
 1

An Examination of the Transition of the Arjuna Distributed Transaction

Processing Software from Research to Products

M. C. Little
1
 and S. K. Shrivastava

2

1
HP-Arjuna Laboratories, Newcastle-Upon-Tyne,UK

2
Department of Computing Science, Newcastle University, Newcastle-Upon-Tyne, UK

1. Introduction

The Arjuna transaction system began life in the mid 1980s as an academic project to examine the use
of object-oriented techniques in the development of fault-tolerant systems; over 15 years later it is now
a Hewlett-Packard product in its own right and is also embedded in several other offerings from HP. In
this paper we shall present an overview of this journey and illustrate some of the lessons learnt.

Arjuna is an object-oriented programming system that provides a set of tools for the construction of
fault-tolerant distributed applications. Arjuna supports the computational model of nested atomic

actions (nested atomic transactions) controlling operations on persistent (long-lived) objects. Arjuna

objects can be replicated on distinct nodes for obtaining high availability. The Arjuna research effort
began in late 1985 at the University of Newcastle. A version of the system written in C++ to run on
networked Unix systems was operational in early nineties and was maintained and made available
freely by us on the Web for research, development and teaching purposes during most of the nineties.
The arrival of the Web and industrial acceptance of CORBA and Java technologies for distributed
object computing during this period encouraged us to productise Arjuna. In late 1998 we set up a
company, Arjuna Solutions Ltd., with two products derived from the Arjuna software: OTSArjuna, a
C++ version of the CORBA Object Transaction Service (OTS) and JTSArjuna, the OTS counterpart in
Java. Through a series of company acquisitions, these later became part of HP’s middleware product
lines. Within HP, the original Arjuna software continues to be of use in creating customised
transactional services for new application areas, such as Web Services and mobile computing. In this
paper we examine the reasons for the longevity of the Arjuna software.

Designing and implementing a programming system capable of supporting 'objects and actions' based
applications by utilising existing programming languages and operating systems was a challenging task
for us in 1985, as research on distributed object systems and architectures was only just beginning.
Furthermore, basic services for distributed computing (naming, binding, object invocation, etc.) now
commonly available on ORBs, were non existent then, so had to be built from scratch. We began by
assuming that every major entity in the application will be an object. This philosophy also applied to
the internal structure of Arjuna itself. Thus, Arjuna not only supports an object-oriented model of
computation, but its internal structure is also object-oriented. This approach has permitted the use of
the type inheritance mechanism of object-oriented systems for incorporating the properties of fault-
tolerance and distribution in a very flexible and integrated manner. This structure together with the
modular way the system was put together are the main factors that has enabled its continued use.

The paper is structured as follows. In the next section we present an overview of the Arjuna system
that was implemented in C++. Sufficient details of the system are presented here to enable the readers
to follow the subsequent discussions concerning middleware. The material of this section is taken from
our published papers on Arjuna [1,2,3,4]. Section three describes how the system was adapted for use

 2

as a transaction service for CORBA and Java middleware; here we also compare and contrast the
functionality of the original Arjuna system with that of the modern component based middleware.
Section four concludes the paper.

2. An Overview of Arjuna

2.1. Design and Implementation Goals

The design and implementation goals of Arjuna was to provide a state of the art programming system
for constructing fault-tolerant distributed applications. In meeting this goal, three system properties
were considered highly important:

(i) Modularity: The system should be easy to install and run on a variety of hardware and software
configurations. In particular, it should be possible to replace a component of Arjuna by an equivalent
component already present in the underlying system.

(ii) Integration of mechanisms: A fault-tolerant distributed system requires a variety of system functions
for naming, locating and invoking operations upon local and remote objects, and for concurrency control, error
detection and recovery from failures, etc. These mechanisms must be provided in an integrated manner such
that their use is easy and natural.

(iii) Flexibility: These mechanisms should also be flexible, permitting application specific enhancements,
such as type-specific concurrency and recovery control, to be easily produced from the existing default ones.

In Arjuna, the first goal was met by dividing the overall system functionality into a number of modules
which interact with each other through well defined narrow interfaces. This facilitated the task of
implementing the architecture on a variety of systems with differing support for distributed
computing,. For example, it was relatively easy to replace the default RPC module of Arjuna by a
different one. The remaining two goals were met primarily through the provision of a C++ class library
for incorporating the properties of fault-tolerance and distribution. Finally, and purely for pragmatic
reasons, we decided that it was important to develop Arjuna using commonly available tools and
hardware.

2.2. Objects and actions

Arjuna supports a computation model in which application programs manipulate persistent (long-
lived) objects under the control of atomic actions (atomic transactions). Distributed execution is
achieved by invoking operations on objects which may be remote from the invoker using remote
procedure calls (RPCs). All operation invocations may be controlled by the use of atomic actions
which have the well known ACID properties (ACID: Atomicity, Consistency, Isolation, Durability).
Atomic actions can be nested. Nesting provides fault-isolation: a nested action can abort without
causing the abortion of the enclosing action. A (two-phase) commit protocol is used during the
termination of an outermost atomic action (top-level action) to ensure that either all the objects
updated within the action have their new states recorded on stable storage (committed), or, if the
atomic action aborts, no updates get recorded. Typical failures causing a computation to be aborted
include node crashes and continued loss of messages. It is assumed that, in the absence of failures and
concurrency, the invocation of an operation produces consistent (class specific) state changes to the
object. Atomic actions then ensure that only consistent state changes to objects take place despite
concurrent access and any failures.

 3

The object and atomic action model provides a natural framework for designing fault-tolerant systems
with persistent objects. A persistent object not in use is assumed to be held in a passive state with its
state residing in an object store (a stable object repository) and activated on demand (i.e., when an
invocation is made) by loading its state and methods from the object store to the volatile store, and
associating an object server process for receiving RPC invocations.

