
Development Guide

Development

reference guide for the

JBoss Transactions

suite of software

by Mark Red Hat Little, Jonathan Red Hat Halliday,

Andrew Red Hat Dinn, and Kevin Red Hat Connor

edited by Misty Red Hat Stanley-Jones

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Transactions .. 3

2.1. The Java Transaction API (JTA) .. 3

2.2. Introducing the API ... 4

2.3. UserTransaction .. 4

2.4. TransactionManager ... 5

2.5. Suspend and resuming a transaction ... 6

2.6. The Transaction interface .. 7

2.7. Resource enlistment ... 7

2.8. Transaction synchronization .. 8

2.9. Transaction equality .. 8

2.10. TransactionSynchronizationRegistry ... 9

3. The Resource Manager .. 11

3.1. The XAResource interface ... 11

3.1.1. Extended XAResource control ... 12

3.2. Opening a resource manager .. 13

3.3. Closing a resource manager .. 14

3.4. Thread of control .. 14

3.5. Transaction association ... 14

3.6. Externally controlled connections ... 15

3.7. Resource sharing .. 15

3.8. Local and global transactions .. 16

3.9. Transaction timeouts ... 16

3.10. Dynamic registration .. 17

4. General Transaction Issues ... 19

4.1. Advanced transaction issues with TxCore ... 19

4.1.1. Checking transactions .. 19

4.1.2. Gathering statistics ... 20

4.1.3. Asynchronously committing a transaction ... 22

4.1.4. Transaction Logs .. 22

5. Tools .. 25

5.1. ObjectStore command-line editors .. 25

5.1.1. LogEditor ... 25

5.1.2. LogBrowser .. 25

5.2. GUI Based Tools .. 26

5.2.1. Embedded Console .. 26

Development Guide

iv

5.2.2. Performance Graphing .. 26

6. Configuration options .. 29

6.1. Loading a configuration ... 29

6.2. ArjunaCore Options ... 31

6.3. JBossJTA Configuration options .. 31

6.4. JBossJTS Options .. 31

A. Revision History .. 33

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

vii

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Preface

viii

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Programmers Guide contains information on how to use JBoss Transactions. This document

provides a detailed look at the design and operation of JBoss Transactions. It describes the

architecture and the interaction of components within this architecture.

1.1. Audience

This guide is most relevant to engineers who are responsible for developing using JBoss

Transactions. Although this guide is specifically intended for service developers, it will be useful

to anyone who would like to gain an understanding of transactions and how they function.

1.2. Prerequisites

This guide assumes a basic familiarity with Java service development and object-oriented

programming. A fundamental level of understanding in the following areas will also be useful:

• General understanding of the APIs, components, and objects that are present in Java

applications.

• A general understanding of the Windows and UNIX operating systems.

2

Chapter 2.

3

Transactions
A transaction is a unit of work that encapsulates multiple database actions such that that either

all the encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

2.1. The Java Transaction API (JTA)

The interfaces specified by the many transaction standards tend to be too low-level for most

application programmers. Therefore, Sun Microsystems created the Java Transaction API (JTA),

which specifies higher-level interfaces to assist in the development of distributed transactional

applications.

Note, these interfaces are still low-level. You still need to implement state management and

concurrency for transactional applications. The interfaces are also optimized for applications which

require XA resource integration capabilities, rather than the more general resources which other

transactional APIs allow.

With reference to JTA 1.1 (http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

), distributed transaction services typically involve a number of participants:

application server provides the infrastructure required to support

the application run-time environment which

includes transaction state management, such

as an EJB server.

transaction manager provides the services and management

functions required to support

transaction demarcation, transactional

resource management, synchronization, and

transaction context propagation.

resource manager Using a resource adapter , provides the

application with access to resources. The

resource manager participates in distributed

transactions by implementing a transaction

resource interface used by the transaction

manager to communicate transaction

association, transaction completion and

recovery.

A resource adapter is used by an application

server or client to connect to a Resource

Manager. JDBC drivers which are used to

connect to relational databases are examples

of Resource Adapters.

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Chapter 2. Transactions

4

communication resource manager supports transaction context propagation and

access to the transaction service for incoming

and outgoing requests.

From the point of view of the transaction manager, the actual implementation of the transaction

services does not need to be exposed. You only need to define high-level interfaces to allow

transaction demarcation, resource enlistment, synchronization and recovery process to be driven

from the users of the transaction services. The JTA is a high-level application interface that allows

a transactional application to demarcate transaction boundaries, and also contains a mapping of

the X/Open XA protocol.

Compatibility

the JTA support provided by JBoss Transactions is compliant with the 1.1

specification.

2.2. Introducing the API

The Java Transaction API consists of three elements:

• a high-level application transaction demarcation interface

• a high-level transaction manager interface intended for application server

• a standard Java mapping of the X/Open XA protocol intended for a transactional resource

manager.

All of the JTA classes and interfaces exist within the javax.transaction package, and the

corresponding JBoss Transactions implementations within the com.arjuna.ats.jta package.

Each Xid created by JBoss Transactions needs a unique node identifier encoded within it,

because JBoss Transactions can only recover transactions and states that match a specified

node identifier. The node identifier to use should be provided to JBoss Transactions via the

CoreEnvironmentBean.nodeIdentifier property. This value must be unique across your JBoss

Transactions instances. The identifier is alphanumeric and limited to 10 bytes in length. If you do

not provide a value, then JBoss Transactions generates one and reports the value via the logging

infrastructure.

