
JBossJTA Development Guide

Development reference

guide for the JBossJTA

implementation

of the JTA API

by Mark Red Hat Little, Jonathan Red Hat Halliday,

Andrew Red Hat Dinn, and Kevin Red Hat Connor

edited by Misty Red Hat Stanley-Jones

iii

Preface ... v

1. Prerequisites ... v

2. Document Conventions .. v

2.1. Typographic Conventions .. v

2.2. Pull-quote Conventions .. vii

2.3. Notes and Warnings .. vii

3. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. JDBC and Transactions ... 3

2.1. Using the transactional JDBC driver ... 3

2.1.1. Managing transactions .. 3

2.1.2. Restrictions .. 3

2.2. Transactional drivers ... 3

2.2.1. Loading drivers .. 3

2.3. Connections ... 4

2.3.1. JDBC .. 4

2.3.2. XADataSources .. 5

2.3.3. Using the connection .. 7

2.3.4. Connection pooling .. 8

2.3.5. Reusing connections .. 8

2.3.6. Terminating the transaction ... 8

2.3.7. AutoCommit ... 8

2.3.8. Setting isolation levels .. 8

3. Examples ... 11

3.1. JDBC example .. 11

3.2. Failure recovery example with BasicXARecovery .. 13

4. Using JBossJTA in application servers ... 19

4.1. Configuration .. 19

4.2. Logging .. 19

4.3. The services ... 19

4.4. Ensuring transactional context is propagated to the server 20

A. Revision History .. 21

iv

v

Preface

1. Prerequisites

ArjunaTA works in conjunction with ArjunaCore. In addition to the documentation here, consult

the ArjunaCore documentation, which ships as part of ArjunaCore and is also available on the

JBoss Transaction Service website at http://www.jboss.org/jbosstm.

2. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

2.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Pull-quote Conventions

vii

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

2.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Preface

viii

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Stand-alone JTA Programmers Guide contains information on how to use JBossJTA outside

of an application server.

1.1. Audience

This guide is most relevant to engineers who want to use JBossJTA in installations that are not

covered elsewhere. It is assumed that the reader is already familiar with the core JBossJTA

documentation set.

1.2. Prerequisites

This guide assumes a basic familiarity with Java service development and object-oriented

programming. A fundamental level of understanding in the following areas will also be useful:

• General understanding of the APIs, components, and objects that are present in Java

applications.

• A general understanding of the Windows and UNIX operating systems.

2

Chapter 2.

3

JDBC and Transactions

2.1. Using the transactional JDBC driver

JBossJTA supports construction of both local and distributed transactional applications which

access databases using the JDBC APIs. JDBC supports two-phase commit of transactions,

and is similar to the XA X/Open standard. JBossTS provides JDBC support in package

com.arjuna.ats.jdbc. A list of the tested drivers is available from the JBossTS website.

Only use the transactional JDBC support provided in package com.arjuna.ats.jdbc when you are

using JBossTS outside of an application server, such as JBoss Application Server, or another

container. Otherwise, use the JDBC support provided by your application server or container.

2.1.1. Managing transactions

JBossJTA needs the ability to associate work performed on a JDBC connection with a specific

transaction. Therefore, applications need to use a combination of implicit transaction propagation

and indirect transaction management. For each JDBC connection, JBossJTA must be able to

determine the invoking thread's current transaction context.

2.1.2. Restrictions

Nested transactions are not supported by JDBC. If you try to use a JDBC connection within a

subtransaction, JBossJTA throws a suitable exception and no work is allowed on that connection.

However, if you need nested transactions, and are comfortable with straying from the JDBC

standard, you can set property com.arjuna.ats.jta.supportSubtransactions property to YES.

2.2. Transactional drivers

The approach JBossJTA takes for incorporating JDBC connections within transactions is to

provide transactional JDBC drivers as conduits for all interactions. These drivers intercept all

invocations and ensure that they are registered with, and driven by, appropriate transactions. The

driver com.arjuna.ats.jdbc.TransactionalDriver handles all JDBC drivers, implementing

the java.sql.Driver interface. If the database is not transactional, ACID properties cannot be

guaranteed.

