
Transactions XTS Administration

And Development Guide

Using the XTS Module

of JBoss Transactions

to provide Web

Services Transactions

by Andrew Red Hat Dinn, Kevin Red Hat Connor, and Mark Red Hat Little

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Introduction ... 3

2.1. Managing service-Based Processes ... 4

2.2. Servlets .. 5

2.3. SOAP ... 5

2.4. Web Services Description Language (WDSL) ... 5

3. Transactions Overview .. 7

3.1. The Coordinator .. 9

3.2. The Transaction Context ... 9

3.3. Participants ... 10

3.4. ACID Transactions .. 11

3.5. Two Phase Commit .. 11

3.6. The Synchronization Protocol .. 12

3.7. Optimizations to the Protocol ... 13

3.8. Non-Atomic Transactions and Heuristic Outcomes .. 14

3.9. Interposition .. 16

3.10. A New Transaction Protocol .. 18

3.10.1. Transaction in Loosely Coupled Systems ... 18

4. Overview of Protocols Used by XTS ... 21

4.1. WS-Coordination ... 21

4.1.1. Activation ... 25

4.1.2. Registration .. 25

4.1.3. Completion .. 26

4.2. WS-Transaction .. 26

4.2.1. WS-Transaction Foundations .. 26

4.2.2. WS-Transaction Architecture ... 28

4.2.3. WS_Transaction Models ... 32

4.2.4. Application Messages ... 41

4.3. Summary .. 42

5. Getting Started .. 43

5.1. Installing the XTS Service Archive into JBoss Transaction Service 43

5.2. Creating Client Applications ... 43

5.2.1. User Transactions .. 43

5.2.2. Business Activities .. 44

5.2.3. Client-Side Handler Configuration .. 44

5.3. Creating Transactional Web Services ... 45

Transactions XTS Administrati...

iv

5.3.1. Participants .. 45

5.3.2. Service-Side Handler Configuration ... 46

5.4. Summary .. 48

6. Participants .. 49

6.1. Overview .. 49

6.1.1. Atomic Transaction ... 50

6.1.2. Business Activity .. 52

6.2. Participant Creation and Deployment ... 55

6.2.1. Implementing Participants ... 55

6.2.2. Deploying Participants .. 55

7. The XTS API .. 57

7.1. API for the Atomic Transaction Protocol ... 57

7.1.1. Vote .. 57

7.1.2. TXContext .. 58

7.1.3. UserTransaction ... 58

7.1.4. UserTransactionFactory .. 59

7.1.5. TransactionManager ... 59

7.1.6. TransactionManagerFactory .. 61

7.2. API for the Business Activity Protocol .. 61

7.2.1. Compatibility .. 61

7.2.2. UserBusinessActivity .. 61

7.2.3. UserBusinessActivityFactory ... 62

7.2.4. BusinessActivityManager .. 62

7.2.5. BusinessActivityManagerFactory ... 65

8. Stand-Alone Coordination ... 67

8.1. Introduction ... 67

8.2. Configuring the Activation Coordinator ... 67

9. Participant Crash Recovery ... 71

9.1. WS-AT Recovery .. 72

9.1.1. WS-AT Coordinator Crash Recovery ... 72

9.1.2. WS-AT Participant Crash Recovery ... 72

9.2. WS-BA Recovery .. 76

9.2.1. WS-BA Coordinator Crash Recovery ... 76

9.2.2. WS-BA Participant Crash Recovery APIs ... 77

10. Web Service Component ... 81

11. Web Service Transaction Service (XTS) Management .. 83

11.1. Transaction manager overview .. 83

11.2. Configuring the transaction manager .. 83

11.3. Deploying the transaction manager .. 84

11.4. Deployment descriptors ... 85

A. Revision History .. 87

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

vii

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Preface

viii

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The XTS Development Guide explains how to add resilience to distributed business processes

based on web services, making them reliable in the event of system or network failures. It covers

installation, administration, and development of transactional web services.

The JBoss Application Server implements Web Services Transactions standards using XTS

(XML Transaction Service). XTS supports development and deployment of transaction-aware web

services. It also enables web service clients to create and manage web service transactions from

which transactional web services can be invoked. XTS ensures that the client and web services

achieve consistent outcomes even if the systems on which they are running crash or temporarily

lose network connectivity.

XTS is compliant with the WS-Coordination, WS-Atomic Transaction, and WS-Business Activity

specifications. The implementation supports web services and clients which are based on the

JaxWS standard. XTS is itself implemented using services based on JaxWS. While this guide

discusses many Web Services standards like SOAP and WSDL, it does not attempt to address

all of their fundamental constructs. However, basic concepts are provided where necessary.

1.1. Audience

This guide is most relevant for application developers and Web service developers who are

interested in building applications and Web services that are transaction-aware. It is also useful

for system analysts and project managers who are unfamiliar with transactions as they pertain

to Web services.

1.2. Prerequisites

JBoss Transaction Service uses the Java programming language and this manual assumes that

you are familiar with programming in Java. Additional helpful skills are outlined in Prerequisite

Skills for XTS Developers.

Prerequisite Skills for XTS Developers

• A Working knowledge of Web Services, including XML, SOAP, and WSDL

• A general understanding of transactions

• A general understanding of WS-Coordination, WS-Atomic Transaction and WS-Business

Activity protocols

Chapter 1. About This Guide

2

This guide presents overview information for all of the above. However, to aid in understanding the

Web Services component of JBoss Transaction Service, the WS-C1, WS-Atomic Transaction2,

and WS-Business Activity3 specifications are discussed in great detail.

1http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
2http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
3http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf

Chapter 2.

3

Introduction
The XML Transaction Service (XTS) component of JBoss Transaction Service supports the

coordination of private and public Web Services in a business transaction. Therefore, to

understand XTS, you must be familiar with Web Services, and also understand something about

transactions. This chapter introduces XTS and provides a brief overview of the technologies that

form the Web Services standard. Additionally, this chapter explores some of the fundamentals

of transactioning technology and how it can be applied to Web Services. Much of the content

presented in this chapter is detailed throughout this guide. However, only overview information

about Web Services is provided. If you are new to creating Web services, please see consult your

Web Services platform documentation.

JBoss Transaction Service provides the XTS component as a transaction solution for Web

Services. Using XTS, business partners can coordinate complex business transactions in a

controlled and reliable manner. The XTS API supports a transactional coordination model based

on the WS-Coordination, WS-Atomic Transaction, and WS-Business Activity specifications.

Protocols Included in XTS

• WS-Coordination (WS-C) is a generic coordination framework developed by IBM, Microsoft and

BEA.

• WS-Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA) together comprise the

WS-Transaction (WS-T) transaction protocols that utilize this framework.

JBoss Transaction Service implements versions 1.0, 1.1, and 1.2 of these three specifications.

Version specifications are available from http://www.oasis-open.org/specs/.

Note

The 1.0, 1.1, and 1.2 specifications only differ in a small number of details. The

rest of this document employs version 1.1 of these specifications when providing

explanations and example code. On the few occasions where the modifications

required to adapt these to the 1.1 specifications are not obvious, an explanatory

note is provided.

Web Services are modular, reusable software components that are created by exposing business

functionality through a Web service interface. Web Services communicate directly with other Web

Services using standards-based technologies such as SOAP and HTTP. These standards-based

communication technologies enable customers, suppliers, and trading partners to access Web

Services, independent of hardware operating system, or programming environment. The result is a

vastly improved collaboration environment as compared to today's EDI and business-to-business

(B2B) solutions, an environment where businesses can expose their current and future business

applications as Web Services that can be easily discovered and accessed by external partners.

http://www.oasis-open.org/specs/

Chapter 2. Introduction

4

Web Services, by themselves, are not fault-tolerant. In fact, some of the reasons that the Web

Services model is an attractive development solution are also the same reasons that service-

based applications may have drawbacks.

Properties of Web Services

• Application components that are exposed as Web Services may be owned by third parties,

which provides benefits in terms of cost of maintenance, but drawbacks in terms of having

exclusive control over their behavior.

• Web Services are usually remotely located, increasing risk of failure due to increased network

travel for invocations.

Applications that have high dependability requirements need a method of minimizing the effects of

errors that may occur when an application consumes Web Services. One method of safeguarding

against such failures is to interact with an application’s Web Services within the context of a

transaction. A transaction is a unit of work which is completed entirely, or in the case of failures is

reversed to some agreed consistent state. The goal, in the event of a failure, is normally to appear

as if the work had never occurred in the first place. With XTS, transactions can span multiple

Web Services, meaning that work performed across multiple enterprises can be managed with

transactional support.

2.1. Managing service-Based Processes

XTS allows you to create transactions that drive complex business processes, spanning multiple

Web Services. Current Web Services standards do not address the requirements for a high-level

coordination of services. This is because in today’s Web Services applications, which use single

request/receive interactions, coordination is typically not a problem. However, for applications

that engage multiple services among multiple business partners, coordinating and controlling

the resulting interactions is essential. This becomes even more apparent when you realize that

you generally have little in the way of formal guarantees when interacting with third-party Web

Services.

XTS provides the infrastructure for coordinating services during a business process. By organizing

processes as transactions, business partners can collaborate on complex business interactions

in a reliable manner, insuring the integrity of their data - usually represented by multiple changes

to a database – but without the usual overheads and drawbacks of directly exposing traditional

transaction-processing engines directly onto the web. An Evening On the Town demonstrates

how an application may manage service-based processes as transactions:

An Evening On the Town. The application in question allows a user to plan a social evening.

This application is responsible for reserving a table at a restaurant, and reserving tickets to a show.

Both activities are paid for using a credit card. In this example, each service represents exposed

Web Services provided by different service providers. XTS is used to envelop the interactions

between the theater and restaurant services into a single (potentially) long-running business

Servlets

5

transaction. The business transaction must insure that seats are reserved both at the restaurant

and the theater. If one event fails the user has the ability to decline both events, thus returning

both services back to their original state. If both events are successful, the user’s credit card is

charged and both seats are booked. As you may expect, the interaction between the services

must be controlled in a reliable manner over a period of time. In addition, management must span

several third-party services that are remotely deployed.

Without the backing of a transaction, an undesirable outcome may occur. For example, the user

credit card may be charged, even if one or both of the bookings fail.

An Evening On the Town describes the situations where XTS excels at supporting business

processes across multiple enterprises. This example is further refined throughout this guide, and

appears as a standard demonstrator (including source code) with the XTS distribution.

2.2. Servlets

The WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols are based

on one-way interactions of entities rather than traditional synchronous request/response RPC-

style interactions. One group of entities, called transaction participants, invoke operations on

other entities, such as the transaction coordinator, in order to return responses to requests.

The programming model is based on peer-to-peer relationships, with the result that all services,

whether they are participants, coordinators or clients, must have an active component that allows

them to receive unsolicited messages.

In XTS, the active component is achieved through deployment of JaxWS endpoints. Each

XTS endpoint that is reachable through SOAP/XML is published via JaxWS, without developer

intevention. The only requirement is that transactional client applications and transactional web

services must reside within a domain capable of hosting JaxWS endpoints, such as an application

server. JBoss Application Server can provide this functionality.

Note

The XTS 1.0 protocol implementation is based on servlets.

2.3. SOAP

SOAP has emerged as the de facto message format for XML-based communication in the Web

Services arena. It is a lightweight protocol that allows the user to define the content of a message

and to provide hints as to how recipients should process that message.

2.4. Web Services Description Language (WDSL)

Web Services Description Language (WSDL) is an XML-based language used to define Web

service interfaces. An application that consumes a Web service parses the service’s WSDL

document to discover the location of the service, the operations that the service supports, the

Chapter 2. Introduction

6

protocol bindings the service supports (SOAP, HTTP, etc), and how to access them. For each

operation, WSDL describes the format that the client must follow.

Chapter 3.

7

Transactions Overview

Note

This chapter deals with the theory of transactional Web Services. If you are familiar

with these principles, consider this chapter a reference.

Transactions have emerged as the dominant paradigm for coordinating interactions between

parties in a distributed system, and in particular to manage applications that require concurrent

access to shared data. Much of the JBoss Transaction Service Web Service API is based on

contemporary transaction APIs whose familiarity will enhance developer productivity and lessen

the learning curve. While the following section provides the essential information that you should

know before starting to use XTS for building transactional Web Services, it should not be treated

as a definitive reference to all transactional technology.

A transaction is a unit of work that encapsulates multiple database actions such that that either

all the encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

The main components involved in using and defining transactional Web Services using XTS are

illustrated in Figure 3.1, “Components Involved in an XTS Transaction”.

Chapter 3. Transactions Overview

8

Figure 3.1. Components Involved in an XTS Transaction

The Coordinator

9

3.1. The Coordinator

Every transaction is associated with a coordinator, which is responsible for governing the outcome

of the transaction. When a client begins a Web Service transaction it posts a create request

to a coordination service, which creates the coordinator and returns its details to the client. This

service may be located in its own container or may be colocated with the application client or

with one of the transactional web services for improved performance. The coordination service is

typically responsible for managing many transactions in parallel, so each coordinator is identified

by a unique transaction identifier.

The coordinator is responsible for ensuring that the web services invoked by the client arrive

at a consistent outcome. When the client asks the coordinator to complete the transaction, the

coordinator ensures that each web service is ready to confirm any provisional changes it has

made within the scope of the transaction. It then asks them all to make their changes permanent.