2.3. System Architecture

We assume that for each persistent object there is one node (say α) which, if functioning, is capable of
running an object server which can execute the operations of that object (in effect, this would require
that α has access to the executable binary of the code for the object's methods as well as the persistent
state of the object stored on some, possibly remote object store). Before a client can invoke an
operation on an object, it must first be connected or bound to the object server managing that object. It
will be the responsibility of a node, such as α, to provide such a connection service to clients. If the
object in question is in a passive state, then α is also responsible for activating the object before
connecting the requesting client to the server. In order to get a connection, an application program
must be able to obtain location information about the object (such as the name of the node where the
server for the object can be made available). We assume that each persistent object possesses a unique,
system given identifier (UID). The typical structure of an application level program is shown below:

<create bindings>; <invoke operations from within atomic actions>; <break bindings>

In our model, bindings are not stable (do not survive the crash of the client or server). Bindings to
servers are created as objects enter the scope in the application program. If some bound server
subsequently crashes then the corresponding binding is broken and not repaired within the lifetime of
the program (even if the server node is functioning again); all the surviving bindings are explicitly
broken as objects go out of the scope of the application program. We now identify the main modules of
Arjuna and the services they provide for supporting persistent objects, shown in figure 1.

(i) Atomic Action module. Provides atomic action support to application programs in the form of
operations for starting, committing and aborting atomic actions. It provides a high level API called the
Arjuna Integrated Transactions (AIT).

(ii) RPC module. Provides facilities to clients for connecting (disconnecting) to object servers and invoking
operations on objects. The initial implementation of this was developed within the Arjuna group [5]
and used novel (for the time) C++ stub-generation techniques to enhance distribution transparency [6].

(iii) Object Store module. Provides a stable storage repository for persistent objects; these objects are
assigned unique identifiers (Uids) for naming them.

(iv) Naming and Binding module. Provides a mapping from user-given names of objects to Uids, and a
mapping from Uids to location information such as the identity of the host where the server for the
object can be made available.

 4

Operating System

RPC ObjectStore

Atomic Action moduleNaming and
binding

Application Application Application. . .

Fig. 1: Components of Arjuna

Every node in the system provides the RPC and Atomic Action modules. Any node capable of
providing stable object storage in addition contains an Object Store module. Nodes without stable
storage may access these services via their local RPC module. The Naming and Binding module is not
necessary on every node since its services can also be utilised through the services provided by the
RPC module. This system structure is highly modular: by encapsulating the properties of persistence,
recoverability, shareability, serialisability and failure atomicity in an Atomic Action module and
defining narrow, well-defined interfaces to the supporting environment, we achieved a significant
degree of modularity as well as portability for Arjuna.

We will now use a simple program to illustrate how these modules interact. The program shown below
(fig. 2) is accessing two existing persistent objects, A, an instance of class O1 and B, an instance of class
O2. In Arjuna a primitive operation initiate(...), provided by the RPC module is used for binding
to an object. A complementary operation, called terminate(..), is available for breaking a binding.
Clients and servers have communication identifiers for sending and receiving messages. The RPC
module of each node has a connection manager process that is responsible for creating and terminating
bindings to local servers. The Arjuna stub generation system for C++ generates the necessary client-
server stub-codes for accessing remote objects via RPCs and also generates calls on initiate and
terminate as an object comes and goes out of the scope of a computation [6].

{
 O1 objct1(Name-A); /* bind to A */
 O2 objct2(Name-B); /* bind to B */
 AtomicAction act;
 act.Begin(); /* start of atomic action act */
 objct1.op(...);
 objct2.op(...); /* invocations*/

 act.End(); /* act commits */
 } /* break bindings to A and B */

Fig. 2: Outline Action Example

 5

 To bind to A, a local instance of O1 called objct1 is created, passing to its constructor an instance of
the Arjuna naming class called Name-A suitably initialised with information about A (e.g., its UID, the
location of the server node, etc.); this enables the client side stub-constructor to initiate A, resulting in
binding to the server for A. The Object Store module of Arjuna enables a server to load the latest
(committed) state of the object from the object store of a node. The state is loaded, where necessary, as
a side effect of locking the object.

Assume that the client program is executing at node N1 and the server node for A is at N2 (see Fig. 3).
The client process at node N1 executing the stub for object1 is responsible for invoking the initiate
operation of the local RPC module in order to send a connection request to the connection manager at
N2. The connection manager locates the object sever for A who then returns its connection identifier to
the client at N1, thereby terminating the invocation of initiate at N1. The storage and retrieval of
object states from an object store is managed by a state daemon. The object server uses the state
demon for retrieving the state of an object from the object store. For efficiency reasons, an object
server can (and will) directly access the object store, bypassing the daemon if the server and the store
are on the same node. However, if the object store is remote, then it must contact the state demon of
the remote node managing the object store.

To manipulate objects under the control of an atomic action, the client creates a local instance of an
action (act) and invokes its Begin operation. The End operation is responsible for committing the
atomic action (using the two-phase commit protocol). When an object goes out of scope, it is destroyed
by executing its destructor. As a part of this, the client-side destructor (e.g., the stub destructor for
object1) breaks the binding with the object server at the remote node (using the operation terminate).

Client

State Daemon

Object
Server

N1 N2

Connection
 Manager

Fig. 3: Accessing an Object

Once the execution of an action begins, any failures preventing forward progress of the computation
lead to the action being aborted, and any updates to objects undone. However, as establishing and
breaking bindings can be performed outside of the control of any application level atomic actions, it is
instructive to enquire how any clean-up is performed if client, server or network partition failures
occur before (after) an application level action has started (finished). The simple case is the crash of a
server node: this has the automatic effect of breaking the connection with all of its clients; if a client
subsequently enters an atomic action and invokes an operation in the server, the invocation will return
exceptionally and the action will be aborted; on the other hand, if the client is in the process of
breaking the bindings then this has occurred already. More difficult is the case of a client crash.

