
1

Name
Title
Red Hat, Inc.
Date

<Add your title>

1

Agenda
•Introduction

•What is Infinispan?
•Principle use cases
•Key features

•Hands-on demo
•build an application using infinispan

•Extras
•Querying the Grid
•Database - OGM
•Performance tuning - RadarGun

•Conclusion

Lab Setup

•Download the lab zip:

•Unzip the lab to your disk to a location of your choice
•If you are a git user, you can clone the repository:

•each stage of this lab has a checkpoint which is
tagged, you can check out the code for each
Checkpoint using:

g i t c l o n e g i t : / / g i t h u b . c o m / p m u i r / i n fi n i s p a n - l a b s . g i t

g i t c h e c k o u t C h e c k p o i n t X

http://bit.ly/infinispan-labs-checkpoint1

Lab Setup

•Follow along using

•Download JBoss AS 7.0.2 from

•Unzip JBoss AS to your disk to a location of your
choice

http://bit.ly/infinispan-labs

http://jboss.org/jbossas/downloads

Introduction

So what is Infinispan?

•Distributed, in memory, data structure
•Highly available
•Elastic
•Open source

Distributed Data structure

High availability

•Memory is volatile
•Make redundant copies

•Total replication (Replication Mode)
•Partial replication (Distribution Mode)

•Topology changes
•Node will crash!
•Re-arrange state

Elasticity

•Expect
•Node additions
•Node removals

•Topology changes
•are totally consistent
•do not "stop the world"

Access modes

•Embedded
•client and node on same VM
•fast!

•Client/server
•different processes
•multiple protocols

•REST
•Memcached
•Hotrod

Embedded access

Client/server access

Server endpoints
- REST
- Memcached
- Hotrod

Main use cases

•Local cache
•e.g. Hibernate 2nd level cache

•Cluster of caches
•More caching capacity
•Co-located clients

•Data Grid
•dedicated cluster of servers
•remote access

Good old caching...

•Local cache
•java.util.Map

•And some more
•eviction
•expiry
•write through/behind
•passivation
•preloading
•notifications

Use Case 1: Local Cache

Use Case 2: Cluster of caches

Use Case 3: Data grid

Use Case 3: Data grid

Key features

•Cloud oriented
•Transactions
•Querying
•Map/Reduce and Dist Executors
•Cache loaders
•Management

•JMX
•RHQ

Hands on Demo

Reliable Multipoint Communication

Why do you care?

Shall we try it out?

•In the lab project you'll find a test script for your
network. Run it!

•LAB_HOME/nic-test

•If all goes well, you'll get two windows in which
you can draw up on your screen. Draw on one,
see it in both.
•Easy to try: JGroups has no dependencies!

What is unreliable ?

•Messages get
•dropped

•too big (UDP has a size limit), no fragmentation
•buffer overflow at the receiver, switch

•NIC, IP network buffer

•reordered

•We don't know who is in a cluster (IP multicast)
•we don't know when a new node joins, leaves, or
crashes

•Fast sender might overwhelm slower receiver(s)
•flow control

So what Is JGroups ?
•Library for reliable cluster communication
•Provides

•Fragmentation
•Message retransmission
•Flow control
•Ordering
•Group membership, membership change notification

•LAN or WAN based
•IP multicasting transport default for LAN
•TCP transport default for WAN
•Autodiscovery of cluster members

Overview

TCP / JGroups
java.net.Socket

java.net.ServerSocket
org.jgroups.Channel)

UDP
java.net.DatagramSocket

IP Multicast
java.net.MulticastSocket

JGroups
org.jgroups.Channel

multicast

unicast

reliable unreliable

Architecture of JGroups

STATE

COMPRESS

FLOW

NAKACK

FRAG

UDP

Channel

Network

send receive

STATE

COMPRESS

FLOW

NAKACK

FRAG

UDP

Channel

send receive

Terminology

 Message
 Address
 View
 State transfer
 Group topology

Address

•A cluster consists of a number of members
•Each member has an Address
•The address uniquely identifies the member
•Address is an abstract class

•Implemented as a UUID
•A UUID maps to a physical address

•An address can have a logical name
•E.g. “A”
•If not set, JGroups picks the name, e.g. “myhost-
16524”

View

•List of members (Addresses)
•Is the same in all members:

•A: {A,B,C}
•B: {A,B,C}
•C: {A,B,C}
•(Same elements, same order)

•Updated when members join or leave

Group topology

Available protocols

•Transport
•UDP (IP multicasting), TCP, TCP_NIO, Message
batching

•Merging, failure detection (hangs, crashes)
•Reliable transmission and ordering

•Using sequence numbers, dropped messages are
retransmitted

•Distributed garbage collection
•Consensus on received messages, older ones are
purged

Available protocols

•Group membership
•Installs new views across a cluster when members
join, leave or crash