If any of the web services indicates a problem at the confirmation stage, the coordinator ensures

that all web services reject their provisional changes, reverting to the state before the transaction

started. The coordinator also reverts all changes if the client asks it to cancel the transaction.

The negotiation between the coordinator and the web services is organized to ensure that all

services will make their changes permanent, or all of them will revert to the previous state, even

if the coordinator or one of the web services crashes part of the way through the transaction."

3.2. The Transaction Context

In order for a transaction to span a number of services, certain information has to be shared

between those services, to propagate information about the transaction. This information is known

as the Context. The coordination service hands a context back to the application client when it

begins a transaction. This context is passed as an extra, hidden parameter whenever the client

invokes a transactional web service. The XTS implementation saves and propagates this context

automatically with only minimal involvement required on the part of the client. However, it is

still helpful to understand what information is captured in a context. This information is listed in

Contents of a Context.

Contents of a Context

Transaction Identifier

Guarantees global uniqueness for an individual transaction.

Transaction Coordinator Location

The endpoint address participants contact to enroll.

Chapter 3. Transactions Overview

10

Figure 3.2. Web Services and Context Flow

3.3. Participants

The coordinator cannot know the details of how every transactional service is implemented. In fact

this knowledge is not even necessary for it to negotiate a transactional outcome. It treats each

service taking part in a transaction as a participant and communicates with it according to some

predefined participant coordination models appropriate to the type of transaction. When a web

service receives its first service request in some given transaction, it enrolls with the coordinator

as a participant, specifying the participant model it wishes to follow. The context contains a URL

for the endpoint of the coordination service which handles enrollment requests. So, the term

participant merely refers a transactional service enrolled in a specific transaction using a specific

participant model.

ACID Transactions

11

3.4. ACID Transactions

Traditionally, transaction processing systems support ACID properties. ACID is an acronym

for Atomic, Consistent, Isolated, and Durable. A unit of work has traditionally been considered

transactional only if the ACID properties are maintained, as describe in ACID Properties.

ACID Properties

Atomicity

The transaction executes completely, or not at all.

Consistency

The effects of the transaction preserve the internal consistency of an underlying data structure.

Isolated

The transaction runs as if it were running alone, with no other transactions running, and is

not visible to other transactions.

Durable

The transaction's results are not lost in the event of a failure.

3.5. Two Phase Commit

The classical two-phase commit approach is the bedrock of JBoss Transaction Service, and more

generally of Web Services transactions. Two-phase commit provides coordination of parties that

are involved in a transaction. The general flow of a two-phase commit transaction is described in

Figure 3.3, “Two-Phase Commit Overview”.

Chapter 3. Transactions Overview

12

Figure 3.3. Two-Phase Commit Overview

Note

During two-phase commit transactions, coordinators and resources keep track of

activity in non-volatile data stores so that they can recover in the case of a failure.

3.6. The Synchronization Protocol

Besides the two-phase commit protocol, traditional transaction processing systems employ an

additional protocol, often referred to as the synchronization protocol. With the original ACID

properties, Durability is important when state changes need to be available despite failures.

Applications interact with a persistence store of some kind, such as a database, and this interaction

can impose a significant overhead, because disk access is much slower to access than main

computer memory.

One solution to the problem disk access time is to cache the state in main memory and only operate

on the cache for the duration of a transaction. Unfortunately, this solution needs a way to flush

Optimizations to the Protocol

13

the state back to the persistent store before the transaction terminates, or risk losing the full ACID

properties. This is what the synchronization protocol does, with Synchronization Participants.

Synchronizations are informed that a transaction is about to commit. At that point, they can

flush cached state, which might be used to improve performance of an application, to a durable

representation prior to the transaction committing. The synchronizations are then informed about

when the transaction completes and its completion state.

Procedure 3.1. The "Four Phase Protocol" Created By Synchronizations

Synchronizations essentially turn the two-phase commit protocol into a four-phase protocol:

1. Step 1

Before the transaction starts the two-phase commit, all registered Synchronizations are

informed. Any failure at this point will cause the transaction to roll back.

2. Steps 2 and 3

The coordinator then conducts the normal two-phase commit protocol.

3. Step 4

Once the transaction has terminated, all registered Synchronizations are informed. However,

this is a courtesy invocation because any failures at this stage are ignored: the transaction

has terminated so there’s nothing to affect.

The synchronization protocol does not have the same failure requirements as the traditional

two-phase commit protocol. For example, Synchronization participants do not need the ability

to recover in the event of failures, because any failure before the two-phase commit protocol

completes cause the transaction to roll back, and failures after it completes have no effect on the

data which the Synchronization participants are responsible for.

3.7. Optimizations to the Protocol

There are several variants to the standard two-phase commit protocol that are worth knowing

about, because they can have an impact on performance and failure recovery. Table 3.1, “Variants

to the Two-Phase Commit Protocol” gives more information about each one.

Table 3.1. Variants to the Two-Phase Commit Protocol

Variant Description

Presumed Abort If a transaction is going to roll back, the

coordinator may record this information locally

and tell all enlisted participants. Failure

to contact a participant has no effect on

Chapter 3. Transactions Overview

14

Variant Description

the transaction outcome. The coordinator is

informing participants only as a courtesy.

Once all participants have been contacted,

the information about the transaction can be

removed. If a subsequent request for the status

of the transaction occurs, no information will be

available and the requester can assume that

the transaction has aborted. This optimization

has the benefit that no information about

participants need be made persistent until the

transaction has progressed to the end of the

prepare phase and decided to commit, since

any failure prior to this point is assumed to be

an abort of the transaction.

One-Phase If only a single participant is involved in

the transaction, the coordinator does not

need to drive it through the prepare phase.

Thus, the participant is told to commit, and

the coordinator does not need to record

information about the decision, since the

outcome of the transaction is the responsibility

of the participant.

Read-Only When a participant is asked to prepare, it can

indicate to the coordinator that no information

or data that it controls has been modified during

the transaction. Such a participant does not

need to be informed about the outcome of the

transaction since the fate of the participant has

no affect on the transaction. Therefore, a read-

only participant can be omitted from the second

phase of the commit protocol.

Note

The WS-Atomic Transaction protocol does not support the one-phase commit

optimization.

3.8. Non-Atomic Transactions and Heuristic Outcomes

In order to guarantee atomicity, the two-phase commit protocol is blocking. As a result of

failures, participants may remain blocked for an indefinite period of time, even if failure recovery

mechanisms exist. Some applications and participants cannot tolerate this blocking.

Non-Atomic Transactions and Heuristic Outcomes

15

To break this blocking nature, participants that are past the prepare phase are allowed to make

autonomous decisions about whether to commit or rollback. Such a participant must record its

decision, so that it can complete the original transaction if it eventually gets a request to do so. If the

coordinator eventually informs the participant of the transaction outcome, and it is the same as the

choice the participant made, no conflict exists. If the decisions of the participant and coordinator

are different, the situation is referred to as a non-atomic outcome, and more specifically as a

heuristic outcome.

Resolving and reporting heuristic outcomes to the application is usually the domain of complex,

manually driven system administration tools, because attempting an automatic resolution requires

semantic information about the nature of participants involved in the transactions.

Precisely when a participant makes a heuristic decision depends on the specific implementation.

Likewise, the choice the participant makes about whether to commit or to roll back depends upon

the implementation, and possibly the application and the environment in which it finds itself. The

possible heuristic outcomes are discussed in Table 3.2, “Heuristic Outcomes”.

Table 3.2. Heuristic Outcomes

Outcome Description

Heuristic Rollback The commit operation failed because some or

all of the participants unilaterally rolled back the

transaction.

Heuristic Commit An attempted rollback operation failed because

all of the participants unilaterally committed.

One situation where this might happen is if

the coordinator is able to successfully prepare

the transaction, but then decides to roll it

back because its transaction log could not be

updated. While the coordinator is making its

decision, the participants decides to commit.

Heuristic Mixed Some participants commit ed, while others

were rolled back.

Heuristic Hazard The disposition of some of the updates is

unknown. For those which are known, they

have either all been committed or all rolled

back.

Heuristic decisions should be used with care and only in exceptional circumstances, since the

decision may possibly differ from that determined by the transaction service. This type of difference

can lead to a loss of integrity in the system. Try to avoid needing to perform resolution of heuristics,

either by working with services and participants that do not cause heuristics, or by using a

transaction service that provides assistance in the resolution process.

Chapter 3. Transactions Overview

16

3.9. Interposition

Interposition is a scoping mechanism which allows coordination of a transaction to be delegated

across a hierarchy of coordinators. See Figure 3.4, “Interpositions” for a graphical representation

of this concept.

Interposition

17

Figure 3.4. Interpositions

Interposition is particularly useful for Web Services transactions, as a way of limiting the amount

of network traffic required for coordination. For example, if communications between the top-level

coordinator and a web service are slow because of network traffic or distance, the web service

might benefit from executing in a subordinate transaction which employs a local coordinator

Chapter 3. Transactions Overview

18

service. In Figure 3.4, “Interpositions”,to prepare, the top-level coordinator only needs to send

one prepare message to the subordinate coordinator, and receive one prepared or aborted

reply. The subordinate coordinator forwards a prepare locally to each participant and combines

the results to decide whether to send a single prepared or aborted reply.

3.10. A New Transaction Protocol

Many component technologies offer mechanisms for coordinating ACID transactions based on

two-phase commit semantics. Some of these are CORBA/OTS, JTS/JTA, and MTS/MSDTC.

ACID transactions are not suitable for all Web Services transactions, as explained in Reasons

ACID is Not Suitable for Web Services.

Reasons ACID is Not Suitable for Web Services

• Classic ACID transactions assume that an organization that develops and deploys applications

owns the entire infrastructure for the applications. This infrastructure has traditionally taken the

form of an Intranet. Ownership implies that transactions operate in a trusted and predictable

manner. To assure ACIDity, potentially long-lived locks can be kept on underlying data

structures during two-phase commit. Resources can be used for any period of time and released

when the transaction is complete.

In Web Services, these assumptions are no longer valid. One obvious reason is that the owners

of data exposed through a Web service refuse to allow their data to be locked for extended

periods, since allowing such locks invites denial-of-service attacks.

• All application infrastructures are generally owned by a single party. Systems using classical

ACID transactions normally assume that participants in a transaction will obey the directives

of the transaction manager and only infrequently make unilateral decisions which harm other

participants in a transaction.

Web Services participating in a transaction can effectively decide to resign from the transaction

at any time, and the consumer of the service generally has little in the way of quality of service

guarantees to prevent this.

3.10.1. Transaction in Loosely Coupled Systems

Extended transaction models which relax the ACID properties have been proposed over the

years. WS-T provides a new transaction protocol to implement these concepts for the Web

Services architecture. XTS is designed to accommodate four underlying requirements inherent

in any loosely coupled architecture like Web Services. These requirements are discussed in

Requirements of Web Services.

Requirements of Web Services

• Ability to handle multiple successful outcomes to a transaction, and to involve operations whose

effects may not be isolated or durable.

Transaction in Loosely Coupled Systems

19

• Coordination of autonomous parties whose relationships are governed by contracts, rather than

the dictates of a central design authority.

• Discontinuous service, where parties are expected to suffer outages during their lifetimes, and

coordinated work must be able to survive such outages.

• Interoperation using XML over multiple communication protocols. XTS uses SOAP encoding

carried over HTTP.

20

Chapter 4.

21

Overview of Protocols Used by XTS
This section discusses fundamental concepts associated with the WS-Coordination, WS-Atomic

Transaction and WS-Business Activity protocols, as defined in each protocol's specification.

Foundational information about these protocols is important to understanding the remaining

material covered in this guide.

Note

If you are familiar with the WS-Coordination, WS-Atomic Transaction, and WS-

Business Activity specifications you may only need to skim this chapter.

4.1. WS-Coordination

In general terms, coordination is the act of one entity,known as the coordinator, disseminating

information to a number of participants for some domain-specific reason. This reason could be

to reach consensus on a decision by a distributed transaction protocol, or to guarantee that

all participants obtain a specific message, such as in a reliable multicast environment. When

parties are being coordinated, information, known as the coordination context, is propagated to tie

together operations which are logically part of the same coordinated work or activity. This context

information may flow with normal application messages, or may be an explicit part of a message

exchange. It is specific to the type of coordination being performed.

The fundamental idea underpinning WS-Coordination (WS-C) is that a coordination infrastructure

is needed in a Web Services environment. The WS-C specification defines a framework that allows

different coordination protocols to be plugged in to coordinate work between clients, services, and

participants, as shown in Figure 4.1, “WS-C Architecture”.

Chapter 4. Overview of Protoc...

22

Figure 4.1. WS-C Architecture

WS-Coordination

23

Whatever coordination protocol is used, and in whatever domain it is deployed, the same generic

requirements are present.

Generic Requirements for WS-C

• Instantiation, or activation, of a new coordinator for the specific coordination protocol, for a

particular application instance.

• Registration of participants with the coordinator, such that they will receive that coordinator’s

protocol messages during (some part of) the application’s lifetime.

• Propagation of contextual information between Web Services that comprise the application.

• An entity to drive the coordination protocol through to completion.

The first three of the points in Generic Requirements for WS-C are the direct responsibility of WS-

C, while the fourth is the responsibility of a third-party entity. The third-party entity is usually the

client component of the overall application. These four WS-C roles and their relationships are

shown in Figure 4.2, “Four Roles in WS-C”.

