
JBossJTS Development Guide

Developing distributed

transactional applications

with JBossJTS

by Mark Red Hat Little, Jonathan Red Hat Halliday,

Andrew Red Hat Dinn, and Kevin Red Hat Connor

edited by Misty Red Hat Stanley-Jones

iii

Preface .. vii

1. Audience ... vii

2. Prerequisites .. vii

3. Document Conventions ... vii

3.1. Typographic Conventions ... vii

3.2. Pull-quote Conventions ... ix

3.3. Notes and Warnings ... ix

4. We Need Feedback! .. x

1. Transaction Processing Overview ... 1

1.1. Defining a transaction ... 1

1.2. Commit protocol ... 2

1.3. Transactional proxies .. 3

1.4. Nested transactions .. 4

1.5. The Object Transaction Service (OTS) ... 4

2. JBossTS Basics .. 7

2.1. Introduction .. 7

2.1.1. Raw OTS .. 7

2.1.2. Enhanced OTS functionality .. 8

2.1.3. Advanced API .. 8

2.2. JBossTS and the OTS implementation ... 10

2.3. Thread class ... 11

2.4. ORB portability issues ... 11

3. Introduction to the OTS ... 13

3.1. Defining the OTS .. 13

3.2. Action programming models .. 14

3.3. Interfaces ... 16

3.4. Transaction factory .. 17

3.4.1. OTS configuration file ... 17

3.4.2. Name service ... 18

3.4.3. resolve_initial_references .. 18

3.4.4. Overriding the default location mechanisms ... 18

3.5. Transaction timeouts ... 18

3.6. Transaction contexts ... 18

3.6.1. Nested transactions .. 20

3.6.2. Transaction propagation ... 21

3.6.3. Examples ... 22

3.7. Transaction controls .. 23

3.7.1. JBossTS specifics .. 24

3.8. The Terminator interface ... 24

3.8.1. JBossTS specifics .. 24

3.9. The Coordinator interface .. 25

3.9.1. JBossTS specifics .. 27

3.10. Heuristics .. 27

3.11. Current ... 28

JBossJTS Development Guide

iv

3.11.1. JBossTS specifics .. 31

3.12. Resource .. 32

3.13. SubtransactionAwareResource ... 34

3.13.1. JBossTS specifics .. 38

3.14. The Synchronization interface .. 38

3.14.1. JBossTS specifics .. 40

3.15. Transactions and registered resources ... 41

3.16. The TransactionalObject interface .. 45

3.17. Interposition .. 46

3.18. RecoveryCoordinator ... 47

3.19. Checked transaction behavior .. 47

3.19.1. JBossTS specifics .. 49

3.20. Summary of JBossTS implementation decisions .. 50

4. Constructing an OTS application .. 53

4.1. Important notes for JBossTS ... 53

4.1.1. Initialization .. 53

4.1.2. Implicit context propagation and interposition ... 53

4.2. Writing applications using the raw OTS interfaces ... 53

4.3. Transaction context management .. 54

4.3.1. A transaction originator: indirect and implicit ... 54

4.3.2. Transaction originator: direct and explicit ... 54

4.4. Implementing a transactional client .. 55

4.5. Implementing a recoverable server .. 55

4.5.1. Transactional object ... 56

4.5.2. Resource object ... 56

4.5.3. Reliable servers ... 56

4.5.4. Examples ... 56

4.6. Failure models .. 58

4.6.1. Transaction originator ... 59

4.6.2. Transactional server ... 59

4.7. Summary .. 60

5. JBossTS interfaces for extending the OTS .. 61

5.1. Nested transactions .. 61

5.2. Extended resources .. 62

5.3. AtomicTransaction ... 64

5.4. Context propagation issues ... 65

6. Example ... 69

6.1. The basic example .. 69

6.1.1. Example implementation of the interface .. 69

6.2. Default settings ... 76

7. Failure Recovery .. 79

7.1. Configuring the failure recovery subsystem for your ORB 79

7.2. JTS specific recovery .. 80

7.2.1. XA resource recovery ... 80

v

7.2.2. Recovery behavior ... 86

7.2.3. Expired entry removal ... 87

7.2.4. Recovery domains .. 88

7.3. Transaction status and replay_comparison ... 89

8. JTA and JTS .. 91

8.1. Distributed JTA ... 91

9. Tools .. 93

9.1. Introduction ... 93

9.2. RMIC Extensions .. 93

9.2.1. Command Line Usage .. 93

9.2.2. ANT Usage .. 93

10. ORB-specific configuration .. 95

10.1. JacORB .. 95

A. IDL definitions ... 97

References .. 103

B. Revision History .. 105

vi

vii

Preface

1. Audience

This guide is specifically intended for service developers using JBoss Transactions. It is also

contains useful information about how transactional applications work in general.

2. Prerequisites

To understand this guide, you need a basic familiarity with Java service development and object-

oriented programming.

Other helpful knowledge

• A general understanding of the APIs, components, and objects that are present in Java

applications.

• A general understanding of Linux, UNIX, or Microsoft Windows server.

3. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

3.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

Pull-quote Conventions

ix

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

3.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

3.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

x

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

4. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

Transaction Processing Overview

1.1. Defining a transaction

A transaction is a unit of work that encapsulates multiple database actions such that that either

all the encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

Practical Example. If you subscribe to a newspaper using a credit card, you are using a

transactional system. Multiple systems are involved, and each of the systems needs the ability to

roll back its work, and cause the entire transaction to roll back if necessary. For instance, if the

newspaper's subscription system goes offline halfway through your transaction, you don't want

your credit card to be charged. If the credit card is over its limit, the newspaper doesn't want your

subscription to go through. In either of these cases, the entire transaction should fail of any part

of it fails. Neither you as the customer, nor the newspaper, nor the credit card processor, wants

an unpredictable (indeterminate) outcome to the transaction.

This ability to roll back an operation if any part of it fails is what JBoss Transactions is all about.

This guide assists you in writing transactional applications to protect your data.

"Transactions" in this guide refers to atomic transactions, and embody the "all-or-nothing" concept

outlined above. Transactions are used to guarantee the consistency of data in the presence of

failures. Transactions fulfill the requirements of ACID: Atomicity, Consistency, Isolation, Durability.

ACID Properties

Atomicity

The transaction completes successfully (commits) or if it fails (aborts) all of its effects are

undone (rolled back).

Consistency

Transactions produce consistent results and preserve application specific invariants.

Isolation

Intermediate states produced while a transaction is executing are not visible to others.

Furthermore transactions appear to execute serially, even if they are actually executed

concurrently.

Durability

The effects of a committed transaction are never lost (except by a catastrophic failure).

A transaction can be terminated in two ways: committed or aborted (rolled back). When a

transaction is committed, all changes made within it are made durable (forced on to stable storage,

Chapter 1. Transaction Proces...

2

e.g., disk). When a transaction is aborted, all of the changes are undone. Atomic actions can also

be nested; the effects of a nested action are provisional upon the commit/abort of the outermost

(top-level) atomic action.

1.2. Commit protocol

A two-phase commit protocol guarantees that all of the transaction participants either commit or

abort any changes made. Figure 1.1, “Two-Phase Commit” illustrates the main aspects of the

commit protocol.

Procedure 1.1. Two-phase commit protocol

1. During phase 1, the action coordinator, C, attempts to communicate with all of the action

participants, A and B, to determine whether they will commit or abort.

2. An abort reply from any participant acts as a veto, causing the entire action to abort.

3. Based upon these (lack of) responses, the coordinator chooses to commit or abort the action.

4. If the action will commit, the coordinator records this decision on stable storage, and the

protocol enters phase 2, where the coordinator forces the participants to carry out the

decision. The coordinator also informs the participants if the action aborts.

5. When each participant receives the coordinator’s phase-one message, it records sufficient

information on stable storage to either commit or abort changes made during the action.

6. After returning the phase-one response, each participant who returned a commit response

must remain blocked until it has received the coordinator’s phase-two message.

7. Until they receive this message, these resources are unavailable for use by other actions.

If the coordinator fails before delivery of this message, these resources remain blocked.

However, if crashed machines eventually recover, crash recovery mechanisms can be

employed to unblock the protocol and terminate the action.

Transactional proxies

3

Figure 1.1. Two-Phase Commit

1.3. Transactional proxies

The action coordinator maintains a transaction context where resources taking part in the action

need to be registered. Resources must obey the transaction commit protocol to guarantee ACID

properties. Typically, the resource provides specific operations which the action can invoke during

the commit/abort protocol. However, some resources may not be able to be transactional in this

way. This may happen if you have legacy code which cannot be modified. Transactional proxies

allow you to use these anomalous resources within an action.

The proxy is registered with, and manipulated by, the action as though it were a transactional

resource, and the proxy performs implementation specific work to make the resource it represents

transactional. The proxy must participate within the commit and abort protocols. Because the work

of the proxy is performed as part of the action, it is guaranteed to be completed or undone despite

failures of the action coordinator or action participants.

Chapter 1. Transaction Proces...

4

1.4. Nested transactions

Given a system that provides transactions for certain operations, you can combine them to form

another operation, which is also required to be a transaction. The resulting transaction’s effects are

a combination of the effects of its constituent transactions. This paradigm creates the concept of

nested subtransactions, and the resulting combined transaction is called the enclosing transaction.

The enclosing transaction is sometimes referred to as the parent of a nested (or child) transaction.

It can also be viewed as a hierarchical relationship, with a top-level transaction consisting of

several subordinate transactions.

An important difference exists between nested and top-level transactions.

The effect of a nested transaction is provisional upon the commit/roll back of its enclosing

transactions. The effects are recovered if the enclosing transaction aborts, even if the nested

transaction has committed.

Subtransactions are a useful mechanism for two reasons:

fault-isolation

If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing

transaction does not need to roll back.

modularity

If a transaction is already associated with a call when a new transaction begins, the new

transaction is nested within it. Therefore, if you know that an object requires transactions, you

can them within the object. If the object’s methods are invoked without a client transaction,

then the object’s transactions are top-level. Otherwise, they are nested within the scope

of the client's transactions. Likewise, a client does not need to know whether an object is

transactional. It can begin its own transaction.

1.5. The Object Transaction Service (OTS)

The CORBA architecture, as defined by the OMG, is a standard which promotes the construction

of interoperable applications that are based upon the concepts of distributed objects. The

architecture principally contains the following components:

Object Request Broker (ORB)

Enables objects to transparently send and receive requests in a distributed, heterogeneous

environment. This component is the core of the OMG reference model.

Object Services

A collection of services that support functions for using and implementing objects. Such

services are necessary for the construction of any distributed application. The Object

Transaction Service (OTS) is the most relevant to JBossJTS.

The Object Transaction Service (OTS)

5

Common Facilities

Other useful services that applications may need, but which are not considered to be

fundamental. Desktop management and help facilities fit this category.

The CORBA architecture allows both implementation and integration of a wide variety of object

systems. In particular, applications are independent of the location of an object and the language

in which an object is implemented, unless the interface the object explicitly supports reveals such

details. As defined in the OMG CORBA Services documentation, object services are defined as

a collection of services (interfaces and objects) that support the basic functions for using and

implementing objects. These services are necessary to construct distributed application, and

are always independent of an application domain. The standards specify several core services

including naming, event management, persistence, concurrency control and transactions.

Note

The OTS specification allows, but does not require, nested transactions. JBossTS

is a fully compliant version of the OTS version 1.1 draft 5, and support nested

transactions.

The transaction service provides interfaces that allow multiple distributed objects to cooperate

in a transaction, committing or rolling back their changes as a group. However, the OTS does

not require all objects to have transactional behavior. An object's support of transactions can be

none at all, for some operations, or fully. Transaction information may be propagated between

client and server explicitly, or implicitly. You have fine-grained control over an object's support of

transactions. If your objects supports partial or complete transactional behavior, it needs interfaces

derived from interface TransactionalObject.

The Transaction Service specification also distinguishes between recoverable objects and

transactional objects. Recoverable objects are those that contain the actual state that may be

changed by a transaction and must therefore be informed when the transaction commits or aborts

to ensure the consistency of the state changes. This is achieved be registering appropriate objects

that support the Resource interface (or the derived SubtransactionAwareResource interface) with

the current transaction. Recoverable objects are also by definition transactional objects.

In contrast, a simple transactional object does not necessarily need to be recoverable if its state

is actually implemented using other recoverable objects. A simple transactional object does not

need to participate the commit protocol used to determine the outcome of the transaction since

it maintains no state information of its own.

The OTS is a protocol engine that guarantees obedience to transactional behavior. It does not

directly support all of the transaction properties, but relies on some cooperating services:

Persistence/Recovery Service Supports properties of atomicity and durability.

Concurrency Control Service Supports the isolation properties.

Chapter 1. Transaction Proces...

6

You are responsible for using the appropriate services to ensure that transactional objects have

the necessary ACID properties.

Chapter 2.

7

JBossTS Basics

2.1. Introduction

JBossTS is based upon the original Arjuna system developed at the University of Newcastle

between 1986 and 1995. Arjuna predates the OTS specification and includes many features not

found in the OTS. JBossTS is a superset of the OTS. Applications written using the standard OTS

interfaces are portable across OTS implementations.

JBossTS features in terms of OTS specifications

• full draft 5 compliance, with support for Synchronization objects and PropagationContexts.

• support for subtransactions.

• implicit context propagation where support from the ORB is available.

• support for multi-threaded applications.

• fully distributed transaction managers, i.e., there is no central transaction manager, and the

creator of a top-level transaction is responsible for its termination. Separate transaction manager

support is also available, however.

• transaction interposition.

• X/Open compliance, including checked transactions. This checking can optionally be disabled.

Note: checked transactions are disabled by default, i.e., any thread can terminate a transaction.

• JDBC support.

• Full JTA 1.1 support.

You can use JBossTS in three different levels, which correspond to the sections in this chapter,

and are each explored in their own chapters as well.

Because of differences in ORB implementations, JBossTS uses a separate ORB Portability library

which acts as an abstraction later. Many of the examples used throughout this manual use this

library. Refer to the ORB Portability Manual for more details.

2.1.1. Raw OTS

The OTS is only a protocol engine for driving registered resources through a two-phase commit

protocol. You are responsible for building and registering the Resource objects which handle

persistence and concurrency control, ensuring ACID properties for transactional application

objects. You need to register Resources at appropriate times, and ensure that a given Resource is

Chapter 2. JBossTS Basics

8

only registered within a single transaction. Programming at the raw OTS level is extremely basic.

You as the programmer are responsible for almost everything to do with transactions, including

managing persistence and concurrency control on behalf of every transactional object.

2.1.2. Enhanced OTS functionality

The OTS implementation of nested transactions is extremely limited, and can lead to the

generation of heuristic results. An example of such a result is when a subtransaction coordinator

discovers part of the way through committing that some resources cannot commit, but being

unable to tell the committed resources to abort. JBossTS allows nested transactions to execute a

full two-phase commit protocol, which removes the possibility that some resources will comment

while others roll back.

When resources are registered with a transaction, you have no control over the order in

which these resources are invoked during the commit/abort protocol. For example, if previously

registered resources are replaced with newly registered resources, resources registered with

a subtransaction are merged with the subtraction's parent. JBossTS provides an additional

Resource subtype which you this level of control.

2.1.3. Advanced API

The OTS does not provide any Resource implementations. You are responsible for implementing

these interfaces. The interfaces defined within the OTS specification are too low-level for most

application programmers. Therefore, JBossTS includes Transactional Objects for Java (TXOJ),

which makes use of the raw Common Object Services interfaces but provides a higher-level API

for building transactional applications and frameworks. This API automates much of the activities

concerned with participating in an OTS transaction, freeing you to concentrate on application

development, rather than transactions.

The architecture of the system is shown in Figure 2. The API interacts with the concurrency control

and persistence services, and automatically registers appropriate resources for transactional

objects. These resources may also use the persistence and concurrency services.

JBossTS exploits object-oriented techniques to provide you with a toolkit of Java classes which

are inheritable by application classes, to obtain transactional properties. These classes form a

hierarchy, illustrated in Figure 2.1, “JBossTS class hierarchy”.

Advanced API

9

Figure 2.1. JBossTS class hierarchy

Your main responsibilities are specifying the scope of transactions and setting appropriate locks

within objects. JBossTS guarantees that transactional objects will be registered with, and be

driven by, the appropriate transactions. Crash recovery mechanisms are invoked automatically in

the event of failures. When using the provided interfaces, you do not need to create or register

Resource objects or call services controlling persistence or recovery. If a transaction is nested,

resources are automatically propagated to the transaction’s parent upon commit.

