
JBossJTS Quick Start Guide

by Mark Red Hat Little, Jonathan Red Hat Halliday,

Andrew Red Hat Dinn, and Kevin Red Hat Connor

iii

Preface ... v

1. Prerequisites ... v

2. Document Conventions .. v

2.1. Typographic Conventions .. v

2.2. Pull-quote Conventions .. vii

2.3. Notes and Warnings .. vii

3. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Quick Start to JTS/OTS ... 3

2.1. Introduction .. 3

2.2. Package layout ... 3

2.3. Setting properties .. 3

2.4. Starting and terminating the ORB and BOA/POA .. 4

2.5. Specifying the object store location .. 5

2.6. Implicit transaction propagation and interposition .. 5

2.7. Obtaining Current ... 6

2.8. Transaction termination ... 6

2.9. Transaction factory ... 7

2.10. Recovery manager .. 7

A. Revision History .. 9

iv

v

Preface

1. Prerequisites

JBossJTS works in conjunction with the rest of the JBoss Transactions suite. In addition to the

documentation here, consult the JBossJTS documentation, which ships as part of JBossJTS and

is also available on the JBoss Transaction Service website at http://www.jboss.org/jbosstm .

2. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

2.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Pull-quote Conventions

vii

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

2.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Preface

viii

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Stand-alone Quick Start Guide contains information on how to use JBossJTS.

1.1. Audience

This guide is most relevant to engineers who are responsible for administering JBossJTS

installations. It is intended for those who are familiar with transactions in general and the OTS/

JTS and JTA in particular.

1.2. Prerequisites

Familiarity with the JTA, OTS, transactions and ORBs.

2

Chapter 2.

3

Quick Start to JTS/OTS

2.1. Introduction

This chapter will briefly cover the key features required to construct a basic OTS application

using the raw OTS interfaces defined by the OMG specification. It is assumed that the reader is

familiar with the concepts of the JTS/OTS and has read the relevant ORB specific portions of the

Programmer’s Guide. Further topics and the advanced facilities provided by will be described in

subsequent sections of this manual; references to chapters in the other manuals of the document

set will be given in the relevant sections.

2.2. Package layout

The key Java packages (and corresponding jar files) for writing basic OTS applications are:

• com.arjuna.orbportability: this package contains the classes which constitute the ORB

portability library and other useful utility classes.

• org.omg.CosTransactions: this package contains the classes which make up the

CosTransactions.idl module.

• com.arjuna.ats.jts: this package contains the implementations of the JTS and JTA.

• com.arjuna.ats.arjuna: this package contains further classes necessary for the implementation

of the JTS.

• com.arjuna.ats.jta: this package contains local and remote JTA implementation support.

• com.arjuna.ats.jdbc: this package contains transactional JDBC support.

All of these packages appear in the lib directory of the installation, and should be added to the

programmer’s CLASSPATH.

In order to fully utilize all of the facilities available within , it will be necessary to add the some

additional jar files to your classpath. See bin/setup-env.sh or bin\setup-env.bat for details.

2.3. Setting properties

has been designed to be highly configurable at runtime through the use of various property

attributes, which will be described in subsequent sections. Although these attributes can be

provided at runtime on the command line, it is possible (and may be more convenient) to specify

them through the single properties file -properties.xml. At runtime looks for its property file in the

following order:

• a location specified by a system property, allowing the normal search path to be overridden.

• the current working directory, i.e., where the application was executed from.

Chapter 2. Quick Start to JTS/OTS

4

• the user’s home directory.

• java.home

• the CLASSPATH, which normally includes the installations etc dir

• A default set of properties embedded in the .jar file.

Where properties are defined in both the system properties e.g. -Dfoo=bar and in the properties

file, the value from the system property takes precedence. This facilitates overriding individual

properties easily on the command line.

2.4. Starting and terminating the ORB and BOA/POA

It is important that is correctly initialized prior to any application object being created. In order

to guarantee this, the programmer must use the initORB and initBOA/initPOA methods of the

ORBInterface class described in the ORB Portability Manual. Using the ORB_init and BOA_init/

create_POA methods provided by the underlying ORB will not be sufficient, and may lead to

incorrectly operating applications. For example:

Example 2.1. Initialize ORB

 public static void main (String[] args) {

 ORBInterface.initORB(args, null);

 ORBInterface.initOA();

 // . . .

}

The ORBInterface class has operations orb() and boa()/poa()/rootPoa() for returning references

to the orb and boa/child POA/root POA respectively after initialization has been performed. If the

ORB being used does not support the BOA (e.g., Sun’s JDK 1.2) then boa() does not appear in

the class definition, and initBOA will do nothing.

In addition, it is necessary to use shutdownOA and shutdownORB (in that order) prior to

terminating an application to allow to perform necessary cleanup routines. shutdownOA routine

will either shutdown the BOA or the POA depending upon the ORB being used.

Example 2.2. Shutdown ORB

 public static void main (String[] args) {

 // . . .

 ORBInterface.shutdownOA();

 ORBInterface.shutdownORB();

}

Specifying the object store location

5

No further CORBA objects should be used once shutdown has been called. It will be necessary

to re-initialise the BOA/POA and ORB in such an event.

Note

In the rest of this document we shall use the term Object Adapter to mean either

the Basic Object Adapter (BOA) or the Portable Object Adapter (POA). In addition,

where possible we shall use the ORB Portability classes which attempt to mask

the differences between POA and BOA.

2.5. Specifying the object store location

requires an object store in order to persistently record the outcomes of transactions in the event

of failures. In order to specify the location of the object store it is necessary to specify the location

when the application is executed; for example:

java #DObjectStoreEnvironmentBean.objectStoreDir=/var/tmp/ObjectStore myprogram

The default location is a directory under the current execution directory.