Chapter 4. Overview of Protoc...

24

Figure 4.2. Four Roles in WS-C

Activation

25

4.1.1. Activation

The WS-C framework exposes an Activation Service which supports the creation of coordinators

for specific coordination protocols and retrieval of associated contexts. Activation services are

invoked synchronously using an RPC style exchange. So, the service WSDL defines a single

port declaring a CreateCoordinationContext operation. This operation takes an input specfying

the details of the transaction to be created, including the type of coordination required, timeout,

and other relevant information. It returns an output containing the details of the newly-created

transaction context: the transaction identifier, coordination type, and registration service URL.

Example 4.1.

<!-- Activation Service portType Declaration -->

<wsdl:portType name="ActivationCoordinatorPortType">

 <wsdl:operation name="CreateCoordinationContext">

 <wsdl:input message="wscoor:CreateCoordinationContext"/>

 <wsdl:output message="wscoor:CreateCoordinationContextResponse"/>

 </wsdl:operation>

</wsdl:portType>

Note

The 1.0 Activation Coordinator service employs an asynchronous message

exchange comprised of two one-way messages, so an Activation Requester

service is also necessary.

4.1.2. Registration

The context returned by the activation service includes the URL of a Registration Service. When

a web service receieves a service request accompanied by a transaction context, it contacts the

Registration Service to enroll as a participant in the transaction. The registration request includes a

participant protocol defining the role the web service wishes to take in the transaction. Depending

upon the coordination protocol, more than one choice of participant protocol may be available.

Like the activation service, the registration service assumes synchronous communication. Thus,

the service WSDL exposes a single port declaring a Register operation. This operation takes an

input specifying the details of the participant which is to be registered, including the participant

protocol type. It returns a corresponding output response.

Example 4.2. Registration ServiceWSDL Interface

<!-- Registration Service portType Declaration -->

Chapter 4. Overview of Protoc...

26

<wsdl:portType name="RegistrationCoordinatorPortType">

 <wsdl:operation name="Register">

 <wsdl:input message="wscoor:Register"/>

 <wsdl:output message="wscoor:RegisterResponse"/>

 </wsdl:operation>

</wsdl:portType>

Once a participant is registered with a coordinator through the registration service, it receives

coordination messages from the coordinator. Typical messages include such things as “prepare

to complete” and “complete” messages, if a two-phase protocol is used. Where the coordinator’s

protocol supports it, participants can also send messages back to the coordinator.

Note

The 1.0 Registration Coordinator service employs an asynchronous message

exchange comprised of two one way messages, so a Registration Requester

service is also necessary

4.1.3. Completion

The role of terminator is generally filled by the client application. At an appropriate point, the client

asks the coordinator to perform its particular coordination function with any registered participants,

to drive the protocol through to its completion. After completion, the client application may be

informed of an outcome for the activity. This outcome may take any form along the spectrum from

simple success or failure notification, to complex structured data detailing the activity’s status.

4.2. WS-Transaction

WS-Transaction (WS-T) comprises the pair of transaction coordination protocols, WS-Atomic

Transaction (WS-AT) and WS-Business Activity (WS-BA), which utilize the coordination

framework provided by WS-Coordination (WS-C).

WS-Transactions was developed to unify existing traditional transaction processing systems,

allowing them to communicate reliably with one another without changes to the systems' own

function.

4.2.1. WS-Transaction Foundations

WS-Transaction is layered upon the WS-Coordination protocol, as shown in as shown in

Figure 4.3, “WS-Coordination, WS-Transaction, and WS-Business Activity”.

WS-Transaction Foundations

27

Figure 4.3. WS-Coordination, WS-Transaction, and WS-Business Activity

WS-C provides a generic framework for specific coordination protocols, like WS-Transaction,

used in a modular fashion. WS-C provides only context management, allowing contexts to be

created and activities to be registered with those contexts. WS-Transaction leverages the context

management framework provided by WS-C in two ways.

1. It extends the WS-C context to create a transaction context.

2. It augments the activation and registration services with a number of additional services

(Completion, Volatile2PC, Durable2PC, BusinessAgreementWithParticipantCompletion, and

BusinessAgreementWithCoordinatorCompletion) and two protocol message sets (one for each

of the transaction models supported in WS-Transaction), to build a fully-fledged transaction

coordinator on top of the WS-C protocol infrastructure.

Chapter 4. Overview of Protoc...

28

3. An important aspect of WS-Transaction that differs from traditional transaction protocols is that

a synchronous request/response model is not assumed. Sequences of one way messages are

used to implement communications between the client/participant and the coordination services

appropriate to the transaction's coordination and participant protocols. This is significant

because it means that the client and participant containers must deploy XTS service endpoints

to receive messages from the coordinator service.

This requirement is visible in the details of the Register and RegisterResponse messages

declared in the Registration Service WSDL in Example 4.2, “Registration ServiceWSDL

Interface”. The Register message contains the URL of an endpoint in the client or web service

container. This URL is used when a WS-Transaction coordination service wishes to dispatch

a message to the clinet or web service. Similarly, the RegisterResponse message contains a

URL iendtifying an endpoint for the protocol-specific WS-Transaction coordination service for

which the client/web service is registered, allowing messages to be addressed to the transaction

coordinator.

4.2.2. WS-Transaction Architecture

WS-Transaction distnguishes the transaction-aware web service in its role executing business-

logic, from the web service acting as a participant in the transaction, communicating with

and responding to its transaction coordinator. Transaction-aware web services deal with

application clients using business-level protocols, while the participant handles the underlying

WS-Transaction protocols, as shown in Figure 4.4, “WS-Transaction Global View”.

WS-Transaction Architecture

29

Figure 4.4. WS-Transaction Global View

Chapter 4. Overview of Protoc...

30

A transaction-aware web service encapsulates the business logic or work that needs to be

conducted within the scope of a transaction. This work cannot be confirmed by the application

unless the transaction also commits. Thus, control is ultimately removed from the application and

given to the transaction.

The participant is the entity that, under the dictates of the transaction coordinator, controls the

outcome of the work performed by the transaction-aware Web service. In Figure 4.4, “WS-

Transaction Global View”, each web service is shown with one associated participant that

manages the transaction protocol messages on behalf of its web service. Figure 4.5, “WS-

Transaction Web Services and Participants”, however, shows a close-up view of a single web

service, and a client application with their associated participants.

WS-Transaction Architecture

31

Figure 4.5. WS-Transaction Web Services and Participants

Chapter 4. Overview of Protoc...

32

The transaction-aware web service employs a back end database accessed via a JDBC driver,

which sends SQL statements to the database for processing. However, those statements should

only commit if the enclosing web service transaction does. For this to work, the web service must

employ transaction bridging. Transaction bridging registers a participant with the coordinator for

the web service transaction and creates a matching XA transaction within which it can invoke

the driver to make tentative changes to the database. The web service ensures that service

requests associated with a specific web service transaction are executed in the scope of the

corresponding XA transaction, grouping changes common to a given transaction while isolating

changes belonging to different transactions. The participant responds to prepare, commit, or

rollback requests associated from the web service transaction coordinator by forwarding the same

operations to the underlying XA transaction coordinator, ensuring that the local outcome in the

database corresponds with the global outcome of the web service transaction as a whole.

Things are less complex for the client. Through its API, the client application registers a participant

with the transaction, and uses this participant to control termination of the transaction.

4.2.3. WS_Transaction Models

It has been established that traditional transaction models are not appropriate for Web Services.

No one specific protocol is likely to be sufficient, given the wide range of situations where Web

service transactions are likely to be used. The WS-Transaction specification proposes two distinct

models, where each supports the semantics of a particular kind of B2B interaction.

The following discussion presents the interactions between the client, web service and the

transaction coordinator in great detail for expository purposes only. Most of this activity happens

automatically behind the scenes. The actual APIs used to initiate and complete a transaction

and to register a participant and drive it through the commit or abort process are described in

Chapter 7, The XTS API.

4.2.3.1. Atomic Transactions

An atomic transaction (AT) is similar to traditional ACID transactions, and is designed to support

short-duration interactions where ACID semantics are appropriate. Within the scope of an AT,

web services typically employ bridging to allow them to access XA resources, such as databases

and message queues, under the control of the web service transaction. When the transaction

terminates, the participant propagates the outcome decision of the AT to the XA resources, and

the appropriate commit or rollback actions are taken by each.

All services and associated participants are expected to provide ACID semantics, and it is

expected that any use of atomic transactions occurs in environments and situations where ACID

is appropriate. Usually, this environment is a trusted domain, over short durations.

Procedure 4.1. Atomic Transaction Process

1. To begin an atomic transaction, the client application first locates a WS-C Activation

Coordinator web service that supports WS-Transaction.

WS_Transaction Models

33

2. The client sends a WS-C CreateCoordinationContext message to the service, specifying

http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.

3. The client receives an appropriate WS-Transaction context from the activation service.

4. The response to the CreateCoordinationContext message, the transaction context,

has its CoordinationType element set to the WS-Atomic Transaction namespace, http://

schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic transaction

coordinator endpoint, the WS-C Registration Service, where participants can be enlisted.

5. The client normally proceeds to invoke Web Services and complete the transaction, either

committing all the changes made by the web services, or rolling them back. In order to be

able to drive this completion activity, the client must register itself as a participant for the

Completion protocol, by sending a Register message to the Registration Service whose

endpoint was returned in the Coordination Context.

6. Once registered for Completion, the client application then interacts with Web Services to

accomplish its business-level work. With each invocation of a business Web service, the

client inserts the transaction context into a SOAP header block, such that each invocation is

implicitly scoped by the transaction. The toolkits that support WS-Atomic Transaction-aware

Web Services provide facilities to correlate contexts found in SOAP header blocks with back-

end operations. This ensures that modifications made by the Web service are done within

the scope of the same transaction as the client and subject to commit or rollback by the

transaction coordinator.

7. Once all the necessary application-level work is complete, the client can terminate the

transaction, with the intent of making any changes to the service state permanent. The

completion participant instructs the coordinator to try to commit or roll back the transaction.

When the commit or roll-back operation completes, a status is returned to the participant to

indicate the outcome of the transaction.

Although this description of the completion protocol seems straightforward, it hides the fact that

in order to resolve the transaction to an outcome, several other participant protocols need to be

followed.

Volatile2pc

The first of these protocols is the optional Volatile2PC (2PC is an abbreviation referring to the

two-phase commit). The Volatile2PC protocol is the WS-Atomic Transaction equivalent of the

synchronization protocol discussed earlier. It is typically executed where a Web service needs

to flush volatile (cached) state, which may be used to improve performance of an application,

to a database prior to the transaction committing. Once flushed, the data is controlled by a

two-phase aware participant.

When the completion participant initiates a commit operation, all Volatile2PC participants are

informed that the transaction is about to complete, via the prepare message. The participants

can respond with one of three messages: prepared, aborted, or readonly. A failure at this

stage causes the transaction to roll back.

http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat

Chapter 4. Overview of Protoc...

34

Durable2PC

The next protocol in the WS-Atomic Transaction is Durable2PC. The Durable2PC protocol

is at the core of WS-Atomic Transaction. It brings about the necessary consensus between

participants in a transaction, so the transaction can safely be terminated.

The Durable2PC protocol ensures atomicity between participants, and is based on the classic

technique of two-phase commit with presumed abort.

Procedure 4.2. Durable2PC Procedure

1. During the first phase, when the coordinator sends the prepare message, a participant

must make durable any state changes that occurred during the scope of the transaction,

so these changes can either be rolled back or committed later. None of the original state

information can be lost at this point, since the atomic transaction may still roll back. If

the participant cannot prepare, it must inform the coordinator, by means of the aborted

message. The transaction will ultimately roll back. If the participant is responsible for a

service that did not change any of the transaction's data,, it can return the readonly

message, causing it to be omitted from the second phase of the commit protocol.

Otherwise, the prepared message is sent by the participant.

2. If no failures occur during the first phase, Durable2PC proceeds to the second phase,

in which the coordinator sends the commit message to participants. Participants then

make permanent the tentative work done by their associated services, and send a

committed message to the coordinator. If any failures occur, the coordinator sends the

rollback message to all participants, causing them to discard tentative work done by

their associated services, and delete any state information saved to persistent storage at

prepare, if they have reached that stage. Participants respond to a rollback by sending

an aborted message to the coordinator.

Note

The semantics of the WS-Atomic Transaction protocol do not include the one-

phase commit optimization. A full two-phase commit is always used, even

where only a single participant is enlisted.

Figure 4.6, “WS-Atomic Two-Phase Participant State Transitions” shows the state transitions

of a WS-Atomic Transaction and the message exchanges between coordinator and participant.

Messages generated by the coordinator are represented by solid lines, while the participants'

messages use dashed lines.

WS_Transaction Models

35

Figure 4.6. WS-Atomic Two-Phase Participant State Transitions

Once the Durable2PC protocol completes, the Completion protocol that originally began the

termination of the transaction can complete, and inform the client application whether the

transaction was committed or rolled back. Additionally, the Volatile2PC protocol may complete.

Like the prepare phase of Volatile2PC, the final phase is optional and can be used to inform

participants about the transaction's completion, so that they can release resources such as

database connections.

Any registered Volatile2PC participants are invoked after the transaction terminates, and are

informed about the transaction's completion state by the coordinator. Since the transaction has

terminated, any failures of participants at this stage are ignored, since they have no impact on

outcomes.