The design and implementation goal of JBossTS was to provide a programming system for

constructing fault-tolerant distributed applications. Three system properties were considered

highly important:

Integration of Mechanisms Fault-tolerant distributed systems require a variety of system

functions for naming, locating and invoking operations upon

objects, as well as for concurrency control, error detection and

recovery from failures. These mechanisms are integrated in a

way that is easy for you to use.

Flexibility Mechanisms must be flexible, permitting implementation

of application-specific enhancements, such as type-specific

concurrency and recovery control, using system defaults.

Portability You need to be able to run JBossTS on any ORB.

JBossTS is implemented in Java and extensively uses the type-inheritance facilities provided

by the language to provide user-defined objects with characteristics such as persistence and

recoverability.

Chapter 2. JBossTS Basics

10

2.2. JBossTS and the OTS implementation

The OTS specification is written with flexibility in mind, to cope with different application

requirements for transactions. JBossTS supports all optional parts of the OTS specification. In

addition, if the specification allows functionality to be implemented in a variety of different ways,

JBossTS supports all possible implementations.

Table 2.1. JBossTS implementation of OTS specifications

OTS specification JBossTS default implementation

If the transaction service chooses to restrict the

availability of the transaction context, then it

should raise the Unavailable exception.

JBossTS does not restrict the availability of the

transaction context.

An implementation of the transaction service

need not initialize the transaction context for

every request.

JBossTS only initializes the transaction context

if the interface supported by the target object

extends the TransactionalObject interface.

An implementation of the transaction service

may restrict the ability for the Coordinator,

Terminator, and Control objects to be

transmitted or used in other execution

environments to enable it to guarantee

transaction integrity.

JBossTS does not impose restrictions on the

propagation of these objects.

The transaction service may restrict the

termination of a transaction to the client that

started it.

JBossTS allows the termination of a transaction

by any client that uses the Terminator

interface. In addition, JBossTS does not impose

restrictions when clients use the Current

interface.

A TransactionFactory is located using the

FactoryFinder interface of the life-cycle

service.

JBossTS provides multiple ways in which the

TransactionFactory can be located.

A transaction service implementation may use

the Event Service to report heuristic decisions.

JBossTS does not use the Event Service to

report heuristic decisions.

An implementation of the transaction service

does not need to support nested transactions.

JBossTS supports nested transactions.

Synchronization objects must be called

whenever the transaction commits.

JBossTS allows Synchronizations to be called

no matter what state the transaction terminates

with.

A transaction service implementation is not

required to support interposition.

JBossTS supports various types of interposition.

Thread class

11

2.3. Thread class

JBossTS is fully multi-threaded and supports the OTS notion of allowing multiple threads to be

active within a transaction, and for a thread to execute multiple transactions. A thread can only be

active within a single transaction at a time, however. By default, if a thread is created within the

scope of a transaction, the new thread is not associated with the transaction. If the thread needs

to be associated with the transaction, use the resume method of either the AtomicTransaction

class or the Current class.

However, if newly created threads need to automatically inherit the transaction context of their

parent, then they should extend the OTS_Thread class.

Example 2.1. Extending the OTS_Thread class

public class OTS_Thread extends Thread

{

 public void terminate ();

 public void run ();

 protected OTS_Thread ();

};

Call the run method of OTS_Thread at the start of the application thread class's run method. Call

terminate before you exit the body of the application thread’s run method.

2.4. ORB portability issues

Although the CORBA specification is a standard, it is written so that an ORB can be implemented in

multiple ways. As such, writing portable client and server code can be difficult. Because JBossTS

has been ported to most of the widely available ORBs, it includes a series of ORB Portability

classes and macros. If you write your application using these classes, it should be mostly portable

between different ORBs. These classes are described in the separate ORB Portability Manual.

12

Chapter 3.

13

Introduction to the OTS
Basic JBossTS programming involves using the OTS interfaces provided in the CosTransactions

module, which is specified in CosTransactions.idl. This chapter is based on the OTS

Specification1, specifically with the aspects of OTS that are valuable for developing OTS

applications using JBossTS. Where relevant, each section describes JBossTS implementation

decisions and runtime choices available to you. These choices are also summarized at the end

of this chapter. Subsequent chapters illustrate using these interfaces to construct transactional

applications.

3.1. Defining the OTS

The raw CosTransactions interfaces reside in package org.omg.CosTransactions. The JBossTS

implementations of these interfaces reside in package com.arjuna.CosTransactions and its sub-

packages.

You can override many run-time decisions of JBossTS Java properties specified at run-time. The

property names are mentioned in the com.arjuna.ats.jts.common.Environment class.

Chapter 3. Introduction to th...

14

Figure 3.1. OTS architecture

3.2. Action programming models

A client application program can manage a transaction using direct or indirect context

management.

• Indirect context management means that an application uses the pseudo-object Current,

provided by the Transaction Service, to associate the transaction context with the application

thread of control.

• For direct context management, an application manipulates the Control object and the other

objects associated with the transaction.

An object may require transactions to be either explicitly or implicitly propagated to its operations.

• Explicit propagation means that an application propagates a transaction context by passing

objects defined by the Transaction Service as explicit parameters. Typically the object is the

PropagationContext structure.

Action programming models

15

• Implicit propagation means that requests are implicitly associated with the client’s transaction,

by sharing the client's transaction context. The context is transmitted to the objects without

direct client intervention. Implicit propagation depends on indirect context management, since it

propagates the transaction context associated with the Current pseudo-object. An object that

supports implicit propagation should not receive any Transaction Service object as an explicit

parameter.

A client may use one or both forms of context management, and may communicate with objects

that use either method of transaction propagation. This results in four ways in which client

applications may communicate with transactional objects:

Direct Context Management/Explicit Propagation

The client application directly accesses the Control object, and the other objects which

describe the state of the transaction. To propagate the transaction to an object, the client must

include the appropriate Transaction Service object as an explicit parameter of an operation.

Typically, the object is the PropagationContext structure.

Indirect Context Management/Implicit Propagation

The client application uses operations on the Current pseudo-object to create and control

its transactions. When it issues requests on transactional objects, the transaction context

associated with the current thread is implicitly propagated to the object.

Indirect Context Management/Explicit Propagation

for an implicit model application to use explicit propagation, it can get access to the Control

using the get_control operation on the Current pseudo object. It can then use a Transaction

Service object as an explicit parameter to a transactional object; for efficiency reasons

this should be the PropagationContext structure, obtained by calling get_txcontext on the

appropriate Coordinator reference. This is explicit propagation.

Direct Context Management/Implicit Propagation

A client that accesses the Transaction Service objects directly can use the resume pseudo-

object operation to set the implicit transaction context associated with its thread. This way, the

client can invoke operations of an object that requires implicit propagation of the transaction

context.

The main difference between direct and indirect context management is the effect on the invoking

thread’s transaction context. Indirect context management causes the thread’s transaction

context to be modified automatically by the OTS. For instance, if method begin is called, the

thread’s notion of the current transaction is modified to the newly-created transaction. When the

transaction is terminated, the transaction previously associated with the thread, if one existed, is

restored as the thread’s context. This assumes that subtransactions are supported by the OTS

implementation.

If you use direct management, no changes to the thread's transaction context are made by the

OTS, leaving the responsibility to you.

Chapter 3. Introduction to th...

16

3.3. Interfaces

Table 3.1. Interfaces

Function Used by Direct context mgmt Indirect context mgmt

Create a

transaction

Transaction

originator

Factory::create

Control::get_terminator

Control::get_coordinator

begin

set_timeout

Terminate a

transaction

Transaction

originator

(implicit)

All

(explicit)

Terminator::commit

Terminator::rollback

commit rollback

Rollback

transaction

Server Terminator::rollback_only rollback_only

Propagation of

transaction to

server

Server Declaration of method parameter TransactionalObject

Client control

of transaction

propagation to

server

All Request parameters get_control

suspend

resume

Register with a

transaction

Recoverable

Server

Coordinator::register_resource N/A

Miscellaneous All Coordinator::get_status

Coordinator::get_transaction_name

Coordinator::is_same_transaction

Coordinator::hash_transaction

get_status

get_transaction_name

N/A

Note

For clarity, subtransaction operations are not shown

Transaction factory

17

3.4. Transaction factory

The TransactionFactory interface allows the transaction originator to begin a top-level

transaction. Subtransactions must be created using the begin method of Current, or the

create_subtransaction method of the parent’s Coordinator.) Operations on the factory and

Coordinator to create new transactions use direct context management, and therefore do not

modify the calling thread’s transaction context.

The create operation creates a new top-level transaction and returns its Control object, which

you can use to manage or control participation in the new transaction. Method create takes a

parameter that is is an application-specific timeout value, in seconds. If the transaction does not

complete before this timeout elapses, it is rolled back. If the parameter is 0, no application-specific

timeout is established.

Note

Subtransactions do not have a timeout associated with them.

The Transaction Service implementation allows the TransactionFactory to be a separate server

from the application, shared by transactions clients, and which manages transactions on their

behalf. However, the specification also allows the TransactionFactory to be implemented by an

object within each transactional client. This is the default implementation used by JBossTS,

because it removes the need for a separate service to be available in order for transactional

applications to execute, and therefore reduces a point of failure.

If your applications require a separate transaction manager, set the OTS_TRANSACTION_MANAGER

environment variable to the value YES. The system locates the transaction manager server in a

manner specific to the ORB being used. The server can be located in a number of ways.

• Registration with a name server.

• Addition to the ORB’s initial references, using a JBossTS specific references file.

• The ORB’s specific location mechanism, if applicable.

3.4.1. OTS configuration file

Similar to the resolve_initial_references, JBossTS supports an initial reference file where

you can store references for specific services, and use these references at runtime. The file,

CosServices.cfg, consists of two columns, separated by a single space.

• The service name, which is TransactionService in the case of the OTS server.

• The IOR

Chapter 3. Introduction to th...

18

CosServices.cfg is usually located in the etc/ directory of the JBossTS installation. The

OTS server automatically registers itself in this file, creating it if necessary, if you use the

configuration file mechanism. Stale information is also automatically removed. The Transaction

Service locates CosServices.cfg at runtime, using the OrbPortabilityEnvironmentBean

properties initialReferencesRoot and InitialReferencesFile. initialReferencesRoot

names a directory, and defaults to the current working directory. initialReferencesFile refers

to a file within the initialReferencesRoot, and defaults to the name CosServices.cfg.

3.4.2. Name service

If your ORB supports a name service, and you configure JBossTS to use it, the transaction

manager is automatically registered with it.

3.4.3. resolve_initial_references

JBossTS does not support resolve_initial_references.

3.4.4. Overriding the default location mechanisms

You can override the default location mechanism with the RESOLVE_SERVICE property variable,

which can have any of three possible values.

CONFIGURATION_FILE This is the default option, and directs the system to use the

CosServices.cfg file.

NAME_SERVICE JBossTS tries to use a name service to locate the transaction

factory. If the ORB does not support the name service

mechanism, JBossTS throws an exception.

BIND_CONNECT JBossTS uses the ORB-specific bind mechanism. If the ORB

does not support such a mechanism, JBossTS throws an

exception.

If RESOLVE_SERVICE is specified when running the transaction factory, the factory registers itself

with the specified resolution mechanism.

3.5. Transaction timeouts

As of JBossTS 4.5, transaction timeouts are unified across all transaction components and are

controlled by ArjunaCore. Refer to the ArjunaCore Development Guide for more information.

3.6. Transaction contexts

Transaction contexts are fundamental to the OTS architecture. Each thread is associated with a

context in one of three ways.

Null The thread has no associated transaction.

Transaction contexts

19

A transaction ID The thread is associated with a transaction.

Contexts may be shared across multiple threads. In the presence of nested transactions, a

context remembers the stack of transactions started within the environment, so that the context

of the thread can be restored to the state before the nested transaction started, when the

nested transaction ends. Threads most commonly use object Current to manipulate transactional

information, which is represented by Control objects. Current is the broker between a transaction

and Control objects.

Your application can manage transaction contexts either directly or indirectly. In the direct

approach, the transaction originator issues a request to a TransactionFactory to begin a new

top-level transaction. The factory returns a Control object that enables both a Terminator

interface and a Coordinator interface. Terminator ends a transaction. Coordinator associates

a thread with a transaction, or begins a nested transaction. You need to pass each interface as an

explicit parameter in invocations of operations, because creating a transaction with them does not

change a thread's current context. If you use the factory, and need to set the current context for a

thread to the context which its control object returns, use the resume method of interface Current.

Example 3.1. Interfaces Terminator, Coordinator, and Control

interface Terminator

{

 void commit (in boolean report_heuristics) raises (HeuristicMixed, HeuristicHazard);

 void rollback ();

};

interface Coordinator

{

 Status get_status ();

 Status get_parent_status ();

 Status get_top_level_status ();

 RecoveryCoordinator register_resource (in Resource r) raises (Inactive);

 Control create_subtransaction () raises (SubtransactionsUnavailable,

 Inactive);

 void rollback_only () raises (Inactive);

 ...

};

interface Control

{

 Terminator get_terminator () raises (Unavailable);

 Coordinator get_coordinator () raises (Unavailable);

};

Chapter 3. Introduction to th...

20

interface TransactionFactory

{

 Control create (in unsigned long time_out);

};

When the factory creates a transaction, you can specify a timeout value in seconds. If the

transaction times out, it is subject to possible roll-back. Set the timeout to 0 to disable application-

specific timeout.

The Current interface handles implicit context management. Implicit context management

provides simplified transaction management functionality, and automatically creates nested

transactions as required. Transactions created using Current do not alter a thread’s current

transaction context.

Example 3.2. Interface Current

interface Current : CORBA::Current

{

 void begin () raises (SubtransactionsUnavailable);

 void commit (in boolean report_heuristics) raises (NoTransaction,

 HeuristicMixed,

 HeuristicHazard);

 void rollback () raises (NoTransaction);

 void rollback_only () raises (NoTransaction);

 . . .

 Control get_control ();

 Control suspend ();

 void resume (in Control which) raises (InvalidControl);

};

3.6.1. Nested transactions

Subtransactions are a useful mechanism for two reasons:

fault-tolerance

If a subtransaction rolls back, the enclosing transaction does not also need to roll back. This

preserves as much of the work done so far, as possible.

modularity

Indirect transaction management does not require special syntax for creating subtransactions.

Begin a transaction, and if another transaction is associated with the calling thread, the new

transaction is nested within the existing one. If you know that an object requires transactions,

Transaction propagation

21

you can use them within the object. If the object's methods are invoked without a client

transaction, the object's transaction is top-level. Otherwise, it is nested within the client's

transaction. A client does not need to know whether an object is transactional.

The outermost transaction of the hierarchy formed by nested transactions is called the top-

level transaction. The inner components are called subtransactions. Unlike top-level transactions,

the commits of subtransactions depend upon the commit/rollback of the enclosing transactions.

Resources acquired within a subtransaction should be inherited by parent transactions when the

top-level transaction completes. If a subtransaction rolls back, it can release its resources and

undo any changes to its inherited resources.

In the OTS, subtransactions behave differently from top-level transactions at commit time. Top-

level transactions undergo a two-phase commit protocol, but nested transactions do not actually

perform a commit protocol themselves. When a program commits a nested transaction, it only

informs registered resources of its outcome. If a resource cannot commit, an exception is thrown,

and the OTS implementation can ignore the exception or roll back the subtransaction. You cannot

roll back a subtransaction if any resources have been informed that the transaction committed.

3.6.2. Transaction propagation

The OTS supports both implicit and explicit propagation of transactional behavior.

• Implicit propagation means that an operation signature specifies no transactional behavior, and

each invocation automatically sends transaction context associated with the calling thread.

• Explicit propagation means that applications must define their own mechanism for propagating

transactions. This has the following features:

• A client to control if its transaction is propagated with any operation invocation.

• A client can invoke operations on both transactional and non-transactional objects within a

transaction.

Transaction context management and transaction propagation are different things that may be

controlled independently of each other. Mixing of direct and indirect context management with

implicit and explicit transaction propagation is supported. Using implicit propagation requires

cooperation from the ORB. The client must send current context associated with the thread with

any operation invocations, and the server must extract them before calling the targeted operation.

If you need implicit context propagation, ensure that JBossTS is correctly initialized before you

create objects. Both client and server must agree to use implicit propagation. To use implicit

context propagation, your ORB needs to support filters or interceptors, or the CosTSPortability

interface.

Implicit context propagation Property variable OTS_CONTEXT_PROP_MODE set to CONTEXT.