•Flow control
•Fast sender is throttled down to the pace of the
slowest receiver

•Fragmentation
•Large packets are fragmented into smaller ones and
unfragmented at the receiver side

•Compression, encryption, authentication

Available protocols

•State transfer
•State transferred to a joining member without
stopping the cluster

•Virtual Synchrony
•All messages sent in view V1 are delivered in V1
•Flushes unstable messages before a new view is
installed

•Makes sure all members have received all messages sent
in V1 before installing V2

•Ordering: total, causal, FIFO

Discovery Protocols

•PING, MPING, BPING, ..
•TCP_PING
•JDBC_PING
•S3_PING
•CASSANDRA_PING

Eviction and expiration

Expiration

•Time based
•lifespan
•max idle

•Expired entries removed
•from cache
•from persistent store (if any)

API

Configuration

Eviction

•Memory is finite
•something has to give!

•Evict based on data access
•Bounded caches

Eviction strategies

•None (default)
•Unordered
•FIFO
•LRU
•LIRS

LIRS

•Low Inter-reference Recency Set replacement
•Hybrid

•frequency of access
•time of the last access

Passivation

•Evict to external store
•file, database...

•Cheaper than remote access (?)
•Use the right eviction policy

•keep relevant bits in memory

Configuration

Tuning eviction

•What eviction policy should I use?
•Measure, don’t guess

•Cache JMX stats
•hits/misses ratio

•Memory issues?
•Aggressive wakeup interval

Listeners

Listener types

•Cache listeners
•data: added, remove, changed, entry loaded
•transaction: completed, registered
•topology: changed, data rehashed

•Cache manager listeners
•cache started/stopped, view changed/merge

Synchronicity

•listener executes in caller’s thread (default)
•keep it short!

•Or async

•Listeners are local
•Can veto an operation
•Participate in transactions
•Do not work on RemoteCacheManager

Transactions

Agenda

•Transactions
•optimistic/pessimistic
• JTA support

•XA (or not)
•Recovery
•Deadlock avoidance

Cache types

•Non transactional
•Transactional

•optimistic
•pessimistic
•TransactionManager required

•No mixed-access

Transactional caches

•Optimistic
•no locks before prepare
•small lock scope

•Pessimistic
•lock acquired on each write
•writes block writes
•reads do not block

•locks held longer

Pessimistic or Optimistic?

•Optimistic
•low contention
•high contention -> many rollbacks
•disable version check

•Pessimistic
•high key contention
•rollbacks are less desirable

•more costly/more guarantees

JTA integration

•JTA transactions
•known API

•Multiple options
•full xa (XAResource)
•less strict (Synchronization)

XA or not?

•XA
•proper distributed transactions
•recovery enabled

•or not

•Synchronization
•cache backed by a data store
•Transaction more efficient

•1PC optimisation
•TransactionManager not writing logs
•Hibernate 2LC

Recovery

•When is needed?
•prepare successful, commit fails
•inconsistent state!

•How to handle it
•TransactionManager informs SysAdmin
•JMX tooling exposed to
•force commit
•force rollback

Deadlocks

•Deadlock
•Tx1: a -> b
•Tx2: b -> a
•“right” timing

•Bad for system throughput
•threads blocked until (one) tx timeouts
•lockAcquisitionTimeout defaults to 10 seconds!
•a,b are locked during this time -> potentially more
deadlocks

What’s to be done?

•Order key
•e.g. lexicographically
•Tx1: a -> b
•Tx2: a -> b
•not always possible

•Use deadlock detection
•fail fast
•one tx succeeds

New deadlock avoidance
techniques (5.1)

•Single lock owner
•avoid same key-deadlocks

•Optimistic only
•Incremental locking

•acquire locks on the same node sequence

•Lock reordering
•based on consistent hash

Modes of Operation

Consistent Hashing: DIST

Clustering: Cache modes

•DIST
•Sync/Async

•REPL
•Sync/Async

•LOCAL
•Doesn't have async

•INV
•Sync/Async

DIST again

DIST + VNodes

Client Server

Peer to peer

Client/Server Architecture
Supported Protocols
REST
Memcached
Hot Rod

Hotrod?!

•Wire protocol for client server communications
•Open
•Language independent
•Built-in failover and load balancing
•Smart routing
•xa support - to come

Server Endpoint Comparison

Protocol Client Libraries Clustered? Smart Routing Load Balancing/Failover

REST Text N/A Yes No Any HTTP load balancer

Memcached Text Plenty Yes No Only with predefined server list

Hot Rod Binary Java, Python Yes Yes Dynamic

Client/Server - when?

•Client not affected by server topology changes
•Multiple apps share the same grid
•Tier management

•incompatible JVM tuning
•security

•Non-JVM clients

Cache Stores

Why use cache stores?