Figure 4.7, “” illustrates the intricate interweaving of individual protocols comprising the AT as a

whole.

Chapter 4. Overview of Protoc...

36

Figure 4.7.

WS_Transaction Models

37

4.2.3.2. Business Activities

Most B2B applications require transactional support in order to guarantee consistent outcome and

correct execution. These applications often involve long-running computations, loosely coupled

systems, and components that do not share data, location, or administration. It is difficult to

incorporate atomic transactions within such architectures.

For example, an online bookshop may reserve books for an individual for a specific period of time.

However, if the individual does not purchase the books within that period, they become available

again for purchase by other customers. Because it is not possible to have an infinite supply of

stock, some online shops may seem, from the user's perspective, to reserve items for them, while

actually allow others to preempt the reservation. A user may discover, to his disappointment, that

the item is no longer available.

A Business Activity (BA) is designed specifically for these kinds of long-duration interactions,

where it is impossible or impractical to exclusively lock resources.

Procedure 4.3. BA Process Overview

1. Services are requested to do work.

2. Where those services have the ability to undo any work, they inform the BA, in case the BA

later decides the cancel the work. If the BA suffers a failure. it can instruct the service to

execute its undo behavior.

The key to BA is that how services do their work and provide compensation mechanisms is not

the responsibility of the WS-BA specification. It is delegated to the service provider.

The WS-BA defines a protocol for Web Services-based applications to enable existing business

processing and work-flow systems to wrap their proprietary mechanisms and interoperate across

implementations and business boundaries.

Unlike the WS-AT protocol model, where participants inform the coordinator of their state only

when asked, a child activity within a BA can specify its outcome to the coordinator directly, without

waiting for a request. A participant may choose to exit the activity or may notify the coordinator

of a failure at any point. This feature is useful when tasks fail, since the notification can be used

to modify the goals and drive processing forward, without the need to wait until the end of the

transaction to identify failures. A well-designed Business Activity should be proactive.

The BA protocols employ a compensation-based transaction model. When a participant in a

business activity completes its work, it may choose to exit the activity. This choice does not

allow any subsequent rollback. Alternatively, the participant can complete its activity, signaling

to the coordinator that the work it has done can be compensated if, at some later point, another

participant notifies a failure to the coordinator. In this latter case, the coordinator asks each

non-exited participant to compensate for the failure, giving them the opportunity to execute

Chapter 4. Overview of Protoc...

38

whatever compensating action they consider appropriate. For instance, participant might credit

a bank account which it previously debited. If all participants exit or complete without failure, the

coordinator notifies each completed participant that the activity has been closed.

Underpinning all of this are three fundamental assumptions, detailed in Assumptions of WS-BA.

Assumptions of WS-BA

• All state transitions are reliably recorded, including application state and coordination metadata

(the record of sent and received messages).

• All request messages are acknowledged, so that problems are detected as early as possible.

This avoids executing unnecessary tasks and can also detect a problem earlier when rectifying

it is simpler and less expensive.

• As with atomic transactions, a response is defined as a separate operation, not as the output

of the request. Message I/O implementations typically have timeout requirements too short for

BA responses. If the response is not received after a timeout, it is re-sent, repeatedly, until a

response is received. The receiver discards all but one identical request received.

The BA model has two participant protocols: BusinessAgreementWithParticipantCompletion

and BusinessAgreementWithCoordinatorCompletion. Unlike the AT protocols which are driven

from the coordinator down to participants, this protocol takes the opposite approach.

BusinessAgreementWithParticipantCompletion

1. A participant is initially created in the Active state.

2. If it finishes its work and it is no longer needed within the scope of the BA (such as

when the activity operates on immutable data), the participant can unilaterally decide to

exit, sending an exited message to the coordinator. However, if the participant finishes

and wishes to continue in the BA, it must be able to compensate for the work it has

performed. In this case, it sends a completed message to the coordinator and waits for

the coordinator to notify it about the final outcome of the BA. This outcome is either a

close message, meaning the BA has completed successfully, or a compensate message

indicating that the participant needs to reverse its work.

BusinessAgreementWithCoordinatorCompletion

The BusinessAgreementWithCoordinatorCompletion differs from the

BusinessAgreementWithParticipantCompletion protocol in that the participant cannot

autonomously decide to complete its participation in the BA, even if it can be compensated.

1. Instead, the completion stage is driven by the client which created the BA, which sends

a completed message to the coordinator.

WS_Transaction Models

39

2. The coordinator sends a complete message to each participant, indicating that no further

requests will be sent to the service associated with the participant.

3. The participant continues on in the same manner as in the

BusinessAgreementWithParticipantCompletion protocol.

The advantage of the BA model, compared to the AT model, is that is allows the participation of

services that cannot lock resources for extended periods.

While the full ACID semantics are not maintained by a BA, consistency can still be maintained

through compensation. The task of writing correct compensating actions to preserve overall

system consistency is the responsibility of the developers of the individual services under control

of the BA. Such compensations may use backward error recovery, but forward recovery is more

common.

Figure 4.8, “” shows the state transitions of a WS-BA

BusinessAgreementWithParticipantCompletion participant and the message exchanges

between coordinator and participant. Messages generated by the coordinator are shown with solid

lines, while the participants' messages are illustrated with dashed lines.

Chapter 4. Overview of Protoc...

40

Figure 4.8.

Figure 4.9, “” shows the state transitions of a WS-BA

BusinessAgreementWithCoordinatorCompletion participant and the message exchanges

between coordinator and participant. Messages generated by the coordinator are shown with solid

lines, while the participants' messages are illustrated with dashed lines.

Application Messages

41

Figure 4.9.

4.2.4. Application Messages

Application messages are the requests and responses sent between parties, that constitute the

work of a business process. Any such messages are considered opaque by XTS, and there is no

mandatory message format, protocol binding, or encoding style. This means that you are free to

use any appropriate Web Services protocol. In XTS, the transaction context is propagated within

the headers of SOAP messages.

Chapter 4. Overview of Protoc...

42

XTS ships with support for service developers building WS-Transactions-aware services on the

JBoss Application Server. Interceptors are provided for automatic context handling at both client

and service, which significantly simplifies development, allowing you to concentrate on writing

the business logic without being sidetracked by the transactional infrastructure. The interceptors

add and remove context elements to application messages, without altering the semantics of the

messages themselves. Any service which understands what to do with a WS-C context can use

it. Services which are not aware of WS-C, WS-Atomic Transaction and WS-Business Activity can

ignore the context. XTS manages contexts without user intervention.

4.2.4.1. WS-C, WS-Atomic Transaction, and WS-Business Activity

Messages

Although the application or service developer is rarely interested in the messages exchanged by

the transactional infrastructure, it is useful to understand what kinds of exchanges occur so that

the underlying model can be fitted in to an overall architecture.

WS-Coordination, WS-Atomic Transaction and WS-Business Activity-specific messages are

transported using SOAP messaging over HTTP. The types of messages that are propagated

include instructions to perform standard transaction operations like begin and prepare.

Note

XTS messages do not interfere with messages from the application, an application

need not use the same transport as the transaction-specific messages. For

example, a client application might deliver its application-specific messages using

SOAP RPC over SMTP, even though the XTS messages are delivered using a

different mechanism.

4.3. Summary

XTS provides a coordination infrastructure which allows transactions to run between services

owned by different business, across the Internet. That infrastructure is based on the WS-C, WS-

Atomic Transaction and WS-Business Activity specifications. It supports two kinds of transactions:

atomic transactions and business activities, which can be combined in arbitrary ways to map

elegantly onto the transactional requirements of the underlying problem. The use of the whole

infrastructure is simple, because its functionality is exposed through a simple transactioning API.

XTS provides everything necessary to keep application and transactional aspects of an application

separate, and to ensure that a system's use of transactions does not interfere with the functional

aspects of the system itself.

Chapter 5.

43

Getting Started

5.1. Installing the XTS Service Archive into JBoss

Transaction Service

XTS, which is the Web Services component of JBoss Transaction Service, provides WS-AT

and WS-BA support for Web Services hosted on the JBoss Application Server. The module is

packaged as a Service Archive (.sar) located in $JBOSS_HOME/docs/examples/transactions/.

To install it, follow Installing the XTS Module.

Procedure 5.1. Installing the XTS Module

1. Create a sub-directory in the $JBOSS_HOME/server/[name]/deploy/ directory, called

jbossxts.sar/.

2. Unpack the SAR, which is a ZIP archive, into this new directory.

3. Restart JBoss Application Server to activate the module.

5.2. Creating Client Applications

There are two aspects to a client application using XTS, the transaction declaration aspects, and

the business logic. The business logic includes the invocation of Web Services.

Transaction declaration aspects are handled automatically with the XTS client API. This API

provides simple transaction directives such as begin, commit, and rollback, which the client

application can use to initialize, manage, and terminate transactions. Internally, this API uses

SOAP to invoke operations on the various WS-C, WS-AT and WS-BA services, in order to create

a coordinator and drive the transaction to completion.

5.2.1. User Transactions

A client uses the UserTransactionFactory and UserTransaction classes to create and manage

WS-AT transactions. These classes provide a simple API which operates in a manner similar to

the JTA API. A WS-AT transaction is started and associated with the client thread by calling the

begin method of the UserTransaction class. The transaction can be committed by calling the

commit method, and rolled back by calling the rollback method.

More complex transaction management, such as suspension and resumption of transactions, is

supported by the TransactionManagerFactory and TransactionManager classes.

Full details of the WS-AT APIs are provided in Chapter 7, The XTS API.

Chapter 5. Getting Started

44

5.2.2. Business Activities

A client creates and manages Business Activities using the UserBusinessActivityFactory

and UserBusinessActivity classes. A WS-BA activity is started and associated with the client

thread by calling the begin method of the UserBusinessActivity class. A client can terminate

a business activity by calling the close method, and cancel it by calling the cancel method.

If any of the Web Services invoked by the client register for the

BusinessActivityWithCoordinatorCompletion protocol, the client can call the completed

method before calling the close method, to notify the services that it has finished making service

invocations in the current activity.

More complex business activity management, such as suspension and resumption

of business activities, is supported by the BusinessActivityManagerFactory and

BusinessActivityManager classes.

Full details of the WS-AT APIs are provided in Chapter 7, The XTS API.

5.2.3. Client-Side Handler Configuration

XTS does not require the client application to use a specific API to perform invocations on

transactional Web Services. The client is free to use any appropriate API to send SOAP messages

to the server and receive SOAP responses. The only requirements imposed on the client are:

• It must forward details of the current transaction to the server when invoking a web service.

• It must process any responses from the server in the context of the correct transaction.

In order to achieve this, the client must insert details of the current XTS context into the headers of

outgoing SOAP messages, and extract the context details from the headers of incoming messages

and associate the context with the current thread. To simplify this process, the XTS module

includes handlers which can perform this task automatically. These handlers are designed to work

with JAX-WS clients.

Note

If you choose to use a different SOAP client/server infrastructure for business

service invocations, you must provide for header processing. XTS only provides

interceptors for or JAX-WS. A JAX-RPC handler is provided only for the 1.0

implementation.

5.2.3.1. JAX-WS Client Context Handlers

In order to register the JAX-WS client-side context handler, the client application uses the APIs

provided by the javax.xml.ws.BindingProvider and javax.xml.ws.Binding classes, to install

Creating Transactional Web Services

45

a handler chain on the service proxy which is used to invoke the remote endpoint. Refer to the

example application client implementation located in the src/com/jboss/jbosstm/xts/demo/

BasicClient.java file for an example.

You can also specify the handlers by using a configuration file deployed with the application. The

file is identified by attaching a javax.jws.HandlerChain annotation to the interface class, which

declares the JAX-WS client API. This interface is normally generated from the web service WSDL

port definition.

You need to instantiate the com.arjuna.mw.wst11.client.JaxWSHeaderContextProcessor

class when registering a JAX-WS client context handler.

5.3. Creating Transactional Web Services

The two parts to implementing a Web service using XTS are the transaction management and

the business logic.

The bulk of the transaction management aspects are organized in a clear and easy-to-implement

model by means of the XTS’s Participant API, provides a structured model for negotiation between

the web service and the transaction coordinator. It allows the web service to manage its own

local transactional data, in accordance with the needs of the business logic, while ensuring that

its activities are in step with those of the client and other services involved in the transaction.

Internally, this API uses SOAP to invokes operations on the various WS-C, WS-AT and WS-BA

services, to drive the transaction to completion.

5.3.1. Participants

A participant is a software entity which is driven by the transaction manager on behalf of a Web

service. When a web service wants to participate in a particular transaction, it must enroll a

participant to act as a proxy for the service in subsequent negotiations with the coordinator. The

participant implements an API appropriate to the type of transaction it is enrolled in, and the

participant model selected when it is enrolled. For example, a Durable2PC participant, as part of a

WS-Atomic Transaction, implements the Durable2PCParticipant interface. The use of participants

allows the transactional control management aspects of the Web service to be factored into the

participant implementation, while staying separate from the the rest of the Web service's business

logic and private transactional data management.

The creation of participants is not trivial, since they ultimately reflect the state

of a Web service’s back-end processing facilities, an aspect normally associated

with an enterprise’s own IT infrastructure. Implementations must use one of

the following interfaces, depending upon the protocol it will participate within:

com.arjuna.wst11.Durable2PCParticipant, com.arjuna.wst11.Volatile2PCParticipant,

com.arjuna.wst11.BusinessAgreementWithParticipantCompletionParticipant, or

com.arjuna.wst11.BusinessAgreementWithCoordinatorCompletionParticipant.