2.3. UserTransaction

The UserTransaction interface provides applications with the ability to control transaction

boundaries. It provides methods begin , commit , and rollback to operate on top-level

transactions.

Nested transactions are not supported, and method begin throws the exception

NotSupportedException if the calling thread is already associated with a transaction.

UserTransaction automatically associates newly created transactions with the invoking thread.

TransactionManager

5

To obtain a UserTransaction , call the static method

com.arjuna.ats.jta.UserTransaction.userTransaction() .

Procedure 2.1. Selecting the local JTA Implementation

1. Set property JTAEnvironmentBean.jtaTMImplementation to

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple

.

2. Set property JTAEnvironmentBean.jtaUTImplementation to

com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple .

2.4. TransactionManager

The TransactionManager interface allows the application server to control transaction

boundaries on behalf of the application being managed.

To obtain a TransactionManager , invoke the static method

com.arjuna.ats.jta.TransactionManager.transactionManager .

The TransactionManager maintains the transaction context association with threads as part of

its internal data structure. A thread’s transaction context may be null or it may refer to a specific

global transaction. Multiple threads may be associated with the same global transaction. As noted

in Section 2.3, “UserTransaction” , nested transactions are not supported.

Each transaction context is encapsulated by a Transaction object, which can be used to

perform operations which are specific to the target transaction, regardless of the calling thread’s

transaction context.

Table 2.1. TransactionManager Methods

begin Starts a new top-level transaction and

associates the transaction context with the

calling thread. If the calling thread is already

associated with a transaction, exception

NotSupportedException is thrown.

getTransaction Returns the Transaction object representing

the transaction context which is currently

associated with the calling thread. You can use

this object to perform various operations on the

target transaction.

commit Completes the transaction currently associated

with the calling thread. After it returns, the

calling thread is associated with no transaction.

If commit is called when the thread is not

Chapter 2. Transactions

6

associated with any transaction context, an

exception is thrown. In some implementations,

the commit operation is restricted to the

transaction originator only. If the calling thread

is not allowed to commit the transaction, an

exception is thrown. JBoss Transactions does

not currently impose any restriction on the

ability of threads to terminate transactions.

rollback Rolls back the transaction associated with the

current thread. After the rollback method

completes, the thread is associated with no

transaction.

In a multi-threaded environment, multiple threads may be active within the same transaction. If

checked transaction semantics have been disabled, or the transaction times out, a transaction may

terminated by a thread other than the one that created it. In this case, the creator usually needs

to be notified. JBoss Transactions notifies the creator during operations commit or rollback by

throwing exception IllegalStateException .

2.5. Suspend and resuming a transaction

The JTA supports the concept of a thread temporarily suspending and resuming transactions in

order to perform non-transactional work. Call the suspend method to temporarily suspend the

current transaction that is associated with the calling thread. The thread then operates outside

of the scope of the transaction. If the thread is not associated with any transaction, a null object

reference is returned. Otherwise, a valid Transaction object is returned. Pass the Transaction

object to the resume method to reinstate the transaction context.

The resume method associates the specified transaction context with the calling thread. If the

transaction specified is not a valid transaction, , the thread is associated with no transaction. if

resume is invoked when the calling thread is already associated with another transaction, the

IllegalStateException exception is thrown.

Example 2.1. Using the suspend method

Transaction tobj = TransactionManager.suspend();

..

TransactionManager.resume(tobj);

Note

JBoss Transactions allows a suspended transaction to be resumed by a different

thread. This feature is not required by JTA, but is an important feature.

The Transaction interface

7

When a transaction is suspended, the application server must ensure that the resources in use

by the application are no longer registered with the suspended transaction. When a resource is

de-listed this triggers the Transaction Manager to inform the resource manager to disassociate

the transaction from the specified resource object. When the application’s transaction context is

resumed, the application server must ensure that the resources in use by the application are again

enlisted with the transaction. Enlisting a resource as a result of resuming a transaction triggers

the Transaction Manager to inform the resource manager to re-associate the resource object with

the resumed transaction.

2.6. The Transaction interface

The Transaction interface allows you to perform operations on the transaction associated with

the target object. Every top-level transaction is associated with one Transaction object when the

transaction is created.

Uses of the Transaction object

• enlist the transactional resources in use by the application.

• register for transaction synchronization call backs.

• commit or rollback the transaction.

• obtain the status of the transaction.

The commit and rollback methods allow the target object to be committed or rolled back. The

calling thread does not need to have the same transaction associated with the thread. If the calling

thread is not allowed to commit the transaction, the transaction manager throws an exception. At

present JBoss Transactions does not impose restrictions on threads terminating transactions.

The JTA standard does not provide a means to obtain the transaction identifier. However, JBoss

Transactions provides several ways to view the transaction identifier. Call method toString to

print full information about the transaction, including the identifier. Alternatively you can cast the

javax.transaction.Transaction instance to a com.arjuna.ats.jta.transaction.Transaction , then call

either method get_uid , which returns an ArjunaCore Uid representation, or getTxId , which

returns an Xid for the global identifier, i.e., no branch qualifier.

2.7. Resource enlistment

Typically, an application server manages transactional resources, such as database connections,

in conjunction with some resource adapter and optionally with connection pooling optimization.

