

Painless Persistence

Some guidelines for creating persistent
Java applications that work

The Authors

Anthony Patricio – Senior JBoss Certification Developer
– Highest volume poster on early Hibernate forums

– 5 years as 3rd level Hibernate support

– Author of two Hibernate books

Greg Kable – JBoss Certification Manager
– More than 20 years enterprise application experience

– More than 15 years enterprise Java experience

– Lived through the evolution of Java persistence from JDBC 1.0 to
JPA 2

Anti-patterns

1. “Some repeated pattern of action, process or
structure that initially appears to be beneficial,
but ultimately produces more bad consequences
than beneficial results”

2. “A refactored solution exists that is clearly
documented, proven in actual practice and
repeatable”

http://en.wikipedia.org/wiki/Anti-pattern

Anti-pattern – We're Special!

Forces
• Your problem domain is special

• You have leet SQL/JDBC skills

• You don't need no stinking ORM

– they're heavy, slow and hard to use

– nobody needs all those features

Results
• Lots and lots and lots of custom, low-level code

– Constantly re-inventing the wheel

• Very poor maintainability

• Worse performance overall

Anti-pattern – We're Special!

• Do you really need to hand code all
persistence?

• Do you really want to be bound to Oracle
forever?

• Do you really want all of your developers
knowing about the DBMS?

• Are you really smarter and more experienced
at ORM than Gavin King and friends?

Solution
Leverage an ORM
• Your problem domain is special Very unlikely!

• You have leet SQL/JDBC skills Very expensive!

• You don't need no stinking ORM You do!

– they're fast, easy to use and cheap

– use the features as and when you need them

Results
• Good encapsulation of data concerns

• Easier to maintain and much less code

• Better performance overall with excellent results from targeted
optimisation

Anti-pattern – ORM Apathy

Forces
• Hibernate is very good at what it does so nobody needs to understand

the DB

• Pressure to deliver NOW!

• Efficient design is HARD!

Results
• Use of default ORM behaviour throughout

• No concern for performance

• Occasional unpredictable behaviours and bugs

• Works in testing but not in production

Solution

Learn how to use JPA
• Be prepared to have some developers who understand ORM and the

DBMS

• Design the data and service layers:

– What does the DBMS look like?

– What representations does the business logic need?

– What do you need to do with the data?

• Avoid nice but expensive features (e.g. cascade)

• Monitor performance and work with the DBAs to address hot spots

Results
• It works!

Anti-pattern – Skinny Objects

Forces
• Data focused development (often with a legacy DB)

• Misunderstanding of ORM

Results
• No encapsulation

• Very poor maintainability

• Very fragile implementations

Example
@Entity
class Cafe
{

private int key;

private Chain chain;
private Integer longitude;
private Integer latitude;
....

@Id @GeneratedValue
public void setKey(int key) {...}
public int getKey() {...}

@ManyToOne
public void setChain(Chain chain) {...}
public Chain getChain() {...}

public void setLongitude(Integer longitude) {...}
public Integer getLongitude() {...}

public void setLatitude(Integer latitude) {...}
public Integer getLatitude() {...}

}

Solution

Design your entities
• Encapsulate behaviours where appropriate

• Do NOT externalise the entity's internal consistency

• Do NOT expose implementation details

• Fail early, fail often

Results
• Less “wrapper” code

• More reliable business logic

• Faster and more accurate detection of business logic and design errors

A Better Way
@Entity
public class Cafe
{

private int key;

private Chain chain;
private Integer longitude;
private Integer latitude;
....

@Id @GeneratedValue
private void setKey(int key) {...}
public int getKey() {...}

@ManyToOne @Column(nullable = false)
private void setChain(Chain chain) {...}
public Chain getChain() {...}

@Column(nullable = false)
public Integer getLongitude() {...}
private void setLongitude(Integer longitude) {...}

@Column(nullable = false)
public Integer getLatitude() {...}
private void setLatitude(Integer latitude) {...}

@Transient
public void setLocation(Integer longitude, Integer latitude) {...}

}

Even Better
@Entity
class Cafe
{

@Id @GeneratedValue
private int key;

@ManyToOne @Column(nullable = false)
private Chain chain;
@Embedded
private Location location;
....

protected Cafe() {}
public Cafe(Chain chain, Location location) throws NPE {...}

public int getKey() {...}

public Location getLocation(Location location) {...}
public void setLocation(Location location) throws NPE {...}

public Chain getChain() {...}
}

Anti-pattern – OO Purity

Forces
• Heavy focus on OO principles

• Poor attention to DBMS design

• No service layer

Results
• Poor performance (probably fatally so)

• Unpredictable behaviour under load

• Often buggy in very strange ways

Solution

• OO + ORM != OODB
– There is a good reason OODBs have never taken off

• “you can” != “you should”
– avoid bi-directional associations unless they are required by

the business logic

– be careful mapping inheritance

– avoid cascade unless you REALLY know the implications

– make sure entities and actions are well defined and
separated

• Design for and use a service layer

Anti-pattern – DAO Heaven

Forces
• Lack of overall application design

• Poor understanding of ORM

Results
• DAO takes over

• Poor encapsulation

• Overly complex coding and duplicated effort

Solution

Design your data access
• Don't confuse the DAO and the service layer

– DAO exists to abstract common persistence actions

– DAO must not understand or be involved in transactions

• EM is a perfectly adequate DAO for small scale

• A single generic DAO works for medium scale

• One DAO per domain model works well for large scale

• Use @NamedQuery and generic query execution

Results
• Clean separation of concerns

• Simpler, more reliable business logic

Anti-pattern – False Identity

Forces
• Inexperience

• Time pressures

Results
• Very difficult bugs

• Eventual maintenance nightmare

Solution
• Use autogenerated keys wherever possible

• ALWAYS declare equals() and hashcode()

Identity, Equality & Hibernate

• 1st level cache uses identity

• Everything else uses equals()

• Be careful about equals/hashcode and hibernate proxies

== ID Business

Compound Key No Yes Yes

New Instances Yes No Yes

Out of session No Yes Yes

Collection Integrity Yes No Yes

Identity, Equality & Hibernate

As Generated by Eclipse...
@Entity
class Cafe
{

@ManyToOne @Column(nullable = false)
private Chain chain;
....

@Override
public boolean equals(Object obj) {

....
if (getClass() != obj.getClass())

return false;
Cafe other = (Cafe) obj;
if (chain == null) {

if (other.chain != null)
return false;

} else if (!chain.equals(other.chain))
return false;

....
return true;

}
}

Identity, Equality & Hibernate

What works...
@Entity
class Cafe
{

@ManyToOne @Column(nullable = false)
private Chain chain;
....

@Override
public boolean equals(Object obj) {

....
if (!(obj.instanceof(Cafe)))

return false;
Cafe other = (Cafe) obj;
if (chain == null) {

if (other.getChain() != null)
return false;

} else if (!chain.equals(other.getChain()))
return false;

....
return true;

}
}

Recommended Practices

• Include entity version on all tables

• Don't be afraid to use JP-QL

• Use native JDBC for heavy, read only queries
such as reporting

• Second level cache for read frequently only

• Consider using Seam/Weld's conversation
context

5 Simple Steps

1. Invest in some JPA skills

2. Design your persistent objects

3. Create a services layer (DAOs are not sufficient)

4. Remember the three rules of optimisation and
always work with the DBAs

5. Don't blindly do anything – always think before
you code!

Questions

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