Chapter 3. Introduction to th...

22

Interposition Property variable OTS_CONTEXT_PROP_MODE set to

INTERPOSITION.

Important

Interposition is required to use the JBossTS Advanced API.

3.6.3. Examples

Example 3.3. Simple transactional client using direct context management

and explicit transaction propagation

{

 ...

 org.omg.CosTransactions.Control c;

 org.omg.CosTransactions.Terminator t;

 org.omg.CosTransactions.PropagationContext pgtx;

 c = transFact.create(0); // create top-level action

 pgtx = c.get_coordinator().get_txcontext();

 ...

 trans_object.operation(arg, pgtx); // explicit propagation

 ...

 t = c.get_terminator(); // get terminator

 t.commit(false); // so it can be used to commit

 ...

}

The next example rewrites the same program to use indirect context management and implicit

propagation. This example is considerably simpler, because the application only needs to start

and either commit or abort actions.

Example 3.4. Indirect context management and implicit propagation

{

 ...

 current.begin(); // create new action

 ...

 trans_object2.operation(arg); // implicit propagation

 ...

 current.commit(false); // simple commit

 ...

Transaction controls

23

}

The last example illustrates the flexibility of OTS by using both direct and indirect context

management in conjunction with explicit and implicit transaction propagation.

Example 3.5. Direct and direct context management with explicitly and

implicit propagation

{

 ...

 org.omg.CosTransactions.Control c;

 org.omg.CosTransactions.Terminator t;

 org.omg.CosTransactions.PropagationContext pgtx;

 c = transFact.create(0); // create top-level action

 pgtx = c.get_coordinator().get_txcontext();

 current.resume(c); // set implicit context

 ...

 trans_object.operation(arg, pgtx); // explicit propagation

 trans_object2.operation(arg); // implicit propagation

 ...

 current.rollback(); // oops! rollback

 ...

}

3.7. Transaction controls

The Control interface allows a program to explicitly manage or propagate a transaction

context. An object supporting the Control interface is associated with one specific transaction.

The Control interface supports two operations: get_terminator and get_coordinator.

get_terminator returns an instance of the Terminator interface. get_coordinator returns an

instance of the Coordinator interface. Both of these methods throw the Unavailable exception if

the Control cannot provide the requested object. The OTS implementation can restrict the ability

to use the Terminator and Coordinator in other execution environments or threads. At a minimum,

the creator must be able to use them.

Obtain the Control object for a transaction when it is created either by using either

the TransactionFactory or create_subtransaction methods defined by the Coordinator

interface. Obtain a Control for the transaction associated with the current thread using the

get_control or suspend methods defined by the Current interface.

Chapter 3. Introduction to th...

24

3.7.1. JBossTS specifics

The transaction creator must be able to use its Control, but the OTS implementation decides

whether other threads can use Control. JBossTS places no restrictions the users of the Control.

The OTS specification does not provide a means to indicate to the transaction system that

information and objects associated with a given transaction can be purged from the system. In

JBossTS, the Current interface destroys all information about a transaction when it terminates.

For that reason, do not use any Control references to the transaction after it commits or rolls back.

However, if the transaction is terminated using the Terminator interface, it is up to the programmer

to signal that the transaction information is no longer required: this can be done using the

destroyControl method of the OTS class in the com.arjuna.CosTransactions package. Once the

program has indicated that the transaction information is no longer required, the same restrictions

on using Control references apply as described above. If destroyControl is not called then

transaction information will persist until garbage collected by the Java runtime.

In JBossTS, you can propagate Coordinators and Terminators between execution

environments.

3.8. The Terminator interface

The Terminator interface supports commit and rollback operations. Typically, the transaction

originator uses these operations. Each object supporting the Terminator interface is associated

with a single transaction. Direct context management via the Terminator interface does not change

the client thread’s notion of the current transaction.

The commit operation attempts to commit the transaction. To successfully commit, the transaction

must not be marked rollback only, and all of its must participants agree to commit. Otherwise,

the TRANSACTION_ROLLEDBACK exception is thrown. If the report_heuristics parameter is

true, the Transaction Service reports inconsistent results using the HeuristicMixed and

HeuristicHazard exceptions.

When a transaction is committed, the coordinator drives any registered Resources using their

prepare or commit methods. These Resources are responsible to ensure that any state changes

to recoverable objects are made permanent, to guarantee the ACID properties.

When rollback is called, the registered Resources need to guarantee that all changes to

recoverable objects made within the scope of the transaction, and its descendants, is undone. All

resources locked by the transaction are made available to other transactions, as appropriate to

the degree of isolation the resources enforce.

3.8.1. JBossTS specifics

See Section 3.7.1, “JBossTS specifics” for how long Terminator references remain valid after a

transaction terminates.

The Coordinator interface

25

When a transaction is committing, it must make certain state changes persistent, so that it can

recover if a failure occurs, and continue to commit, or rollback. To guarantee ACID properties,

flush these state changes to the persistence store implementation before the transaction proceeds

to commit. Otherwise, the application may assume that the transaction has committed, when the

state changes may still volatile storage, and may be lost by a subsequent hardware failure. By

default, JBossTS makes sure that such state changes are flushed. However, these flushes can

impose a significant performance penalty to the application. To prevent transaction state flushes,

set the TRANSACTION_SYNC variable to OFF. Obviously, do this at your own risk.

When a transaction commits, if only a single resource is registered, the transaction manager

does not need to perform the two-phase protocol. A single phase commit is possible, and the

outcome of the transaction is determined by the resource. In a distributed environment, this

optimization represents a significant performance improvement. As such, JBossTS defaults to

performing single phase commit in this situation. Override this behavior at runtime by setting the

COMMIT_ONE_PHASE property variable to NO.

3.9. The Coordinator interface

The Coordinator interface is returned by the get_coordinator method of the Control interface.

It supports the operations resources need to participate in a transaction. These participants

are usually either recoverable objects or agents of recoverable objects, such as subordinate

coordinators. Each object supporting the Coordinator interface is associated with a single

transaction. Direct context management via the Coordinator interface does not change the client

thread’s notion of the current transaction. You can terminate transaction directly, through the

Terminator interface. In that case, trying to terminate the transaction a second time using

Current causes an exception to be thrown for the second termination attempt.

The operations supported by the Coordinator interface of interest to application programmers are:

Table 3.2. Operations supported by the Coordinator interface

get_status

get_parent_status

get_top_level_status

Return the status of the associated transaction. At any given

time a transaction can have one of the following status values

representing its progress:

StatusActive

The transaction is currently running, and has not been asked

to prepare or marked for rollback.

StatusMarkedRollback

The transaction is marked for rollback.

StatusPrepared

The transaction has been prepared, which means that all

subordinates have responded VoteCommit.

Chapter 3. Introduction to th...

26

StatusCommitted

The transaction has committed. It is likely that heuristics

exist. Otherwise, the transaction would have been destroyed

and StatusNoTransaction returned.

StatusRolledBack

The transaction has rolled back. It is likely that heuristics

exist. Otherwise. the transaction would have been destroyed

and StatusNoTransaction returned.

StatusUnknown

The Transaction Service cannot determine the current status

of the transaction. This is a transient condition, and a

subsequent invocation should return a different status.

StatusNoTransaction

No transaction is currently associated with the target object.

This occurs after a transaction completes.

StatusPreparing

The transaction is in the process of preparing and the final

outcome is not known.

StatusCommitting

The transaction is in the process of committing.

StatusRollingBack

The transaction is in the process of rolling back.

is_same_transaction and

others

You can use these operations for transaction comparison.

Resources may use these various operations to guarantee that

they are registered only once with a specific transaction.

hash_transaction

hash_top_level_tran

Returns a hash code for the specified transaction.

register_resource Registers the specified Resource as a participant in the

transaction. The Inactive exception is raised if the transaction

is already prepared. The TRANSACTION_ROLLEDBACK exception

is raised if the transaction is marked rollback only. If

the Resource is a SubtransactionAwareResource and the

transaction is a subtransaction, this operation registers the

resource with this transaction and indirectly with the top-

level transaction when the subtransaction’s ancestors commit.

Otherwise, the resource is only registered with the current

transaction. This operation returns a RecoveryCoordinator

which this Resource can use during recovery. No ordering

of registered Resources is implied by this operation. If A is

JBossTS specifics

27

registered after B, the OTS can operate on them in any order

when the transaction terminates. Therefore, do not assume such

an ordering exists in your implementation.

register_subtran_aware Registers the specified subtransaction-aware resource with the

current transaction, so that it know when the subtransaction

commits or rolls back. This method cannot register the

resource as a participant in the top-level transaction. The

NotSubtransaction exception is raised if the current transaction

is not a subtransaction. As with register_resource, no ordering

is implied by this operation.

register_synchronization Registers the Synchronization object with the transaction so

that will be invoked before prepare and after the transaction

completes. Synchronizations can only be associated with top-

level transactions, and the SynchronizationsUnavailable

exception is raised if you try to register a Synchronization with

a subtransaction. As with register_resource, no ordering is

implied by this operation.

rollback_only Marks the transaction so that the only possible outcome is for it

to rollback. The Inactive exception is raised if the transaction has

already been prepared/completed.

create_subtransaction A new subtransaction is created. Its parent is the current

transaction. The Inactive exception is raised if the current

transaction has already been prepared or completed. If

you configure the Transaction Service without subtransaction

support, the SubtransactionsUnavailable exception is raised.

3.9.1. JBossTS specifics

See Section 3.7.1, “JBossTS specifics” to control how long Coordinator references remain valid

after a transaction terminates.

Note

To disable subtransactions, set set the OTS_SUPPORT_SUBTRANSACTIONS property

variable to NO.

3.10. Heuristics

The OTS permits individual resources to make heuristic decisions. Heuristic decisions are

unilateral decisions made by one or more participants to commit or abort the transaction, without

waiting for the consensus decision from the transaction service. Use heuristic decisions with care

and only in exceptional circumstances, because they can lead to a loss of integrity in the system.

Chapter 3. Introduction to th...

28

If a participant makes a heuristic decision, an appropriate exception is raised during commit or

abort processing.

Table 3.3. Possible heuristic outcomes

HeuristicRollback Raised on an attempt to commit, to indicate that the resource

already unilaterally rolled back the transaction.

HeuristicCommit Raised on an attempt to roll back, to indicate that the resource

already unilaterally committed the transaction.

HeuristicMixed Indicates that a heuristic decision has been made. Some updates

committed while others rolled back.

HeuristicHazard Indicates that a heuristic decision may have been made, and the

outcome of some of the updates is unknown. For those updates

which are known, they either all committed or all rolled back.

HeuristicMixed takes priority over HeuristicHazard. Heuristic decisions are only reported back to

the originator if the report_heuristics argument is set to true when you invoke the commit

operation.

3.11. Current

The Current interface defines operations that allow a client to explicitly manage the association

between threads and transactions, using indirect context management. It defines operations that

simplify the use of the Transaction Service.

Table 3.4. Methods of Current

begin Creates a new transaction and associates it with the current

thread. If the client thread is currently associated with a

transaction, and the OTS implementation supported nested

transactions, the new transaction becomes a subtransaction of

that transaction. Otherwise, the new transaction is a top-level

transaction. If the OTS implementation does not support nested

transactions, the SubtransactionsUnavailable exception is

thrown. The thread’s notion of the current context is modified to

be this transaction.

commit Commits the transaction. If the client thread does not have

permission to commit the transaction, the standard exception

NO_PERMISSION is raised. The effect is the same as performing

the commit operation on the corresponding Terminator object.

The client thread's transaction context is returned to its state

before the begin request was initiated.

rollback Rolls back the transaction. If the client thread does not have

permission to terminate the transaction, the standard exception

NO_PERMISSION is raised. The effect is the same as performing

Current

29

the rollback operation on the corresponding Terminator

object. The client thread's transaction context is returned to its

state before the begin request was initiated.

rollback_only Limits the transaction's outcome to rollback only. If the

transaction has already been terminated, or is in the process of

terminating, an appropriate exception is thrown.

get_status Returns the status of the current transaction, or exception

StatusNoTransaction if no transaction is associated with the

thread.

set_timeout Modifies the timeout associated with top-level transactions for

subsequent begin requests, for this thread only. Subsequent

transactions are subject to being rolled back if they do not

complete before the specified number of seconds elapses.

Default timeout values for transactions without explicitly-set

timeouts are implementation-dependent. JBossTS uses a value

of 0, which results in transactions never timing out. There is no

interface in the OTS for obtaining the current timeout associated

with a thread. However, JBossTS provides additional support for

this. See Section 3.11.1, “JBossTS specifics”.

get_control Obtains a Control object representing the current transaction.

If the client thread is not associated with a transaction,

a null object reference is returned. The operation is not

dependent on the state of the transaction. It does not raise the

TRANSACTION_ROLLEDBACK exception.

suspend Obtains an object representing a transaction's context. If the

client thread is not associated with a transaction, a null object

reference is returned. You can pass this object to the resume

operation to re-establish this context in a thread. The operation

is not dependent on the state of the transaction. It does not raise

the TRANSACTION_ROLLEDBACK exception. When this call returns,

the current thread has no transaction context associated with it.

resume Associates the client thread with a transaction. If the parameter is

a null object reference, the client thread becomes associated with

no transaction. The thread loses association with any previous

transactions.

Chapter 3. Introduction to th...

30

Figure 3.2. Creation of a top-level transaction using Current

JBossTS specifics

31

Figure 3.3. Creation of a transaction using Current

3.11.1. JBossTS specifics

Ideally, you should Obtain Current by using the life-cycle service factory finder. However, very

few ORBs support this. JBossTS provides method get_current of Current for this purpose. This

class hides any ORB-specific mechanisms required for obtaining Current.

If no timeout value is associated with Current, JBossTS associates no timeout with the

transaction. The current OTS specification does not provide a means whereby the timeout

associated with transaction creation can be obtained. However, JBossTS Current supports a

get_timeout method.

By default, the JBossTS implementation of Current does not use a separate

TransactionFactory server when creating new top-level transactions. Each transactional

Chapter 3. Introduction to th...

32

client has a TransactionFactory co-located with it. Override this by setting the

OTS_TRANSACTION_MANAGER variable to YES.

The transaction factory is located in the bin/ directory of the JBossTS distribution. Start it by

executing the OTS script. Current locates the factory in a manner specific to the ORB: using

the name service, through resolve_initial_references, or via the CosServices.cfg file. The

CosServices.cfg file is similar to resolve_initial_references, and is automatically updated

when the transaction factory is started on a particular machine. Copy the file to each JBossTS

instance which needs to share the same transaction factory.

If you do not need subtransaction support, set the OTS_SUPPORT_SUBTRANSACTIONS property

variable to NO. The setCheckedAction method overrides the CheckedAction implementation

associated with each transaction created by the thread.

3.12. Resource

The Transaction Service uses a two-phase commit protocol to complete a top-level transaction

with each registered resource.

Example 3.6. Completing a top-level transaction

interface Resource

{

 Vote prepare ();

 void rollback () raises (HeuristicCommit, HeuristicMixed,

 HeuristicHazard);

 void commit () raises (NotPrepared, HeuristicRollback,

 HeuristicMixed, HeuristicHazard);

 void commit_one_phase () raises (HeuristicRollback, HeuristicMixed,

 HeuristicHazard);

 void forget ();

};

The Resource interface defines the operations invoked by the transaction service. Each Resource

object is implicitly associated with a single top-level transaction. Do not register a Resource with

the same transaction more than once. When you tell a Resource to prepare, commit, or abort, it

must do so on behalf of a specific transaction. However, the Resource methods do not specify the

transaction identity. It is implicit, since a Resource can only be registered with a single transaction.

Transactional objects must use the register_resource method to register objects supporting the

Resource interface with the current transaction. An object supporting the Coordinator interface is

either passed as a parameter in the case of explicit propagation, or retrieved using operations on

the Current interface in the case of implicit propagation. If the transaction is nested, the Resource

is not informed of the subtransaction’s completion, and is registered with its parent upon commit.

This example assumes that transactions are only nested two levels deep, for simplicity.

Resource

33

Figure 3.4. Resource and nested transactions

Do not register a given Resource with the same transaction more than once, or it will receive

multiple termination calls. When a Resource is directed to prepare, commit, or abort, it needs

to link these actions to a specific transaction. Because Resource methods do not specify the

transaction identity, but can only be associated with a single transaction, you can infer the identity.

A single Resource or group of Resources guarantees the ACID properties for the recoverable

object they represent. A Resource's work depends on the phase of its transaction.

Chapter 3. Introduction to th...