A full description of XTS’s participant features is provided in Fix me.

Chapter 5. Getting Started

46

5.3.2. Service-Side Handler Configuration

A transactional Web service must ensure that a service invocation is included in the appropriate

transaction. This usually only affects the operation of the participants and has no impact on the

operation of the rest of the Web service. XTS simplifies this task and decouples it from the business

logic, in much the same way as for transactional clientsAdd an xref. XTS provides a handler

which detects and extracts the context details from the headers in incoming SOAP headers, and

associates the web service thread with the transaction. The handler clears this association when

dispatching SOAP responses, and writes the context into the outgoing message headers. This is

shown in Figure 5.1, “Context Handlers Registered with the SOAP Server”.

The service side handlers for JAX-WS come in two different versions. The normal handler resumes

any transaction identified by an incoming context when the service is invoked, and suspends

this transaction when the service call completes. The alternative handler is used to interpose a

local coordinator. The first time an incoming parent context is seen, the local coordinator service

creates a subordinate transaction, which is resumed before the web service is called. The handler

ensures that this subordinate transaction is resumed each time the service is invoked with the

same parent context. When the subordinate transaction completes, the association between the

parent transaction and its subordinate is cleared.

Note

The subordinate service side handler is only able to interpose a subordinate

coordinator for an Atomic Transaction.

Note

JAX-RPC is provided for the 1.0 implementation only.

5.3.2.1. JAX-WS Service Context Handlers

To register the JAX-WS server-side context handler with the deployed Web Services, you

must install a handler chain on the Server Endpoint Implementation class. The endpoint

implementation class annotation, which is the one annotated with a javax.jws.WebService,

must be supplemented with a javax.jws.HandlerChain annotation which identifies a handler

configuration file deployed with the application. Please refer to the example application

configuration file located at dd/jboss/context-handlers.xml and the endpoint implementation

classes located in src/com/jboss/jbosstm/xts/demo/services for an example.

When registering a normal JAX-WS service context handler, you

must instantiate the com.arjuna.mw.wst11.service.JaxWSHeaderContextProcessor

class. If you need coordinator interposition, employ the

com.arjuna.mw.wst11.service.JaxWSSubordinateHeaderContextProcessor instead.

Service-Side Handler Configuration

47

Figure 5.1. Context Handlers Registered with the SOAP Server

Chapter 5. Getting Started

48

5.4. Summary

This chapter gives a high-level overview of each of the major software pieces used by the Web

Services transactions component of JBoss Transaction Service. The Web Services transaction

manager provided by JBoss Transaction Service is the hub of the architecture and is the only piece

of software that user-level software does not bind to directly. XTS provides header-processing

infrastructure for use with Web Services transactions contexts for both client applications and Web

Services. XTS provides a simple interface for developing transaction participants, along with the

necessary document-handling code.

This chapter is only an overview, and does not address the more difficult and subtle aspects of

programming Web Services. For fuller explanations of the components, please continue reading.

Chapter 6.

49

Participants

6.1. Overview

The participant is the entity that performs the work pertaining to transaction management on

behalf of the business services involved in an application. The Web service (in the example code,

a theater booking system) contains some business logic to reserve a seat and inquire about

availability, but it needs to be supported by something that maintains information in a durable

manner. Typically this is a database, but it could be a file system, NVRAM, or other storage

mechanism.

Although the service may talk to the back-end database directly, it cannot commit or undo any

changes, since committing and rolling back are ultimately under the control of a transaction. For

the transaction to exercise this control, it must communicate with the database. In XTS, participant

does this communication, as shown in Figure 6.1, “Transactions, Participants, and Back-End

Transaction Control”.

Chapter 6. Participants

50

Figure 6.1. Transactions, Participants, and Back-End Transaction Control

6.1.1. Atomic Transaction

All Atomic Transaction participants are instances of the Section 6.1.1.1, “Durable2PCParticipant”

or Section 6.1.1.2, “Volatile2PCParticipant”.

6.1.1.1. Durable2PCParticipant

A Durable2PCParticipant supports the WS-Atomic Transaction Durable2PC protocol

with the signatures listed in Durable2PCParticipant Signatures, as per the

com.arjuna.wst11.Durable2Participant interface.

Atomic Transaction

51

Durable2PCParticipant Signatures

prepare

The participant should perform any work necessary, so that it can either commit or roll back the

work performed by the Web service under the scope of the transaction. The implementation

is free to do whatever it needs to in order to fulfill the implicit contract between it and the

coordinator.

The participant indicates whether it can prepare by returning an instance of the

com.arjuna.wst11.Vote, with one of three values.

• ReadOnly indicates that the participant does not need to be informed of the transaction

outcome, because it did not update any state information.

• Prepared indicates that the participant is ready to commit or roll back, depending on the final

transaction outcome. Sufficient state updates have been made persistent to accomplish

this.

• Aborted indicates that the participant has aborted and the transaction should also attempt

to do so.

commit

The participant should make its work permanent. How it accomplishes this depends

upon its implementation. For instance, in the theater example, the reservation of the

ticket is committed. If commit processing cannot complete, the participant should throw a

SystemException error, potentially leading to a heuristic outcome for the transaction.

rollback

The participant should undo its work. If rollback processing cannot complete, the participant

should throw a SystemException error, potentially leading to a heuristic outcome for the

transaction.

unknown

This method has been deprecated and is slated to be removed from XTS in the future.

error

In rare cases when recovering from a system crash, it may be impossible to complete or roll

back a previously prepared participant, causing the error operation to be invoked.

6.1.1.2. Volatile2PCParticipant

This participant supports the WS-Atomic Transaction Volatile2PC protocol

with the signatures listed in Volatile2PCParticipant Signatures, as per the

com.arjuna.wst11.Volatile2Participant interface.

Chapter 6. Participants

52

Volatile2PCParticipant Signatures

prepare

The participant should perform any work necessary to flush any volatile data created by the

Web service under the scope of the transaction, to the system store. The implementation

is free to do whatever it needs to in order to fulfill the implicit contract between it and the

coordinator.

The participant indicates whether it can prepare by returning an instance of the

com.arjuna.wst11.Vote, with one of three values.

• ReadOnly indicates that the participant does not need to be informed of the transaction

outcome, because it did not change any state information during the life of the transaction.

• Prepared indicates that the participant wants to be notified of the final transaction outcome

via a call to commit or rollback.

• Aborted indicates that the participant has aborted and the transaction should also attempt

to do so.

commit

The participant should perform any cleanup activities required, in response to a successful

transaction commit. These cleanup activities depend upon its implementation. For instance, it

may flush cached backup copies of data modified during the transaction. In the unlikely event

that commit processing cannot complete, the participant should throw a SystemException

error. This will not affect the outcome of the transaction but will cause an error to be logged.

This method may not be called if a crash occurs during commit processing.

rollback

The participant should perform any cleanup activities required, in response to a transaction

abort. In the unlikely event that rollback processing cannot complete, the participant should

throw a SystemException error. This will not affect the outcome of the transaction but will

cause an error to be logged. This method may not be called if a crash occurs during commit

processing.

unknown

This method is deprecated and will be removed in a future release of XTS.

error

This method should never be called, since volatile participants are not involved in recovery

processing.

6.1.2. Business Activity

All Business Activity participants are instances one or the other of the interfaces

described in Section 6.1.2.1, “BusinessAgreementWithParticipantCompletion” or Section 6.1.2.2,

“BusinessAgreementWithCoordinatorCompletion” interface.

Business Activity

53

6.1.2.1. BusinessAgreementWithParticipantCompletion

The BusinessAgreementWithParticipantCompletion interface supports the WS-

Transactions BusinessAgreementWithParticipantCompletion protocol with the signatures

listed in BusinessAgreementWithParticipantCompletion Signatures, as per interface

com.arjuna.wst11.BusinessAgreementWithParticipantCompletionParticipant.

BusinessAgreementWithParticipantCompletion Signatures

close

The transaction has completed successfully. The participant has previously informed the

coordinator that it was ready to complete.

cancel

The transaction has canceled, and the participant should undo any work. The participant

cannot have informed the coordinator that it has completed.

compensate

The transaction has canceled. The participant previously informed the coordinator that it had

finished work but could compensate later if required, and it is now requested to do so. If

compensation cannot be performed, the participant should throw a FaultedException error,

potentially leading to a heuristic outcome for the transaction. If compensation processing

cannot complete because of a transient condition then the participant should throw a

SystemException error, in which case the compensation action may be retried or the

transaction may finish with a heuristic outcome.

status

Return the status of the participant.

unknown

This method is deprecated and will be removed a future XTS release.

error

In rare cases when recovering from a system crash, it may be impossible to compensate a

previously-completed participant. In such cases the error operation is invoked.

6.1.2.2. BusinessAgreementWithCoordinatorCompletion

The BusinessAgreementWithCoordinatorCompletion participant supports the WS-

Transactions BusinessAgreementWithCoordinatorCompletion protocol with the signatures

listed in BusinessAgreementWithCoordinatorCompletion Signatures, as per the

com.arjuna.wst11.BusinessAgreementWithCoordinatorCompletionParticipant interface.

BusinessAgreementWithCoordinatorCompletion Signatures

close

The transaction completed successfully. The participant previously informed the coordinator

that it was ready to complete.

Chapter 6. Participants

54

cancel

The transaction canceled, and the participant should undo any work.

compensate

The transaction canceled. The participant previously informed the coordinator that it had

finished work but could compensate later if required, and it is now requested to do so. In

the unlikely event that compensation cannot be performed the participant should throw a

FaultedException error, potentially leading to a heuristic outcome for the transaction. If

compensation processing cannot complete because of a transient condition, the participant

should throw a SystemException error, in which case the compensation action may be retried

or the transaction may finish with a heuristic outcome.

complete

The coordinator is informing the participant all work it needs to do within the scope of this

business activity has been completed and that it should make permananent any provisional

changes it has made.

status

Returns the status of the participant.

unknown

This method is deprecated and will be removed in a future release of XTS.

error

In rare cases when recovering from a system crash, it may be impossible to compensate a

previously completed participant. In such cases, the error method is invoked.

6.1.2.3. BAParticipantManager

In order for the Business Activity protocol to work correctly, the participants must be able to

autonomously notify the coordinator about changes in their status. Unlike the Atomic Transaction

protocol, where all interactions between the coordinator and participants are instigated by

the coordinator when the transaction terminates, the BAParticipantManager interaction pattern

requires the participant to be able to talk to the coordinator at any time during the lifetime of the

business activity.

Whenever a participant is registered with a business activity, it receives a handle on the

coordinator. This handle is an instance of interface com.arjuna.wst11.BAParticipantManager with

the methods listed in BAParticipantManager Methods.

BAParticipantManager Methods

exit

The participant uses the method exit to inform the coordinator that is has left the activity.

It will not be informed when and how the business activity terminates. This method may

only be invoked while the participant is in the active state (or the completing state, in the

case of a participant registered for the ParticipantCompletion protocol). If it is called when

Participant Creation and Deployment

55

the participant is in any other state, a WrongStateException error is thrown. An exit does

not stop the activity as a whole from subsequently being closed or canceled/compensated,

but only ensures that the exited participant is no longer involved in completion, close or

compensation of the activity.

completed

The participant has completed its work, but wishes to continue in the business activity, so that

it will eventually be informed when, and how, the activity terminates. The participant may later

be asked to compensate for the work it has done or learn that the activity has been closed.

fault

The participant encountered an error during normal activation and has done whatever it can

to compensate the activity. The fault method places the business activity into a mandatory

cancel-only mode. The faulted participant is no longer involved in completion, close or

compensation of the activity.

6.2. Participant Creation and Deployment

The participant provides the plumbing that drives the transactional aspects of the service. This

section discusses the specifics of Participant programming and usage.

6.2.1. Implementing Participants

Implementing a participant is a relatively straightforward task. However, depending on the

complexity of the transactional infrastructure that the participant needs to manage, the task

can vary greatly in complexity and scope. Your implementation needs to implement one of the

interfaces found under com.arjuna.wst11.

Note

The corresponding participant interfaces used in the 1.0 protocol implementation

are located in package com.arjuna.wst.

6.2.2. Deploying Participants

Transactional web services and transactional clients are deployed by placing them in the

application server deploy directory alongside the XTS service archive (SAR). The SAR exports all

the client and web service API classes needed to manage transactions and enroll and manage

participant web services. It provides implementations of all the WS-C and WS-T coordination

services, not just the coordinator services. In particular, it exposes the client and web service

participant endpoints which are needed to receive incoming messages originating from the

coordinator.

Normally, a transactional application client and the transaction web service it invokes will be

deployed in different application servers. As long as the XTS SAR is deployed to each of these

Chapter 6. Participants

56

containers XTS will transparently route coordination messages from clients or web services to

their coordinator and vice versa. When the the client begins a transaction by default it creates a

context using the coordination services in its local container. The context holds a reference to the

local Registration Service which means that any web services enlisted in the transaction enrol

with the cooridnation services in the same container."

The coordinator does not need to reside in the same container as the client application. By

configuring the client deployment appropriately it is possible to use the coordinator services co-

located with one of the web services or even to use services deployed in a separate, dedicated

container. See Chapter 8 Stand-Alone Coordination for details of how to configure a coordinator

located in a different container to the client.