 6

Suppose the client crashes after binding to a server. Then explicit steps must be taken to remove any
state information kept for the orphaned bindings; this requires that a server node must have a
mechanism for breaking the binding if it suspects the crash of a client. This mechanism will also cope
with a partition that prevents any communication between a client and a server. The Arjuna RPC level
facilities for the detection and killing of orphans [5] is responsible for such a cleanup, ensuring at the
same time that an orphaned server (a server with no bindings) is terminated.

2.3. Coordinating Recovery, Persistence and Concurrency Control

The atomic action module is the most important part of Arjuna. Its design is based on the principle that
as objects are assumed to be encapsulated entities then they must be responsible for implementing the
properties required by atomic actions themselves (with appropriate system support). This enables
differing objects to have differing recovery and concurrency control strategies. Given this proviso then
any atomic action implementation need only control the invocation of the operations providing these
properties at the appropriate time and need not know how the properties themselves are actually
implemented.

The principal classes which make up the class hierarchy of Arjuna Atomic Action module are depicted
in Fig. 4. To make use of atomic actions in an application, instances of the class, AtomicAction
must be declared by the programmer in the application as illustrated in Fig. 2; the operations this class
provides (Begin, Abort, End) can then be used to structure atomic actions (including nested
actions). The only objects controlled by the resulting atomic actions are those objects which are either
instances of Arjuna classes or are user-defined classes derived from LockManager and hence are
members of the hierarchy shown in Fig. 4. Most Arjuna classes are derived from the base class
StateManager, which provides primitive facilities necessary for managing persistent objects. These
facilities include support for the activation and de-activation of objects, and state-based object
recovery. Thus, instances of the class StateManager are the principal users of the object store
service. The class LockManager uses the facilities of StateManager and provides the
concurrency control (two-phase locking in the current implementation) required for implementing the
serialisability property of atomic actions. The implementation of atomic action facilities for recovery,
persistence management and concurrency control is supported by a collection of object classes derived
from the class AbstractRecord which is in turn derived from StateManager. For example,
instances of LockRecord and RecoveryRecord record recovery information for Lock and user-
defined objects respectively. The AtomicAction class manages instances of these classes (using an
instance of the class RecordList which corresponds to the intentions list used in traditional
transaction monitors) and is responsible for performing aborts and commits.

 7

StateManager

AtomicAction LockManager Lock AbstractRecord

User
 Classes

User
Locks LockRecord

Recovery
Record...

Fig. 4: The Arjuna Class Hierarchy

Consider a simple example. Assume that O is a user-defined persistent object. An application
containing an atomic action A accesses this object by invoking an operation op1 of O which involves
state changes to O. The serialisability property requires that a write lock must be acquired on O before
it is modified; thus the body of op1 should contain a call to the appropriate operation of the
concurrency controller (See Fig. 5):

{
 // body of op1
 if setlock (new Lock(WRITE) === GRANTED)
 {
 // actual state change operations follow
 ...
 }
}

Fig. 5: The use of Locks in Implementing Operations

The operation setlock, provided by the LockManager class, performs the following functions in
this case:

(i) check write lock compatibility with the currently held locks, and if allowed,

(ii) use StateManager operations for creating a RecoveryRecord instance for O (the Lock is a
WRITE lock so the state of the object must be retained before modification) and insert it into the RecordList
of A;

(iii) create and insert a LockRecord instance in the RecordList of A.

Suppose that action A is aborted sometime after the lock has been acquired. Then the abort operation
of AtomicAction will process the RecordList instance associated with A by invoking the
abort operation on the various records. The implementation of this operation by the LockRecord
class will release the WRITE lock while that of RecoveryRecord will restore the prior state of O.

The AbstractRecord based approach of managing object properties has proved to be extremely
useful in Arjuna. Several uses are summarised here. RecoveryRecord supports state-based

 8

recovery, since its abort operation is responsible for restoring the prior state of the object. However, its
recovery capability can be altered by refining the abort operation to take some alternative course of
action, such as executing a compensating function. This is the principal means of implementing type-
specific recovery for user-defined objects in Arjuna. The class LockRecord is a good example of
how recoverable locking is supported for a Lock object: the abort operation of LockRecord does
not perform state restoration, but executes a release_lock operation. Note that locks are, not
surprisingly, also treated as objects (instances of the class Lock), therefore they employ the same
techniques for making themselves recoverable as any other object. Similarly, no special mechanism is
required for aborting an action that has accessed remote objects. In this case, instances of
RpcCallRecord are inserted into the RecordList instance of the atomic action as RPCs are
made to the objects. Abortion of an action then involves invoking the abort operation of these
RpcCallRecord instances which in turn send an "abort" RPC to the servers. In summary, what
work a participant in the two-phase protocol does when instructed by the transaction coordinator, is
typically not of interest to the coordinator. It may update a database, modify a file on disk, etc: it
depends upon the type of transactional resource it is responsible for manipulating. Some transaction
implementations place restrictions on the types of resources that can be used within the two-phase
protocol; for example, in the X/Open Distributed Transaction Processing standard adopted by industry
[7], they must support the XA protocol, which imposes restrictions on the underlying participant
implementations, typically resulting in only databases being used.

User class

LockManager

StateManager

CC daemon

POS daemon

Persistence service

Concurrency service

memory

Concurrency
interface

Persistence
interface

Local disk

Local disk

Fig. 6: Implementation binding

Fig. 6 shows how multiple implementations of concurrency and persistence can be at the disposal of a
transactional user class. Internally, LockManager accesses the concurrency service through an
interface, and StateManager does likewise with the persistence service. For each application object,
the implementations are not chosen until run-time. Additional implementations can be provided
without changing Arjuna or applications which use it. The Arjuna API (AIT) isolates programmers
from the different implementations, allowing them to concentrate on the application development.