34

prepare

If none of the persistent data associated with the resource is modified by the transaction, the

Resource can return VoteReadOnly and forget about the transaction. It does not need to know

the outcome of the second phase of the commit protocol, since it hasn't made any changes.

If the resource can write, or has already written, all the data needed to commit the transaction

to stable storage, as well as an indication that it has prepared the transaction, it can return

VoteCommit. After receiving this response, the Transaction Service either commits or rolls

back. To support recovery, the resource should store the RecoveryCoordinator reference

in stable storage.

The resource can return VoteRollback under any circumstances. After returning this

response, the resource can forget the transaction.

The Resource reports inconsistent outcomes using the HeuristicMixed and

HeuristicHazard exceptions. One example is that a Resource reports that it can commit and

later decides to roll back. Heuristic decisions must be made persistent and remembered by

the Resource until the transaction coordinator issues the forget method. This method tells

the Resource that the heuristic decision has been noted, and possibly resolved.

rollback

The resource should undo any changes made as part of the transaction. Heuristic exceptions

can be used to report heuristic decisions related to the resource. If a heuristic exception

is raised, the resource must remember this outcome until the forget operation is performed

so that it can return the same outcome in case rollback is performed again. Otherwise, the

resource can forget the transaction.

commit

If necessary, the resource should commit all changes made as part of this transaction. As

with rollback, it can raise heuristic exceptions. The NotPrepared exception is raised if the

resource has not been prepared.

commit_one_phase

Since there can be only a single resource, the HeuristicHazard exception reports heuristic

decisions related to that resource.

forget

Performed after the resource raises a heuristic exception. After the coordinator determines

that the heuristic situation is addressed, it issues forget on the resource. The resource can

forget all knowledge of the transaction.

3.13. SubtransactionAwareResource

Recoverable objects that need to participate within a nested transaction may support the

SubtransactionAwareResource interface, a specialization of the Resource interface.

SubtransactionAwareResource

35

Example 3.7. Interface SubtransactionAwareResource

interface SubtransactionAwareResource : Resource

{

 void commit_subtransaction (in Coordinator parent);

 void rollback_subtransaction ();

};

A recoverable object is only informed of the completion of a nested transaction if it registers

a SubtransactionAwareResource. Register the object with either the register_resource

of the Coordinator interface, or the register_subtran_aware method of the Current

interface. A recoverable object registers Resources to participate within the completion of

top-level transactions, and SubtransactionAwareResources keep track of the completion of

subtransactions. The commit_subtransaction method uses a reference to the parent transaction

to allow subtransaction resources to register with these transactions.

SubtransactionAwareResources find out about the completion of a transaction after it terminates.

They cannot affect the outcome of the transaction. Different OTS implementations deal with

exceptions raised by SubtransactionAwareResources in implementation-specific ways.

Use method register_resource or method register_subtran_aware to register a

SubtransactionAwareResource with a transaction using.

register_resource

If the transaction is a subtransaction, the resource is informed of its completion, and

automatically registered with the subtransaction’s parent if the parent commits.

register_subtran_aware

If the transaction is not a subtransaction, an exception is thrown. Otherwise, the resource

is informed when the subtransaction completes. Unlike register_resource, the resource

is not propagated to the subtransaction’s parent if the transaction commits. If you need this

propagation, re-register using the supplied parent parameter.

Chapter 3. Introduction to th...

36

Figure 3.5. Method register_subtran_aware

SubtransactionAwareResource

37

Figure 3.6. Method register_resource

Chapter 3. Introduction to th...

38

In either case, the resource cannot affect the outcome of the transaction completion. It can only act

on the transaction's decision, after the decision is made. However, if the resource cannot respond

appropriately, it can raise an exception. Thee OTS handles these exceptions in an implementation-

specific way.

3.13.1. JBossTS specifics

A SubtransactionAwareResource which raises an exception to the commitment of a transaction

may create inconsistencies within the transaction if other SubtransactionAwareResources think

the transaction committed. To prevent this possibility of inconsistency, JBossTS forces the

enclosing transaction to abort if an exception is raised.

JBossTS also provides extended subtransaction aware resources to overcome this, and other

problems. See Section for further details.

3.14. The Synchronization interface

If an object needs notification before a transaction commits, it can register an object which is an

implements the Synchronization interface, using the register_synchronization operation of

the Coordinator interface. Synchronizations flush volatile state data to a recoverable object or

database before the transaction commits. You can only associate Synchronizations with top-level

transactions. If you try to associate a Synchronization to a nested transaction, an exception is

thrown. Each object supporting the Synchronization interface is associated with a single top-

level transaction.

Example 3.8. Synchronization

interface Synchronization : TransactionalObject

{

 void before_completion ();

 void after_completion (in Status s);

};

The method before_completion is called before the two-phase commit protocol starts, and

after_completion is called after the protocol completes. The final status of the transaction is

given as a parameter to after_completion. If before_completion raises an exception, the

transaction rolls back. Any exceptions thrown by after_completion do not affect the transaction

outcome.

The OTS only requires Synchronizations to be invoked if the transaction commits. If it rolls back,

registered Synchronizations are not informed.

Given the previous description of Control, Resource, SubtransactionAwareResource, and

Synchronization, the following UML relationship diagram can be drawn:

The Synchronization interface

39

Figure 3.7. Relationship between Control, Resource,

SubtransactionAwareResource, and Synchronization

Chapter 3. Introduction to th...

40

3.14.1. JBossTS specifics

Synchronizations must be called before the top-level transaction commit protocol starts, and after it

completes. By default, if the transaction is instructed to roll back, the Synchronizations associated

with the transaction is not contacted. To override this, and call Synchronizations regardless of the

transaction's outcome, set the OTS_SUPPORT_ROLLBACK_SYNC property variable to YES.

If you use distributed transactions and interposition, a local proxy for the top-level transaction

coordinator is created for any recipient of the transaction context. The proxy looks like a

Resource or SubtransactionAwareResource, and registers itself as such with the actual top-level

transaction coordinator. The local recipient uses it to register Resources and Synchronizations

locally.

The local proxy can affect how Synchronizations are invoked during top-level transaction

commit. Without the proxy, all Synchronizations are invoked before any Resource or

SubtransactionAwareResource objects are processed. However, with interposition, only those

Synchronizations registered locally to the transaction coordinator are called. Synchronizations

registered with remote participants are only called when the interposed proxy is invoked. The local

proxy may only be invoked after locally-registered Resource or SubtransactionAwareResource

objects are invoked. With the OTS_SUPPORT_INTERPOSED_SYNCHRONIZATION property variable set

to YES, all Synchronizations are invoked before any Resource or SubtransactionAwareResource,

no matter where they are registered.

Transactions and registered resources

41

3.15. Transactions and registered resources

Figure 3.8. Relationship between a transaction Control and the resources

registered with it

In Figure 3.9, “Subtransaction commit”, a subtransaction with both Resource and

SubtransactionAwareResource objects commits. The SubtransactionAwareResources were

registered using register_subtran_aware. The Resources do not know the subtransaction

terminated, but the SubtransactionAwareResources do. Only the Resources are automatically

propagated to the parent transaction.

Figure 3.9. Subtransaction commit

Chapter 3. Introduction to th...

42

Figure 3.10, “Subtransaction rollback” illustrates the impact of a subtransaction rolling back. Any

registered resources are discarded, and all SubtransactionAwareResources are informed of the

transaction outcome.

Figure 3.10. Subtransaction rollback

Figure 3.11, “Top-level commit” shows the activity diagram for committing a top-level

transaction. Subtransactions within the top-level transaction which have also successfully

committed propagate SubtransactionAwareResources to the top-level transaction. These

SubtransactionAwareResources then participate within the two-phase commit protocol. Any

registered Synchronizations are contacted before prepare is called. Because of indirect context

Transactions and registered resources

43

management, when the transaction commits, the transaction service changes the invoking

thread’s transaction context.

Chapter 3. Introduction to th...

44

Figure 3.11. Top-level commit

The TransactionalObject interface

45

Figure 3.12. Top-level rollback

3.16. The TransactionalObject interface

The TransactionalObject interface indicates to an object that it is transactional. By supporting

this interface, an object indicates that it wants to associate the transaction context associated with

the client thread with all operations on its interface. The TransactionalObject interface defines

no operations.

Chapter 3. Introduction to th...

46

OTS specifications do not require an OTS to initialize the transaction context of every request

handler. It is only a requirement if the interface supported by the target object is derived from

TransactionalObject. Otherwise, the initial transaction context of the thread is undefined.

A transaction service implementation can raise the TRANSACTION_REQUIRED exception if a

TransactionalObject is invoked outside the scope of a transaction.

In a single-address space application, transaction contexts are implicitly shared between clients

and objects, regardless of whether or not the objects support the TransactionalObject interface.

To preserve distribution transparency, where implicit transaction propagation is supported, you

can direct JBossTS to always propagate transaction contexts to objects. The default is only to

propagate if the object is a TransactionalObject. Set the OTS_ALWAYS_PROPAGATE_CONTEXT

property variable to NO to override this behavior.

By default, JBossTS does not require objects which support the TransactionalObject interface

to invoked within the scope of a transaction. The object determines whether it should be invoked

within a transaction. If so, it must throw the TransactionRequired exception. Override this default

by setting the OTS_NEED_TRAN_CONTEXT shell environment variable to YES.

Important

Make sure that the settings for OTS_ALWAYS_PROPAGATE_CONTEXT and

OTS_NEED_TRAN_CONTEXT are identical at the client and the server. If they are not

identical at both ends, your application may terminate abnormally.

3.17. Interposition

OTS objects supporting interfaces such as the Control interface are standard CORBA objects.

When an interface is passed as a parameter in an operation call to a remote server, only an object

reference is passed. This ensures that any operations that the remote server performs on the

interface are correctly performed on the real object. However, this can have substantial penalties

for the application, because of the overhead of remote invocation. For example, when the server

registers a Resource with the current transaction, the invocation might be remote to the originator

of the transaction.

To avoid this overhead, your OTS may support interposition. This permits a server to create a

local control object which acts as a local coordinator, and fields registration requests that would

normally be passed back to the originator. This coordinator must register itself with the original

coordinator, so that it can correctly participate in the commit protocol. Interposed coordinators

form a tree structure with their parent coordinators.

To use interposition, ensure that JBossTS is correctly initialized before creating objects.

Also, the client and server must both use interposition. Your ORB must support filters or

interceptors, or the CosTSPortability interface, since interposition requires the use of implicit

transaction propagation. To use interposition, set the OTS_CONTEXT_PROP_MODE property variable

to INTERPOSITION.

RecoveryCoordinator

47

Note

Interposition is not required if you use the JBossTS advanced API.

3.18. RecoveryCoordinator

A reference to a RecoveryCoordinator is returned as a result of successfully calling

register_resource on the transaction's Coordinator. Each RecoveryCoordinator is implicitly

associated with a single Resource. It can drive the Resource through recovery procedures in the

event of a failure which occurs during the transaction.

Figure 3.13. Resource and RecoveryCoordinator

3.19. Checked transaction behavior

The OTS supports both checked and unchecked transaction behavior.

Chapter 3. Introduction to th...

48

Integrity constraints of checked transactions

• A transaction will not commit until all transactional objects involved in the transaction have

completed their transactional requests.

• Only the transaction originator can commit the transaction

Checked transactional behavior is typical transaction behavior, and is widely implemented.

Checked behavior requires implicit propagation, because explicit propagation prevents the OTS

from tracking which objects are involved in the transaction.

Unchecked behavior allows you to implement relaxed models of atomicity. Any use of explicit

propagation implies the possibility of unchecked behavior, since you as the programmer are in

control of the behavior. Even if you use implicit propagation, a server may unilaterally abort or

commit the transaction using the Current interface, causing unchecked behavior.

Some OTS implementations enforce checked behavior for the transactions they support, to

provide an extra level of transaction integrity. The checks ensure that all transactional requests

made by the application complete their processing before the transaction is committed. A checked

Transaction Service guarantees that commit fails unless all transactional objects involved in the

transaction complete the processing of their transactional requests. Rolling back the transaction

does not require such as check, since all outstanding transactional activities will eventually roll

back if they are not directed to commit.

There are many possible implementations of checking in a Transaction Service. One provides

equivalent function to that provided by the request and response inter-process communication

models defined by X/Open. The X/Open Transaction Service model of checking widely

implemented. It describes the transaction integrity guarantees provided by many existing

transaction systems. These transaction systems provide the same level of transaction integrity

for object-based applications, by providing a Transaction Service interface that implements the

X/Open checks.

In X/Open, completion of the processing of a request means that the object has completed

execution of its method and replied to the request. The level of transaction integrity provided by a

Transaction Service implementing the X/Open model provides equivalent function to that provided

by the XATMI and TxRPC interfaces defined by X/Open for transactional applications. X/Open

DTP Transaction Managers are examples of transaction management functions that implement

checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propagation. When

implicit propagation is used, the objects involved in a transaction at any given time form a tree,

called the request tree for the transaction. The beginner of the transaction is the root of the tree.

Requests add nodes to the tree, and replies remove the replying node from the tree. Synchronous

requests, or the checks described below for deferred synchronous requests, ensure that the tree

collapses to a single node before commit is issued.

JBossTS specifics

49

If a transaction uses explicit propagation, the Transaction Service has no way to know which

objects are or will be involved in the transaction. Therefore, the use of explicit propagation is not

permitted by a Transaction Service implementation that enforces X/Open-style checked behavior.

Applications that use synchronous requests exhibit checked behavior. If your application uses

deferred synchronous requests, all clients and objects need to be under the control of a checking

Transaction Service. In that case, the Transaction Service can enforce checked behavior, by

applying a reply check and a committed check. The Transaction Service must also apply a

resume check, so that the transaction is only resumed by applications in the correct part of the

request tree.

reply check Before an object replies to a transactional request, a check is

made to ensure that the object has received replies to all the

deferred synchronous requests that propagated the transaction

in the original request. If this condition is not met, an exception

is raised and the transaction is marked as rollback-only. A

Transaction Service may check that a reply is issued within the

context of the transaction associated with the request.

commit check Before a commit can proceed, a check is made to ensure that the

commit request for the transaction is being issued from the same

execution environment that created the transaction, and that the

client issuing commit has received replies to all the deferred

synchronous requests it made that propagated the transaction.

resume check Before a client or object associates a transaction context with

its thread of control, a check is made to ensure that this

transaction context was previously associated with the execution

environment of the thread. This association would exist if

the thread either created the transaction or received it in a

transactional operation.

3.19.1. JBossTS specifics

Where support from the ORB is available, JBossTS supports X/Open checked transaction

behavior. However, unless the OTS_CHECKED_TRANSACTIONS property variable is set to YES,

checked transactions are disabled. This is the default setting.

Note

Checked transactions are only possible with a co-located transaction manager.

In a multi-threaded application, multiple threads may be associated with a transaction during

its lifetime, sharing the context. In addition, if one thread terminates a transaction, other

threads may still be active within it. In a distributed environment, it can be difficult to

guarantee that all threads have finished with a transaction when it terminates. By default,

Chapter 3. Introduction to th...

50

JBossTS issues a warning if a thread terminates a transaction when other threads are still

active within it, but allow the transaction termination to continue. You can choose to block

the thread which is terminating the transaction until all other threads have disassociated

themselves from its context, or use other methods to solve the problem. JBossTS provides

the com.arjuna.ats.arjuna.coordinator.CheckedAction class, which allows you to override

the thread and transaction termination policy. Each transaction has an instance of this class

associated with it, and you can implement the class on a per-transaction basis.

Example 3.9. CheckedAction implementation

public class CheckedAction

{

public CheckedAction ();

public synchronized void check (boolean isCommit, Uid actUid,

 BasicList list);

};

When a thread attempts to terminate the transaction and there active threads exist within it, the

system invokes the check method on the transaction’s CheckedAction object. The parameters

to the check method are:

isCommit Indicates whether the transaction is in the process of committing

or rolling back.

actUid The transaction identifier.

list A list of all of the threads currently marked as active within this

transaction.

When check returns, the transaction termination continues. Obviously the state of the transaction

at this point may be different from that when check was called.

Set the CheckedAction instance associated with a given transaction with the setCheckedAction

method of Current.

3.20. Summary of JBossTS implementation decisions

• Any execution environment (thread, process) can use a transaction Control.

• Controls, Coordinators, and Terminators are valid for use for the duration of the transaction

if implicit transaction control is used, via Current. If you use explicit control, via the

TransactionFactory and Terminator, then use the destroyControl method of the OTS class

in com.arjuna.CosTransactions to signal when the information can be garbage collected.