2.2.1. Loading drivers

Example 2.1. Instantiating and using the driver within an application

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();

Chapter 2. JDBC and Transactions

4

Example 2.2. Registering the drivers with the JDBC driver manager using

the Java system properties

Properties p = System.getProperties();

switch (dbType)

{

case MYSQL:

 p.put("jdbc.drivers", "com.mysql.jdbc.Driver");

 break;

case PGSQL:

 p.put("jdbc.drivers", "org.postgresql.Driver");

 break;

}

System.setProperties(p);

The jdbc.drivers property contains a colon-separated list of driver class names, which the JDBC

driver manager loads when it is initialized. After the driver is loaded, you can use it to make a

connection with a database.

Example 2.3. Using the Class.forName method

Calling Class.forName() automatically registers the driver with the JDBC driver manager. It is

also possible to explicitly create an instance of the JDBC driver.

sun.jdbc.odbc.JdbcOdbcDriver drv = new sun.jdbc.odbc.JdbcOdbcDriver();

DriverManager.registerDriver(drv);

2.3. Connections

Because JBossJTA provides JDBC connectivity via its own JDBC driver, application code can

support transactions with relatively small code changes. Typically, the application programmer

only needs to start and terminate transactions.

2.3.1. JDBC

The JBossJTA driver accepts the following properties, all located in class

com.arjuna.ats.jdbc.TransactionalDriver.

username the database username

password the database password

XADataSources

5

createDb creates the database automatically if set to

true. Not all JDBC implementations support

this.

dynamicClass specifies a class to instantiate to connect to the

database, instead of using JNDI.

2.3.2. XADataSources

JDBC connections are created from appropriate DataSources. Connections which participate in

distributed transactions are obtained from XADataSources. When using a JDBC driver, JBossJTA

uses the appropriate DataSource whenever a connection to the database is made. It then obtains

XAResources and registers them with the transaction via the JTA interfaces. The transaction

service uses these XAResources when the transaction terminates in order to drive the database

to either commit or roll back the changes made via the JDBC connection.

JBossJTA JDBC support can obtain XADataSources through the Java Naming and Directory

Interface (JNDI) or dynamic class instantiation.

2.3.2.1. Java naming and directory interface (JNDI)

A JDBC driver can use arbitrary DataSources without having to know specific details about their

implementations, by using JNDI. A specific DataSource or XADataSource can be created and

registered with an appropriate JNDI implementation, and the application, or JDBC driver, can later

bind to and use it. Since JNDI only allows the application to see the DataSource or XADataSource

as an instance of the interface (e.g., javax.sql.XADataSource) rather than as an instance of the

implementation class (e.g., com.mydb.myXADataSource), the application is not tied at build-time

to only use a specific implementation.

For the TransactionalDriver class to use a JNDI-registered XADataSource, you need to create the

XADataSource instance and store it in an appropriate JNDI implementation. Details of how to do

this can be found in the JDBC tutorial available at the Java web site.

Example 2.4. Storing a datasource in a JNDI implementation

XADataSource ds = MyXADataSource();

Hashtable env = new Hashtable();

String initialCtx = PropertyManager.getProperty("Context.INITIAL_CONTEXT_FACTORY");

env.put(Context.INITIAL_CONTEXT_FACTORY, initialCtx);

initialContext ctx = new InitialContext(env);

ctx.bind("jdbc/foo", ds);

Chapter 2. JDBC and Transactions

6

The Context.INITIAL_CONTEXT_FACTORY property is the JNDI way of specifying the type of

JNDI implementation to use.

The application must pass an appropriate connection URL to the JDBC driver:

 Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");

dbProps.setProperty(TransactionalDriver.password, "password");

// the driver uses its own JNDI context info, remember to set it up:

jdbcPropertyManager.propertyManager.setProperty(

 "Context.INITIAL_CONTEXT_FACTORY", initialCtx);

jdbcPropertyManager.propertyManager.setProperty(

 "Context.PROVIDER_URL", myUrl);

TransactionalDriver arjunaJDBCDriver = new TransactionalDriver();

Connection connection = arjunaJDBCDriver.connect("jdbc:arjuna:jdbc/

foo", dbProps);

The JNDI URL must be pre-pended with jdbc:arjuna: in order for the TransactionalDriver to

recognize that the DataSource must participate within transactions and be driven accordingly.