For an external transaction manager to coordinate transactional work performed by the resource

managers, the application server must enlist and de-list the resources used in the transaction.

These resources, called participants , are enlisted with the transaction so that they can be informed

when the transaction terminates, by being driven through the two-phase commit protocol.

Chapter 2. Transactions

8

As stated previously, the JTA is much more closely integrated with the XA concept of resources

than the arbitrary objects. For each resource the application is using, the application server invokes

the enlistResource method with an XAResource object which identifies the resource in use.

The enlistment request causes the transaction manager to inform the resource manager to start

associating the transaction with the work performed through the corresponding resource. The

transaction manager passes the appropriate flag in its XAResource.start method call to the

resource manager.

The delistResource method disassociates the specified resource from the transaction context

in the target object. The application server invokes the method with the two parameters: the

XAResource object that represents the resource, and a flag to indicate whether the operation is

due to the transaction being suspended (TMSUSPEND), a portion of the work has failed (TMFAIL

), or a normal resource release by the application (TMSUCCESS).

The de-list request causes the transaction manager to inform the resource manager to end the

association of the transaction with the target XAResource . The flag value allows the application

server to indicate whether it intends to come back to the same resource whereby the resource

states must be kept intact. The transaction manager passes the appropriate flag value in its

XAResource.end method call to the underlying resource manager.

2.8. Transaction synchronization

Transaction synchronization allows the application server to be notified before and after the

transaction completes. For each transaction started, the application server may optionally register

a Synchronization call-back object to be invoked by the transaction manager, which will be one

of the following:

beforeCompletion Called before the start of the two-

phase transaction complete process. This

call is executed in the same transaction

context of the caller who initiates the

TransactionManager.commit or the call is

executed with no transaction context if

Transaction.commit is used.

afterCompletion Called after the transaction completes. The

status of the transaction is supplied in the

parameter. This method is executed without a

transaction context.

2.9. Transaction equality

The transaction manager implements the Transaction object’s equals method to allow

comparison between the target object and another Transaction object. The equals method returns

true if the target object and the parameter object both refer to the same global transaction.

TransactionSynchronizationRegistry

9

Example 2.2. Method equals

Transaction txObj = TransactionManager.getTransaction();

Transaction someOtherTxObj = ..

..

boolean isSame = txObj.equals(someOtherTxObj);

2.10. TransactionSynchronizationRegistry

The javax.transaction.TransactionSynchronizationRegistry interface, added to the JTA

API in version 1.1, provides for registering Synchronizations with special ordering behavior, and

for storing key-value pairs in a per-transaction Map. Full details are available from the JTA 1.1

API specification and javadoc. Here we focus on implementation specific behavior.

Example 2.3. Accessing the TransactionSynchronizationRegistry in

standalone environments

javax.transaction.TransactionSynchronizationRegistry tsr = new com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionSynchronizationRegistryImple();

This is a stateless object and hence is cheap to instantiate.

Accessing the TransactionSynchronizationRegistry via JNDI. In application

server environments, the standard JNDI name binding is java:comp/

TransactionSynchronizationRegistry .

Ordering of interposed Synchronizations is relative to other local Synchronizations only. In cases

where the transaction is distributed over multiple JVMs, global ordering is not guaranteed.

The per-transaction data storage provided by the TransactionSynchronizationRegistry

methods getResource and putResource are non-persistent and thus not available in

Transactions during crash recovery. When running integrated with an application server or other

container, this storage may be used for system purposes. To avoid collisions, use an application-

specific prefix on map keys, such as put(“myapp_”+key, value) . The behavior of the Map on

Thread s that have status NO_TRANSACTION or where the transaction they are associated with has

been rolled back by another Thread , such as in the case of a timeout, is undefined. A Transaction

can be associated with multiple Thread s. For such cases the Map is synchronized to provide

thread safety.

10

Chapter 3.

11

The Resource Manager

3.1. The XAResource interface

Some transaction specifications and systems define a generic resource which can be used

to register arbitrary resources with a transaction, the JTA is much more XA-specific. Interface

javax.transaction.xa.XAResource is a Java mapping of the XA interface. The XAResource

interface defines the contract between a ResourceManager and a TransactionManager in a

distributed transaction processing environment. A resource adapter for a ResourceManager

implements the XAResource interface to support association of a top-level transaction to a

resource such as a relational database.

The XAResource interface can be supported by any transactional resource adapter designed to

be used in an environment where transactions are controlled by an external transaction manager,

such a database management system. An application may access data through multiple database

connections. Each database connection is associated with an XAResource object that serves as

a proxy object to the underlying ResourceManager instance. The transaction manager obtains an

XAResource for each ResourceManager participating in a top-level transaction. The start method

associates the transaction with the resource, and the end method disassociates the transaction

from the resource.

The ResourceManager associates the transaction with all work performed on its data between

invocation of start and end methods. At transaction commit time, these transactional

ResourceManagers are informed by the transaction manager to prepare, commit, or roll back the

transaction according to the two-phase commit protocol.

For better Java integration, the XAResource differs from the standard XA interface in the following

ways:

• The resource adapter implicitly initializes the ResourceManager when the resource (the

connection) is acquired. There is no equivalent to the xa_open method of the interface XA.

• Rmid is not passed as an argument. Each Rmid is represented by a separate XAResource object.

• Asynchronous operations are not supported, because Java supports multi-threaded processing

and most databases do not support asynchronous operations.

