Web services transactions: past, present and future

Mark Little,
Arjuna Technologies Ltd
Overview

• ACID transactions and why they don’t cut it in the world of Web Services
 – Consider long-duration activities

• Where are we?
 – OASIS BTP
 – WS-C/T
 – OASIS WS-CAF

• The future
ACID transactions

- **ACID guarantees**
 - Atomic
 - Consistent
 - Isolated
 - Durable

- **Implicit contract that exists between**
 - Transaction coordinator
 - E.g., HPTS, CICS, ...
 - Participants
 - E.g., XAResource
Termination protocol

• Typically use a two-phase commit protocol
 – Prepare phase
 • Participants that can commit are required to record sufficient information to allow completion if failure
 – Either Commit phase
 • Coordinator records sufficient information to complete in case of failure
 – Or, Rollback phase
Phase one

1. Application/ Functionality

2. Application/ Functionality

Client

Transaction Coordinator

Request to Confirm Context

Preparedness? Context

Preparedness? Context

Reply

Reply
Phase two

Client

Request to Confirm Context

Transactional Outcome

Transaction Coordinator

1. Application/ Functionality

Commit / Rollback Context

2. Application/ Functionality

Commit / Rollback Context

2PC is a protocol and does not define transaction qualities - i.e., ACID or isolation levels i.e., two phase locking.
Assumptions

• ACID transactions implicitly assume
 – Closely coupled environment
 – Short-duration activities
 • Must be able to cope with resources being locked for periods

• Therefore, do not work well for
 – Loosely coupled environments!
 – Long duration activities!
Web services

- Business-to-business interactions may be complex
 - involving many parties
 - spanning many different organisations
 - potentially lasting for hours or days
- B2B participants cannot afford to lock resources exclusively on behalf of an individual indefinitely
 - rules out the use of atomic transactions for many use cases
But …

- Web Services are as much about interoperability as they are about the Web.
- In the short term Web Services transactions will be about interoperability between existing TP systems rather than running transactions over the Web.
Overall goals

• Transaction information must leverage the existing WS standards and initiatives.
• ACIDity, specifically isolation needs to be relaxed such that parties can negotiate the transactional commitments at runtime.
 – Should also support ACID
 – consensus between participants, as illustrated in an atomic transaction, is extremely useful.
OASIS BTP

• Developed by HP, Oracle, Sun, BEA and others
• First real standards attempt
• Defines two transaction models
 – Atoms
 – Cohesions
Atom

- Uses a two-phase termination protocol
 - prepare, confirm and cancel
 - There is an implicit contract between Atom and participant that work must be atomic
 - All participants will do the same thing
 - Does not mandate how to implement prepare, confirm and cancel
 - More flexibility than in ACID
 - Does not say anything about isolation
Cohesion

- prepare, confirm and cancel are parameterized
 - Work on (set of) Atom id(s)
 - Allows the confirm of a specific subset of work
 - Once subset is determined by business logic, it will be atomic
BTP | Single Service Type Cohesion

Travel Agent (Consumer)

Message Flow

Flight Reservation
- Price & Confirmation # (Flight provisionally booked for 24 hours)

United Airlines
- Flight Booking Service

British Airways
- Flight Booking Service

Qantas
- Flight Booking Service

Flight Reservation
- Price & Confirmation # (Flight provisionally booked for 12 hours)

Flight Reservation
- Price & Confirmation # (Flight provisionally booked for 3 hours)
BTP | Single Service Type Cohesion

Travel Agent

Application

Confirm B.C

Compose

Indicative Message Flow

UAL

Service

Participant

BA

Service

Participant

Qantas

Service

Participant
BTP | Single Service Type Cohesion

Travel Agent

Application

Composer

Indicative Message Flow

Confirm

Confirmed

UAL

Service

Participant

BA

Service

Participant

Qantas

Service

Participant

XML 2003 December 7-12, 2003, Pennsylvania Convention Center www.xmlconference.org
Relationship to Web Services

- Designed not to be Web Services specific
- Contexts and entire message set has been designed to be interoperable
 - Does not mandate a specific carried protocol
 - Could be SOAP, IIOP, carrier pigeon
 - Only mandates XML format for messages
Pros and Cons