2.3.2.2. Dynamic class instantiation

If a JNDI implementation is not available. you can specify an implementation of the DynamicClass

interface, which is used to get the XADataSource object. This is not recommended, but provides

a fallback for environments where use of JNDI is not feasible.

Use the property TransactionalDriver.dynamicClass to specify the implementation to use.

An example is PropertyFileDynamicClass, a DynamicClass implementation that reads the

XADataSource implementation class name and configuration properties from a file, then

instantiates and configures it.

Deprecated class

The oracle_8_1_6 dynamic class is deprecated and should not be used.

Example 2.5. Instantiating a dynamic class

The application code must specify which dynamic class the TransactionalDriver should instantiate

when setting up the connection:

Properties dbProps = new Properties();

Using the connection

7

dbProps.setProperty(TransactionalDriver.userName, "user");

dbProps.setProperty(TransactionalDriver.password, "password");

dbProps.setProperty(TransactionalDriver.dynamicClass,

 "com.arjuna.ats.internal.jdbc.drivers.PropertyFileDynamicClass");

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();

Connection connection = arjunaJDBC2Driver.connect("jdbc:arjuna:/path/to/

property/file", dbProperties);

2.3.3. Using the connection

Once the connection is established, all operations on the connection are monitored by JBossJTA.

you do not need to use the transactional connection within transactions. If a transaction is not

present when the connection is used, then operations are performed directly on the database.

Important

JDBC does not support subtransactions.

You can use transaction timeouts to automatically terminate transactions if a connection is not

terminated within an appropriate period.

You can use JBossJTA connections within multiple transactions simultaneously. An example

would be different threads, with different notions of the current transaction. JBossJTA does

connection pooling for each transaction within the JDBC connection. Although multiple threads

may use the same instance of the JDBC connection, internally there may be a separate connection

for each transaction. With the exception of method close, all operations performed on the

connection at the application level are only performed on this transaction-specific connection.

JBossJTA automatically registers the JDBC driver connection with the transaction via an

appropriate resource. When the transaction terminates, this resource either commits or rolls back

any changes made to the underlying database via appropriate calls on the JDBC driver.

Once created, the driver and any connection can be used in the same way as any other JDBC

driver or connection.

Example 2.6. Creating and using a connection

Statement stmt = conn.createStatement();

try

 {

 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");

 }

Chapter 2. JDBC and Transactions

8

catch (SQLException e)

 {

 // table already exists

 }

stmt.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

ResultSet res1 = stmt.executeQuery("SELECT * FROM test_table");

2.3.4. Connection pooling

For each user name and password, JBossJTA maintains a single instance of each connection for

as long as that connection is in use. Subsequent requests for the same connection get a reference

to the original connection, rather than a new instance. You can try to close the connection, but the

connection will only actually be closed when all users (including transactions) have either finished

with the connection, or issued close calls.

2.3.5. Reusing connections

Some JDBC drivers allow the reuse of a connection for multiple different transactions once a given

transaction completes. Unfortunately this is not a common feature, and other drivers require a new

connection to be obtained for each new transaction. By default, the JBossJTA transactional driver

always obtains a new connection for each new transaction. However, if an existing connection is

available and is currently unused, JBossJTA can reuse this connection. To turn on this feature,

add option reuseconnection=true to the JDBC URL. For instance, jdbc:arjuna:sequelink://

host:port;databaseName=foo;reuseconnection=true

2.3.6. Terminating the transaction

When a transaction with an associated JDBC connection terminates, because of the application

or because a transaction timeout expires, JBossJTA uses the JDBC driver to drive the database to

either commit or roll back any changes made to it. This happens transparently to the application.

2.3.7. AutoCommit

If property AutoCommit of the interface java.sql.Connection is set to true for JDBC, the

execution of every SQL statement is a separate top-level transaction, and it is not possible to

group multiple statements to be managed within a single OTS transaction. Therefore, JBossJTA

disables AutoCommit on JDBC connections before they can be used. If AutoCommit is later set

to true by the application, JBossJTA throws the java.sql.SQLException.