• Error return values caused by the transaction manager’s improper handling of the XAResource

object are mapped to Java exceptions via the XAException class.

• The DTP concept of Thread of Control maps to all Java threads that are given access to the

XAResource and Connection objects. For example, it is legal for two different threads to perform

the start and end operations on the same XAResource object.

Chapter 3. The Resource Manager

12

3.1.1. Extended XAResource control

By default, whenever an XAResource object is registered with a JTA-compliant transaction service,

there is no way to manipulate the order in which it is invoked during the two-phase commit protocol,

with respect to other XAResource objects. JBoss Transactions, however, provides support for

controlling the order via the two interfaces com.arjuna.ats.jta.resources.StartXAResource

and com.arjuna.ats.jta.resources.EndXAResource. By inheriting your XAResource instance

from either of these interfaces, you control whether an instance of your class is invoked first or

last, respectively.

Note

Only one instance of each interface type may be registered with a specific

transaction.

The ArjunaCore Development Guide discusses the Last Resource Commit optimization (LRCO),

whereby a single resource that is only one-phase aware, and does not support the prepare

phase, can be enlisted with a transaction that is manipulating two-phase aware participants. This

optimization is also supported within the JBoss Transactions.

In order to use the LRCO, your XAResource implementation must extend the

com.arjuna.ats.jta.resources.LastResourceCommitOptimisation marker interface. A

marker interface is an interface which provides no methods. When enlisting the resource via

method Transaction.enlistResource, JBoss Transactions ensures that only a single instance

of this type of participant is used within each transaction. Your resource is driven last in the commit

protocol, and no invocation of method prepare occurs.

By default an attempt to enlist more than one instance of a LastResourceCommitOptimisation

class will fail and false will be returned from Transaction.enlistResource. This behavior can be

overridden by setting the com.arjuna.ats.jta.allowMultipleLastResources to true. However, before

doing so you should read the section on enlisting multiple one-phase aware resources.

Important

You need to disable interposition support to use the LCRO in a distributed

environment. You can still use implicit context propagation.

3.1.1.1. Enlisting multiple one-phase-aware resources

One-phase commit is used to process a single one-phase aware resource, which does not conform

to the two-phase commit protocol. You can still achieve an atomic outcome across resources, by

using the LRCO, as explained earlier.

Multiple one-phase-aware resources may be enlisted in the same transaction. One example is

when a legacy database runs within the same transaction as a legacy JMS implementation. In

Opening a resource manager

13

such a situation, you cannot achieve atomicity of transaction outcome across multiple resources,

because none of them enter the prepare state. They commit or roll back immediately when

instructed by the transaction coordinator, without knowledge of other resource states and without

a way to undo if subsequent resources make a different choice. This can result in data corruption

or heuristic outcomes.

You can approach these situations in two different ways:

• Wrap the resources in compensating transactions. See the XTS Transactions Development

Guide for details.

• Migrate the legacy implementations to two-phase aware equivalents.

If neither of these options is viable, JBoss Transactions support enlisting multiple one-phase

aware resources within the same transaction, using LRCO, which is discussed in the ArjunaCore

Development Guide in detail.

Warning

Even when this support is enabled, JBoss Transactions issues a warning when it

detects that the option has been enabled: You have chosen to enable multiple

last resources in the transaction manager. This is transactionally

unsafe and should not be relied upon. Another warning is issued when

multiple one-phase aware resources are enlisted within a transaction: This is

transactionally unsafe and should not be relied on.

To override the above-mentioned warning at runtime, set the

CoreEnvironmentBean.disableMultipleLastResourcesWarning property to

true. You will see a warning that you have done this when JBoss Transactions

starts up and see the warning about enlisting multiple one-phase resources only

the first time it happens, but after that no further warnings will be output. You

should obviously only consider changing the default value of this property (false)

with caution.

3.2. Opening a resource manager

The X/Open XA interface requires the transaction manager to initialize a resource manager, using

method xa_open, before invoking any other of the interface's methods. JTA requires initialization

of a resource manager to be embedded within the resource adapter that represents the resource

manager. The transaction manager does not need to know how to initialize a resource manager. It

only informs the resource manager about when to start and end work associated with a transaction

and when to complete the transaction. The resource adapter opens the resource manager when

the connection to the resource manager is established.

Chapter 3. The Resource Manager

14

3.3. Closing a resource manager

The resource adapter closes a resource manager as a result of destroying the transactional

resource. A transaction resource at the resource adapter level is comprised of two separate

objects:

• An XAResource object that allows the transaction manager to start and end the transaction

association with the resource in use and to coordinate transaction completion process.

• A connection object that allows the application to perform operations on the underlying resource,

such as JDBC operations on an RDBMS.

Once opened, the resource manager is kept open until the resource is released explicitly. When

the application invokes the connection’s close method, the resource adapter invalidates the

connection object reference that was held by the application and notifies the application server

about the close. The transaction manager invokes the XAResource.end method to disassociate

the transaction from that connection.

The close notification triggers the application server to perform any necessary cleanup work and

to mark the physical XA connection as free for reuse, if connection pooling is in place.

3.4. Thread of control

The X/Open XA interface specifies that the transaction-association-related xa calls must be

invoked from the same thread context. This thread-of-control requirement does not apply to the

object-oriented component-based application run-time environment, in which application threads

are dispatched dynamically as methods are invoked.. Different threads may use the same

connection resource to access the resource manager if the connection spans multiple method

invocation. Depending on the implementation of the application server, different threads may be

involved with the same XAResource object. The resource context and the transaction context

operate independent of thread context. This creates the possibility of different threads invoking

the start and end methods.

