

BENCHMARKING CLOUD
DATABASES

CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB	

Planet Size Data!?

– Gartner’s 10 key IT trends for 2012
•  unstructured data will grow some 80% over the

course of the next five years

More (old) numbers!!!!
Facebook
•  1 billion active users, 1 in 3 Internet users have a Facebook account
•  More than 30 billion pieces of content (web links, news stories, blog posts,

notes, photo albums, etc.) shared each month. Holds 30PB of data for analysis,
adds 12 TB of compressed data daily

Twitter
•  200 million users, 200 million daily tweets
•  1.6 billion search queries a day ,7 TB data for analysis generated daily

•  90 precent of the data in the world today has been created in the last two
years alone

•  Traditional data storage, techniques & analysis tools just do not work at

these scales !

•  Source :http://www.rabidgremlin.com/data20/

Size matters but…

Performance Geographic
Distribution of users

Availability Scalability

So many of them!

•  http://the-opt.com/?p=66

One Way – Benchmark

•  Benchmark
– On what parameters ?

•  Performance
•  Scalability
•  Availability /Fault tolerance

Get to know the giants

•  HBase over Hadoop
•  Cassandra

Cloud DB – Concepts

•  DFS :-
–  Distributed File System is a file system implementation on top of the

underlying operating file system which allows the creation and access of
file from multiple hosts across network.

–  DFS creates multiple replicas of data blocks and distributes them on
nodes throughout a cluster to enable reliable, scalable and extremely
rapid computations.

Cloud DB – Concepts

–  Reliability is augmented because of the replication of same data in
multiple nodes

–  DFS allows addition/removal of newer nodes to the cluster ensuring smooth
scale up and scale down with minimal or no manual intervention (easy
scalability).

–  Computation speed gets a boost since now any node can theoretically
access any data and we can make use of data locality for computation

Map Reduce
•  programming model for expressing distributed computations on massive

amounts of data and an execution framework for large-scale data processing on
clusters of commodity servers.

–  instead of transferring huge amount of data to a central location and then processing the retrieved

data in a sequential way,
–  send chunks of small code to the nodes (which ideally has the data needed for the computation),
–  run the computation making use of the data locality (mapping)
–  and send result back to reducer which coalesces the result.

Map Reduce

•  no degradation of performance due to communication latency
•  many algorithms cannot be easily expressed as a single Map Reduce job.
•  But theoretically lot of process can be broken down in to a sequence of

mapping and reducer tasks can be now run parallel on multiple nodes on the
cluster;

•  reduce the time taken for the process by a factor of nodes involved.

Data Model

•  Both HBase and Cassandra follow a
columnar data model approach

•  NO to normalization theories
•  Yes to replication
•  Arrange data for Queries is the guiding

rule

Consistency

•  Cassandra [default] – Eventual consistency
–  Expected behavior:

•  Very fast writes
•  Slower reads

•  HBase – Strict consistency
–  Expected behavior:

•  Very fast reads
•  Near optimal writes (comparatively slower)

Architecture

•  Hbase follows
– a master slave model for ensuring

optimised resource and task allocation
– potential performance bottleneck
– a potential candidate for single point

failure

Architecture

•  Cassandra
–  follows a decentralized model and

focusses more on availability and fault
tolerance rather than ensuring strict
consistency of data

Metrics Used for Comparison

•  Performance:-
–  number of transactions done per second. (basic)
–  might not give a clear picture for real world application where we have to factor in the

latency.
–  Hence we measure performance not as throughput offered by the two services; but we

compare the trade-off of latency vs. through put.

•  i.e: A service/system with better performance will achieve the
desired latency and throughput with the same amount servers.

Scalability

•  System with good scale up features is
that ; in which the latency should remain
constant or reduce, as the
– number of servers and
– offered throughput scale upwards

proportionally.

Experimental Setup

•  7 server-class machines and one extra machine for clients.
•  Cassandra version V1.7.0
•  HADOOP version 0.20.203.0 and HBASE version 0.92.1
•  No replication(other than defaults)
•  Force updates to disk (except HBase, which Primarily commits

to memory) (default behaviour YCSB)

Hard ware configuration

•  Compute node Configuration:
–  Vendor_id : AuthenticAMD
–  Vpu family : 15
–  Model : 5
–  Model name : AMD Opteron(tm) Processor 246
–  Stepping : 8
–  CPU MHz : 2004.296
–  Cache size : 1024 KB
–  FPU : yes
–  Cache_alignment : 64
–  Address sizes : 40 bits physical, 48 bits virtual

Cassandra Cluster

– All seven nodes were used as Cassandra
nodes.

– We used RandomPartitioner to allow
Cassandra to do the distributes rows
across the cluster evenly and reduce extra
overhead if any

– We also allocated 3 GB ram for Cassandra
nodes.

HBase/Hadoop Cluster

–  HADOOP CLUSTER: we have 1 name node
(compute-0-11) and 3 data nodes (compute-0-11,
compute-0-7, and compute-0-8).

–  HBASE CLUSTER: we have 1 Master node (compute-0-3)
and 4 region servers (compute-0-2, compute-0-3,
compute-0-4, and compute-0-5).

–  Hence in total we have dedicated seven servers for HBASE/
HADOOP Cluster.

•  We allocated 1 GB ram to HADOOP and 3 GB ram to HBASE
respectively

YCSB

The YCSB is a Java program for generating the
data to be loaded to the database, and generating
the operations which make up the workload.

YCSB

•  Workload executor drives multiple client
threads.

•  Each thread executes a sequential
series of operations
–  to load the database (the load phase)
– and to execute the workload (the

transaction phase

YCSB

•  At the end of the experiment, the
statistics module aggregates the
measurements and reports
– average, 95th and 99th percentile

latencies,
– and either a histogram or time series of the

latencies

Results : Work load A

•  Workload A – 50% READ-50% UPDATE

Results : Work load B

•  Read Heavy 95% READ-5% UPDATE

Results : Work load C

•  Read 100%

Hence in a system with high reads and low
updates Cassandra is slightly better than HBASE
over HADOOP (if inconsistency of data is not
much of an issue)

Results : Work load D

•  INSERT 5% READ-95% UPDATE

social networking sites where there are some
inserts followed by heavy read operations on
those insert.

Results : Work load D

social networking sites where there are some
inserts followed by heavy read operations on
those insert.

Results : Work load E

•  100% INSERTS

In a write heavy workload we see that at
higher throughputs there is very little
difference between HBase and Cassandra

Work load –Target App

 Workload Operation Target Application

1 A—Update heavy Read:50% Update: 50% Session store recording recent actions in a user
session

2 B—Read heavy Read: 95% Update: 5% Photo tagging; add a tag is an update, but most
operations

3 C—Read only Read: 100% User profile cache, where profiles are constructed
elsewhere

4 F INSERTS Only Inserts 100% Logging applications, Data transformation
applications

Scalability

Conclusion /Confusion

•  HBase has good write latency, and
somewhat higher read latency.

•  Cassandra achieves higher throughput and
lower latency in a comparable way for both
writes/reads and updates.

•  With respect to scalability for less number of
servers (< 4) Cassandra scales better than
HBASE

What next?

•  Different cluster set ups
•  Newer versions of Both Db’s
•  YCSB – Map Reduce!?

Right tool for the Job

Thank you