2.3.8. Setting isolation levels

When you use the JBossJTA JDBC driver, you may need to set the underlying transaction

isolation level on the XA connection. By default, this is set to TRANSACTION_SERIALIZABLE, but

another value may be more appropriate for your application. To change it, set the property

Setting isolation levels

9

com.arjuna.ats.jdbc.isolationLevel to the appropriate isolation level in string form. Example

values are TRANSACTION_READ_COMMITTED or TRANSACTION_REPEATABLE_READ.

Note

Currently, this property applies to all XA connections created in the JVM.

10

Chapter 3.

11

Examples

3.1. JDBC example

Example 3.1. JDBC example

This simplified example assumes that you are using the transactional JDBC driver provided with

JBossTS. For details about how to configure and use this driver see the previous Chapter.

public class JDBCTest

{

 public static void main (String[] args)

 {

 /*

 */

 Connection conn = null;

 Connection conn2 = null;

 Statement stmt = null; // non-tx statement

 Statement stmtx = null; // will be a tx-statement

 Properties dbProperties = new Properties();

 try

 {

 System.out.println("\nCreating connection to database: "+url);

 /*

 * Create conn and conn2 so that they are bound to the JBossTS

 * transactional JDBC driver. The details of how to do this will

 * depend on your environment, the database you wish to use and

 * whether or not you want to use the Direct or JNDI approach. See

 * the appropriate chapter in the JTA Programmers Guide.

 */

 stmt = conn.createStatement(); // non-tx statement

 try

 {

 stmt.executeUpdate("DROP TABLE test_table");

 stmt.executeUpdate("DROP TABLE test_table2");

 }

 catch (Exception e)

 {

 // assume not in database.

 }

 try

Chapter 3. Examples

12

 {

 stmt.executeUpdate("CREATE TABLE test_table (a

 INTEGER,b INTEGER)");

 stmt.executeUpdate("CREATE TABLE test_table2 (a

 INTEGER,b INTEGER)");

 }

 catch (Exception e)

 {

 }

 try

 {

 System.out.println("Starting top-level transaction.");

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a,

 b) VALUES (1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next())

 {

 System.out.println("Column 1: "+res1.getInt(1));

 System.out.println("Column 2: "+res1.getInt(2));

 }

 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a,

 b) VALUES (3,4)");

 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next())

 {

 System.out.println("Column 1: "+res1.getInt(1));

 System.out.println("Column 2: "+res1.getInt(2));

 }

 System.out.print("\nNow attempting to rollback changes.");

 com.arjuna.ats.jta.UserTransaction.userTransaction().rollback();

Failure recovery example with BasicXARecovery

13

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();

 stmtx = conn.createStatement();

 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next())

 {

 System.out.println("Column 1: "+res2.getInt(1));

 System.out.println("Column 2: "+res2.getInt(2));

 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next())

 {

 System.out.println("Column 1: "+res2.getInt(1));

 System.out.println("Column 2: "+res2.getInt(2));

 }

 com.arjuna.ats.jta.UserTransaction.userTransaction().commit(true);

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 System.exit(0);

 }

 }

 catch (Exception sysEx)

 {

 sysEx.printStackTrace();

 System.exit(0);

 }

 }

3.2. Failure recovery example with BasicXARecovery

This class implements the XAResourceRecovery interface for XAResources. The parameter

supplied in setParameters can contain arbitrary information necessary to initialize the class once

created. In this example, it contains the name of the property file in which the database connection

information is specified, as well as the number of connections that this file contains information

on. Each item is separated by a semicolon.

This is only a small example of the sorts of things an XAResourceRecovery implementer could

do. This implementation uses a property file that is assumed to contain sufficient information

Chapter 3. Examples

14

to recreate connections used during the normal run of an application so that recovery can be

performed on them. Typically, user-names and passwords should never be presented in raw text

on a production system.

Example 3.2. Database parameter format for the properties file

 DB_x_DatabaseURL=

 DB_x_DatabaseUser=

 DB_x_DatabasePassword=

 DB_x_DatabaseDynamicClass=

x is the number of the connection information.

