
• BlackTie identified these capabilites are

achieved through the standard XATMI
API, with a minor semantic change.

• XATMI has an understanding that a
single service will respond to a single
invocation(p2p messaging)

• Our underlying JBoss JMS
implementation also supports topics
(pub/sub) messaging.

BlackTie equivalent
• We have an outstanding Jira pending to

update BlackTie to support using topics
for service invocation, which when
coupled with the conventions discussed
for queues means that we can achieve
unsolicited messaging with the XATMI
API:
– https://jira.jboss.org/browse/BLACKTIE-

303

Build Tool Support

Build Tools

• The main tools that are used in Tuxedo
to build the executables are:
– buildserver, buildclient, viewc, tmloadcf

• BlackTie provides the following
equivalents:
– generate_server, generate_client

Familiar development processes

src config
buffer
desc

Executables

Build Tools

UBBConfig vs btconfig.xml
• A ubbconfig is composed of:

– RESOURCES
• System wide limits – e.g. maxservers

– MACHINES
• The machines that are to be used in the

domain are represented here

– GROUPS
• Allows several machines to be administered as

a single entity. Specify transaction manager
and XA open configuration

– NETGROUPS
• Group two+ machines and prioritise traffic

UBBConfig vs btconfig.xml
• A ubbconfig is composed of:

– NETWORK
• Configure the network ports and encryption

– SERVERS
• Specifies the command line options to the

server process, a conversational server only
supports conversation services. Also a file
containing the environment to provide to the
server is specified here

– SERVICES
• Provide optional configuration to the services –

the full list of services is not required, although
all the routines must be provided to buildserver

UBBConfig vs btconfig.xml
• A ubbconfig is composed of:

– INTERFACES
• CORBA interfaces

– ROUTING
• A routing table can be configured, e.g. for

buffer type FML with certain field of various
ranges to a particular group.

UBBConfig vs btconfig.xml

• A btconfig file has the following
sections:
– MACHINES

• The paths to the machines working directory
and executable

– SERVERS
• The group of machines that should be

considered as a single server for administration
and the complete list of services for this server
(either conversational or rpc)

UBBConfig vs btconfig.xml
• A btconfig file has the following

sections:
– XA_RESOURCES

• The list of XA resources for this domain

– ORB
• Network configuration

– MQ
• Network configuration

– JMX
• Network configuration

UBBConfig vs btconfig.xml

• A btconfig file has the following
sections:
– ENV_VARIABLES

• The list of environment variables to make
available to the process (optionally constrained
by a configuration attribute

– BUFFERS
• The format of the X_COMMON and X_C_TYPE

buffers is provided here.

Differences

• Tuxedo needs the full list of methods
that are to be exposed as services

• Tuxedo does NOT need the full list of
names that the services are to be
exposed as

• BlackTie needs both, it needs the list of
names to be configured in a servers
btconfig.xml and needs the methods
providing to it during generate_server

Differences

• BlackTie uses the list of services in
btconfig.xml to validate that the same
server can only export the same set of
services:

<SERVERS>

<SERVER name='example'>

<SERVICE_NAMES>

<SERVICE name='BAR' />

<SERVICE name='FOO' />

</SERVICE_NAMES>

</SERVER>

</SERVERS>

Administration

Command-line administration

• Oracle Tuxedo uses a process called
tmadmin to start and stop the servers at
runtime.
– It inspects the binary tuxconfig file to

determine various defaults such as the
local server name.

• BlackTie uses a process called btadmin
to similar effect

Graphical Administration

• Tuxedo WebGUI Hasn't been updated
since 7.1 according to Oracle's website

• Provides a graphical view of the domain
using Java Applets

• BlackTie provides a state of the art
RHQ plugin to JBossAS

BlackTie RHQ GUI
• We have provided an RHQ plugin for

JBoss
• Allows control of the external BlackTie

servers
– Start/stop
– Advertise
– Unadvertise
– Metrics

• TPS/FPS

Using Security

• BlackTie supports user group role
authentication

• Authentication is done at the queue
level

• This is similar to Tuxedo but will require
some effort to migrate these to BlackTie
as they are both proprietary
mechanisms

Current limitations

Interoperability

• Currently applications cannot
interoperate between BlackTie and
Tuxedo

• Version 3 of BlackTie focuses on this
– All XATMI implementations are required to

implement a common wire protocol
– OSI TP
– https://jira.jboss.org/browse/BLACKTIE-64

Routing

• Tuxedo allows the routing of FML and
VIEW buffers based on the table
declared in the users UBBCONFIG file.

• BlackTie does not currently support
routing, although we are working on
delivering this via integration with JBoss
ESB and our XML buffer format:
– https://jira.jboss.org/browse/BLACKTIE-125

COBOL

• Tuxedo supports COBOL clients and
services, BlackTie does not..
– Any help will be gratefully received ;)

Examples!

Walkthrough

• We will now take a look at some more
examples from BlackTie:
– Migration of a total XATMI/TX

application to JBoss AS
– Migration of the client-side code and an

upgrade of the services to native AS
objects

Deploying BlackTie

• Make sure you have JBoss running with
BlackTie admin services deployed!

– Unzip JBoss and BlackTie

– Call ant jts in <JBOSS_HOME>/docs/examples/transactions

– Edit <JBOSS_HOME>/server/all/conf/jbossts-properties.xml to change
the CONFIGURATION_FILE to NAME_SERVICE

– Configure setenv.[sh|bat]

– Deploy blacktie-admin-services-[VERSION].ear

– Copy blacktie-admin-services/btconfig.xml to the server

– Deploy blacktie-rhq-plugin-[VERSION].jar to the admin-console

– Start the AS: ./run.[sh|bat] -c all

HOWTO: Migrate your XATMI
Application in its entirety

A.N.Other
Impl

Client

Client

Client

Svc

Svc

Svc

Deploying the Example

• Follow these steps:
– . <BLACKTIE_HOME>/setenv.[sh|bat]

– cd <BLACKTIE_HOME>/examples/integration1/xatmi_service

– generate_server -Dservice.names=CREDIT,DEBIT
-Dserver.includes=CreditService.c,DebitService.c

– btadmin startup

– cd <BLACKTIE_HOME>/examples/integration1/client

– generate_client -Dclient.includes=client.c

– ./client

HOWTO: Upgrade your XATMI
services but retain the client

XATMI

XATMI

EJB

MDB

So, where can I get more
information?

• http://jboss-blacktie.blogspot.com/

• http://www.jboss.org/blacktie

• http://community.jboss.org/en/blacktie
• irc://freenode.net/#blacktie

– If you would like to become a contributor
this is the place to start

http://jboss-blacktie.blogspot.com/
http://www.jboss.org/blacktie
http://community.jboss.org/en/blacktie

Any Questions?

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