 9

In keeping with the tradition of a university research group, the system as described above was
developed and used by several graduate students (including the first author) as a part of their doctoral
research work. In addition, Arjuna was used in a number of industrial research projects [2]. A
particularly demanding application of Arjuna has been the electronic student registration system in use
since 1994 by the Newcastle University [8]. The electronic registration system has a very high
availability and consistency requirement; admissions tutors and secretaries must be able to access and
create student records (particularly at the start of a new academic year when new students arrive).

In addition, the University required any solution to be software based and to run on existing hardware
and operating systems, including Unix, Microsoft Windows and MacOS. At that time, no other
software based solution existed that could fulfil all of those requirements. During the 8 years that the
system has been in use, there have been several network and machine failures and, with one exception,
Arjuna has coped with them all, leaving users unaware that anything untoward has occurred.

The one notable exception occurred in the first year of deployment: in any distributed environment, it
is not possible to determine in a finite period of time the difference between a machine/network failure
and network/machine congestion, i.e., a machine that is extremely slow to respond may appear to its
users to have failed. Without waiting forever (or until a failed machine recovers) it is necessary to
employ heuristics to decide that after a certain period of time, a machine that has not responded has
failed and to act accordingly. However, if the time period is not chose correctly and an incorrect
decision is taken, the result could be the loss of data integrity. Up until the deployment of the student
registration system, Arjuna has been used in small-scale, closely coupled environments where round-
trip times for RPCs were measured in several milliseconds and machines were rarely congested. In the
student registration environment, 20000 students were registered over 5 days using 10 server machines
and 120 clients and often requiring access to a student record many times. We quickly found that our
original assumptions about when to assume a silent machine had failed were wrong and adapted the
system accordingly.

Success in meeting the requirements of the registration system was one of the factors that led the
Arjuna group to consider turning the system into a product. By then CORBA and Java middleware
were attracting industry attention. The OMG object architecture, CORBA [9] was well established, so
it seemed natural to adapt Arjuna to meet the specification of the Object Transaction Service (OTS),
and later to the Java Transaction Service (JTS) that is required within the Java component middleware,
J2EE [10]. In the next section we describe how this was achieved.

3. Arjuna and Middleware

3.1. Basic middleware concepts

We present a very brief overview of middleware concepts, using CORBA as an example. Fig. 7 depicts
the main elements of the CORBA middleware. It consists of an ‘object bus’, the object request broker
(ORB) using which clients can interact with remote objects. A number of services (CORBAservices)
are available for facilitating this task; these include services for naming, persistence, event notification,
transactions (OTS) and so forth. JAVA/RMI is a broadly similar Java language specific middleware.

 10

Applica tion
 Objects

CO RBA
fac ili ties

CO RB Aser vic es

Doma in
Interfaces

Objec t R equ est Br ok er

 Fig. 7: CORBA middleware

Although this middleware provides type checked remote invocations and standard ways of using
commonly required services - a major advance over the prior practice of writing ad hoc networking
code - there is still the problem that programmers have to worry about application logic as well as
technically complex ways of using a collection of services. For example, transactions on distributed
objects require concurrency control, persistence and the transaction services to be used in a particular
manner. To address this difficulty, object-based middleware has been extended to component-based
middleware. In simple terms, a component is an ‘application object + capability for using middleware
services in a standard manner’. A component is hosted by a container (a server process), and normally,
it is the container that uses the underlying middleware services on behalf of the application object. A
component descriptor specifies, in a declarative manner the middleware services that are required by
the component. Containers are provided by application servers that provide tools for deploying
components onto containers using the information specified in the descriptors. An Enterprise Java bean
(EJB), part of the J2EE suite of specifications, is a good example of a (Java) component; there are a
number of publicly available J2EE application servers capable of hosting EJBs. In the rest of this
section we will first examine how OTS and JTS were implemented. Secondly, bearing in mind that
Arjuna is not just a transaction service, but a complete system for building transactional applications,
we will compare and contrast the functionality provided by Arjuna with that of J2EE application
servers.

3.2. Arjuna, the OTS and the JTS

In 1995, the industry standard for transaction processing systems changed from X/Open XA [7], which
was very procedural-oriented, to the OMG Object Transaction Service [9]. This change was based on
the experiences of all of the major transaction processing vendors, including IBM, HP and DEC. The
OTS provides interfaces that allow multiple distributed objects to co-operate in a transaction such that
all objects commit or abort their changes together. Transactions can optionally be nested to improve
fault-isolation. However, the OTS does not require all objects to have transactional behaviour. Instead
objects can choose not to support transactional operations at all, or to support it for some requests but
not others. Importantly, the OTS is simply a protocol engine that guarantees that transactional
behaviour is obeyed but does not directly support all of the transactional properties. As such it requires
other co-operating services that implement the required functionality, including:

 11

• Persistence/Recovery Service. Required to support the atomicity and durability properties.

• Concurrency Control Service. Required to support the serialisability/isolation properties.

The application programmer is responsible for using these services to ensure that transactional objects
have the necessary ACID properties. To participate within an OTS transaction, a programmer must be
concerned with:

• creating Resource and SubtransactionAwareResource objects for each object which will
participate within the transaction/subtransaction; these are the two-phase aware entities. The OTS will
invoke these objects during the prepare/commit/abort phase of the (sub)transaction, and the Resources
must then perform all appropriate work.

• registering Resource and SubtransactionAwareResource objects at the correct time within the
transaction, and ensuring that the object is only registered once within a given transaction. As part of
registration a Resource will receive a reference to a RecoveryCoordinator which must be made
persistent so that recovery can occur in the event of a failure.

• ensuring that, in the case of nested transactions, any propagation of resources such as locks to parent
transactions are correctly performed. Propagation of SubtransactionAwareResource objects to parents
must also be managed.

• in the event of failures, the programmer or system administrator is responsible for driving the crash
recovery for each Resource which was participating within the transaction.

The OTS does not provide any Resource implementations. These must be provided by the application
programmer or the OTS implementer. As such, a pure OTS implementation would actually provide
much less functionality than that available in Arjuna. The OTS does not define a complete toolkit for
the construction of transactional applications as Arjuna did: it has no equivalent of AIT.