Some error-handling code is missing from this example, to make it more readable.

Example 3.3. Failure recovery example with BasicXARecovery

/*

 * Some XAResourceRecovery implementations will do their startup work here,

 * and then do little or nothing in setDetails. Since this one needs to know

 * dynamic class name, the constructor does nothing.

 */

public BasicXARecovery () throws SQLException

{

 numberOfConnections = 1;

 connectionIndex = 0;

 props = null;

}

/**

 * The recovery module will have chopped off this class name already. The

 * parameter should specify a property file from which the url, user name,

 * password, etc. can be read.

 *

 * @message com.arjuna.ats.internal.jdbc.recovery.initexp An exception

 * occurred during initialisation.

 */

public boolean initialise (String parameter) throws SQLException

{

 if (parameter == null)

 return true;

 int breakPosition = parameter.indexOf(BREAKCHARACTER);

 String fileName = parameter;

Failure recovery example with BasicXARecovery

15

 if (breakPosition != -1)

 {

 fileName = parameter.substring(0, breakPosition - 1);

 try

 {

 numberOfConnections = Integer.parseInt(parameter

 .substring(breakPosition + 1));

 }

 catch (NumberFormatException e)

 {

 return false;

 }

 }

 try

 {

 String uri = com.arjuna.common.util.FileLocator

 .locateFile(fileName);

 jdbcPropertyManager.propertyManager.load(XMLFilePlugin.class

 .getName(), uri);

 props = jdbcPropertyManager.propertyManager.getProperties();

 }

 catch (Exception e)

 {

 return false;

 }

 return true;

}

/**

 * @message com.arjuna.ats.internal.jdbc.recovery.xarec {0} could not find

 * information for connection!

 */

public synchronized XAResource getXAResource () throws SQLException

{

 JDBC2RecoveryConnection conn = null;

 if (hasMoreResources())

 {

 connectionIndex++;

 conn = getStandardConnection();

 if (conn == null) conn = getJNDIConnection();

Chapter 3. Examples

16

 }

 return conn.recoveryConnection().getConnection().getXAResource();

}

public synchronized boolean hasMoreResources ()

{

 if (connectionIndex == numberOfConnections)

 return false;

 else

 return true;

}

private final JDBC2RecoveryConnection getStandardConnection ()

 throws SQLException

{

 String number = new String("" + connectionIndex);

 String url = new String(dbTag + number + urlTag);

 String password = new String(dbTag + number + passwordTag);

 String user = new String(dbTag + number + userTag);

 String dynamicClass = new String(dbTag + number + dynamicClassTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(TransactionalDriver.userName, theUser);

 dbProperties.put(TransactionalDriver.password, thePassword);

 String dc = props.getProperty(dynamicClass);

 if (dc != null)

 dbProperties.put(TransactionalDriver.dynamicClass, dc);

 return new JDBC2RecoveryConnection(url, dbProperties);

 }

 else

 return null;

}

private final JDBC2RecoveryConnection getJNDIConnection ()

 throws SQLException

{

 String number = new String("" + connectionIndex);

 String url = new String(dbTag + jndiTag + number + urlTag);

 String password = new String(dbTag + jndiTag + number + passwordTag);

Failure recovery example with BasicXARecovery

17

 String user = new String(dbTag + jndiTag + number + userTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(TransactionalDriver.userName, theUser);

 dbProperties.put(TransactionalDriver.password, thePassword);

 return new JDBC2RecoveryConnection(url, dbProperties);

 }

 else

 return null;

}

private int numberOfConnections;

private int connectionIndex;

private Properties props;

private static final String dbTag = "DB_";

private static final String urlTag = "_DatabaseURL";

private static final String passwordTag = "_DatabasePassword";

private static final String userTag = "_DatabaseUser";

private static final String dynamicClassTag = "_DatabaseDynamicClass";

private static final String jndiTag = "JNDI_";

/*

 * Example:

 *

 * DB2_DatabaseURL=jdbc\:arjuna\:sequelink\://qa02\:20001

 * DB2_DatabaseUser=tester2 DB2_DatabasePassword=tester

 * DB2_DatabaseDynamicClass=com.arjuna.ats.internal.jdbc.drivers.sequelink_5_1

 *

 * DB_JNDI_DatabaseURL=jdbc\:arjuna\:jndi DB_JNDI_DatabaseUser=tester1

 * DB_JNDI_DatabasePassword=tester DB_JNDI_DatabaseName=empay

 * DB_JNDI_Host=qa02 DB_JNDI_Port=20000

 */

private static final char BREAKCHARACTER = ';'; // delimiter for parameters

You can use the class

com.arjuna.ats.internal.jdbc.recovery.JDBC2RecoveryConnection to create a new

connection to the database using the same parameters used to create the initial connection.