By default, all object states will be stored within the defaultStore subdirectory of the object

store root, e.g., /usr/local/Arjuna/TransactionService/ObjectStore/defaultStore. However, this

subdirectory can be changed by setting the ObjectStoreEnvironmentBean.localOSRoot property

variable accordingly.

2.6. Implicit transaction propagation and interposition

Transactions can be created within one domain (e.g., process) and used within another. Therefore,

information about a transaction (the transaction context) needs to be propagated between these

domains. This can be accomplished in two ways:

• Explicit propagation means that an application propagates a transaction context by passing

context objects (instances of the Control interface or the PropagationContext structure)

defined by the Transaction Service as explicit parameters. Note, for efficiency reasons it is

recommended that the PropagationContext be passed, rather than the Control.

• Implicit propagation means that requests on objects are implicitly associated with the client’s

transaction; they share the client’s transaction context. The context is transmitted implicitly to

the objects, without direct client intervention.

OTS objects supporting the Control interface are standard CORBA objects. When the interface

is passed as a parameter in some operation call to a remote server only an object reference

is passed. This ensures that any operations that the remote object performs on the interface

Chapter 2. Quick Start to JTS/OTS

6

(such as registering resources as participants within the transaction) are performed on the real

object. However, this can have substantial penalties for the application if it frequently uses

these interfaces due to the overheads of remote invocation. To avoid this overhead supports

interposition, whereby the server creates a local object which acts as a proxy for the remote

transaction and fields all requests that would normally have been passed back to the originator.

This surrogate registers itself with the original transaction coordinator to enable it to correctly

participate in the termination of the transaction. Interposed coordinators effectively form a tree

structure with their parent coordinators. This is shown in the figure below.

Figure 2.1. Interposition relationship

Note

implicit transaction propagation does not imply interposition will be used at the

server, but (typically) interposition requires implicit propagation.

If implicit context propagation and interposition are required, then the programmer must ensure

that is correctly initialised prior to objects being created; obviously it is necessary for both client

and server to agree on which, if any, protocol (implicit or interposition) is being used. Implicit

context propagation is only possible on those ORBs which either support filters/interceptors, or

the CosTSPortability interface. Currently this is JacORB and the JDK miniORB. Depending upon

which type of functionality is required, the programmer must perform the following:

• Implicit context propagation:

set the JTSEnvironmentBean.contextPropMode property variable to CONTEXT.

• Interposition:

set the JTSEnvironmentBean.contextPropMode property variable to INTERPOSITION.

If using the advanced API then interposition is required .

2.7. Obtaining Current

The Current pseudo object can be obtained from the com.arjuna.ats.jts.OTSManager class using

its get_current() method.

2.8. Transaction termination

It is implementation dependant as to how long a Control remains able to access a transaction

after it terminates. In , if using the Current interface then all information about a transaction is

destroyed when it terminates. Therefore, the programmer should not use any Control references

to the transaction after issuing the commit/rollback operations.

Transaction factory

7

However, if the transaction is terminated explicitly using the Terminator interface then information

about the transaction will be removed when all outstanding references to it are destroyed.

However, the programmer can signal that the transaction information is no longer required using

the destroyControl method of the OTS class in the com.arjuna.CosTransactions package. Once

the program has indicated that the transaction information is no longer required, the same

restrictions to using Control references apply as described above.

2.9. Transaction factory

By default, does not use a separate transaction manager when creating transactions

through the Current interface. Each transactional client essentially has its own

transaction manager (TransactionFactory) which is co-located with it. By setting the

com.arjuna.ats.jts.transactionManager property variable to YES this can be overridden at runtime.

The transaction factory is located in the bin directory of the distribution, and should be started by

executing the start-transaction-service script located in <ats_root>/bin.

Typically Current locates the factory using the CosServices.cfg file. This file is similar to

resolve_initial_references, and is automatically updated (or created) when the transaction

factory is started on a particular machine. This file must be copied to the installation of all

machines which require to share the same transaction factory. CosServices.cfg is located at

runtime by the OrbPortabilityEnvironmentBean properties initialReferencesRoot (a directory,

defaulting to the current working directory) and initialReferencesFile (a name relative to the

directory,'CosServices.cfg' by default).

It is possible to override the default location mechanism by using the

OrbPortabilityEnvironmentBean.resolveService property variable. This can have one of the

following values:

• CONFIGURATION_FILE: the default, this causes the system to use the CosServices.cfg file.

• NAME_SERVICE: will attempt to use a name service to locate the transaction factory. If this is

not supported, an exception will be thrown.

• BIND_CONNECT: will use the ORB-specific bind mechanism. If this is not supported, an

exception will be thrown.

If OrbPortabilityEnvironmentBean.resolveService is specified when the transaction factory is run,

then the factory will register itself with the specified resolution mechanism.

2.10. Recovery manager

You will need to start the recovery manager subsystem to ensure that transactions are recovered

despite failures. In order to do this, you should run the start-recovery-manager script in <ats_root>/

bin.

8

9

Appendix A. Revision History
Revision History

Revision 1 Wed Apr 13 2010 TomJenkinson<tom.jenkinson@redhat.com>

Taken from installation guide

10

	JBossJTS Quick Start Guide
	Table of Contents
	Preface
	1. Prerequisites
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Quick Start to JTS/OTS
	2.1. Introduction
	2.2. Package layout
	2.3. Setting properties
	2.4. Starting and terminating the ORB and BOA/POA
	2.5. Specifying the object store location
	2.6. Implicit transaction propagation and interposition
	2.7. Obtaining Current
	2.8. Transaction termination
	2.9. Transaction factory
	2.10. Recovery manager

	Appendix A. Revision History

