

Cassandra Says: Let there be
Data – Available, and in

Abundance!

3

Who exactly is Cassandra!

• Cassandra was doomed to tell
the truth, but never to be believed.

• “Oracle” connection!??

Do we “REALLY” need her ?

• RDBMS …So
strong

• so crisp
• so vast
• And WE know it

well!

Trends shrends!
– Gartner’s 10 key IT trends for 2012

• unstructured data will grow some 80% over the
course of the next five years

5

Size matters but…

6

RDBMS..hmmm
• Normalized implies Joins which implies Slow Queries

/Complications
• Consistency = locks /transactions = Performance issues in

distributed environments

• Scalability becomes a mess as our apps grow in size
and demand

Current Approach to
Scalability

Current Approach to
Scalability

RDBMS ..tends to

But Why..
• ACID
• :- transaction slow under heavy load
• :- in distributed /replicated environment

= 2 phase commit => infinite wait by
either NODE or Coordinator

Thanks to ACID we have:

• Loss of availability
• Higher latency during partial failures in

distributed systems

12

Cassandra to the Rescue!

– ,

13

Distributed and Decentralized

14

Elastic Scalability
• Vertical scaling : more hardware

capacity /memory

• Horizontal scaling :
More machines that have all or some of the data
So that no machine is bearing the complete load

15

Elastic Scalability

• Elastic scalability :
– Cluster will be able to seamlessly scale

up and scale back down

16

Scale UP

• Add nodes and they can start serving
clients!
– NO server restart / NO query change / NO

balancing
– JUST add an another machine.

Scale Down!

• Just unplug the system.
– Since cassandra has multiple copies of the

same data in more than one node
[configurable] there wont be any loss of
data.

18

High Availability and Fault
Tolerance

• High availability + central server based
system = problem
– Internal Hard ware redundancy ,Hot Swap
– Sounds cool but Extremely Costly

19

Single Point Failure

• Master Slave issue

High Availability and Fault
Tolerance

– Cassandra allows to :
• replace failed nodes in with no downtime
• replicate data to multiple data centers to

prevent downtime [automatic]

Tuneable Consistency

• Consistency : All Reads return the
most recently written value
– Cassandra is “eventually consistent”

model by default.

22

Eventually consistency is for
Kids!

• “My data is very important and CANT
tolerate any kind of inconsistency”

23

But then!
• Amazon, Facebook, Google, Twitter

which uses this model.
– DATA is their main sales item
– High performance!

Closer look on consistency

• degrees of consistency
– Strict consistency:

• any read will always return the most
recently written value

– What is meant by “most recently written”?
– And more over Most recently to who?

• Geographically dispersed data centers + servicing
multiple requests form multiple clients; the answer
is no more simple.

25

Weak (eventual) consistency

• The system will be in Consistent state;
in defined predictable future..but not
NOW.

26

Lets write and worry about
reading later!

• Cassandra choose to be always
writable
– opting to defer the complexity of reconciliation to read

operations
– tremendous performance gains

27

Tuneable Consistency
Technicalities

• Tunealble Consistency :consistency level against the replication
factor.

– replication factor [cluster setting]
• the number of nodes in the cluster you want the updates

to propagate

Tuneable Consistency
Technicalities

– consistency level [Client operation setting]
• how many replicas

– must acknowledge a write operation
– respond to a read operation
– for the operation to be considered successful

Tuneable Consistency
Technicalities

• If CL= RF
– High consistency

• Low performance
• Availability hit!

Sharding

31

Brewer’s CAP Theorem

• You can have it good, you can have it
fast, you can have it cheap: pick two

32

Top Down Look :

• Clusters
• The outermost structure is the cluster,

[ring]
– Since Cassandra assigns data to nodes

;arranging them in a ring structure.

– Image taken from :http://www.datastax.com/

33

Node :
• Holds replica for different ranges of

data.
– Fail over nodes
– peer-to-peer protocol [gossip architecture]

34

Keyspaces

• Cluster is a container for keyspaces
• keyspace :outermost container for data

in Cassandra
– a bunch of attributes which define

keyspace-wide behavior

35

Data Model of Cassandra
:ColumnFamily

36

Lets see if we can get it right!
Company {

key: 1001 { name: Apple, phone: 111-444-4444, address: 400 N. Hayden Rd., state: AZ }

key: 1002 { name: Yahoo, phone: 444-333-3333,address: 3000 N. New-York Rd, state: AZ
}

key: 1003 { name: Infy , phone: 666-222-2222, address: India , city : Bangalore,state:
Karnataka}

key:1 004 { name: Google, phone: 768-555-5555, address: 301 Park Ave}

}

37

Tada!

38

Deep dive into Architecture

39

Deep dive into Architecture

Deep dive into Architecture

• System Keyspace
– internal keyspace called system /store

metadata about the cluster
• Stores metadata for the local node
– And Hinted handoff information

41

Peer-to-Peer : p2p

• MySQL, Bigtable etc
– Some nodes are masters and some are

slaves
• Disadvantage:

– replication is one-way [master -> client]
– Ie : all writes must be sent to the master

• potential single point of failure
• Performance bottle neck

42

Peer-to-Peer :

• Cassandra has a peer-to-peer
– any given node is identical to any other

node
• Advantages: availability/scaling

43

Gossip and Failure Detection
• Goals :

– Decentralization / Partition tolerance
• Uses gossip protocol:

– In short :gossip is used for failure detection
– gossiper runs every second on a timer

44

Cassandra loves Gossip :O

• “gossip protocol” originally coined in
1987 by Alan Demers,
– who was studying ways to route

information through unreliable networks
– Based on the concept of human gossip
– assume a faulty network

45

What happens when its not
all ideal!?

• When G finds that endpoint is dead,
– “convicts” that endpoint ie it marks it as

dead in the local list and logs this fact
– Also known as Accrual failure detection

• failure detection should be flexible
– Achieved by decoupling main application from the

responsibility of failure detection

46

No Heart beat = Dead right?

– Heartbeat vs suspision level
• If no heart beat = dead [traditional]
• If no response = possibly dead!

– account fluctuations in the network environment

47

Anti-Entropy and Read Repair

• Anti-entropy is the replica
synchronization mechanism which
ensures that data on different nodes is
up to date with the newest version.

48

Read Repair
• When a client reads a data

• Some of them may have old data.
– Now read repair starts

• better probability of getting most recent data.

49

Memtables, SSTables, and
Commit Logs

• Durability
– Once written never lost
– Commit logs :all writes go in for recovery

• memtable
– memory-resident data structure
– When contents become too big. Flushed

into SStable
• SSTable : File in Hdisk
50

Hinted Handoff

• Node which was supposed to hold data
is Down!

• “I have the write information that is intended for
node B. I’m going to hang onto this write, and
I’ll notice when node B comes back online;
when it does, I’ll send it the write request”

– User can keep on writing.

51

Bloom Filters

• Goal : performance booster
• very fast, nondeterministic algorithms

for testing whether an element is a
member of a set

• The filters are stored in memory and
are used to improve performance by
reducing disk access on key lookups

52

Tombstones

• idea similar to “soft delete.”
– to support audit trails

• On execute of a delete operation, the
data is not immediately deleted

53

Thank You
Disclaimer : All logos and images belong to the creator and companies which own them