Examining just the transaction engine component of Arjuna as provided by the atomic action module,
it was clear that there was already a good match with the required OTS functionality. Obviously the
APIs and implementation interfaces that are exposed by the OTS did not match those available in
Arjuna. However, it was relatively straightforward to provide these same abstractions on top of the
equivalent Arjuna APIs.

At this time, the sources of funding for the Arjuna group began to change from purely research driven
bodies to industrial driven consortia and members of these consortia expressed interest in standards-
related development. In particular several of our industrial sponsors were interested in funding
transactions research and development within a CORBA environment and the original Arjuna system,
with its own RPC and Naming and Binding implementations, did not meet their requirements.

Most effort was directed at fully integrating Arjuna (OTSArjuna) within the CORBA framework, e.g.,
how to do distributed invocations and ensure that the transaction context is passed as mandated by both
the OTS and CORBA specifications. The interfaces we had defined between the Naming and Binding
and RPC modules were sufficiently powerful that only minimal modifications had to be made
(typically because of deficiencies in the immature CORBA implementations we used).

The architecture of OTSArjuna is shown in fig. 8. The OTS protocol engine, State Management and
Concurrent Control are essentially exactly as they appeared in the original Arjuna implementation. The
external interfaces defined by the OTS specification are layered over them to give a CORBA look-and-
feel, but the implementations are essentially the same. Importantly, to maintain the original Arjuna

 12

pluggable abstraction, any OTS-specific modifications that were made to the system (such as API
updates) occurred in self-contained modules. AIT was provided to programmers via the OTSArjuna
API. This API automates much of the activities concerned with participating in an OTS transaction: it
interacts with the concurrency control and persistence services, and automatically registers appropriate
resources for transactional objects.

OTSArjuna API

Trans. Appl.
Framework

Trans. Application. . . .

State
Management

OTS protocol
engine

Concurrency
Control

Resource/
SubtranAware

ORB

Fig. 8: OTSArjuna architecture

Remote (CORBA-based) participants, XA compliant participants etc. were all transparently controlled
by the core of OTSArjuna via appropriate implementations of the AbstractRecord class. As such, the
protocol engine within OTSArjuna could not tell that it was now running within a CORBA
environment. Using the interfaces defined in the original Arjuna system, we were able to convert most
of Arjuna to be CORBA compliant. However, there was one notable exception where the abstractions
we had originally in place simply did not work within the OTS: failure recovery.

To guarantee ACID properties in the event of failures (e.g., machine crash) and eventual recovery, a
failure recovery subsystem is required. This ensures that any transactions that were in progress when
the failure occurred are completed, either by being committed or rolled back. In order to do this, it may
be necessary to recreate any resources (e.g., remote objects) that were participants within the
transaction and may have also failed. In essence, the failure recovery system will recreate the
distribution tree (resources and their network connections) that were present prior to the failure.

In order to achieve this, failure recovery must have intimate knowledge about the resources that are
being recovered (e.g., do they use a file system for persistence or a database?) and the RPC mechanism
(e.g., what is the host and port the object resides on?) The Arjuna failure recovery implementation was
therefore closely tied to the its RPC mechanism. We were therefore unable to take this component
from the original Arjuna system or to reuse the interfaces it provided. As such, we were forced to re-
implement failure recovery and in doing so we tied it to the OTS defined model. This resulted in tying
OTSArjuna to CORBA: although most of the core of Arjuna could still be used outside of CORBA,
without failure recovery it would have limited use.

By 1996 Java started attracting serious attention from industry and many existing OMG standards
made their way into the evolving J2EE specification. Critical amongst them was the OTS, which J2EE
renamed as the Java Transaction Service (JTS). Interestingly, because Arjuna (and hence OTSArjuna)
had been developed using C++, it was a relatively straightforward task to convert the system to Java.

 13

This was done and the resulting system, JTSArjuna, became the worlds first pure Java transaction
system.

3.3 Arjuna and J2EE

A simplified J2EE application server architecture is shown in fig. 9. As can be seen, it has very similar
components (modules) to Arjuna, but utilises industry standard technologies such as CORBA for the
remote object invocation mechanism and naming and binding. Although the interfaces to the various
components within an application server are different to those chosen by the designers of Arjuna, the
fact that these components exist in an identifiable (and typically replaceable) manner is testimony to
the fact that the original architecture and design goal of Arjuna were probably right.

Operating System

Persistence
storage
(typically
database)

Remote invocation (typically CORBA
based), messaging, threading

Naming and
binding (e.g.,
CORBA or
JavaRMI based)

Transactions, connection pooling, É

Application Objects (EJBs)

Container

Fig. 9: Simplified application-server architecture.

We now compare several aspects of EJB/J2EE with Arjuna (JTSArjuna more precisely). A feature that
is missing in Arjuna is the declarative way of managing transactions that is provided by EJBs. EJBs
also provide explicit transaction management using a high level (compared to JTS) API, called Java
Transaction API (JTA); however, it is not as convenient to use as the Arjuna API, AIT, and its use is
not generally recommended [11]. In any case, compared to Arjuna, transactions in EJBs come with
several restrictions that we describe below (although the discussion is with respect to JTA, the
observations apply equally well to the declarative use).

(i) Participant restriction: both the original Arjuna system and the OTS standard on which JTSArjuna
is based, allow arbitrary participant implementations to be enlisted in a transaction. The Arjuna
AbstractRecord interface and the OTS equivalent (CosTransactions::Resource) do not imply or
mandate a specific implementation. As we described in the previous section, this allows recovery,
concurrency control etc. to be transparently enlisted with a transaction manager. However, the JTA
interface, restricts participants to being X/Open XA-aware. In essence, this effectively mandates that
applications must use two-phase aware databases for persistence.