•Durability
•More caching capacity
•Warm caches

•preload

Features

•Chaining
•more than one per cache

•Passivation
•with eviction

•Async
•write behind

•Shared

Types of cache stores

•File system
•FileCacheStore
•BdbjeCacheStore

•JDBC
•Cloud cache store (JCouds)

More cache stores

•RemoteCacheStore
•use Hotrod

•Cassandra
•ClusterCacheStore

•alternative to state transfer

•Custom!

Extras

Map Reduce
& Distributed Executors

Distributed Executors
• public interface DistributedExecutorService extends ExecutorService {

•
• <T, K> Future<T> submit(Callable<T> task, K... input);

•
• <T> List<Future<T>> submitEverywhere(Callable<T> task);

•
• <T, K > List<Future<T>> submitEverywhere(Callable<T> task, K...

input);

• }

• public interface DistributedCallable<K, V, T> extends Callable<T> {

• void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

• }

However,behind the scenes..

Speedup = 1/(p/n)+(1-
p)

However, problems that increase the percentage
of parallel time with their size are more scalable
than problems with fixed percentage of parallel
time

p = parallel fraction
n = number of processors

Source:
https://computing.llnl.gov/tutorials/parallel_comp/

Do not forget Gene Amdahl

π approximation

Infinispan MapReduce

•We already have a data grid!
•Leverages Infinispan’s DIST mode
•Cache data is input for MapReduce tasks
•Task components: Mapper, Reducer, Collator
•MapReduceTask cohering them together

MapReduce model

Source:
http://labs.google.com/papers/mapreduce.html

Mapper, Reducer, Collator

public interface Mapper<KIn, VIn, KOut, VOut> extends Serializable {

 void map(KIn key, VIn value, Collector<KOut, VOut> collector);
}

public interface Reducer<KOut, VOut> extends Serializable {

 VOut reduce(KOut reducedKey, Iterator<VOut> iter);
}

public interface Collator<KOut, VOut, R> {

 R collate(Map<KOut, VOut> reducedResults);
}

Querying

To query a Grid
•What's in C7 ?

•Where is the white King?

O b j e c t p =

 c a c h e . g e t (“ c 7 ”) ;

Infinispan and Queries

•How to query the grid
•Key access
•Statistics
•Map/Reduce
•Indexing of stored objects

•Integrate with existing search engines
•Scale
•Highly available

Indexing of stored objects

•Maven module: infinispan-query
•Configuration: indexing=true

•Will trigger on annotated objects

•Integrates hibernate-search-engine
•Based on Apache Lucene

Enable indexing

C o n fi g u r a t i o n c = n e w C o n fi g u r a t i o n ()

 . fl u e n t ()

 . i n d e x i n g ()

 . a d d P r o p e r t y (

 " h i b e r n a t e . s e a r c h . o p t i o n " , " v a l u e ")

 . b u i l d () ;

C a c h e M a n a g e r m a n a g e r = n e w D e f a u l t C a c h e M a n a g e r (c) ;

Annotate your objects
• @ProvidedId @Indexed

• p u b l i c c l a s s Book i m p l e m e n t s S e r i a l i z a b l e {

• @Field S t r i n g title;

• @Field S t r i n g author;

• @Field S t r i n g editor;

• . . .

• }

Search them!

S e a r c h M a n a g e r s m = S e a r c h . g e t S e a r c h M a n a g e r (c a c h e) ;

Q u e r y q u e r y = s m . b u i l d Q u e r y B u i l d e r F o r C l a s s (B o o k . c l a s s)

 . g e t ()

 . p h r a s e ()

 . o n F i e l d (" t i t l e ")

 . s e n t e n c e (" i n a c t i o n ")

 . c r e a t e Q u e r y () ;

L i s t < O b j e c t > l i s t = s m . g e t Q u e r y (q u e r y) . l i s t () ;

Lucene API, storing in Infinispan

Limited write concurrency

Example of multi-cache app

•OGM: Object/Grid Mapper
•Implements JPA for NoSQL engines

•Infinispan as first supported “engine”
•More coming

•Simplified migration across different NoSQL,
SQL databases

•With transactions, or whatever is possible.
•Fast? Contribute tests and use cases!

•JPA on NoSQL: an approach with Hibernate
OGM

•Devoxx 2011
•November 17th (conf Day 4) - 14:00 – 15:00
•Emmanuel Bernard

Radargun

What is Radargun?

•Benchmarking tool
•in memory data grids

•Pluggable
•products
•data access patterns

Basic Idea

Status

•1.0 Released
•Web session replication
•Transaction benchmarks
•run on 100+ nodes

•1.1 on the way
•TPC-C plugin for tx benchmarking
•consistent hash efficiency

Conclusion

Use Cases

•Local Cache
•Distributed Cache
•Data Grid

Access Modes

•Embedded
•Remote

•Hot Rod
•REST
•Memcache

Control

•Eviction
•Expiration
•Management

Transaction & Locking

•XA
•Local

Persistence

•Cache Stores

Q&A