If the application server allows multiple threads to use a single XAResource object and the

associated connection to the resource manager, the application server must ensure that only one

transaction context is associated with the resource at any point of time. Thus the XAResource

interface requires the resource managers to support the two-phase commit protocol from any

thread context.

3.5. Transaction association

A transaction is associated with a transactional resource via the start method and disassociated

from the resource via the end method. The resource adapter internally maintains an association

between the resource connection object and the XAResource object. At any given time, a

connection is associated with zero or one transaction. JTA does not support nestedtransactions,

Externally controlled connections

15

so attempting to invoke the start method on a thread that is already associated with a transaction

is an error.

The transaction manager can Interleave multiple transaction contexts using the same resource,

as long as methods start and end are invoked properly for each transaction context switch. Each

time the resource is used with a different transaction, the method end must be invoked for the

previous transaction that was associated with the resource, and method start must be invoked

for the current transaction context.

3.6. Externally controlled connections

For a transactional application whose transaction states are managed by an application server,

its resources must also be managed by the application server so that transaction association

is performed properly. If an application is associated with a transaction, the application

must not perform transactional work through the connection without having the connection’s

resource object already associated with the global transaction. The application server must

ensure that the XAResource object in use is associated with the transaction, by invoking the

Transaction.enlistResource method.

If a server-side transactional application retains its database connection across multiple client

requests, the application server must ensure that before dispatching a client request to the

application thread, the resource is enlisted with the application’s current transaction context. This

implies that the application server manages the connection resource usage status across multiple

method invocations.

3.7. Resource sharing

When the same transactional resource is used to interleave multiple transactions, the application

server must ensure that only one transaction is enlisted with the resource at any given time. To

initiate the transaction commit process, the transaction manager is allowed to use any of the

resource objects connected to the same resource manager instance. The resource object used

for the two-phase commit protocol does not need to have been involved with the transaction being

completed.

The resource adapter must be able to handle multiple threads invoking the XAResource methods

concurrently for transaction commit processing. This is illustrated in Example 3.1, “Resource

sharing example”.

Example 3.1. Resource sharing example

XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection

..

Chapter 3. The Resource Manager

16

xares.end(xid1); // disassociate xid1 to the connection

..

xares.start(xid2); // associate xid2 to the connection

..

// While the connection is associated with xid2,

// the TM starts the commit process for xid1

status = xares.prepare(xid1);

..

xares.commit(xid1, false);

A transactional resource r1. Global transaction xid1 is started and ended with r1. Then a different

global transaction xid2 is associated with r1. Meanwhile, the transaction manager may start the

two phase commit process for xid1 using r1 or any other transactional resource connected to the

same resource manager. The resource adapter needs to allow the commit process to be executed

while the resource is currently associated with a different global transaction.

3.8. Local and global transactions

The resource adapter must support the usage of both local and global transactions within the

same transactional connection. Local transactions are started and coordinated by the resource

manager internally. The XAResource interface is not used for local transactions. When using the

same connection to perform both local and global transactions, the following rules apply:

• The local transaction must be committed or rolled back before a global transaction is started

in the connection.

• The global transaction must be disassociated from the connection before any local transaction

is started.

3.9. Transaction timeouts

You can associate timeout values with transactions in order to control their lifetimes. If the timeout

value elapses before a transaction terminates, by committing or rolling back, the transaction

system rolls it back. The XAResource interface supports a setTransactionTimeout operation,

which allows the timeout associated with the current transaction to be propagated to the resource

manager and if supported, overrides any default timeout associated with the resource manager.

Overriding the timeout can be useful when long-running transactions may have lifetimes that would

exceed the default, and using the default timeout would cause the resource manager to roll back

before the transaction terminates, and cause the transaction to roll back as well.

If You do not explicitly set a timeout value for a transaction, or you use a value of

0, an implementation-specific default value may be used. In JBoss Transactions, property

value CoordinatorEnvironmentBean.defaultTimeout represents this implementation-specific

default, in seconds. The default value is 60 seconds. A value of 0 disables default transaction

timeouts.

Dynamic registration

17

Unfortunately, imposing the same timeout as the transaction on a resource manager is not

always appropriate. One example is that your business rules may require you to have control

over the lifetimes on resource managers without allowing that control to be passed to some

external entity. JBoss Transactions supports an all-or-nothing approach to whether or not method

setTransactionTimeout is called on XAResource instances.

If the JTAEnvironmentBean.xaTransactionTimeoutEnabled property is set to true, which is

the default, it is called on all instances. Otherwise, use the setXATransactionTimeoutEnabled

method of com.arjuna.ats.jta.common.Configuration.

3.10. Dynamic registration

Dynamic registration is not supported in XAResource. There are two reasons this makes sense.

• In the Java component-based application server environment, connections to the resource

manager are acquired dynamically when the application explicitly requests a connection. These

resources are enlisted with the transaction manager on an as-needed basis.

• If a resource manager needs to dynamically register its work to the global transaction, you

can implement this at the resource adapter level via a private interface between the resource

adapter and the underlying resource manager.

18

Chapter 4.