 14

(ii) No nested transactions: if an object’s methods are required to use transactions then, in an
environment which supported nested transactions, the object implementer can use transactions without
concern about how those methods will be invoked: if the invoker uses transactions, then the object’s
methods will be nested within them, otherwise they will simply be top-level. In addition, nesting
provides a level of failure containment, since the failure of a nested transaction does not require the
enclosing (parent) transaction to roll back. The JTA does not support nested transactions because the
X/Open XA standard does not. Based on our experiences, in our opinion, for a component-based,
distributed architecture this is a significant shortcoming.

(iii) Poor concurrency control: In the section 2.3 we described how in Arjuna, transactional locking
has been introduced which interacts correctly with the associated persistence and recovery
mechanisms. Unfortunately, no satisfactory way of using read and write locks are available in EJBs.
Because the JTA mandates that all participants must be XA-aware, this essentially ties the persistence
model to using a database. Most databases implicitly couple persistency and concurrency together,
such that, for example, when an object loads its state it obtains a lock on the entire table within the
database which is maintained for the duration of the transaction. All other object states held within the
same table are also implicitly locked. In order to provide object-level concurrency control within EJBs,
the programmer is supposed to make use of the Java language synchronized construct, which obtains
an exclusive lock on a method or data structure. However, this construct is not transaction-aware and
as such cycles (where object A calls object B which calls object A) can result in deadlock and are
illegal within EJBs. Because locks within AIT are transaction-aware, not only can an object use
multiple-reader/single-writer policies, but cycles within a transaction are supported. This makes the
construction of complex, distributed applications more straightforward as programmers need not worry
about whether cycles may occur, which could require in-depth knowledge of objects implemented by
others.

(iv) No support for orphan detection and elimination: Client crashes or network partitions can
occasionally create orphan servers, some scenarios were discussed towards the end of section 2.2. The
RPC mechanism used in Arjuna detected and eliminated orphans [5]. Experience with the use of
application servers has indicated that orphans do occur in practice; unfortunately no automatic support
for orphan detection and elimination is provided in application servers (or any other middleware
system for that matter).

Web Services, messaging, ubiquitous computing and transactions

Over the past decade, distributed computing has become more prevalent. The advent of Java and
ubiquitous computing devices such as palm-top devices, has helped to move distributed computing
from research and high-end commercial systems into (almost) everyday use. There has also been a
paradigm shift from closely-coupled, synchronous environments to large-scale, loosely coupled and
asynchronous systems.

The one constant amongst traditional and new distributed environments is their requirement for
transactions. Whether applications run on closely-coupled local area networks and interact through
RPC or they run on the loosely-coupled Internet and use messaging, failures happen that affect both the
performance and consistency of applications run over them. Transactions can be used in all of these
environments to ensure consistency and specifically within Hewlett-Packard, Arjuna transaction
technology has been used. In order to understand how and where Arjuna has been utilised, we shall
first briefly describe these environments.

 15

The Java Message Service

The Java Message Service (JMS) defines a set of interfaces and the associated semantics that facilitate
communication between Java applications and messaging implementations. By leveraging the JMS
API applications can create, send, receive, and read messages. Thus, JMS enables communication that
is loosely coupled, asynchronous, and reliable.

The combination of transactions and JMS offers developers a platform for the creation of robust
enterprise messaging applications. Developers can interact with the messaging provider transactionally
to ensure that multiple messages are delivered or received as a single group; if a single operation fails,
the entire set of message receipts or deliveries will be rolled back.

A JMS client can use local transactions to group message sends and receives using the Session
interface. By invoking the commit method, the client indicates that all produced messages are to be
send and all consumed messages are to be acknowledged. Similarly, an invocation of rollback
indicates that all produced messages are to be destroyed and all consumed messages are to be
recovered and redelivered by the JMS provider. Multiple message sends and receives can be grouped
into a single local transaction, but the user cannot combine sends and received within the same
transaction: a message send cannot take place until the associated transaction has committed because
the message is not actually sent until the transaction is committed. Therefore, the transaction cannot
contain any receives that depend upon a message sent during the same transaction.

An optional part of the JMS specification allows a transactional session to be enrolled with a
distributed transaction managed by the JTS. Such a session must support the XAResource interface.
XA sessions work similarly to local transacted sessions since the JMS operations performed in the
scope of an XA transaction are conditional on the committal of the transaction. The main difference is
the party acting as the transactional coordinator: in the local case, the JMS provider manages the
execution of the transaction; using XA transactions, the outcome of the transaction is dependant on the
decision of the external JTA-compliant transaction manager into which the JMS XAResource is
enlisted.

The Business Transactions Protocol

As Web services have evolved as a means to integrate processes and applications at an inter-enterprise
level, traditional transaction semantics and protocols have proved to be inappropriate. Web Service
transactions differ from traditional transactions in that they will execute over long periods, will require
commitments to the transaction to be “negotiated” at runtime and isolation levels will have to be
relaxed. Furthermore, business transactions are not only long lived but will in may instances
incorporate multiple parties, requiring flexibility in determining transaction outcome, meaning relaxed
atomicity while negotiating commitment to the transaction. These types of transactions, Business

Transactions, require an extended transaction model that can support complex Web service
interactions that need transactional semantics and guarantees, at the inter-enterprise level.

The Business Transaction Protocol (BTP) has been designed to allow the coordination of business
transactions that span multiple participants ensuring the consistent result of a transaction without
concern for whether the transaction spans disparate applications, developed with disparate
technologies and potentially deployed by different organisations. In such circumstances, participants
may not represent resources controlled by a single party and therefore must maintain some autonomy:
able to manage their own resources while maintaining adherence to any commitments they have made,
with respect to the transaction. In this way, the participants in a business transaction may use recorded

 16

before- or after-images, or compensation operations to provide the “roll-forward, roll-back” capacity,
which enables their coordination in respect to the overall outcome of the business transaction.