• You can propagate Coordinators and Terminators between execution environments.

Summary of JBossTS implementation decisions

51

• If you try to commit a transaction when there are still active subtransactions within it, JBossTS

rolls back the parent and the subtransactions.

• JBossTS includes full support for nested transactions. However, if a resource raises an

exception to the commitment of a subtransaction after other resources have previously been

told that the transaction committed, JBossTS forces the enclosing transaction to abort. This

guarantees that all resources used within the subtransaction are returned to a consistent state.

You can disable support for subtransactions by setting the OTS_SUPPORT_SUBTRANSACTIONS

variable to NO.

• Obtain Current from the get_current method of the OTS.

• A timeout value of zero seconds is assumed for a transaction if none is specified using

set_timeout.

• by default, Current does not use a separate transaction manager server by default. Override

this behavior by setting the OTS_TRANSACTION_MANAGER environment variable. Location of the

transaction manager is ORB-specific.

• Checked transactions are disabled by default. To enable them, set the

OTS_CHECKED_TRANSACTIONS property to YES.

52

Chapter 4.

53

Constructing an OTS application

4.1. Important notes for JBossTS

4.1.1. Initialization

JBossTS must be correctly initialized before you create any application object. To guarantee

this, use the initORB and POA methods described in the Orb Portability Guide. Consult the Orb

Portability Guide if you need direct use of the ORB_init and create_POA methods provided by

the underlying ORB.

4.1.2. Implicit context propagation and interposition

If you need implicit context propagation and interposition, initialize JBossTS correctly before you

create any objects. You can only use implicit context propagation on an ORB which supports

filters and interceptors, or the CosTSPortability interface. You can set OTS_CONTEXT_PROP_MODE

to CONTEXT or INTERPOSITION, depending on which functionality you need. If you are using the

JBossTS API, you need to use interposition.

4.2. Writing applications using the raw OTS interfaces

Steps to participate in an OTS transaction

• Create Resource and SubtransactionAwareResource objects for each object which will

participate within the transaction or subtransaction. These resources manage the persistence,

concurrency control, and recovery for the object. The OTS invokes these objects during the

prepare, commit, or abort phase of the transaction or subtransaction, and the Resources

perform the work of the application.

• Register Resource and SubtransactionAwareResource objects at the correct time within the

transaction, and ensure that the object is only registered once within a given transaction. As part

of registration, a Resource receives a reference to a RecoveryCoordinator. This reference

must be made persistent, so that the transaction can recover in the event of a failure.

• Correctly propagate resources such as locks to parent transactions and

SubtransactionAwareResource objects.

• Drive the crash recovery for each resource which was participating within the transaction, in

the event of a failure.

The OTS does not provide any Resource implementations. You need to provide these

implementations. The interfaces defined within the OTS specification are too low-level for most

situations. JBossTS is designed to make use of raw Common Object Services (COS) interfaces,

but provides a higher-level API for building transactional applications and framework. This API

automates much of the work involved with participating in an OTS transaction.

Chapter 4. Constructing an OT...

54

4.3. Transaction context management

If you use implicit transaction propagation, ensure that appropriate objects support the

TransactionalObject interface. Otherwise, you need to pass the transaction contexts as

parameters to the relevant operations.

4.3.1. A transaction originator: indirect and implicit

Example 4.1. Indirect and implicit transaction originator

 ...

 txn_crt.begin();

 // should test the exceptions that might be raised

 ...

 // the client issues requests, some of which involve

 // transactional objects;

 BankAccount1.makeDeposit(deposit);

 ...

A transaction originator uses indirect context management and implicit transaction propagation.

txn_crt is a pseudo object supporting the Current interface. The client uses the begin operation

to start the transaction, which becomes implicitly associated with the originator’s thread of control.

The program commits the transaction associated with the client thread. The report_heuristics

argument is set to false, so the Transaction Service makes no reports about possible heuristic

decisions.

 ...

 txn_crt.commit(false);

 ...

4.3.2. Transaction originator: direct and explicit

Example 4.2. Direct and explicit transaction originator

 ...

 org.omg.CosTransactions.Control c;

 org.omg.CosTransactions.Terminator t;

 org.omg.CosTransactions.Coordinator co;

 org.omg.CosTransactions.PropagationContext pgtx;

 c = TFactory.create(0);

 t = c.get_terminator();

Implementing a transactional client

55

 pgtx = c.get_coordinator().get_txcontext();

 ...

This transaction originator uses direct context management and explicit transaction propagation.

The client uses a factory object supporting the CosTransactions::TransactionFactory

interface to create a new transaction, and uses the returned Control object to retrieve the

Terminator and Coordinator objects.

The client issues requests, some of which involve transactional objects. This example uses explicit

propagation of the context. The Control object reference is passed as an explicit parameter of

the request. It is declared in the OMG IDL of the interface.

 ...

 transactional_object.do_operation(arg, pgtx);

The transaction originator uses the Terminator object to commit the transaction. The

report_heuristics argument is set to false, so the Transaction Service makes no reports about

possible heuristic decisions.

 ...

 t.commit(false);

4.4. Implementing a transactional client

The commit operation of Current or the Terminator interface takes the boolean

report_heuristics parameter. If the report_heuristics argument is false, the commit

operation can complete as soon as the Coordinator makes the decision to commit or roll back the

transaction. The application does not need to wait for the Coordinator to complete the commit

protocol by informing all the participants of the outcome of the transaction. This can significantly

reduce the elapsed time for the commit operation, especially where participant Resource objects

are located on remote network nodes. However, no heuristic conditions can be reported to the

application in this case.

Using the report_heuristics option guarantees that the commit operation does not complete

until the Coordinator completes the commit protocol with all Resource objects involved in the

transaction. This guarantees that the application is informed of any non-atomic outcomes of the

transaction, through one of the exceptions HeuristicMixed or HeuristicHazard. However, it

increases the application-perceived elapsed time for the commit operation.

4.5. Implementing a recoverable server

A Recoverable Server includes at least one transactional object and one resource object, each

of which have distinct responsibilities.

Chapter 4. Constructing an OT...

56

4.5.1. Transactional object

The transactional object implements the transactional object's operations and registers a

Resource object with the Coordinator, so that the Recoverable Server's resources, including

any necessary recovery, can commit.

The Resource object identifies the involvement of the Recoverable Server in a particular

transaction. This requires a Resource object to only be registered in one transaction at a

time. Register a different Resource object for each transaction in which a recoverable server

is concurrently involved. A transactional object may receive multiple requests within the scope

of a single transaction. It only needs to register its involvement in the transaction once. The

is_same_transaction operation allows the transactional object to determine if the transaction

associated with the request is one in which the transactional object is already registered.

The hash_transaction operations allow the transactional object to reduce the number of

transaction comparisons it has to make. All Coordinators for the same transaction return the

same hash code. The is_same_transaction operation only needs to be called on Coordinators

with the same hash code as the Coordinator of the current request.

4.5.2. Resource object

A Resource object participates in the completion of the transaction, updates the resources of the

Recoverable Server in accordance with the transaction outcome, and ensures termination of the

transaction, including across failures.

4.5.3. Reliable servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use the

same interface as a Recoverable Server to ensure application integrity for objects that do not

have recoverable state. In the case of a Reliable Server, the transactional object can register a

Resource object that replies VoteReadOnly to prepare if its integrity constraints are satisfied.

It replies VoteRollback if it finds a problem. This approach allows the server to apply integrity

constraints which apply to the transaction as a whole, rather than to individual requests to the

server.

4.5.4. Examples

Example 4.3. Reliable server

/*

 BankAccount1 is an object with internal resources. It inherits from both the

 TransactionalObject and the Resource interfaces:

*/

interface BankAccount1:

 CosTransactions::TransactionalObject, CosTransactions::Resource

{

 ...

Examples

57

 void makeDeposit (in float amt);

 ...

};

/* The corresponding Java class is: */

public class BankAccount1

{

public void makeDeposit(float amt);

 ...

};

/*

 Upon entering, the context of the transaction is implicitly associated with

 the object#s thread. The pseudo object

 supporting the Current interface is used to retrieve the Coordinator object

 associated with the transaction.

*/

void makeDeposit (float amt)

{

 org.omg.CosTransactions.Control c;

 org.omg.CosTransactions.Coordinator co;

 c = txn_crt.get_control();

 co = c.get_coordinator();

 ...

/*

 Before registering the resource the object should check whether it has already

 been registered for the same

 transaction. This is done using the hash_transaction and is_same_transaction

 operations. that this object registers

 itself as a resource. This imposes the restriction that the object may only

 be involved in one transaction at a

 time. This is not the recommended way for recoverable objects to participate

 within transactions, and is only used as an

 example. If more parallelism is required, separate resource objects should

 be registered for involvement in the same

 transaction.

*/

 RecoveryCoordinator r;

 r = co.register_resource(this);

 // performs some transactional activity locally

 balance = balance + f;

 num_transactions++;

 ...

 // end of transactional operation

};

Chapter 4. Constructing an OT...

58

Example 4.4. Transactional object

/* A BankAccount2 is an object with external resources that inherits from the

 TransactionalObject interface: */

interface BankAccount2: CosTransactions::TransactionalObject

{

 ...

 void makeDeposit(in float amt);

 ...

};

public class BankAccount2

{

public void makeDeposit(float amt);

 ...

}

/*

Upon entering, the context of the transaction is implicitly associated with the

 object#s thread. The makeDeposit

operation performs some transactional requests on external, recoverable servers.

 The objects res1 and res2 are

recoverable objects. The current transaction context is implicitly propagated

 to these objects.

*/

void makeDeposit(float amt)

{

 balance = res1.get_balance(amt);

 balance = balance + amt;

 res1.set_balance(balance);

 res2.increment_num_transactions();

} // end of transactional operation

4.6. Failure models

The Transaction Service provides atomic outcomes for transactions in the presence of application,

system or communication failures. From the viewpoint of each user object role, two types of failure

are relevant:

• A local failure, which affects the object itself.

• An external failure, such as failure of another object or failure in the communication with an

object.

The transaction originator and transactional server handle these failures in different ways.

Transaction originator

59

4.6.1. Transaction originator

Local failure

If a Transaction originator fails before the originator issues commit, the transaction is rolled

back. If the originator fails after issuing commit and before the outcome is reported, the

transaction can either commit or roll back, depending on timing. In this case, the transaction

completes without regard to the failure of the originator.

External failure

Any external failure which affects the transaction before the originator issues commit causes

the transaction to roll back. The standard exception TransactionRolledBack is raised in the

originator when it issues commit.

If a failure occurs after commit and before the outcome is reported, the client may not be

informed of the outcome of the transaction. This depends on the nature of the failure, and the

use of the report_heuristics option of commit. For example, the transaction outcome is

not reported to the client if communication between the client and the Coordinator fails.

A client can determine the outcome of the transaction by using method get_status on the

Coordinator. However, this is not reliable because it may return the status NoTransaction,

which is ambiguous. The transaction could have committed and been forgotten, or it could

have rolled back and been forgotten.

An originator is only guaranteed to know the transaction outcome in one of two ways.

• if its implementation includes a Resource object, so that it can participate in the two-phase

commit procedure.

• The originator and Coordinator must be located in the same failure domain.

4.6.2. Transactional server

Local failure

If the Transactional Server fails, optional checks by a Transaction Service implementation

may make the transaction to roll back. Without such checks, whether the transaction rolls

back depends on whether the commit decision is already made, such as when an unchecked

client invokes commit before receiving all replies from servers.

External failure

Any external failure affecting the transaction during the execution of a Transactional Server

causes the transaction to be rolled back. If the failure occurs while the transactional object’s

method is executing, the failure has no effect on the execution of this method. The method may

terminate normally, returning the reply to its client. Eventually the TransactionRolledBack

exception is returned to a client issuing commit.

Recoverable server

Behavior of a recoverable server when failures occur is determined by the two phase commit

protocol between the Coordinator and the recoverable server’s Resource object.

Chapter 4. Constructing an OT...

60

4.7. Summary

When you develop OTS applications which use the raw OTS interfaces, be aware of the following

items:

• Create Resource and SubtransactionAwareResource objects for each object which will

participate within the transaction or subtransaction. These resources handle the persistence,

concurrency control, and recovery for the object. The OTS invokes these objects during the

prepare, commit, and abort phases of the transaction or subtransaction, and the Resources

then perform all appropriate work.

• Register Resource and SubtransactionAwareResource objects at the correct time within the

transaction, and ensure that the object is only registered once within a given transaction. As

part of registration, a Resource receives a reference to a RecoveryCoordinator, which must

be made persistent so that recovery can occur in the event of a failure.

• For nested transactions, make sure that any propagation of resources, such as locks

to parent transactions, are done correctly. You also need to manage propagation of

SubtransactionAwareResource objects to parents.

• in the event of failures, drive the crash recovery for each Resource which participates within

the transaction.

The OTS does not provide any Resource implementations.

Chapter 5.

61

JBossTS interfaces for extending the

OTS
This chapter contains a description of the use of the JBossTS classes you can use to extend

the OTS interfaces. These advanced interfaces are all written on top of the basic OTS engine

described previously, and applications which use them run on other OTS implementations, only

without the added functionality.

Features

AtomicTransaction

Provides a more manageable interface to the OTS transaction than

CosTransactions::Current. It automatically keeps track of transaction scope, and allows

you to create nested top-level transactions in a more natural manner than the one provided

by the OTS.

Advanced subtransaction-Resource classes

Allow nested transactions to use a two-phase commit protocol. These Resources can also

be ordered within JBossTS, enabling you to control the order in which Resources are called

during the commit or abort protocol.

Implicit context propagation between client and server

Where available, JBossTS uses implicit context propagation between client and server.

Otherwise, JBossTS provides an explicit interposition class, which simplifies the work involved

in interposition. The JBossTS API, Transactional Objects for Java (TXOJ), requires either

explicit or implicit interposition. This is even true in a stand-alone mode when using a separate

transaction manager. TXOJ is fully described in the ArjunaCore Development Guide.

Note

the extensions to the CosTransactions.idl are located in the

com.arjuna.ArjunaOTS package and the ArjunaOTS.idl file.

5.1. Nested transactions

The OTS implementation of nested transactions is extremely limited, and can lead to the

generation of inconsistent results. One example is a scenario in which a subtransaction

coordinator discovers part of the way through committing that a resources cannot commit. It may

not be able to tell the committed resources to abort.

In most transactional systems which support subtransactions, the subtransaction commit protocol

is the same as a top-level transaction’s. There are two phases, a prepare phase and a commit

Chapter 5. JBossTS interfaces...

62

or abort phase. Using a multi-phase commit protocol avoids the above problem of discovering

that one resources cannot commit after others have already been told to commit. The prepare

phase generates consensus on the commit outcome, and the commit or abort phase enforces

the outcome.

JBossTS supports the strict OTS implementation of subtransactions for those resources derived

from CosTransactions::SubtransactionAwareResource. However, if a resource is derived

from ArjunaOTS::ArjunaSubtranAwareResource, it is driven by a two-phase commit protocol

whenever a nested transaction commits.

Example 5.1. ArjunaSubtranAwareResource

interface ArjunaSubtranAwareResource :

 CosTransactions::SubtransactionAwareResource

{

 CosTransactions::Vote prepare_subtransaction ();

};

During the first phase of the commit protocol the prepare_subtransaction method is called,

and the resource behaves as though it were being driven by a top-level transaction, making any

state changes provisional upon the second phase of the protocol. Any changes to persistent

state must still be provisional upon the second phase of the top-level transaction, as well. Based

on the votes of all registered resources, JBossTS then calls either commit_subtransaction or

rollback_subtransaction.

Note

This scheme only works successfully if all resources registered within a given

subtransaction are instances of the ArjunaSubtranAwareResource interface, and

that after a resource tells the coordinator it can prepare, it does not change its mind.

5.2. Extended resources

When resources are registered with a transaction, the transaction maintains them within a list,

called the intentions list. At termination time, the transaction uses the intentions list to drive each

resource appropriately, to commit or abort. However, you have no control over the order in which

resources are called, or whether previously-registered resources should be replaced with newly

registered resources. The JBossTS interface ArjunaOTS::OTSAbstractRecord gives you this

level of control.