Warning

In previous releases, XTS applications were deployed using the appropriate

XTS and Transaction Manager .jar, .war, and configuration files bundled with

the application. This deployment method is no longer supported in the JBoss

Application Server.

During JBoss Application Server startup, you should only deploy a transactional web service or

transactional client after the XTS services are available. Declare this dependency in a jboss-

beans.xml file located in the META-INF directory of the web service or client deployment.

Example 6.1, “Example jboss-beans.xml” shows one way of declaring this dependency.

After the XTS service starts, it creates an instance of the application class org.my.ServiceBean

by calling its start method. During JBoss Application Server shutdown, XTS stops the same

instance by calling its stop method, prior to shutting down the XTS Service.

Example 6.1. Example jboss-beans.xml

+<!-- example jboss-beans.xml file declaring dependency on XTS service -->

+<?xml version="1.0" encoding="UTF-8"?>

+<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

+ xsi:schemaLocation="urn:jboss:bean-deployer bean-deployer_1_0.xsd"

+ xmlns="urn:jboss:bean-deployer">

+ <!-- bean class should implement start() and stop() methods -->

+ <bean name="MyService class=org.my.ServiceBean>

+ <depends>jboss:service=XTSService</depends>

+ </bean>

+</deployment>

Chapter 7.

57

The XTS API
This chapter discusses the XTS API. You can use this information to write client and server

applications which consume transactional Web Services and coordinate back-end systems.

7.1. API for the Atomic Transaction Protocol

7.1.1. Vote

During the two-phase commit protocol, a participant is asked to vote on whether it can prepare

to confirm the work that it controls. It must return an instance of one of the subtypes of

com.arjuna.wst11.Vote listed in Subclasses of com.arjuna.wst11.Vote.

Subclasses of com.arjuna.wst11.Vote

Prepared

Indicates that the participant can can prepare if the coordinator requests it. Nothing has been

committed, because the participant does not know the final outcome of the transaction.

Aborted

The participant cannot prepare, and has rolled back. The participant should not expect to get

a second phase message.

ReadOnly

The participant has not made any changes to state, and it does not need to know the final

outcome of the transaction. Essentially the participant is resigning from the transaction.

Example 7.1. Example Implementation of 2PC Participant's prepare Method

public Vote prepare () throws WrongStateException, SystemException

{

 // Some participant logic here

 if(/* some condition based on the outcome of the business logic */)

 {

 // Vote to confirm

 return new com.arjuna.wst.Prepared();

 }

 else if(/*another condition based on the outcome of the business logic*/)

 {

 // Resign

 return new com.arjuna.wst.ReadOnly();

 }

 else

 {

Chapter 7. The XTS API

58

 // Vote to cancel

 return new com.arjuna.wst.Aborted();

 }

}

7.1.2. TXContext

com.arjuna.mw.wst11.TxContext is an opaque representation of a transaction context. It returns

one of two possible values, as listed in TxContext Return Values.

TxContext Return Values

valid

Indicates whether the contents are valid.

equals

Can be used to compare two instances for equality.

Note

The corresponding participant interfaces used in the 1.0 protocol implementation

are located in package com.arjuna.wst.

7.1.3. UserTransaction

com.arjuna.mw.wst11.UserTransaction is the class that clients typically employ. Before

a client can begin a new atomic transaction, it must first obtain a UserTransaction from

the UserTransactionFactory. This class isolates the user from the underlying protocol-

specific aspects of the XTS implementation. A UserTransaction does not represent a specific

transaction. Instead, it provides access to an implicit per-thread transaction context, similar to the

UserTransaction in the JTA specification. All of the UserTransaction methods implicitly act on

the current thread of control.

userTransaction Methods

begin

Used to begin a new transaction and associate it with the invoking thread.

Parameters

timeout

This optional parameter, measured in milliseconds, specifies a time interval after which

the newly created transaction may be automatically rolled back by the coordinator

UserTransactionFactory

59

Exceptions

WrongStateException

A transaction is already associated with the thread.

commit

Volatile2PC and Durable2PC participants enrolled in the transaction are requested first to

prepare and then to commit their changes. If any of the participants fails to prepare in the first

phase then all other participants are requested to abort.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

TransactionRolledBackException

The transaction was rolled back either because of a timeout or because a participant was

unable to commit.

rollback

Terminates the transaction. Upon completion, the rollback method disassociates the

transaction from the current leaving it unassociated with any transactions.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

7.1.4. UserTransactionFactory

Call the getUserTransaction method to obtain a Section 7.1.3, “UserTransaction” instance from

a UserTransactionFactory.

7.1.5. TransactionManager

Defines the interaction between a transactional web service and the underlying transaction service

implementation. A TransactionManager does not represent a specific transaction. Instead, it

provides access to an implicit per-thread transaction context.

Methods

currentTransaction

Returns a TxContext for the current transaction, or null if there is no context. Use the

currentTransaction method to determine whether a web service has been invoked from

within an existing transaction. You can also use the returned value to enable multiple threads

Chapter 7. The XTS API

60

to execute within the scope of the same transaction. Calling the currentTransaction method

does not disassociate the current thread from the transaction.

suspend

Dissociates a thread from any transaction. This enables a thread to do work that is not

associated with a specific transaction.

The suspend method returns a TxContext instance, which is a handle on the transaction.

resume

Associates or re-associates a thread with a transaction, using its TxContext. Prior to

association or re-association, the thread is disassociated from any transaction with which it

may be currently associated. If the TxContext is null, then the thread is associated with no

transaction. In this way, the result is the same as if the suspend method were used instead.

Parameters

txContext

A TxContext instance as return by suspend, identifying the transaction to be resumed.

Exceptions

UnknownTransactionException

The transaction referred to by the TxContext is invalid in the scope of the invoking thread.

enlistForVolitaleTwoPhase

Enroll the specified participant with the current transaction, causing it to participate in the

Volatile2PC protocol. You must pass a unique identifier for the participant.

Parameters

participant

An implementation of interface Volatile2PCParticipant whose prepare, commit and abort

methods are called when the corresponding coordinator message is received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted

participant. It should also be possible for a given identifier to determine that the participant

belongs to the enlisting web service rather than some other web service deployed to the

same container.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

The transaction is not in a state that allows participants to be enrolled. For instance, it

may be in the process of terminating.

TransactionManagerFactory

61

enlistForDurableTwoPhase

Enroll the specified participant with the current transaction, causing it to participate in the

Durable2PC protocol. You must pass a unique identifier for the participant.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

The transaction is not in a state that allows participants to be enrolled. For instance, it

may be in the process of terminating.

7.1.6. TransactionManagerFactory

Use the getTransactionManager method to obtain a Section 7.1.5, “TransactionManager” from

a TransactionManagerFactory.

7.2. API for the Business Activity Protocol

7.2.1. Compatibility

Previous implementations of XTS locate the Business Activity Protocol classes in the

com.arjuna.mw.wst package. In the current implementation, these classes are located in the

com.arjuna.mw.wst11 package.

7.2.2. UserBusinessActivity

com.arjuna.wst11.UserBusinessActivity is the class that most clients employ. A client

begins a new business activity by first obtaining a UserBusinessActivity from the

UserBusinessActivityFactory. This class isolates them from the underlying protocol-specific

aspects of the XTS implementation. A UserBusinessActivity does not represent a specific

business activity. Instead, it provides access to an implicit per-thread activity. Therefore, all of the

UserBusinessActivity methods implicitly act on the current thread of control.

Methods

begin

Begins a new activity, associating it with the invoking thread.

Parameters

timeout

The interval, in milliseconds, after which an activity times out. Optional.

Chapter 7. The XTS API

62

Exceptions

WrongStateException

The thread is already associated with a business activity.

close

First, all Coordinator Completion participants enlisted in the activity are requested to complete

the activity. Next all participants, whether they enlisted for Coordinator or Participant

Completion, are requested to close the activity. If any of the Coordinator Completion

participants fails to complete at the first stage then all completed participants are asked to

compensate the activity while any remaining uncompleted participants are requested to cancel

the activity.

Exceptions

UnknownTransactionException

No activity is associated with the invoking thread.

TransactionRolledBackException

The activity has been cancelled because one of the Coordinator Completion participants

failed to complete. This exception may also thrown if one of the Participant Completion

participants has not completed before the client calls close.

cancel

Terminates the business activity. All Participant Completion participants enlisted in the activity

which have already completed are requested to compensate the activity. All uncompleted

Participant Completion participants and all Coordinator Completion participants are requested

to cancel the activity.

Exceptions

UnknownTransactionException

No activity is associated with the invoking thread. Any participants that previous completed

are directed to compensate their work.

7.2.3. UserBusinessActivityFactory

Use the getuserbusinessActivity method to obtain a Section 7.2.2, “UserBusinessActivity”

instance from a userBusinessActivityFactory.

7.2.4. BusinessActivityManager

com.arjuna.mw.wst11.BusinessActivityManager is the class that web services typically employ.

Defines how a web service interacts with the underlying business activity service implementation.

A BusinessActivityManager does not represent a specific activity. Instead, it provides access

to an implicit per-thread activity.

BusinessActivityManager

63

Methods

currentTransaction

Returns the TxContext for the current business activity, or NULL if there is no TxContext.

The returned value can be used to enable multiple threads to execute within the scope of

the same business activity. Calling the currenTransaction method does not dissociate the

current thread from its activity.

suspend

Dissociates a thread from any current business activity, so that it can perform work not

associated with a specific activity. The suspend method returns a TxContext instance, which

is a handle on the activity. The thread is then no longer associated with any activity.

resume

Associates or re-associates a thread with a business activity, using its TxContext. Before

associating or re-associating the thread, it is disassociated from any business activity with

which it is currently associated. If the TxContext is NULL, the thread is disassociated with all

business activities, as though the suspend method were called.

Parameters

txContext

A TxContext instance as returned by suspend, identifying the transaction to be resumed.

Exceptions

UnknownTransactionException

The business activity to which the TxContext refers is invalid in the scope of the invoking

thread.

enlistForBusinessAgreementWithParticipantCompletion

Enroll the specified participant with current business activity, causing it to participate in

the BusinessAgreementWithParticipantCompletion protocol. A unique identifier for the

participant is also required.

The return value is an instance of BAParticipantManager which can be used to notify the

coordinator of changes in the participant state. In particular, since the participant is enlisted

for the Participant Completion protcol it is expected to call the completed method of this

returned instance when it has completed all the work it expects to do in this activity and has

made all its changes permanent. Alternatively, if the participant does not need to perform any

compensation actions should some other participant fail it can leave the activity by calling the

exit method of the returned BAParticipantManager instance.

Parameters

participant

An implementation of interface

BusinessAgreementWithParticipantCompletionParticipant whose close, cancel,

Chapter 7. The XTS API

64

and compensate methods are called when the corresponding coordinator message is

received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted

participant. It should also be possible for a given identifier to determine that the participant

belongs to the enlisting web service rather than some other web service deployed to the

same container.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

The transaction is not in a state where new participants may be enrolled, as when it is

terminating.

enlistForBusinessAgreementWithCoordinatorCompletion

Enroll the specified participant with current activity, causing it to participate in the

BusinessAgreementWithCoordinatorCompletion protocol. A unique identifier for the

participant is also required.

The return value is an instance of BAParticipantManager which can be used to notify the

coordinator of changes in the participant state. Note that in this case it is an error to call

the completed method of this returned instance. With the Coordinator Completion protocol

the participant is expected to wait until its completed method is called before it makes all its

changes permanent. Alternatively, if the participant determiens that it has no changes to make,

it can leave the activity by calling the exit method of the returned BAParticipantManager

instance.

Parameters

participant

An implementation of interface

BusinessAgreementWithCoordinatorCompletionParticipant whose completed, close,

cancel and compensate methods are called when the corresponding coordinator

message is received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted

participant. It should also be possible for a given identifier to determine that the participant

belongs to the enlisting web service rather than some other web service deployed to the

same container.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

BusinessActivityManagerFactory

65

WrongStateException

The transaction is not in a state where new participants may be enrolled, as when it is

terminating.

7.2.5. BusinessActivityManagerFactory

Use the getBusinessActivityManager method to obtain a Section 7.2.4,

“BusinessActivityManager” instance from a BusinessActivityManagerFactory.

66

Chapter 8.

67

Stand-Alone Coordination

8.1. Introduction

The XTS service is deployed as a JBoss service archive (SAR). The version of the service archive

provided with the Transaction Service implements version 1.1 of the WS-C, WS-AT and WS-BA

services. You can rebuild the XTS service archive to include both the 1.0 and 1.1 implementations

and deploy them side by side. See the service archive build script for for further details.

The release service archive obtains coordination contexts from the Activation Coordinator service

running on the deployed host. Therefore, WS-AT transactions or WS-BA activities created by a

locally-deployed client application are supplied with a context which identifies the Registration

Service running on the client's machine. Any Web Services invoked by the client are coordinated

by the Transaction Protocol services running on the client's host. This is the case whether the

Web Services are running locally or remotely. Such a configuration is called local coordination.

You can reconfigure this setting globally for all clients, causing context creation requests to be

redirected to an Activation Coordinator Service running on a remote host. Normally, the rest of the

coordination process is executed from the remote host. This configuration is called stand-alone

coordination.