Open-top coordination

In a traditional transaction system, the application has very few verbs with which to control
transactions. Typically these are “begin”, “commit” and “rollback”. When an application asks for a
transaction to commit, the coordinator will execute the entire two-phase protocol before returning an
outcome (what BTP terms a closed-top commit protocol). The elapse time between the execution of
the first phase and the second phase is typically milliseconds to seconds.

However, the two-phase algorithm does not impose any restrictions on the time between executing the
first and second phases. Clearly the longer the period between first and second phases, the greater the
chance for failures to occur and the longer resources remain locked. BTP allows the time between the
two phases to be set by the application by expanding the range of verbs available to include explicit
control over both phases, i.e., “prepare”, “confirm” and “cancel”; what BTP terms an open-top commit

protocol. The application has complete control over when transactions prepare, and using use whatever
business logic is required later determine which transactions to confirm or cancel.

Atoms and cohesions

In order to address the requirements imposed by running business- transactions, BTP introduced two
types of extended transactions, both using the open-top completion protocol:

• Atom: an atom is the typical way in which “transactional” work performed on Web services is scoped.
The outcome of an atom is guaranteed to be atomic, such that, all enlisted participants (acting on behalf
of their associated Web services) will see the same outcome, which will either be to accept (confirm)
the work or reject (cancel) it.

• Cohesion: this type of transaction was introduced in order to relax atomicity and allow for the selection
of work to be confirmed or cancelled based on higher level business rules. Atoms are the typical
participants within a cohesion but, unlike an atom, a cohesion may give different outcomes to its
participants such that some of them may confirm whilst the remainder cancel. In essence, the two-phase
protocol for a cohesion is parameterised to allow a user to specify precisely which participants to
prepare and which to cancel. The strategy underpinning cohesions is that they better model long-
running business activities, where services enrol in atoms that represent specific units of work and as
the business activity progresses, it may encounter conditions that allow it to cancel or prepare these
units, with the caveat that it may be many hours or days before the cohesion arrives at its confirm-set:
the set of participants that it requires to confirm in order for it to successfully terminate the business
activity. Once the confirm-set has been determined, the cohesion collapses down to being an atom: all
members of the confirm-set will see the same outcome.

ArjunaCore

As part of the Hewlett-Packard NetAction product suite, there was a requirement for JMS and BTP
implementations. As mentioned previously, HP had JTSArjuna and OTSArjuna products to cover the
J2EE and CORBA markets respectively and as we have seen, these are both transaction systems which
use a two-phase commit protocol. When comparing the functionality provided by JTSArjuna with that
required by the JMS, for example, it was clear that with the exception of the J2EE specific
components, there was much overlap. In fact, it was possible to categorise all of the product
requirements as follows:

 17

• The use a two-phase completion protocol.

• They carry transaction context information in a manner suitable to their environment, e.g., XML and
SOAP for BTP, or IIOP for CORBA.

• Their participant implementations are opaque to the two-phase transaction engine.

At the heart of every transaction processing system is a transaction manager. It is the transaction
manager that is responsible for ensuring the atomicity and durability properties of the transactions
under its control. The isolation and consistency are provided by transactional resources that participate
in the transaction on behalf of applications and services. The coordinator must maintain a transaction
log in case of failures and a recovery system to use this log to complete transactions that were in flight
and caught by any failures (e.g., a machine or process crash). It is important to realize that this
functionality if required by all transaction systems, whether or not they support distributed
transactions.

The same core protocol engine that had been within the original Arjuna system and was now within
JTSArjuna, could be used within HP’s BTP (HP Web Services Transactions) and JMS (HP Messaging
Service) implementations. The interfaces described in Section Error! Reference source not found.
abstract away from the participant implementations and how transactional distributed invocations
occur. By providing different implementations for, say, AbstractRecords, it is possible to drive BTP
participants or JMS participants through a two-phase commit protocol using the exact same transaction
engine.

In effect, the work that was performed to transform the original Arjuna system into JTSArjuna was
generalised for other environments. The first step was to create a fully-functional transaction engine
that had no dependencies on CORBA (including failure recovery): ArjunaCore. ArjunaCore is
concerned solely with the use of local transactions, i.e., transactions that run on a single machine. If
distributed transactions are required, ArjunaCore provides the necessary hooks to enable information
about its local transactions (the transaction context) to be transmitted in a manner suitable for the
environment in which it is running, e.g., CORBA IIOP or SOAP/XML.

The main obstacle to the design of ArjunaCore was the failure recovery sub-system. As described
earlier, when designing OTSArjuna, it had been closely tied to the CORBA OTS model. In order to
determine transaction statuses, it was a requirement that all transactions were implemented by CORBA
objects, whether or not they were used in a local environment. Therefore, failure recovery was re-
architected in such a way that recovery occurred through specific implementations of the
RecoveryModule interface. Each RecoveryModule was responsible for recovering specific types of
resources (transactions, application objects etc.) without exposing implementation choices such as
whether or not CORBA was used, to the recovery framework. Since ArjunaCore is responsible for
only local transactions, its RecoveryModule implementations are relatively simple. Other products in
which ArjunaCore is embedded, e.g., BTP, provide suitable implementations to do distributed
recovery where necessary.

Despite the necessary resign or the failure recovery subsystem, the remainder of ArjunaCore is the
same as existed in the original Arjuna system. Through the use of the original modularisation and
flexibility goals, the interfaces have proven sufficient to allow the system to be embedded as the core
transaction engine within a diverse range of products.

 18

Timeline

Figure 7 attempts to illustrate the history of Arjuna as a timeline, showing the relevant events we have
discussed previously from its start in 1986 to the present day.