Example 5.2. OTSAbstractRecord

interface OTSAbstractRecord : ArjunaSubtranAwareResource

Extended resources

63

{

 readonly attribute long typeId;

 readonly attribute string uid;

 boolean propagateOnAbort ();

 boolean propagateOnCommit ();

 boolean saveRecord ();

 void merge (in OTSAbstractRecord record);

 void alter (in OTSAbstractRecord record);

 boolean shouldAdd (in OTSAbstractRecord record);

 boolean shouldAlter (in OTSAbstractRecord record);

 boolean shouldMerge (in OTSAbstractRecord record);

 boolean shouldReplace (in OTSAbstractRecord record);

};

typeId returns the record type of the instance. This is one of the values

of the enumerated type Record_type.

uid a stringified Uid for this record.

propagateOnAbort by default, instances of OTSAbstractRecord should not be

propagated to the parent transaction if the current transaction

rolls back. By returning TRUE, the instance will be propagated.

propagateOnCommit returning TRUE from this method causes the instance to be

propagated to the parent transaction if the current transaction

commits. Returning FALSE disables the propagation.

saveRecord returning TRUE from this method causes JBossTS to try to save

sufficient information about the record to persistent state during

commit, so that crash recovery mechanisms can replay the

transaction termination in the event of a failure. If FALSE is

returned, no information is saved.

merge used when two records need to merge together.

alter used when a record should be altered.

shouldAdd returns true ii the record should be added to the list, false if it

should be discarded.

shouldMerge returns true if the two records should be merged into a single

record, false otherwise.

shouldReplace returns true if the record should replace an existing one, false

otherwise.

When inserting a new record into the transaction’s intentions list, JBossTS uses the following

algorithm:

Chapter 5. JBossTS interfaces...

64

1. if a record with the same type and uid has already been inserted, then the methods shouldAdd,

and related methods, are invoked to determine whether this record should also be added.

2. If no such match occurs, then the record is inserted in the intentions list based on the type

field, and ordered according to the uid. All of the records with the same type appear ordered

in the intentions list.

OTSAbstractRecord is derived from ArjunaSubtranAwareResource. Therefore, all instances of

OTSAbstractRecord inherit the benefits of this interface.

5.3. AtomicTransaction

In terms of the OTS, AtomicTransaction is the preferred interface to the OTS protocol engine.

It is equivalent to CosTransactions::Current, but with more emphasis on easing application

development. For example, if an instance of AtomicTransaction goes out of scope before it is

terminates, the transaction automatically rolls back. CosTransactions::Current cannot provide

this functionality. When building applications using JBossTS, use AtomicTransaction for the

added benefits it provides. It is located in the com.arjuna.ats.jts.extensions.ArjunaOTS package.

Example 5.3. AtomicTransaction

public class AtomicTransaction

{

 public AtomicTransaction ();

 public void begin () throws SystemException, SubtransactionsUnavailable,

 NoTransaction;

 public void commit (boolean report_heuristics) throws SystemException,

 NoTransaction, HeuristicMixed,

 HeuristicHazard,TransactionRolledBack;

 public void rollback () throws SystemException, NoTransaction;

 public Control control () throws SystemException, NoTransaction;

 public Status get_status () throws SystemException;

 /* Allow action commit to be supressed */

 public void rollbackOnly () throws SystemException, NoTransaction;

 public void registerResource (Resource r) throws SystemException, Inactive;

 public void

 registerSubtransactionAwareResource (SubtransactionAwareResource)

 throws SystemException, NotSubtransaction;

 public void

 registerSynchronization(Synchronization s) throws SystemException,

 Inactive;

};

Table 5.1. AtomicTransaction's Methods

begin Starts an action

Context propagation issues

65

commit Commits an action

rollback Abort an action

Transaction nesting is determined dynamically. Any transaction started within the scope of another

running transaction is nested.

The TopLevelTransaction class, which is derived from AtomicTransaction, allows

creation of nested top-level transactions. Such transactions allow non-serializable and

potentially non-recoverable side effects to be initiated from within a transaction, so use

them with caution. You can create nested top-level transactions with a combination of

the CosTransactions::TransactionFactory and the suspend and resume methods of

CosTransactions::Current. However, the TopLevelTransaction class provides a more user-

friendly interface.

AtomicTransaction and TopLevelTransaction are completely compatible with

CosTransactions::Current. You an use the two transaction mechanisms interchangeably within

the same application or object.

AtomicTransaction and TopLevelTransaction are similar to CosTransactions::Current.

They both simplify the interface between you and the OTS. However, you gain two advantages

by using AtomicTransaction or TopLevelTransaction.

• The ability to create nested top-level transactions which are automatically associated with the

current thread. When the transaction ends, the previous transaction associated with the thread,

if any, becomes the thread’s current transaction.

• Instances of AtomicTransaction track scope, and if such an instance goes out of scope before

it is terminated, it is automatically aborted, along with its children.

5.4. Context propagation issues

When using TXOJ in a distributed manner, JBossTS requires you to use interposition between

client and object. This requirement also exists if the application is local, but the transaction

manager is remote. In the case of implicit context propagation, where the application object

is derived from CosTransactions::TransactionalObject, you do not need to do anything

further. JBossTS automatically provides interposition. However, where implicit propagation is not

supported by the ORB, or your application does not use it, you must take additional action to

enable interposition.

The class com.arjuna.ats.jts.ExplicitInterposition allows an application to create a local

control object which acts as a local coordinator, fielding registration requests that would normally

be passed back to the originator. This surrogate registers itself with the original coordinator, so

that it can correctly participate in the commit protocol. The application thread context becomes

the surrogate transaction hierarchy. Any transaction context currently associated with the thread

is lost. The interposition lasts for the lifetime of the explicit interposition object, at which point the

application thread is no longer associated with a transaction context. Instead, it is set to null.

Chapter 5. JBossTS interfaces...

66

interposition is intended only for those situations where the transactional object and the transaction

occur within different processes, rather than being co-located. If the transaction is created locally

to the client, do not use the explicit interposition class. The transaction is implicitly associated with

the transactional object because it resides within the same process.

Example 5.4. ExplicitInterposition

public class ExplicitInterposition

{

 public ExplicitInterposition ();

 public void registerTransaction (Control control) throws InterpositionFailed, SystemException;

 public void unregisterTransaction () throws InvalidTransaction,

 SystemException;

};

A transaction context can be propagated between client and server in two ways: either as a

reference to the client’s transaction Control, or explicitly sent by the client. Therefore, there are two

ways in which the interposed transaction hierarchy can be created and registered. For example,

consider the class Example which is derived from LockManager and has a method increment:

Example 5.5. ExplicitInterposition Example

public boolean increment (Control control)

{

 ExplicitInterposition inter = new ExplicitInterposition();

 try

 {

 inter.registerTransaction(control);

 }

 catch (Exception e)

 {

 return false;

 }

 // do real work

 inter.unregisterTransaction(); // should catch exceptions!

 // return value dependant upon outcome

}

Context propagation issues

67

if the Control passed to the register operation of ExplicitInterposition is null, no

exception is thrown. The system assumes that the client did not send a transaction context to the

server. A transaction created within the object will thus be a top-level transaction.

When the application returns, or when it finishes with the interposed hierarchy, the program should

call unregisterTransaction to disassociate the thread of control from the hierarchy. This occurs

automatically when the ExplicitInterposition object is garbage collected. However, since this

may be after the transaction terminates, JBossTS assumes the thread is still associated with the

transaction and issues a warning about trying to terminate a transaction while threads are still

active within it.

68

Chapter 6.

69

Example
This example illustrates the concepts and the implementation details for a simple client/server

example using implicit context propagation and indirect context management.

6.1. The basic example

This example only includes a single unit of work within the scope of the transaction. consequently,

only a one-phase commit is needed.

The client and server processes are both invoked using the implicit propagation and

interposition command-line options.

For the purposes of this worked example, a single method implements the DemoInterface

interface. This method is used in the DemoClient program.

Example 6.1. idl interface

#include <idl/CosTransactions.idl>

#pragma javaPackage ""

module Demo

{

 exception DemoException {};

 interface DemoInterface : CosTransactions::TransactionalObject

 {

 void work() raises (DemoException);

 };

};

6.1.1. Example implementation of the interface

This section deals with the pieces needed to implement the example interface.

6.1.1.1. Resource

The example overrides the methods of the Resource implementation class. The DemoResource

implementation includes the placement of System.out.println statements at judicious points,

to highlight when a particular method is invoked.

Only a single unit of work is included within the scope of the transaction. Therefore, the prepare or

commit methods should never be invoked, but the commit_one_phase method should be invoked.

Chapter 6. Example

70

Example 6.2. DemoResource

1 import org.omg.CosTransactions.*;

2 import org.omg.CORBA .SystemException;

3

4 public class DemoResource extends org.omg.CosTransactions .ResourcePOA

5 {

6 public Vote prepare() throws HeuristicMixed, HeuristicHazard,

7 SystemException

8 {

9 System.out.println("prepare called");

10

11 return Vote.VoteCommit;

12 }

13

14 public void rollback() throws HeuristicCommit, HeuristicMixed,

15 HeuristicHazard, SystemException

16 {

17 System.out.println("rollback called");

18 }

19

20 public void commit() throws NotPrepared, HeuristicRollback,

21 HeuristicMixed, HeuristicHazard, SystemException

22 {

23 System.out.println("commit called");

24 }

25

26 public void commit_one_phase() throws HeuristicHazard, SystemException

27 {

28 System.out.println("commit_one_phase called");

29 }

30

31 public void forget() throws SystemException

32 {

33 System.out.println("forget called");

34 }

35 }

6.1.1.2. Transactional implementation

At this stage, the Demo.idl has been processed by the ORB’s idl compiler to generate the

necessary client and server package.

Line 14 returns the transactional context for the Current pseudo object. After obtaining a Control

object, you can derive the Coordinator object (line 16).

Example implementation of the interface

71

Lines 17 and 19 create a resource for the transaction, and then inform the ORB that the resource

is ready to receive incoming method invocations.

Line 20 uses the Coordinator to register a DemoResource object as a participant in the

transaction. When the transaction terminates, the resource receives requests to commit or rollback

the updates performed as part of the transaction.

Example 6.3. Transactional implementation

1 import Demo.*;

2 import org.omg.CosTransactions.*;

3 import com.arjuna.ats.jts.*;

4 import com.arjuna.orbportability.*;

5

6 public class DemoImplementation extends Demo.DemoInterfacePOA

7 {

8 public void work() throws DemoException

9 {

10 try

11 {

12

13 Control control = OTSManager.get_current().get_control();

14

15 Coordinator coordinator = control.get_coordinator();

16 DemoResource resource = new DemoResource();

17

18 ORBManager.getPOA().objectIsReady(resource);

19 coordinator.register_resource(resource);

20

21 }

22 catch (Exception e)

23 {

24 throw new DemoException();

25 }

26 }

27

28 }

6.1.1.3. Server implementation

First, you need to to initialize the ORB and the POA. Lines 10 through 14 accomplish these tasks.

The servant class DemoImplementation contains the implementation code for the DemoInterface

interface. The servant services a particular client request. Line 16 instantiates a servant object for

the subsequent servicing of client requests.

Once a servant is instantiated, connect the servant to the POA, so that it can recognize the

invocations on it, and pass the invocations to the correct servant. Line 18 performs this task.

Chapter 6. Example

72

Lines 20 through to 21 registers the service through the default naming mechanism. More

information about the options available can be found in the ORB Portability Guide.

If this registration is successful, line 23 outputs a sanity check message.

Finally, line 25 places the server process into a state where it can begin to accept requests from

client processes.

Example 6.4. DemoServer

1 import java.io.*;

2 import com.arjuna.orbportability.*;

3

4 public class DemoServer

5 {

6 public static void main (String[] args)

7 {

8 try

9 {

10 ORB myORB = ORB.getInstance("test").initORB(args, null);

11 RootOA myOA = OA.getRootOA(myORB).myORB.initOA();

12

13 ORBManager.setORB(myORB);

14 ORBManager.setPOA(myOA);

15

16 DemoImplementation obj = new DemoImplementation();

17

18 myOA.objectIsReady(obj);

19

20 Services serv = new Services(myORB);

21 serv.registerService(myOA.corbaReference(obj), "DemoObjReference", null);

22

23 System.out.println("Object published.");

24

25 myOA.run();

26 }

27 catch (Exception e)

28 {

29 System.err.println(e);

30 }

31 }

32 }

After the server compiles, you can use the command line options defined below to start a server

process. By specifying the usage of a filter on the command line, you can override settings in the

TransactionService.properties file.

Example implementation of the interface

73

Note

if you specify the interposition filter, you also imply usage of implicit context

propagation.

6.1.1.4. Client implementation

The client, like the server, requires you to first initialize the ORB and the POA. Lines 14 through

18 accomplish these tasks.

After a server process is started, you can obtain the object reference through the default

publication mechanism used to publish it in the server. This is done in lines 20 and 21. Initially the

reference is an instance of Object. However, to invoke a method on the servant object, you need

to narrow this instance to an instance of the DemoInterface interface. This is shown in line 21.

Once we have a reference to this servant object, we can start a transaction (line 23), perform a

unit of work (line 25) and commit the transaction (line 27).

Example 6.5. DemoClient

1 import Demo.*;

2 import java.io.*;

3 import com.arjuna.orbportability.*;

4 import com.arjuna.ats.jts.*;

5 import org.omg.CosTransactions.*;

6 import org.omg.*;

7

8 public class DemoClient

9 {

10 public static void main(String[] args)

11 {

12 try

13 {

14 ORB myORB = ORB.getInstance("test").initORB(args, null);

15 RootOA myOA = OA.getRootOA(myORB).myORB.initOA();

16

17 ORBManager.setORB(myORB);

18 ORBManager.setPOA(myOA);

19

20 Services serv = new Services(myORB);

21 DemoInterface d = (DemoInterface) DemoInterfaceHelper.narrow(serv.getService("DemoObjReference"));

22

23 OTS.get_current().begin();

24

25 d.work();

26

Chapter 6. Example

74

27 OTS.get_current().commit(true);

28 }

29 catch (Exception e)

30 {

31 System.err.println(e);

32 }

33 }

34 }

6.1.1.5. Sequence diagram

The sequence diagram illustrates the method invocations that occur between the client and server.

The following aspects are important:

• You do not need to pass the transactional context as a parameter in method work, since you

are using implicit context propagation.

• Specifying the use of interposition when the client and server processes are started, by using

appropriate filters and interceptors, creates an interposed coordinator that the servant process

can use, negating any requirement for cross-process invocations. The interposed coordinator

is automatically registered with the root coordinator at the client.

• The resource that commits or rolls back modifications made to the transactional object is

associated, or registered, with the interposed coordinator.

• The commit invocation in the client process calls the root coordinator. The root coordinator calls

the interposed coordinator, which in turn calls the commit_one_phase method for the resource.

Example implementation of the interface

75

Figure 6.1. Sequence Diagram

Chapter 6. Example

76

6.1.1.6. Interpretation of output

The server process first stringifies the servant instance, and writes the servant IOR to a temporary

file. The first line of output is the sanity check that the operation was successful.

In this simplified example, the coordinator object has only a single registered resource.

Consequently, it performs a commit_one_phase operation on the resource object, instead of

performing a prepare operation, followed by a commit or rollback.

The output is identical, regardless of whether implicit context propagation or interposition is

used, since interposition is essentially performance aid. Ordinarily, you may need to do a lot of

marshaling between a client and server process.

Example 6.6. Server output

Object reference written to file

commit_one_phase called

6.2. Default settings

These settings are defaults, and you can override them at run-time by using property variables,

or in the properties file in the etc/ directory of the installation.

• Unless a CORBA object is derived from CosTransactions::TransactionalObject,you do

not need to propagate any context. In order to preserve distribution transparency, JBossTS

defaults to always propagating a transaction context when calling remote objects, regardless

of whether they are marked as transactional objects. You can override this by setting the

com.arjuna.ats.jts.alwaysPropagateContext property variable to NO.

• If an object is derived from CosTransactions::TransactionalObject, and no client context

is present when an invocation is made, JBossTS transmits a null context. Subsequent

transactions begun by the object are top-level. If a context is required, then set the

com.arjuna.ats.jts.needTranContext property variable to YES, in which case JBossTS

raises the TransactionRequired exception.

• JBossTS needs a persistent object store, so that it can record information about

transactions in the event of failures. If all transactions complete successfully, this

object store has no entries. The default location for this must be set using the

ObjectStoreEnvironmentBean.objectStoreDir variable in the properties file.

• If you use a separate transaction manager for Current, its location is

obtained from the CosServices.cfg file. CosServices.cfg is located at runtime

by the OrbPortabilityEnvironmentBean properties initialReferencesRoot and

initialReferencesFile. The former is a directory, defaulting to the current working directory.