18

Chapter 4.

19

Using JBossJTA in application

servers
JBoss Application Server is discussed here. Refer to the documentation for your application server

for differences.

4.1. Configuration

When JBossJTA runs embedded in JBoss Application Server, the transaction system is configured

primarily through the transaction-jboss-beans.xml deployment descriptor, which overrides

properties read from the default properties file embedded in the .jar file.

Table 4.1. Common configuration attributes

CoordinatorEnvironmentBean.defaultTimeout The default transaction timeout to be used for

new transactions. Specified as an integer in

seconds.

CoordinatorEnvironmentBean.enableStatistics This determines whether or not the transaction

service should gather statistical information.

This information can then be viewed using

the TransactionStatistics MBean. Specified as

a Boolean. The default is to not gather this

information.

See the transaction-jboss-beans.xml file and the JBoss Application Server administration and

configuration guide for further information.

4.2. Logging

To make JBossTS logging semantically consistent with JBoss Application Server, the

TransactionManagerService modifies the level of some log messages, by overriding the value

of the LoggingEnvironmentBean.loggingFactory property in the jbossts-properties.xml

file. Therefore, the value of this property has no effect on the logging behavior when running

embedded in JBoss Application Server. By forcing use of the log4j_releveler logger, the

TransactionManagerService changes the level of all INFO level messages in the transaction

code to DEBUG. Therefore, these messages do not appear in log files if the filter level is INFO. All

other log messages behave as normal.

4.3. The services

The TransactionManager bean provides transaction management services to other components

in JBoss Application Server. There are two different version of this bean and they requires different

Chapter 4. Using JBossJTA in ...

20

configuration. Take care to select the transaction-jboss-beans.xml suitable for your needs

(local JTA or JTS).

4.4. Ensuring transactional context is propagated to the

server

You can coordinate transactions from a coordinator which is not located within the JBoss server ,

such as when using transactions created by an external OTS server. To ensure the transaction

context is propagated via JRMP invocations to the server, the transaction propagation context

factory needs to be explicitly set for the JRMP invoker proxy. This is done as follows:

JRMPInvokerProxy.setTPCFactory(new com.arjuna.ats.internal.jbossatx.jts.PropagationContextManager());

21

Appendix A. Revision History
Revision History

Revision 0 Thu Oct 28 2010 MistyStanley-

Jones<misty@redhat.com>

Initial conversion of book into Docbook

Revision 1 Thu Apr 14 2011 TomJenkinson<tom.jenkinson@redhat.com>

Moved some content to the main development guide

22

	JBossJTA Development Guide
	Table of Contents
	Preface
	1. Prerequisites
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. JDBC and Transactions
	2.1. Using the transactional JDBC driver
	2.1.1. Managing transactions
	2.1.2. Restrictions

	2.2. Transactional drivers
	2.2.1. Loading drivers

	2.3. Connections
	2.3.1. JDBC
	2.3.2. XADataSources
	2.3.2.1. Java naming and directory interface (JNDI)
	2.3.2.2. Dynamic class instantiation

	2.3.3. Using the connection
	2.3.4. Connection pooling
	2.3.5. Reusing connections
	2.3.6. Terminating the transaction
	2.3.7. AutoCommit
	2.3.8. Setting isolation levels

	Chapter 3. Examples
	3.1. JDBC example
	3.2. Failure recovery example with BasicXARecovery

	Chapter 4. Using JBossJTA in application servers
	4.1. Configuration
	4.2. Logging
	4.3. The services
	4.4. Ensuring transactional context is propagated to the server

	Appendix A. Revision History