A rju n a p ro je c t b eg in s

F irs t b e t a C+ + re lea se
f rom A T& T (c fr o n t)

F irs t fu ll y f u n ct io n al
A rju n a p ro to ty pe

A rju n a c om p lete

S tu de n t re g ist ra t io n

O TS Ar ju na cr e ate d

J T S A r ju n a c r ea t ed

C O R B A be g ins

O TS 1. 0 sp eci f ic at i o n r ele as ed

A rju n a S o lu t io n s f o u n d e d

B lue st o n e So ftwa r e a cq u ir e s Ar ju n a
S o lu t io ns

H P ac q ui r e s Bl u e s to ne

H P -M S de v el o p e d

O A SI S BT P sp eci f ic at i o n b e g u n

O A SI S BT P sp eci f ic at i o n c o m p le te

H P -WS T d e ve lo p ed

A rju n aC o re de v e lo p ed

H P Tr a n s ac t io n S e rv ice re l ea s e d

1 9 8 6

1 9 9 0

1 9 9 2

1 9 9 6

1 9 9 4

1 9 9 7

1 9 9 8

2 0 0 0

2 0 0 1

2 0 0 2

Fig 7. The evolution of Arjuna.

4. Concluding Remarks

In achieving the transition of the Arjuna distributed transaction processing software from research to
products, we have learned a number of lessons, some of which will be relevant to others involved in or
embarking on a similar process. We shall attempt to enumerate them below:

• Modularity within the architecture helped us to restructure the uses to which we put Arjuna without
requiring re-implementation of the entire system. As we have discussed, the core transaction engine
available today remains relatively unchanged from its original C++ version.

 19

• The use of object-oriented techniques helped to make the structuring of the architecture flexible and
extensible. It also helped to make its use relatively intuitive for new developers. A crucial factor has
been the structure of the atomic action module for coordinating concurrency, persistence and recovery
for atomic actions using AbstractRecords (section 2.4), which meant that transaction coordinator need
only control the invocation of the operations providing these properties at the appropriate time and
need not know how the properties themselves are actually implemented.

• A commercial product requires a lot more emphasis on quality assurance (QA) and testing processes
than a research system. At the time of writing, the number of QA tests for Arjuna number in the
thousands, cover every aspect of the system and can take days to run to completion. Only with the
evidence of these tests is it possible to convince people to invest time and money in purchasing the
product.

• Within each component there are typically many places where configuration choices are made (e.g., the
location of the object store, the maximum size of the transaction log before the system begins to prune
it, etc.) When Arjuna started, many of these choices were hardwired in at compilation time. Over the
years (and particularly when it became a product) the requirement for these choices to be exposed to
developers was intensified. With hindsight, as designers of the system we tended to cater for the
optimum configuration for ourselves and this was often inappropriate for others.

• At the time of writing, JTSArjuna is used within 5 separate products and has been sold to 3 other
companies to embed within their own products. It is impossible to say with certainty how many users it
has, but it has brought millions of dollars to the various companies that have sold it.

• Once we were acquired by Bluestone, the use of JTSArjuna increased significantly and hence so did
the support and training load put on the developers. We quickly realised that a commercial product is
much more than the software that actually executes: there is a significant amount of collateral material
required too, e.g., training material, white papers etc.

• The biggest mistake we made was in the development of crash recovery for OTSArjuna and tying it to
the CORBA model. With hindsight it is possible to see that Arjuna could be used in other, non-
CORBA environments and we should have designed accordingly.

• Commercial requirements on reliability and robustness are typically more rigorous than you would
expect from academia and this was the probably the hardest aspect for us to tackle.

• Working with various standards bodies (OTS, JTS and BTP to name but a few) has been fruitful but
also extremely frustrating at times (committees rarely agree on anything, especially if there is existing
product to protect).

The discussion in section three indicates that the original structure of the Arjuna system was about
right for its adaptation in various types of middleware. The 15 year journey from academic project to
commercial product has been an interesting one and enlightening in many respects. And finally, the
most surprising thing has been the amount of use to which Arjuna has been put over the years.

References

[1] S.K. Shrivastava, G. N. Dixon, and G. D. Parrington, “An Overview of Arjuna: A Programming System
for Reliable Distributed Computing,” IEEE Software, Vol. 8, No. 1, pp. 63-73, January 1991.

[2] S.K. Shrivastava, “Lessons learned from building and using the Arjuna distributed programming system”,
Theory and Practice in Distributed Systems, K P Birman, F Mattern, A Schiper (Eds), LNCS 938,
Springer-Verlag, July 1995, pp. 17-32

 20

[3] S.K. Shrivastava and D. McCue, “Structuring Fault-Tolerant Object Systems for Modularity in a
Distributed Environment”, IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 4, April 1994, pp.
421-432.

[4] G.D. Parrington, S.K. Shrivastava, S.M. Wheater and M. Little, “The design and implementation of
Arjuna”, USENIX Computing Systems Journal, vol. 8 (3), pp. 255-308, Summer 1995.

[5] Panzieri, F. and S.K. Shrivastava, “Rajdoot: a remote procedure call mechanism supporting orphan
detection and killing”’ IEEE Trans. on Software Eng. 14, 1, pp. 30-37, January 1988.

[6] Parrington, G. D., “Reliable Distributed Programming in C++: The Arjuna Approach,” Second Usenix
C++ Conference, pp. 37-50, San Fransisco, April 1990.

[7] X/Open Reference Model, Version 3, X/Open Ltd. 1996.

[8] M. C. Little, S. M. Wheater, D. B. Ingham, C. R. Snow, H. Whitfield and S. K. Shrivastava, “The
University Student Registration System: a Case Study in Building a High-Availability Distributed
Application Using General-Purpose Components”, Chapt. 19, Advances in Distributed Systems, Springer-
Verlag, LNCS No. 1752.

[9] OMG, CORBAservices: Common Object Services Specification, Updated July 1997, OMG document
formal/97-07-04. WWW.OMG.ORG

[10] Java 2 Enterprise Edition (J2EE) specification, www.javasoft.com

[11] R. Monson-Haefel, “Enterprise Java Beans”, O’Reilly & Associates, CA, 2001.

[12] Business Transaction Protocol specification, www.oasis.org