The latter is a file name, relative to the directory. The default value is CosServices.cfg.

Default settings

77

• Checked transactions are not enabled by default. This means that threads other than the

transaction creator may terminate the transaction, and no check is made to ensure all

outstanding requests have finished prior to transaction termination. To override this, set the

JTSEnvironmentBean.checkedTransactions property variable to YES.

•

Note

As of JBossTS 4.5, transaction timeouts are unified across all transaction

components and are controlled by ArjunaCore. The old JTS configuration

property com.arjuna.ats.jts.defaultTimeout still remains but is deprecated.

if a value of 0 is specified for the timeout of a top-level transaction, or no timeout is specified,

JBossTS does not impose any timeout on the transaction. To override this default timeout, set

the CoordinatorEnvironmentBean.defaultTimeout property variable to the required timeout

value in seconds.

78

Chapter 7.

79

Failure Recovery
The failure recovery subsystem of JBossTS ensure that results of a transaction are applied

consistently to all resources affected by the transaction, even if any of the application processes

or the hardware hosting them crash or lose network connectivity. In the case of hardware crashes

or network failures, the recovery does not take place until the system or network are restored,

but the original application does not need to be restarted. Recovery is handled by the Recovery

Manager process. For recover to take place, information about the transaction and the resources

involved needs to survive the failure and be accessible afterward. This information is held in the

ActionStore , which is part of the ObjectStore . If the ObjectStore is destroyed or modified,

recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction which was in

progress at the time of the failure may be inaccessible. Database resources may report this as

as tables or rows held by in-doubt transactions . For TXOJ resources, an attempt to activate the

Transactional Object, such as when trying to get a lock, fails.

7.1. Configuring the failure recovery subsystem for

your ORB

Although some ORB-specific configuration is necessary to configure the ORB sub-system, the

basic settings are ORB-independent. The configuration which applies to JBossTS is in the

RecoveryManager-properties.xml file and the orportability-properties.xml file. Contents

of each file are below.

Example 7.1. RecoverManager-properties.xml

<entry key="RecoveryEnvironmentBean.recoveryActivatorClassNames">

 com.arjuna.ats.internal.jts.orbspecific.recovery.RecoveryEnablement

</entry>

Example 7.2. orportability-properties.xml

<entry key="com.arjuna.orbportability.orb.PostInit2">com.arjuna.ats.internal.jts.recovery.RecoveryInit</

entry>

These entries cause instances of the named classes to be loaded. The named classes then

load the ORB-specific classes needed and perform other initialization. This enables failure

recovery for transactions initiated by or involving applications using this property file. The

default RecoveryManager-properties.xml file and orportability-properties.xml with the

distribution include these entries.

Chapter 7. Failure Recovery

80

Important

Failure recovery is NOT supported with the JavaIDL ORB that is part of JDK.

Failure recovery is supported for JacOrb only.

To disable recovery, remove or comment out the RecoveryEnablement line in the property file.

7.2. JTS specific recovery

7.2.1. XA resource recovery

Recovery of XA resources accessed via JDBC is handled by the XARecoveryModule . This module

includes both transaction-initiated and resource-initiated recovery.

• Transaction-initiated recovery is possible where the particular transaction branch progressed

far enough for a JTA_ResourceRecord to be written in the ObjectStore. The record contains

the information needed to link the transaction to information known by the rest of JBossTS in

the database.

• Resource-initiated recovery is necessary for branches where a failure occurred after the

database made a persistent record of the transaction, but before the JTA_ResourceRecord

was written. Resource-initiated recovery is also necessary for datasources for which it is

impossible to hold information in the JTA_ResourceRecord that allows the recreation in the

RecoveryManager of the XAConnection or XAResource used in the original application.

Transaction-initiated recovery is automatic. The XARecoveryModule finds the

JTA_ResourceRecord which needs recovery, using the two-pass mechanism described above.

It then uses the normal recovery mechanisms to find the status of the transaction the resource

was involved in, by running replay_completion on the RecoveryCoordinator for the transaction

branch. Next, it creates or recreates the appropriate XAResource and issues commit or rollback

on it as appropriate. The XAResource creation uses the same database name, username,

password, and other information as the application.

Resource-initiated recovery must be specifically configured, by supplying the RecoveryManager

with the appropriate information for it to interrogate all the XADataSources accessed

by any JBossTS application. The access to each XADataSource is handled

by a class that implements the com.arjuna.ats.jta.recovery.XAResourceRecovery

interface. Instances of this class are dynamically loaded, as controlled by property

JTAEnvironmentBean.xaResourceRecoveryInstances .

The XARecoveryModule uses the XAResourceRecovery implementation to get an XAResource

to the target datasource. On each invocation of periodicWorkSecondPass , the recovery

module issues an XAResource.recover request. This request returns a list of the transaction

identifiers that are known to the datasource and are in an in-doubt state. The list of these in-

doubt Xids is compared across multiple passes, using periodicWorkSecondPass-es . Any Xid

that appears in both lists, and for which no JTA_ResourceRecord is found by the intervening

XA resource recovery

81

transaction-initiated recovery, is assumed to belong to a transaction involved in a crash before

any JTA_Resource_Record was written, and a rollback is issued for that transaction on the

XAResource .

This double-scan mechanism is used because it is possible the Xid was obtained from the

datasource just as the original application process was about to create the corresponding

JTA_ResourceRecord. The interval between the scans should allow time for the record to be

written unless the application crashes (and if it does, rollback is the right answer).

An XAResourceRecovery implementation class can contain all the information needed to perform

recovery to a specific datasource. Alternatively, a single class can handle multiple datasources

which have some similar features. The constructor of the implementation class must have an

empty parameter list, because it is loaded dynamically. The interface includes an initialise

method, which passes in further information as a string . The content of the string is taken from

the property value that provides the class name. Everything after the first semi-colon is passed as

the value of the string. The XAResourceRecovery implementation class determines how to use

the string.

An XAResourceRecovery implementation class,

com.arjuna.ats.internal.jdbc.recovery.BasicXARecovery , supports resource-initiated

recovery for any XADataSource. For this class, the string received in method initialise is

assumed to contain the number of connections to recover, and the name of the properties file

containing the dynamic class name, the database username, the database password and the

database connection URL. The following example is for an Oracle 8.1.6 database accessed via

the Sequelink 5.1 driver:

XAConnectionRecoveryEmpay=com.arjuna.ats.internal.jdbc.recovery.BasicXARecovery;2;OraRecoveryInfo

This implementation is only meant as an example, because it relies upon usernames

and passwords appearing in plain text properties files. You can create your own

implementations of XAConnectionRecovery . See the javadocs and the example

com.arjuna.ats.internal.jdbc.recovery.BasicXARecovery .

Example 7.3. XAConnectionRecovery implementation

/*

 * Copyright (C) 2000, 2001,

 *

 * Hewlett-Packard,

 * Arjuna Labs,

 * Newcastle upon Tyne,

 * Tyne and Wear,

 * UK.

 *

Chapter 7. Failure Recovery

82

 */

package com.arjuna.ats.internal.jdbc.recovery;

import com.arjuna.ats.jdbc.TransactionalDriver;

import com.arjuna.ats.jdbc.common.jdbcPropertyManager;

import com.arjuna.ats.jdbc.logging.jdbcLogger;

import com.arjuna.ats.internal.jdbc.*;

import com.arjuna.ats.jta.recovery.XAConnectionRecovery;

import com.arjuna.ats.arjuna.common.*;

import com.arjuna.common.util.logging.*;

import java.sql.*;

import javax.sql.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import java.util.*;

import java.lang.NumberFormatException;

/**

 * This class implements the XAConnectionRecovery interface for XAResources.

 * The parameter supplied in setParameters can contain arbitrary information

 * necessary to initialise the class once created. In this instance it contains

 * the name of the property file in which the db connection information is

 * specified, as well as the number of connections that this file contains

 * information on (separated by ;).

 *

 * IMPORTANT: this is only an *example* of the sorts of things an

 * XAConnectionRecovery implementor could do. This implementation uses

 * a property file which is assumed to contain sufficient information to

 * recreate connections used during the normal run of an application so that

 * we can perform recovery on them. It is not recommended that information such

 * as user name and password appear in such a raw text format as it opens up

 * a potential security hole.

 *

 * The db parameters specified in the property file are assumed to be

 * in the format:

 *

 * DB_x_DatabaseURL=

 * DB_x_DatabaseUser=

 * DB_x_DatabasePassword=

 * DB_x_DatabaseDynamicClass=

 *

 * DB_JNDI_x_DatabaseURL=

 * DB_JNDI_x_DatabaseUser=

 * DB_JNDI_x_DatabasePassword=

 *

 * where x is the number of the connection information.

XA resource recovery

83

 *

 * @since JTS 2.1.

 */

public class BasicXARecovery implements XAConnectionRecovery

{

 /*

 * Some XAConnectionRecovery implementations will do their startup work

 * here, and then do little or nothing in setDetails. Since this one needs

 * to know dynamic class name, the constructor does nothing.

 */

 public BasicXARecovery () throws SQLException

 {

 numberOfConnections = 1;

 connectionIndex = 0;

 props = null;

 }

 /**

 * The recovery module will have chopped off this class name already.

 * The parameter should specify a property file from which the url,

 * user name, password, etc. can be read.

 */

 public boolean initialise (String parameter) throws SQLException

 {

 int breakPosition = parameter.indexOf(BREAKCHARACTER);

 String fileName = parameter;

 if (breakPosition != -1)

 {

 fileName = parameter.substring(0, breakPosition -1);

 try

 {

 numberOfConnections = Integer.parseInt(parameter.substring(breakPosition +1));

 }

 catch (NumberFormatException e)

 {

 //Produce a Warning Message

 return false;

 }

 }

 PropertyManager.addPropertiesFile(fileName);

 try

 {

 PropertyManager.loadProperties(true);

Chapter 7. Failure Recovery

84

 props = PropertyManager.getProperties();

 }

 catch (Exception e)

 {

 //Produce a Warning Message

 return false;

 }

 return true;

 }

 public synchronized XAConnection getConnection () throws SQLException

 {

 JDBC2RecoveryConnection conn = null;

 if (hasMoreConnections())

 {

 connectionIndex++;

 conn = getStandardConnection();

 if (conn == null)

 conn = getJNDIConnection();

 if (conn == null)

 //Produce a Warning message

 }

 return conn;

 }

 public synchronized boolean hasMoreConnections ()

 {

 if (connectionIndex == numberOfConnections)

 return false;

 else

 return true;

 }

 private final JDBC2RecoveryConnection getStandardConnection () throws SQLException

 {

 String number = new String(""+connectionIndex);

 String url = new String(dbTag+number+urlTag);

 String password = new String(dbTag+number+passwordTag);

 String user = new String(dbTag+number+userTag);

 String dynamicClass = new String(dbTag+number+dynamicClassTag);

 Properties dbProperties = new Properties();

XA resource recovery

85

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(ArjunaJDBC2Driver.userName, theUser);

 dbProperties.put(ArjunaJDBC2Driver.password, thePassword);

 String dc = props.getProperty(dynamicClass);

 if (dc != null)

 dbProperties.put(ArjunaJDBC2Driver.dynamicClass, dc);

 return new JDBC2RecoveryConnection(url, dbProperties);

 }

 else

 return null;

 }

 private final JDBC2RecoveryConnection getJNDIConnection () throws SQLException

 {

 String number = new String(""+connectionIndex);

 String url = new String(dbTag+jndiTag+number+urlTag);

 String password = new String(dbTag+jndiTag+number+passwordTag);

 String user = new String(dbTag+jndiTag+number+userTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(ArjunaJDBC2Driver.userName, theUser);

 dbProperties.put(ArjunaJDBC2Driver.password, thePassword);

 return new JDBC2RecoveryConnection(url, dbProperties);

 }

 else

 return null;

 }

 private int numberOfConnections;

 private int connectionIndex;

 private Properties props;

 private static final String dbTag = "DB_";

 private static final String urlTag = "_DatabaseURL";

 private static final String passwordTag = "_DatabasePassword";

 private static final String userTag = "_DatabaseUser";

 private static final String dynamicClassTag = "_DatabaseDynamicClass";

 private static final String jndiTag = "JNDI_";

 /*

Chapter 7. Failure Recovery

86

 * Example:

 *

 * DB2_DatabaseURL=jdbc\:arjuna\:sequelink\://qa02\:20001

 * DB2_DatabaseUser=tester2

 * DB2_DatabasePassword=tester

 * DB2_DatabaseDynamicClass=

 * com.arjuna.ats.internal.jdbc.drivers.sequelink_5_1

 *

 * DB_JNDI_DatabaseURL=jdbc\:arjuna\:jndi

 * DB_JNDI_DatabaseUser=tester1

 * DB_JNDI_DatabasePassword=tester

 * DB_JNDI_DatabaseName=empay

 * DB_JNDI_Host=qa02

 * DB_JNDI_Port=20000

 */

 private static final char BREAKCHARACTER = ';'; // delimiter for parameters

}

Multiple recovery domains and resource-initiated recovery

XAResource.recover returns the list of all transactions that are in-doubt with in

the datasource. If multiple recovery domains are used with a single datasource,

resource-initiated recovery sees transactions from other domains. Since it does

not have a JTA_ResourceRecord available, it rolls back the transaction in the

database, if the Xid appears in successive recover calls. To suppress resource-

initiated recovery, do not supply an XAConnectionRecovery property, or confine

it to one recovery domain.

7.2.2. Recovery behavior

Property OTS_ISSUE_RECOVERY_ROLLBACK controls whether the RecoveryManager explicitly

issues a rollback request when replay_completion asks for the status of a transaction that is

unknown. According to the presume-abort mechanism used by OTS and JTS, the transaction

can be assumed to have rolled back, and this is the response that is returned to the Resource

, including a subordinate coordinator, in this case. The Resource should then apply that result

to the underlying resources. However, it is also legitimate for the superior to issue a rollback, if

OTS_ISSUE_RECOVERY_ROLLBACK is set to YES .

The OTS transaction identification mechanism makes it possible for a transaction coordinator to

hold a Resource reference that will never be usable. This can occur in two cases:

• The process holding the Resource crashes before receiving the commit or rollback request from

the coordinator.

Expired entry removal

87

• The Resource receives the commit or rollback, and responds. However, the message is lost or

the coordinator process has crashed.

In the first case, the RecoveryManager for the Resource ObjectStore eventually reconstructs a

new Resource (with a different CORBA object reference (IOR), and issues a replay_completion

request containing the new Resource IOR. The RecoveryManager for the coordinator substitutes

this in place of the original, useless one, and issues commit to the new reconstructed Resource

. The Resource has to have been in a commit state, or there would be no transaction intention

list. Until the replay_completion is received, the RecoveryManager tries to send commit to its

Resource reference.–This will fail with a CORBA System Exception. Which exception depends

on the ORB and other details.

In the second case, the Resource no longer exists. The RecoveryManager at the coordinator will

never get through, and will receive System Exceptions forever.

The RecoveryManager cannot distinguish these two cases by any protocol mechanism. There is

a perceptible cost in repeatedly attempting to send the commit to an inaccessible Resource . In

particular, the timeouts involved will extend the recovery iteration time, and thus potentially leave

resources inaccessible for longer.

To avoid this, the RecoveryManager only attempts to send commit to a Resource a limited number

of times. After that, it considers the transaction assumed complete . It retains the information about

the transaction, by changing the object type in the ActionStore , and if the Resource eventually

does wake up and a replay_completion request is received, the RecoveryManager activates

the transaction and issues the commit request to the new Resource IOR. The number of times

the RecoveryManager attempts to issue commit as part of the periodic recovery is controlled by

the property variable COMMITTED_TRANSACTION_RETRY_LIMIT , and defaults to 3 .

7.2.3. Expired entry removal

The operation of the recovery subsystem causes some entries to be made in the ObjectStore

that are not removed in normal progress. The RecoveryManager has a facility for scanning

for these and removing items that are very old. Scans and removals are performed by

implementations of the >com.arjuna.ats.arjuna.recovery.ExpiryScanner . Implementations

of this interface are loaded by giving the class names as the value of the property

RecoveryEnvironmentBean.expiryScannerClassNames . The RecoveryManager calls the scan

method on each loaded ExpiryScanner implementation at an interval determined by the property

RecoveryEnvironmentBean.expiryScanInterval . This value is given in hours, and defaults to

12 . A property value of 0 disables any expiry scanning. If the value as supplied is positive, the

first scan is performed when RecoveryManager starts. If the value is negative, the first scan is

delayed until after the first interval, using the absolute value.