Reasons for Choosing a Stand-Alone Coordinator

• Efficiency: if a client application invokes Web Services on a remote JBoss Application Server,

coordinating the transaction from the remote server might be more efficient, since the protocol-

specific messages between the coordinator and the participants do not need to travel over the

network.

• Reliability: if the coordinator service runs on a dedicated host, there is no danger of failing

applications or services affecting the coordinator and causing failures for unrelated transactions.

• A third reason might be to use a coordination service provided by a third party vendor.

8.2. Configuring the Activation Coordinator

The XTS service archive used to deploy XTS to the JBoss Application Server includes a

bean configuration file, xts-jboss-beans.xml, in its META-INF directory. This file specifies

configuration values which the JBoss Application Server injects into the beans, and which define

the XTS runtime configuration when it starts the XTS service. The location of the XTS coordinator

is defined by values injected into the WSCEnvironmentBean. Example 8.1, “Example xts-jboss-

beans.xml configuration settings” shows a fragment of this file which details serveral possible

configuration options.

Example 8.1. Example xts-jboss-beans.xml configuration settings

<bean name="XTS:WSCEnvironmentBean" class="org.jboss.jbossts.xts.environment.WSCEnvironmentBean">

Chapter 8. Stand-Alone Coordi...

68

 <constructor factoryClass="org.jboss.jbossts.xts.environment.XTSPropertyManager"

 factoryMethod="getWSCEnvironmentBean"/>

 <!-- we need the bind address and port from jboss web -->

 <depends>jboss.web:service=WebServer</depends>

 <depends>jboss:service=TransactionManager</depends>

 . . .

 <!--

 if you want to use a coordinator running in a remote JVM then you can

 simply configure the URL. This will also be necessary if you are using

 a non-JBoss coordination service.

 <property name="coordinatorURL11">

 <value>http://10.0.1.99:8080/ws-c11/ActivationService</value>

 </property>

 -->

 <!--

 if you are using a remote JBoss XTS coordinator you can just redefine

 the scheme, address, port or path to the desired value and the ones

 left undefined will be defaulted to use the standard XTS coordinator

 URL elements. So, for example if your XTS coordinator services is

 deployed in another AS on host myhost.myorg.com you only need to define

 property coordinatorAddress11 to have value myhost.myorg.com and the

 coordinator address used by clients will be

 http://myhost.myorg.com:8080/ws-c11/ActivationService n.b. if the remote

 machine is using JBoss XTS then you won't want to redefine the port

 unless you have monkeyed around with the port config in the remote AS. also

 you won't need to change the path unless you have tweaked the deployment

 descriptor to relocate the XTS services.

 <property name="coordinatorScheme11">

 <value>http</value>

 </property>

 <property name="coordinatorAddress11">

 <value>10.0.1.99</value>

 </property>

 <property name="coordinatorPort11">

 <value>9191</value>

 </property>

 <property name="coordinatorPath11">

 <value>ws-c11/ActivationService</value>

 </property>

 -->

</bean>

The simplest way to configure a stand-alone coordinator is to provide a complete URL for the

remote coordinator. The example shows how the bean property with name coordinatorURL11

would be configured with value http://10.0.1.99:8080/ws-c11/ActivationService.

Configuring the Activation Coordinator

69

You can also specify the individual elements of the URL using the properties

coordinatorScheme11, coordinatorAddress11, and so forth. These values only apply when the

coordinatorURL11 is not set. The URL is constructed by combining the specified values with

default values for any missing elements. This is particularly useful for two specific use cases.

1. The first case is where the client is expected to use an XTS coordinator deployed in another

JBoss Application Server. If, for example, this JBoss Application Server is bound to address

10.0.1.99, setting property coordinatorAddress11 to 10.0.1.99 is normally all that is

required to configure the coordinator URL to idenitfy the remote JBoss Application Server's

coordination service. If the Web service on the remote JBoss Application Server were reset

to9090 then it would also be necessary to set property coordinatorPort11 to this value.

2. The second common use case is where communications between client and coordinator,

and between participant and coordinator, must use secure connections. If property

coordinatorScheme11 is set to value https, the client's request to begin a transaction is sent

to the coordinator service over a secure https connection. The XTS coordinator and participant

services will ensure that all subsequent communications between coordinator and client or

coordinator and web services also employ secure https connections. Note that this requires

configuring the trust stores in the JBoss Application Server running the client, coordinator and

participant web services with appropriate trust certificates.

If none of the above properties is specified, the coordinator URL uses the http scheme. The

coordinator address and port are obtained from the host address and port configured for the JBoss

Web service. These default to localhost and 8080, respectively. The URL path takes the value

shown in Example 8.1, “Example xts-jboss-beans.xml configuration settings”.

You can configure the bean properties defined above by setting System properties on the

Java command line. This is useful in pre-deployment testing. So, for example, command

line option -Dorg.jboss.jbossts.xts11.coordinator.address=10.0.1.99 resets property

coordinatorAddress11. System properties do not override property values configured in the

configuration file. The following table identifies the System properties which can be configured.

Note

The property names have been abbreviated in order to fit into the table. They

should each start with prefix org.jboss.jbossts.xts11.coordinator.

Table 8.1. Command-Line Options Passed with the -D Parameter, Ordered

by Priority

Category Property Format

Absolute URL ...coordinatorURL http://coord.host:coord.port/

ws-c11/ActivationService

http://coord.host:coord.port/ws-c11/ActivationService
http://coord.host:coord.port/ws-c11/ActivationService

Chapter 8. Stand-Alone Coordi...

70

Category Property Format

Coordinator Scheme, Host,

Port, and Path

...coordinator.scheme

...coordinator.address

...coordinator.port

...coordinator.path

http

server.bind.address

jboss.web.bind.port

Chapter 9.

71

Participant Crash Recovery
A key requirement of a transaction service is to be resilient to a system crash by a host running

a participant, as well as the host running the transaction coordination services. Crashes which

happen before a transaction terminates or before a business activity completes are relatively easy

to accommodate. The transaction service and participants can adopt a presumed abort policy.

Procedure 9.1. Presumed Abort Policy

1. If the coordinator crashes, it can assume that any transaction it does not know about is invalid,

and reject a participant request which refers to such a transaction.

2. If the participant crashes, it can forget any provisional changes it has made, and reject any

request from the coordinator service to prepare a transaction or complete a business activity.

Crash recovery is more complex if the crash happens during a transaction commit operation, or

between completing and closing a business activity. The transaction service must ensure as far

as possible that participants arrive at a consistent outcome for the transaction.

WS-AT Transaction

The transaction needs to commit all provisional changes or roll them all back to the state

before the transaction started.

WS-Business Activity Transaction

All participants need to close the activity or cancel the activity, and run any required

compensating actions.

On the rare occasions where such a consensus cannot be reached, the transaction service must

log and report transaction failures.

XTS includes support for automatic recovery of WS-AT and WS-BA transactions, if either or both

of the coordinator and participant hosts crashes. The XTS recovery manager begins execution

on coordinator and participant hosts when the XTS service restarts. On a coordinator host, the

recovery manager detects any WS-AT transactions which have prepared but not committed, as

well as any WS-BA transactions which have completed but not yet closed. It ensures that all their

participants are rolled forward in the first case, or closed in the second.

On a participant host, the recovery manager detects any prepared WS-AT participants which have

not responded to a transaction rollback, and any completed WS-BA participants which have not

yet responded to an activity cancel request, and ensures that the former are rolled back and

the latter are compensated. The recovery service also allows for recovery of subordinate WS-

AT transactions and their participants if a crash occurs on a host where an interposed WS-AT

coordinator has been employed.

Chapter 9. Participant Crash ...

72

9.1. WS-AT Recovery

9.1.1. WS-AT Coordinator Crash Recovery

The WS-AT coordination service tracks the status of each participant in a transaction as the

transaction progresses through its two-phase commit. When all participants have been sent a

prepare message and have responded with a prepared message, the coordinator writes a log

record storing each participant's details, indicating that the transaction is ready to complete. If the

coordinator service crashes after this point has been reached, completion of the two-phase commit

protocol is still guaranteed, by reading the log file after reboot and sending a commit message to

each participant. Once all participants have responded to the commit with a committed message,

the coordinator can safely delete the log entry.

Since the prepared messages returned by the participants imply that they are ready to commit

their provisional changes and make them permanent, this type of recovery is safe. Additionally, the

coordinator does not need to account for any commit messages which may have been sent before

the crash, or resend messages if it crashes several times. The XTS participant implementation

is resilient to redelivery of the commit messages. If the participant has implemented the recovery

functions described in Section 9.1.2.1, “WS-AT Participant Crash Recovery APIs”, the coordinator

can guarantee delivery of commit messages if both it crashes, and one or more of the participant

service hosts also crash, at the same time.

If the coordination service crashes before the prepare phase completes, the presumed abort

protocol ensures that participants are rolled back. After system restart, the coordination service

has the information about about all the transactions which could have entered the commit

phase before the reboot, since they have entries in the log. It also knows about any active

transactions started after the reboot. If a participant is waiting for a response, after sending its

prepared message, it automatically re sends the prepared message at regular intervals. When

the coordinator detects a transaction which is not active and has no entry in the log file after the

reboot, it instructs the participant to abort, ensuring that the web service gets a chance to roll back

any provisional state changes it made on behalf of the transaction.

A web service may decide to unilaterally commit or roll back provisional changes associated with a

given participant, if configured to time out after a specified length of time without a response. In this

situation, the the web service should record this action and log a message to persistent storage.

When the participant receives a request to commit or roll back, it should throw an exception if

its unilateral decision action does not match the requested action. The coordinator detects the

exception and logs a message marking the outcome as heuristic. It also saves the state of the

transaction permanently in the transaction log, to be inspected and reconciled by an administrator.

9.1.2. WS-AT Participant Crash Recovery

WS-AT participants associated with a transactional web service do not need to be involved in

crash recovery if the Web service's host machine crashes before the participant is told to prepare.

The coordinator will assume that the transaction has aborted, and the Web service can discard

any information associated with unprepared transactions when it reboots.

WS-AT Participant Crash Recovery

73

When a participant is told to prepare, the Web service is expected to save to persistent storage

the transactional state it needs to commit or roll back the transaction. The specific information

it needs to save is dependent on the implementation and business logic of the Web Service.

However, the participant must save this state before returning a Prepared vote from the prepare

call. If the participant cannot save the required state, or there is some other problem servicing the

request made by the client, it must return an Aborted vote.

The XTS participant services running on a Web Service's host machine cooperate with the

Web service implementation to facilitate participant crash recovery. These participant services

are responsible for calling the participant's prepare, commit, and rollback methods. The XTS

implementation tracks the local state of every enlisted participant. If the prepare call returns a

Prepared vote, the XTS implementation ensures that the participant state is logged to the local

transaction log before forwarding a prepared message to the coordinator.

A participant log record contains information identifying the participant, its transaction, and its

coordinator. This is enough information to allow the rebooted XTS implementation to reinstate

the participant as active and to continue communication with the coordinator, as though the

participant had been enlisted and driven to the prepared state. However, a participant instance is

still necessary for the commit or rollback process to continue.

Full recovery requires the log record to contain information needed by the Web service which

enlisted the participant. This information must allow it to recreate an equivalent participant

instance, which can continue the commit process to completion, or roll it back if some other Web

Service fails to prepare. This information might be as simple as a String key which the participant

can use to locate the data it made persistent before returning its Prepared vote. It may be as

complex as a serialized object tree containing the original participant instance and other objects

created by the Web service.

If a participant instance implements the relevant interface, the XTS implementation will append

this participant recovery state to its log record before writing it to persistent storage. In the event

of a crash, the participant recovery state is retrieved from the log and passed to the Web Service

which created it. The Web Service uses this state to create a new participant, which the XTS

implementation uses to drive the transaction to completion. Log records are only deleted after the

participant's commit or rollback method is called.

Warning

If a crash happens just before or just after a commit method is called, a commit or

rollback method may be called twice.

9.1.2.1. WS-AT Participant Crash Recovery APIs

9.1.2.1.1. Saving Participant Recovery State

When a Business Activity participant web service completes its work, it may want to save the

information which will be required later to close or compensate actions performed during the

Chapter 9. Participant Crash ...

74

activity. The XTS implementation automatically acquires this information from the participant as

part of the completion process and writes it to a participant log record. This ensures that the

information can be restored and used to recreate a copy of the participant even if the web service

container crashes between the complete and close or compensate operations.

For a Participant Completion participant, this information is acquired when the web service invokes

the completed method of the BAParticipantManager instance returned from the call which

enlisted the participant. For a Coordinator Completion participant this occurs immediately after the

call to it's completed method returns. This assumes that the completed method does not throw

an exception or call the participant manager's cannotComplete or fail method.

A participant may signal that it is capable of performing recovery processing, by implementing

the java.lang.Serializable interface. An alternative is to implement the Example 9.1,

“PersistableATParticipant Interface”.

Example 9.1. PersistableATParticipant Interface

public interface PersistableATParticipant

{

 byte[] getRecoveryState() throws Exception;

}

If a participant implements the Serializable interface, the XTS participant services

implementation uses the serialization API to create a version of the participant which can be

appended to the participant log entry. If it implements the PersistableATParticipant interface,

the XTS participant services implementation call the getRecoveryState method to obtain the

state to be appended to the participant log entry.