19

General Transaction Issues

4.1. Advanced transaction issues with TxCore

Atomic actions (transactions) can be used by both application programmers and class developers.

Thus entire operations (or parts of operations) can be made atomic as required by the semantics

of a particular operation. This chapter will describe some of the more subtle issues involved with

using transactions in general and TxCore in particular.

4.1.1. Checking transactions

In a multi-threaded application, multiple threads may be associated with a transaction during its

lifetime, sharing the context. In addition, it is possible that if one thread terminates a transaction,

other threads may still be active within it. In a distributed environment, it can be difficult to

guarantee that all threads have finished with a transaction when it is terminated. By default, TxCore

will issue a warning if a thread terminates a transaction when other threads are still active within

it. However, it will allow the transaction termination to continue.

Other solutions to this problem are possible. One example would be to block

the thread which is terminating the transaction until all other threads have

disassociated themselves from the transaction context. Therefore, TxCore provides the

com.arjuna.ats.arjuna.coordinator.CheckedAction class, which allows the thread or

transaction termination policy to be overridden. Each transaction has an instance of this class

associated with it, and application programmers can provide their own implementations on a per

transaction basis.

Example 4.1. Class CheckedAction

public class CheckedAction

{

 public synchronized void check (boolean isCommit, Uid actUid,

 BasicList list);

};

When a thread attempts to terminate the transaction and there are active threads within it, the

system will invoke the check method on the transaction’s CheckedAction object. The parameters

to the check method are:

isCommit

Indicates whether the transaction is in the process of committing or rolling back.

actUid

The transaction identifier.

Chapter 4. General Transactio...

20

list

A list of all of the threads currently marked as active within this transaction.

When check returns, the transaction termination will continue. Obviously the state of the

transaction at this point may be different from that when check was called, e.g., the transaction

may subsequently have been committed.

A CheckedAction instance is created for each transaction. As mentioned above, the default

implementation simply issues warnings in the presence of multiple threads active on the

transaction when it is terminated. However, a different instance can be provided to each

transaction in one of the following ways:

• Use the setCheckedAction method on the BasicAction instance.

• Define an implementation of the CheckedActionFactory interface, which has a single method

getCheckedAction (final Uid txId , final String actionType) that returns a CheckedAction .

The factory class name can then be provided to the Transaction Service at runtime by setting

the CoordinatorEnvironmentBean.checkedActionFactory property.

4.1.2. Gathering statistics

By default, the Transaction Service does not maintain any history information about transactions.

However, by setting the CoordinatorEnvironmentBean.enableStatistics property variable to

YES , the transaction service will maintain information about the number of transactions created,

and their outcomes. This information can be obtained during the execution of a transactional

application via the com.arjuna.ats.arjuna.coordinator.TxStats class.

Example 4.2. Class TxStats

public class TxStats

{

 /**

 * @return the number of transactions (top-level and nested) created so far.

 */

 public static int numberOfTransactions();

 /**

 * @return the number of nested (sub) transactions created so far.

 *

 public static int numberOfNestedTransactions();

 /**

 * @return the number of transactions which have terminated with heuristic

 * outcomes.

 */

Gathering statistics

21

 public static int numberOfHeuristics();

 /**

 * @return the number of committed transactions.

 */

 public static int numberOfCommittedTransactions();

 /**

 * @return the total number of transactions which have rolled back.

 */

 public static int numberOfAbortedTransactions();

 /**

 * @return total number of inflight (active) transactions.

 */

 public static int numberOfInflightTransactions ();

 /**

 * @return total number of transactions rolled back due to timeout.

 */

 public static int numberOfTimedOutTransactions ();

 /**

 * @return the number of transactions rolled back by the application.

 */

 public static int numberOfApplicationRollbacks ();

 /**

 * @return number of transactions rolled back by participants.

 */

 public static int numberOfResourceRollbacks ();

 /**

 * Print the current information.

 */

 public static void printStatus(java.io.PrintWriter pw);

}

The class ActionManager gives further information about specific active transactions through the

classes getTimeAdded , which returns the time (in milliseconds) when the transaction was created,

and inflightTransactions , which returns the list of currently active transactions.

Chapter 4. General Transactio...

22

4.1.3. Asynchronously committing a transaction

By default, the Transaction Service executes the commit protocol of a top-level transaction in a

synchronous manner. All registered resources will be told to prepare in order by a single thread,

and then they will be told to commit or rollback. This has several possible disadvantages:

• In the case of many registered resources, the prepare operating can logically be invoked in

parallel on each resource. The disadvantage is that if an “early” resource in the list of registered

resource forces a rollback during prepare , possibly many prepare operations will have been

made needlessly.

• In the case where heuristic reporting is not required by the application, the second phase of the

commit protocol can be done asynchronously, since its success or failure is not important.

Therefore, JBoss Transactions provides runtime options to enable possible threading

optimizations. By setting the CoordinatorEnvironmentBean.asyncPrepare environment

variable to YES , during the prepare phase a separate thread will be created for each registered

participant within the transaction. By setting CoordinatorEnvironmentBean.asyncCommit to YES

, a separate thread will be created to complete the second phase of the transaction if knowledge

about heuristics outcomes is not required.

4.1.4. Transaction Logs

JBoss Transactions supports a number of different transaction log implementations. They are

outlined below.