There are two kinds of item that are scanned for expiry:

Contact items One contact item is created by every application process that uses JBossTS.

They contain the information that the RecoveryManager uses to determine

if the process that initiated the transaction is still alive, and what the

Chapter 7. Failure Recovery

88

transaction status is. The expiry time for these is set by the property

RecoveryEnvironmentBean.transactionStatusManagerExpiryTime ,

which is expressed in hours. The default is 12 , and 0 suppresses the expiration.

This is the interval after which a process that cannot be contacted is considered

to be dead. It should be long enough to avoid accidentally removing valid

entries due to short-lived transient errors such as network downtime.

Assumed complete

transactions

The expiry time is counted from when the transactions were assumed

to be complete. A replay_completion request resets the clock. The

risk with removing assumed complete transactions it that a prolonged

communication outage means that a remote Resource cannot connect to

the RecoveryManager for the parent transaction. If the assumed complete

transaction entry is expired before the communications are recovered, the

eventual replay_completion will find no information and the Resource

will be rolled back, although the transaction committed. Consequently,

the expiry time for assumed complete transactions should be set to a

value that exceeds any anticipated network outage. The parameter is

ASSUMED_COMPLETE_EXPIRY_TIME . It is expressed in hours, with 240 being the

default, and 0 meaning never to expire.

Example 7.4. ExpiryScanner properties

<entry key="RecoveryEnvironmentBean.expiryScannerClassNames">

 com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner

 com.arjuna.ats.internal.jts.recovery.contact.ExpiredContactScanner

 com.arjuna.ats.internal.jts.recovery.transactions.ExpiredToplevelScanner

 com.arjuna.ats.internal.jts.recovery.transactions.ExpiredServerScanner

</entry>

There are two ExpiryScannner s for the assumed complete transactions, because there are

different types in the ActionStore.

7.2.4. Recovery domains

A key part of the recovery subsystem is that the RecoveryManager hosts the OTS

RecoveryCoordinator objects that handle recovery for transactions initiated in application

processes. Information passes between the application process and the RecoveryManager in one

of three ways:

• RecoveryCoordinator object references (IORs) are created in the application process. They

contain information identifying the transaction in the object key. They pass the object key to the

Resource objects, and the RecoveryManager receives it.

• The application process and the RecoveryManager access the same jbossts-

properties.xml , and therefore use the same ObjectStore .

 Transaction status and replay_comparison

89

• The RecoveryCoordinator invokes CORBA directly in the application, using information in the

contact items. Contact items are kept in the ObjectStore .

Multiple recovery domains may useful if you are doing a migration, and separate ObjectStores

are useful. However, multiple RecoveryManagers can cause problems with XA datasources if

resource-initiated recovery is active on any of them.

7.3. Transaction status and replay_comparison

When a transaction successfully commits, the transaction log is removed from the system.

The log is no longer required, since all registered Resources have responded successfully

to the two-phase commit sequence. However, if a Resource calls replay_completion on

the RecoveryCoordinator after the transaction it represents commits, the status returned is

StatusRolledback . The transaction system does not keep a record of committed transactions,

and assumes that in the absence of a transaction log, the transaction must have rolled back. This

is in line with the presumed abort protocol used by the OTS.

90

Chapter 8.

91

JTA and JTS

8.1. Distributed JTA

This guide describes how to use the JTA interfaces for purely local transactions. This is a high-

performance implementation, but you can only use it to execute transactions within the same

process. If you need support for distributed transactions, the JTA needs to use the JTS. Another

advantage of this approach is interoperability with other JTS-compliant transaction systems.

Note

If you use the JTS and JTA interfaces to manage the same transactions, the JTA

needs to be configured to be aware of the JTS. Otherwise, local transactions will

be unaware of their JTS counterparts.

You need to do this configuration manually, because some applications may be using JBossTS

in a purely local manner, or may need to differentiate between transactions managed by JTS and

JTA.

Procedure 8.1. Making the JTA interfaces JTS-aware

1. Set JTAEnvironmentBean.jtaTMImplementation to

com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple.

2. Set JTAEnvironmentBean.jtaUTImplementation to

com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple.

92

Chapter 9.

93

Tools

9.1. Introduction

This chapter includes descriptions of JTS specific tools.

9.2. RMIC Extensions

The RMIC extensions allow stubs and tie classes to be generated for transactional RMI-IIOP

objects. A transactional object is one which wishes to receive transactional context when one

of its methods is invoked. Without transactional object support an RMI-IIOP object won't have

transactional context propagated to it when its methods are invoked.

The tool works in two ways: i) via the command line, ii) via ANTs RMIC compiler task. Examples

of how to use the tool via these methods are covered in the following sections.

9.2.1. Command Line Usage

As this tool delegates compilation to the Sun RMIC tool it accepts the same command line

parameters. So for more details please see it's documentation for details (http://java.sun.com/

j2se/1.4.2/docs/tooldocs/tools.html#rmi). The following is an example of how this can be used:

java com.arjuna.common.tools.rmictool.RMICTool <parameters>

9.2.2. ANT Usage

The RMICTool also acts as a plug-in for the ANT RMIC task. To use the RMICTool simply specify

the fully qualified classname as the compiler attribute, e.g.

Example 9.1. Example ANT rmic declaration

<rmic compiler="com.arjuna.common.tools.rmictool.RMICTool" classname="RMIObjectImpl" base="build-

dir"

 verify="true" iiop="true" iiopopts="-poa" classpathref="build.classpath" />

The RMICTool JAR file must either be specified in your system classpath or it should be copied

into the lib directory of your ANT distribution for it to be found.

94

Chapter 10.

95

ORB-specific configuration

10.1. JacORB

Take care to use only the patched version of JacORB shipped with JBossTS. Correct functioning

of the transaction system, particularly with regard to crash recovery, is unlikely to work with an

unpatched JacORB. For each deployment of JacORB, ensure that the jacorb.implname in the

jacorb.properties file is unique.

96

97

Appendix A. IDL definitions
Because of differences between ORBs, and errors in certain ORBs, the idl available with JBossTS

may differ from that shown below. You should always inspect the idl files prior to implementation

to determine what, if any, differences exist.

Example A.1. CosTransactions.idl

#ifndef COSTRANSACTIONS_IDL_

#define COSTRANSACTIONS_IDL_

module CosTransactions

{

 enum Status { StatusActive, StatusMarkedRollback, StatusPrepared,

 StatusCommitted, StatusRolledback, StatusUnknown,

 StatusPreparing, StatusCommitting, StatusRollingBack,

 StatusNoTransaction };

 enum Vote { VoteCommit, VoteRollback, VoteReadOnly };

 // Standard exceptions - some Orb supports them

exception TransactionRequired {};

exception TransactionRolledBack {};

exception InvalidTransaction {};

 // Heuristic exceptions

exception HeuristicRollback {};

 exception HeuristicCommit {};

 exception HeuristicMixed {};

 exception HeuristicHazard {};

 // Exception from ORB

exception WrongTransaction {};

 // Other transaction related exceptions

exception SubtransactionsUnavailable {};

exception NotSubtransaction {};

exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

exception SynchronizationUnavailable {};

 // Forward references for later interfaces

interface Control;

interface Terminator;

interface Coordinator;

interface Resource;

interface RecoveryCoordinator;

interface SubtransactionAwareResource;

interface TransactionFactory;

interface TransactionalObject;

Appendix A. IDL definitions

98

interface Current;

interface Synchronization;

 // Formally part of CosTSInteroperation

struct otid_t

{

 long formatID;

 long bequal_length;

 sequence <octet> tid;

};

struct TransIdentity

 {

 Coordinator coord;

 Terminator term;

 otid_t otid;

 };

struct PropagationContext

 {

 unsigned long timeout;

 TransIdentity currentTransaction;

 sequence <TransIdentity> parents;

 any implementation_specific_data;

 };

 interface Current : CORBA::Current

 {

 void begin () raises (SubtransactionsUnavailable);

 void commit (in boolean report_heuristics) raises (NoTransaction, HeuristicMixed, HeuristicHazard, TransactionRolledBack);

 void rollback () raises (NoTransaction);

 void rollback_only () raises (NoTransaction);

 Status get_status ();

 string get_transaction_name ();

 void set_timeout (in unsigned long seconds);

 Control get_control ();

 Control suspend ();

 void resume (in Control which) raises (InvalidControl);

 };

interface TransactionFactory

 {

 Control create (in unsigned long time_out);

 Control recreate (in PropagationContext ctx);

 };

interface Control

 {

 Terminator get_terminator () raises (Unavailable);

 Coordinator get_coordinator () raises (Unavailable);

 };

interface Terminator

 {

99

 void commit (in boolean report_heuristics) raises (HeuristicMixed, HeuristicHazard, TransactionRolledBack);

 void rollback ();

 };

 interface Coordinator

 {

 Status get_status ();

 Status get_parent_status ();

 Status get_top_level_status ();

 boolean is_same_transaction (in Coordinator tc);

 boolean is_related_transaction (in Coordinator tc);

 boolean is_ancestor_transaction (in Coordinator tc);

 boolean is_descendant_transaction (in Coordinator tc);

 boolean is_top_level_transaction ();

 unsigned long hash_transaction ();

 unsigned long hash_top_level_tran ();

 RecoveryCoordinator register_resource (in Resource r) raises (Inactive);

 void register_synchronization (in Synchronization sync) raises (Inactive, SynchronizationUnavailable);

 void register_subtran_aware (in SubtransactionAwareResource r) raises (Inactive, NotSubtransaction);

 void rollback_only () raises (Inactive);

 string get_transaction_name ();

 Control create_subtransaction () raises (SubtransactionsUnavailable, Inactive);

 PropagationContext get_txcontext () raises (Unavailable);

 };

 interface RecoveryCoordinator

 {

 Status replay_completion (in Resource r) raises (NotPrepared);

 };

interface Resource

 {

 Vote prepare () raises (HeuristicMixed, HeuristicHazard);

 void rollback () raises (HeuristicCommit, HeuristicMixed, HeuristicHazard);

 void commit () raises (NotPrepared, HeuristicRollback, HeuristicMixed, HeuristicHazard);

 void commit_one_phase () raises (HeuristicHazard);

 void forget ();

 };

interface SubtransactionAwareResource : Resource

 {

 void commit_subtransaction (in Coordinator parent);

 void rollback_subtransaction ();

 };

interface TransactionalObject

 {

Appendix A. IDL definitions

100

 };

interface Synchronization : TransactionalObject

 {

 void before_completion ();

 void after_completion (in Status s);

 };

};

#endif

Example A.2. ArjunaOTS.IDL

#ifndef ARJUNAOTS_IDL_

#define ARJUNAOTS_IDL_

#include <idl/CosTransactions.idl>

module ArjunaOTS

{

 exception ActiveTransaction {};

 exception BadControl {};

 exception Destroyed {};

 exception ActiveThreads {};

 exception InterpositionFailed {};

 interface UidCoordinator : CosTransactions::Coordinator

 {

 readonly attribute string uid;

 readonly attribute string topLevelUid;

 };

 interface ActionControl : CosTransactions::Control

 {

 CosTransactions::Control getParentControl ()

 raises (CosTransactions::Unavailable,

 CosTransactions::NotSubtransaction);

 void destroy () raises (ActiveTransaction, ActiveThreads, BadControl,

 Destroyed);

 };

 interface ArjunaSubtranAwareResource :

 CosTransactions::SubtransactionAwareResource

 {

 CosTransactions::Vote prepare_subtransaction ();

 };

 interface ArjunaTransaction : UidCoordinator, CosTransactions::Terminator

 {

 };

 interface OTSAbstractRecord : ArjunaSubtranAwareResource

101

 {

 readonly attribute long typeId;

 readonly attribute string uid;

 boolean propagateOnAbort ();

 boolean propagateOnCommit ();

 boolean saveRecord ();

 void merge (in OTSAbstractRecord record);

 void alter (in OTSAbstractRecord record);

 boolean shouldAdd (in OTSAbstractRecord record);

 boolean shouldAlter (in OTSAbstractRecord record);

 boolean shouldMerge (in OTSAbstractRecord record);

 boolean shouldReplace (in OTSAbstractRecord record);

 };

};

102

103

References
[OMG95] Copyright © 1995 OMG. OMG. CORBAservices: Common Object Services

Specification. [OMG Document Number 95-3-31]

[JTA99] Copyright © 1999 Sun Microsystems. Sun Microsystems. Java Transaction API.

104

105

Appendix B. Revision History
Revision History

Revision 1 Wed Nov 17 2010 MistyStanley-

Jones<misty@redhat.com>

Initial conversion to Docbook

Revision 2 Thu Apr 14 2011 TomJenkinson<tom.jenkinson@redhat.com>

Moved some content to main developers guide and added tools information

106

	JBossJTS Development Guide
	Table of Contents
	Preface
	1. Audience
	2. Prerequisites
	3. Document Conventions
	3.1. Typographic Conventions
	3.2. Pull-quote Conventions
	3.3. Notes and Warnings

	4. We Need Feedback!

	Chapter 1. Transaction Processing Overview
	1.1. Defining a transaction
	1.2. Commit protocol
	1.3. Transactional proxies
	1.4. Nested transactions
	1.5. The Object Transaction Service (OTS)

	Chapter 2. JBossTS Basics
	2.1. Introduction
	2.1.1. Raw OTS
	2.1.2. Enhanced OTS functionality
	2.1.3. Advanced API

	2.2. JBossTS and the OTS implementation
	2.3. Thread class
	2.4. ORB portability issues

	Chapter 3. Introduction to the OTS
	3.1. Defining the OTS
	3.2. Action programming models
	3.3. Interfaces
	3.4. Transaction factory
	3.4.1. OTS configuration file
	3.4.2. Name service
	3.4.3. resolve_initial_references
	3.4.4. Overriding the default location mechanisms

	3.5. Transaction timeouts
	3.6. Transaction contexts
	3.6.1. Nested transactions
	3.6.2. Transaction propagation
	3.6.3. Examples

	3.7. Transaction controls
	3.7.1. JBossTS specifics

	3.8. The Terminator interface
	3.8.1. JBossTS specifics

	3.9. The Coordinator interface
	3.9.1. JBossTS specifics

	3.10. Heuristics
	3.11. Current
	3.11.1. JBossTS specifics

	3.12. Resource
	3.13. SubtransactionAwareResource
	3.13.1. JBossTS specifics

	3.14. The Synchronization interface
	3.14.1. JBossTS specifics

	3.15. Transactions and registered resources
	3.16. The TransactionalObject interface
	3.17. Interposition
	3.18. RecoveryCoordinator
	3.19. Checked transaction behavior
	3.19.1. JBossTS specifics

	3.20. Summary of JBossTS implementation decisions

	Chapter 4. Constructing an OTS application
	4.1. Important notes for JBossTS
	4.1.1. Initialization
	4.1.2. Implicit context propagation and interposition

	4.2. Writing applications using the raw OTS interfaces
	4.3. Transaction context management
	4.3.1. A transaction originator: indirect and implicit
	4.3.2. Transaction originator: direct and explicit

	4.4. Implementing a transactional client
	4.5. Implementing a recoverable server
	4.5.1. Transactional object
	4.5.2. Resource object
	4.5.3. Reliable servers
	4.5.4. Examples

	4.6. Failure models
	4.6.1. Transaction originator
	4.6.2. Transactional server

	4.7. Summary

	Chapter 5. JBossTS interfaces for extending the OTS
	5.1. Nested transactions
	5.2. Extended resources
	5.3. AtomicTransaction
	5.4. Context propagation issues

	Chapter 6. Example
	6.1. The basic example
	6.1.1. Example implementation of the interface
	6.1.1.1. Resource
	6.1.1.2. Transactional implementation
	6.1.1.3. Server implementation
	6.1.1.4. Client implementation
	6.1.1.5. Sequence diagram
	6.1.1.6. Interpretation of output

	6.2. Default settings

	Chapter 7. Failure Recovery
	7.1. Configuring the failure recovery subsystem for your ORB
	7.2. JTS specific recovery
	7.2.1. XA resource recovery
	7.2.2. Recovery behavior
	7.2.3. Expired entry removal
	7.2.4. Recovery domains

	7.3. Transaction status and replay_comparison

	Chapter 8. JTA and JTS
	8.1. Distributed JTA

	Chapter 9. Tools
	9.1. Introduction
	9.2. RMIC Extensions
	9.2.1. Command Line Usage
	9.2.2. ANT Usage

	Chapter 10. ORB-specific configuration
	10.1. JacORB

	Appendix A. IDL definitions
	References
	Appendix B. Revision History