• Pros
 – Well formed and complete

• Cons
 – 200+ pages!
 • Over complexity
 – Doesn’t fit well in Web services architecture
 • Have to expose participants to end users
 • Business logic is encoded within transaction protocol
 – Really only one protocol that has to work for all use cases
 – Poor integration with existing TP infrastructures
• Proprietary specifications released by IBM, Microsoft and BEA
• Separate coordination from transactions
• Define two transaction models
 – AtomicTransaction
 • Closely coupled, interoperability
 – Business Activities
 • Compensation based, for long duration activities
WS Coordination

• Coordination is more fundamental than transactions
 – Transactions, security, workflow, …
 – But each use may require different protocol
 • Two-phase, three-phase, …

• Define separate coordination service
 – Allow customisation for different protocols
WS-T and WS-C

WS-Coordination

WS-Transaction

Transaction Coordinator

Activation Registration Completion CompletionWithAck PhaseZero 2PC OutcomeNotification BusinessAgreement BusinessAgreementWithComplete

XML 2003 December 7-12, 2003, Pennsylvania Convention Center www.xmlconference.org
AtomicTransaction

• Assumed ACID transactions
 – High degree of trust
 – Isolation for duration of transaction
 – Backward compensation techniques

• Integration with existing transaction systems
 – Should be possible to layer Web Services abstraction on them

• Interoperability between transaction systems
Business Activities

- Workflow-like coordination and management
 - Business activity can be partitioned into scopes (tasks)
 - Parent and child tasks
 - Select subset of children to complete
 - Parent can deal with child failures without affecting forward progress
 - Tasks can dynamically exist a business activity
 - Not interested in final outcome
 - Tasks can indicate outcome earlier than termination
 - Up-calls rather than just down-calls
BA example
Compensating BA
Pros and Cons

• Pros
 – Good separation of coordination from transactions
 – TP interoperability
 – The supporters!

• Cons
 – Incomplete specifications
 • Error conditions are poorly defined
 • Adversely affects interoperability
 – IPR
OASIS WS-CAF

• Supported by Oracle, Sun, IONA, Arjuna, Fujitsu, HP and others
 – Royalty free specifications

• Three specifications
 – WS-Context
 – WS-Coordination Framework
 – WS-Transaction Management

• Three transaction models for Web services
 – Interoperability with existing implementations is important
WS-Context

• Context service
 – Fundamental aspect of WS architecture
• Defines notion of an activity
 – Unit of work
 • Precise definition left up to higher level services/users
 – Basic context associated with activity
• Context Service maintains context for each activity
WS-CF

- Provide a general framework for coordination protocols
 - Existing implementations to be plugged in
 - New implementations can be supported
 - Defines coordinator and participant relationships
- Work with WS-Context
 - Define an appropriate ALS
 - Augment context
- Scope of activity becomes scope of coordination boundary
WS-TXM

- Transactions for Web services
- Builds on WS-CF and WS-Context
- Based on experience of using Web service transactions
- Intended as a live document
 - New models can be added as required
- Scope of activity becomes scope of transaction
Models

• Three transaction models
 – ACID transaction
 • For interoperability and high-cost services where ACID transactions are a requirement
 – Long running action
 • Loosely coupled, long duration work that uses compensations
 – Business process
 • For treating all steps in an automated business process as part of a single logical transaction
• Specifically for long duration interactions
• Compensation actions used
 – Forward work to return the business state to consistency
 • E.g., credit your credit card and give you back interest payments
Example

LRA1

book taxi

LRA2

LRA3

reserve restaurant, theatre and hotel

LRA4

LRA5
BP model

• All parties reside within *business domains*
 – Recursive structure is allowed
 – May represent a different transaction model

• Business process is split into *business tasks*
 – Execute within domains
 – Compensatable units of work
 • Forward compensation during activity is allowed
 – Keep business process making forward progress
Example

- Book taxi task
- Book theatre task
- Book restaurant task

- Flight task
- Flight reservation task
- Insurance task
Pros and Cons

• Pros
 – Interoperability is important
 – Based on implementations
 – WS-Context
 – BP model

• Cons
 – Not backed by IBM and Microsoft
 – 18 months before it is a standard
Conclusions

• Very active subject!
 – Sometimes seems like we’re going round in circles

• BTP was the first real attempt at a standard
 – Too complex
 – Not enough thought about leveraging existing infrastructures
 • Many existing TP systems couldn’t be made BTP-aware

• WS-C/T and WS-CAF look promising
 – Leveraging existing investments is a priority
 – Similar enough to allow convergence
 • If all parties can agree!