4.1.4.1. The ActionStore

This is the original version of the transaction log as provided in prior releases. It is simple but

slow. Each transaction has an instance of its own log and they are all written to the same location

in the file system

4.1.4.2. The HashedActionStore

This implementation is based on the ActionStore but the individual logs are striped across a

number of sub-directories to improve performance. Check the Configuration Options table for how

to configure the HashedActionStore.

4.1.4.3. LogStore

This implementation is based on a traditional transaction log. All transaction states within the same

process (VM instance) are written to the same log (file), which is an append-only entity. When

transaction data would normally be deleted, e.g., at the end of the transaction, a delete record

is added to the log instead. Therefore, the log just keeps growing. Periodically a thread runs to

prune the log of entries that have been deleted.

A log is initially given a maximum capacity beyond which it cannot grow. Once this is reached the

system will create a new log for transactions that could not be accommodated in the original log.

Transaction Logs

23

The new log and the old log are pruned as usual. During the normal execution of the transaction

system there may be an arbitrary number of log instances. These should be garbage collected by

the system (or the recovery sub-system) eventually.

Check the Configuration Options table for how to configure the LogStore.

24

Chapter 5.

25

Tools
This chapter explains how to start and use the tools framework and what tools are available.

5.1. ObjectStore command-line editors

There are currently two command-line editors for manipulating the ObjectStore. These tools are

used to manipulate the lists of heuristic participants maintained by a transaction log. They allow

a heuristic participant to be moved from that list back to the list of prepared participants so that

transaction recovery may attempt to resolve them automatically.

5.1.1. LogEditor

Started by executing com.arjuna.ats.arjuna.tools.log.LogBrowser, this tool supports the

following options that can be provided on the command-line.

Table 5.1. LogEditor Options

Option Description

-tx id Specifies the transaction log to work on.

-type name The transaction type to work on.

-dump Print out the contents of the log identified by the other options.

-forget index Move the specified target from the heuristic list to the prepared

list.

-help Print out the list of commands and options.

5.1.2. LogBrowser

The LogBrowser, invoked by calling com.arjuna.ats.arjuna.tools.log.LogBrowser, is

similar to the LogEditor, but allows multiple log instances to be manipulated. It presents a shell-

like interface, with the following options:

Table 5.2. LogBrowserOptions

Option Description

ls [type] List the logs for the specified type. If no type is specified, the

editor must already be attached to the transaction type.

select [type] Browse a specific transaction type. If already attached to a

transaction type, you are detached from that type first.

attach log Attach the console to the specified transaction log. If you are

attached to another log, the command will fail.

detach Detach the console from the current log.

Chapter 5. Tools

26

Option Description

forget pid Move the specified heuristic participant back to the prepared list.

The console must be attached.

delete pid Delete the specified heuristic participant. The console must be

attached.

types List the supported transaction types.

quit Exit the console tool.

help Print out the supported commands.

5.2. GUI Based Tools

5.2.1. Embedded Console

Transaction management is integrated into the admin console in the form of a JOPR plugin which

is located in the install bin directory (jbossts-jopr-plugin.jar). Install it by copying to the admin

console plugin directory ($JBOSS_HOME/common/deploy/admin-console.war/plugins).

5.2.2. Performance Graphing

There is a transaction statistics graphing tool which can run standalone or inside a jconsole tab

(jconsole is a tool for managing JVMs and is distributed with the reference JDK):

The tool depends on the JFree graphing library. Download and unpack orson from http://

www.jfree.org/orson. Set the env variable ORSON_HOME to the directory where you plan to

unpack the downloaded zip. If you intend to use the tool with jconsole you will also need to put

the JDK tools and jconsole jars on the classpath:

 export CLASSPATH="$JDK_HOME/lib/tools.jar:$JDK_HOME/

lib/jconsole.jar:$ORSON_HOME/orson-0.5.0.jar:$ORSON_HOME/lib/

jfreechart-1.0.6.jar:$ORSON_HOME/lib/jcommon-1.0.10.jar:$INSTALL_ROOT/lib/

narayana-jta.jar>"

5.2.2.1. Standalone Usage

 java com.arjuna.ats.arjuna.tools.stats.TxPerfGraph

(note that standalone usage does not require the JDK tools and jconsole jars)

5.2.2.2. Usage with jconsole

Performance Graphing

27

 jconsole -J-Djava.class.path="$CLASSPATH" -pluginpath

 $INSTALL_ROOT/lib/narayana-jta.jar

This command will launch the jconsole GUI in which there will be an extra tab for displaying

transaction performance statistics.

28

Chapter 6.

29

Configuration options

6.1. Loading a configuration

Each module of the system contains a modulepropertyManager class., which provides

static getter methods for one or more nameEnvironmentBean classes. An example

is com.arjuna.ats.arjuna.commmon.arjPropertyManager. These environment beans are

standard JavaBean containing properties for each configuration option in the system. Typical

usage is of the form:

int defaultTimeout =

 arjPropertyManager.getCoordinatorEnvironmentBean().getDefaultTimeout();

These beans are singletons, instantiated upon first access, using the following algorithm.

Procedure 6.1. Algorithm for environment bean instantiation

1. The properties are loaded and populated from a properties file named and located as follows:

a. If the properties file name property is set, its value is used as the file name.

b. If not, the default file name is used.

2. The file thus named is searched for by, in order

1. absolute path

2. user.dir

3. user.home

4. java.home

5. directories contained on the classpath

6. a default file embedded in the product .jar file.

3. The file is treated as being of standard java.util.Properties xml format and loaded

accordingly. The entry names are of the form EnvironmentBeanClass.propertyName:<entry

key="CoordinatorEnvironmentBean.commitOnePhase">YES</entry>. Valid values for

Boolean properties are case-insensitive, and may be one of:

• NO

Chapter 6. Configuration options

30

• YES

• FALSE

• TRUE

• OFF

• ON

In the case of properties that take multiple values, they are white-space-delimited.

Example 6.1. Example Environment Bean

<entry key="RecoveryEnvironmentBean.recoveryModuleClassNames">

 com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule

 com.arjuna.ats.internal.txoj.recovery.TORecoveryModule

</entry>

4. After the file is loaded, it is cached and is not re-read until the JVM is restarted. Changes to

the properties file require a restart in order to take effect.

5. After the properties are loaded, the EnvironmentBean is then inspected and, for each field, if

the properties contains a matching key in the search order as follows, the setter method for

that field is invoked with the value from the properties, or the system properties if different.

• Fully.Qualified.NameEnvironmentBean.propertyName

• NameEnvironmentBean.propertyName (this is the preferred form used in the properties

file)

• the old com.arjuna... properties key (deprecated, for backwards compatibility only).

6. The bean is then returned to the caller, which may further override values by calling setter

methods.

The implementation reads most bean properties only once, as the consuming component or class

is instantiated. This usually happens the first time a transaction is run. As a result, calling setter

methods to change the value of bean properties while the system is running typically has no

effect, unless it is done prior to any use of the transaction system. Altered bean properties are

not persisted back to the properties file.

You can configure the system using a bean wiring system such as JBoss Microcontainer or Spring.

Take care when instantiating beans, to obtain the singleton via the static getter (factory) method

on the module property manager. Using a new bean instantiated with the default constructor is

ineffective, since it is not possible to pass this configured bean back to the property management

system.

ArjunaCore Options

31

6.2. ArjunaCore Options

The canonical reference for configuration options is the Javadoc of the various EnvironmentBean

classes, For ArjunaCore these are:

• com.arjuna.common.internal.util.logging.LoggingEnvironmentBean.java

• com.arjuna.common.internal.util.logging.basic.BasicLogEnvironmentBean.java

• com.arjuna.ats.txoj.common.TxojEnvironmentBean.java

• com.arjuna.ats.arjuna.common.CoordinatorEnvironmentBean.java

• com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.java

• com.arjuna.ats.arjuna.common.RecoveryEnvironmentBean.java

• com.arjuna.ats.arjuna.common.CoreEnvironmentBean.java

6.3. JBossJTA Configuration options

The canonical reference for configuration options is the javadoc of the various EnvironmentBean

classes. For JBossJTA, these classes are the ones provided by ArjunaCore, as well as:

• com.arjuna.ats.jdbc.common.JDBCEnvironmentBean.java

• com.arjuna.ats.jta.common.JTAEnvironmentBean.java

6.4. JBossJTS Options

The canonical reference for configuration options is the javadoc of the various EnvironmentBean

classes, For ArjunaJTS these are the ones provided by ArjunaCore, as well as:

• com.arjuna.orbportability.common.OrbPortabilityEnvironmentBean.java

• com.arjuna.ats.jts.common.JTSEnvironmentBean.java

32

33

Appendix A. Revision History
Revision History

Revision 1 Thu Oct 28 2010 MistyStanley-

Jones<misty@redhat.com>

Initial conversion of book into Docbook

Revision 2 Thu Apr 14 2011 TomJenkinson<tom.jenkinson@redhat.com>

Taken from JBossJTA development guide and selected others

34

	Development Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Transactions
	2.1. The Java Transaction API (JTA)
	2.2. Introducing the API
	2.3. UserTransaction
	2.4. TransactionManager
	2.5. Suspend and resuming a transaction
	2.6. The Transaction interface
	2.7. Resource enlistment
	2.8. Transaction synchronization
	2.9. Transaction equality
	2.10. TransactionSynchronizationRegistry

	Chapter 3. The Resource Manager
	3.1. The XAResource interface
	3.1.1. Extended XAResource control
	3.1.1.1. Enlisting multiple one-phase-aware resources

	3.2. Opening a resource manager
	3.3. Closing a resource manager
	3.4. Thread of control
	3.5. Transaction association
	3.6. Externally controlled connections
	3.7. Resource sharing
	3.8. Local and global transactions
	3.9. Transaction timeouts
	3.10. Dynamic registration

	Chapter 4. General Transaction Issues
	4.1. Advanced transaction issues with TxCore
	4.1.1. Checking transactions
	4.1.2. Gathering statistics
	4.1.3. Asynchronously committing a transaction
	4.1.4. Transaction Logs
	4.1.4.1. The ActionStore
	4.1.4.2. The HashedActionStore
	4.1.4.3. LogStore

	Chapter 5. Tools
	5.1. ObjectStore command-line editors
	5.1.1. LogEditor
	5.1.2. LogBrowser

	5.2. GUI Based Tools
	5.2.1. Embedded Console
	5.2.2. Performance Graphing
	5.2.2.1. Standalone Usage
	5.2.2.2. Usage with jconsole

	Chapter 6. Configuration options
	6.1. Loading a configuration
	6.2. ArjunaCore Options
	6.3. JBossJTA Configuration options
	6.4. JBossJTS Options

	Appendix A. Revision History