If neither of these APIs is implemented, the XTS implementation logs a warning message and

proceeds without saving any recovery state. In the event of a crash on the host machine for the

Web service during commit, the transaction cannot be recovered and a heuristic outcome may

occur. This outcome is logged on the host running the coordinator services.

9.1.2.1.2. Recovering Participants at Reboot

A Web service must register with the XTS implementation when it is deployed, and unregister when

it is undeployed, in order to participate in recovery processing. Registration is performed using

class XTSATRecoveryManager defined in package org.jboss.jbossts.xts.recovery.participant.at.

Example 9.2. Registering for Recovery

public abstract class XTSATRecoveryManager {

 . . .

 public static XTSATRecoveryManager getRecoveryManager() ;

WS-AT Participant Crash Recovery

75

 public void registerRecoveryModule(XTSATRecoveryModule module);

 public abstract void unregisterRecoveryModule(XTSATRecoveryModule module)

 throws NoSuchElementException;

 . . .

}

The Web service must provide an implementation of interface XTSBARecoveryModule in package

org.jboss.jbossts.xts.recovery.participant.ba, as an argument to the register and unregister

calls. This instance identifies saved participant recovery records and recreates new, recovered

participant instances:

Example 9.3. XTSBARecoveryModule Interface

public interface XTSATRecoveryModule

{

 public Durable2PCParticipant

 deserialize(String id, ObjectInputStream stream)

 throws Exception;

 public Durable2PCParticipant

 recreate(String id, byte[] recoveryState)

 throws Exception;

 public void endScan();

}

If a participant's recovery state was saved using serialization, the recovery module's deserialize

method is called to recreate the participant. Normally, the recovery module is required to read,

cast, and return an object from the supplied input stream. If a participant's recovery state was

saved using the PersistableATParticipant interface, the recovery module's recreate method

is called to recreate the participant from the byte array it provided when the state was saved.

The XTS implementation cannot identify which participants belong to which recovery modules. A

module only needs to return a participant instance if the recovery state belongs to the module's

Web service. If the participant was created by another Web service, the module should return

null. The participant identifier, which is supplied as argument to the deserialize or recreate

method, is the identifier used by the Web service when the original participant was enlisted in

the transaction. Web Services participating in recovery processing should ensure that participant

identifiers are unique per service. If a module recognizes that a participant identifier belongs to

its Web service, but cannot recreate the participant, it should throw an exception. This situation

might arise if the service cannot associate the participant with any transactional information which

is specific to the business logic.

Even if a module relies on serialization to create the participant recovery state saved by the XTS

implementation, it still must be registered by the application. The deserialization operation

must employ a class loader capable of loading classes specific to the Web service. XTS fulfills this

requirement by devolving responsibility for the deserialize operation to the recovery module.

Chapter 9. Participant Crash ...

76

9.2. WS-BA Recovery

9.2.1. WS-BA Coordinator Crash Recovery

The WS-BA coordination service implementation tracks the status of each participant in an activity

as the activity progresses through completion and closure. A transition point occurs during closure,

once all CoordinatorCompletion participants receive a complete message and respond with a

completed message. At this point, all ParticipantCompletion participants should have sent a

completed message. The coordinator writes a log record storing the details of each participant,

and indicating that the transaction is ready to close. If the coordinator service crashes after the

log record is written, the close operation is still guaranteed to be successful. The coordinator

checks the log after the system reboots and re sends a close message to all participants. After

all participants respond to the close with a closed message, the coordinator can safely delete

the log entry.

The coordinator does not need to account for any close messages sent before the crash, nor

resend messages if it crashes several times. The XTS participant implementation is resilient

to redelivery of close messages. Assuming that the participant has implemented the recovery

functions described below, the coordinator can even guarantee delivery of close messages if

both it, and one or more of the participant service hosts, crash simultaneously.

If the coordination service crashes before it has written the log record, it does not need to explicitly

compensate any completed participants. The presumed abort protocol ensures that all completed

participants are eventually sent a compensate message. Recovery must be initiated from the

participant side.

A log record does not need to be written when an activity is being canceled. If a participant does

not respond to a cancel or compensate request, the coordinator logs a warning and continues.

The combination of the presumed abort protocol and participant-led recovery ensures that all

participants eventually get canceled or compensated, as appropriate, even if the participant host

crashes.

If a completed participant does not detect a response from its coordinator after resending its

completed response a suitable number of times, it switches to sending getstatus messages,

to determine whether the coordinator still knows about it. If a crash occurs before writing the log

record, the coordinator has no record of the participant when the coordinator restarts, and the

getstatus request returns a fault. The participant recovery manager automatically compensates

the participant in this situation, just as if the activity had been canceled by the client.

After a participant crash, the participant recovery manager detects the log entries for each

completed participant. It sends getstatus messages to each participant's coordinator host, to

determine whether the activity still exists. If the coordinator has not crashed and the activity is still

running, the participant switches back to resending completed messages, and waits for a close

or compensate response. If the coordinator has also crashed or the activity has been canceled,

the participant is automatically canceled.

WS-BA Participant Crash Recovery APIs

77

9.2.2. WS-BA Participant Crash Recovery APIs

9.2.2.1. Saving Participant Recovery State

A participant may signal that it is capable of performing recovery processing, by implementing

the java.lang.Serializable interface. An alternative is to implement the Example 9.4,

“PersistableBAParticipant Interface”.

Example 9.4. PersistableBAParticipant Interface

public interface PersistableBAParticipant

{

 byte[] getRecoveryState() throws Exception;

}

If a participant implements the Serializable interface, the XTS participant services

implementation uses the serialization API to create a version of the participant

which can be appended to the participant log entry. If the participant implements

the PersistableBAParticipant, the XTS participant services implementation call the

getRecoveryState method to obtain the state, which is appended to the participant log entry.

If neither of these APIs is implemented, the XTS implementation logs a warning message and

proceeds without saving any recovery state. If the Web service's host machine crashes while the

activity is being closed, the activity cannot be recovered and a heuristic outcome will probably

be logged on the coordinator's host machine. If the activity is canceled, the participant is not

compensated and the coordinator host machine may log a heuristic outcome for the activity.

9.2.2.2. Recovering Participants at Reboot

A Web service must register with the XTS implementation when it is deployed, and unregister

when it is undeployed, so it can take part in recovery processing.

Registration is performed using the XTSBARecoveryManager, defined in the

org.jboss.jbossts.xts.recovery.participant.ba package.

Example 9.5. XTSBARecoveryManager Class

public abstract class XTSBARecoveryManager {

 . . .

 public static XTSBARecoveryManager getRecoveryManager() ;

 public void registerRecoveryModule(XTSBARecoveryModule module);

 public abstract void unregisterRecoveryModule(XTSBARecoveryModule module)

 throws NoSuchElementException;

 . . .

Chapter 9. Participant Crash ...

78

}

The Web service must provide an implementation of the XTSBARecoveryModule in the

org.jboss.jbossts.xts.recovery.participant.ba, as an argument to the register and unregister

calls. This instance identifies saved participant recovery records and recreates new, recovered

participant instances:

Example 9.6. XTSBARecoveryModule Interface

public interface XTSBARecoveryModule

{

 public BusinessAgreementWithParticipantCompletionParticipant

 deserializeParticipantCompletionParticipant(String id,

 ObjectInputStream stream)

 throws Exception;

 public BusinessAgreementWithParticipantCompletionParticipant

 recreateParticipantCompletionParticipant(String id,

 byte[] recoveryState)

 throws Exception;

 public BusinessAgreementWithCoordinatorCompletionParticipant

 deserializeCoordinatorCompletionParticipant(String id,

 ObjectInputStream stream)

 throws Exception;

 public BusinessAgreementWithCoordinatorCompletionParticipant

 recreateCoordinatorCompletionParticipant(String id,

 byte[] recoveryState)

 throws Exception;

 public void endScan();

}

If a participant's recovery state was saved using serialization, one of the recovery module's

deserialize methods is called, so that it can recreate the participant. Which method to use

depends on whether the saved participant implemented the ParticipantCompletion protocol or

the CoordinatorCompletion protocol. Normally, the recovery module reads, casts and returns

an object from the supplied input stream. If a participant's recovery state was saved using the

PersistableBAParticipant interface, one of the recovery module's recreate methods is called,

so that it can recreate the participant from the byte array provided when the state was saved. The

method to use depends on which protocol the saved participant implemented.

The XTS implementation does not track which participants belong to which recovery modules.

A module is only expected to return a participant instance if it can identify that the recovery

state belongs to its Web service. If the participant was created by some other Web service, the

module should return null. The participant identifier supplied as an argument to the deserialize

or recreate calls is the identifier used by the Web service when the original participant was

enlisted in the transaction. Web Services which participate in recovery processing should ensure

WS-BA Participant Crash Recovery APIs

79

that the participant identifiers they employ are unique per service. If a module recognizes a

participant identifier as belonging to its Web service, but cannot recreate the participant, it throws

an exception. This situation might arise if the service cannot associate the participant with any

transactional information specific to business logic.

A module must be registered by the application, even when it relies upon serialization to

create the participant recovery state saved by the XTS implementation. The deserialization

operation must employ a class loader capable of loading Web service-specific classes. The XTS

implementation achieves this by delegating responsibility for the deserialize operation to the

recovery module.

9.2.2.3. Securing Web Service State Changes

When a BA participant completes, it is expected to commit changes to the web service state made

during the activity. The web service usually also needs to persist these changes to a local storage

device. This leaves open a window where the persisted changes may not be guarded with the

necessary compensation information. The web service container may crash after the changes

to the service state have been written but before the XTS implementation is able to acquire the

recovery state and write a recovery log record for the participant. Participants may close this

window by employing a two phase update to the local store used to persist the web service state.

A participant which needs to persist changes to local web service state should implement

interface ConfirmCompletedParticipant in package com.arjuna.wst11. This signals to the XTS

implementation that it expects confirmation after a successful write of the participant recovery

record, allowing it to roll forward provisionally persisted changes to the web service state. Delivery

of this confirmation can be guaranteed even if the web service container crashes after writing the

participant log record. Conversely, if a recovery record cannot be written because of a fault or a

crash prior to writing, the provisional changes can be guaranteed to be rolled back.

Example 9.7. ConfirmCompletedParticipant Interface

public interface ConfirmCompletedParticipant

{

 public void confirmCompleted(boolean confirmed);

}

When the participant is ready to complete, it should prepare its persistent changes by temporarily

locking access to the relevant state in the local store and writing the changed data to disk, retaining

both the old and new versions of the service state. For a Participant Completion participant,

this prepare operation should be done just before calling the participant manager's completed

method. For a Coordinator Completion participant, it should be done just before returning from

the call to the participant's completed method. After writing the participant log record, the XTS

implementation calls the participant's confirmCompleted method, providing value true as the

argument. The participant should respond by installing the provisional state changes and releasing

any locks. If the log record cannot be written, the XTS implementation calls the participant's

Chapter 9. Participant Crash ...

80

confirmCompleted method, providing value false as the argument. The participant should

respond by restoring the original state values and releasing any locks.

If a crash occurs before the call to confirmCompleted, the application's recovery module can

make sure that the provisional changes to the web service state are rolled forward or rolled back

as appropriate. The web service must identify all provisional writes to persistent state before

it starts serving new requests or processing recovered participants. It must reobtain any locks

required to ensure that the state is not changed by new transactions. When the recovery module

recovers a participant from the log, its compensation information is available. If the participant still

has prepared changes, the recovery code must call confirmCompleted, passing value true. This

allows the participant to finish the complete operation. The XTS implementation then forwards a

completed message to the coordinator, ensuring that the participant is subsequently notified either

to close or to compensate. At the end of the first recovery scan, the recovery module may find

some prepared changes on disk which are still unaccounted for. This means that the participant

recovery record is not available. The recovery module should restore the original state values

and release any locks. The XTS implementation responds to coordinator requests regarding the

participant with an unknown participant fault, forcing the activity as a whole to be rolled back.

Chapter 10.

81

Web Service Component
To configure the demo application of the Web Services transactions component and standalone

coordinator, edit the appropriate build.xml file before running ant. Consult the trail map

accompanying these components for details.

When running within JBoss Application Server, it is recommended to use the all server profile.

Specify the profile with the -c switch: run.sh -c all in Linux, or run.bat -c all in Microsoft

Windows.

82

Chapter 11.

83

Web Service Transaction Service

(XTS) Management
The basic building blocks of a transactional Web Services application include the application itself,

the Web services that the application consumes, the Transaction Manager, and the transaction

participants which support those Web services. Although it is likely that different developers will

be responsible for each piece, the concepts are presented here so that you can see the whole

picture. Often, developers produce services, or applications that consume services, and system

administrators run the transaction-management infrastructure.

11.1. Transaction manager overview

The transaction manager is a Web service which coordinates JBossTS transactions. It is the only

software component in JBossTS that is designed to be run directly as a network service, rather

than to support end-user code. The transaction manager runs as a JAXM request/response Web

service.

Note

When starting up an application server instance that has JBossTS transaction

manager deployed within it, you may see various “error” messages in the

console or log. For example 16:53:38,850 ERROR [STDERR] Message Listener

Service: started, message listener jndi name activationcoordinator". These are for

information purposes only and are not actual errors.

11.2. Configuring the transaction manager

You can configure the Transaction Manager and related infrastructure by using three properties

files: wscf.xml, wst.xml, and wstx.xml. Each file is located in the conf/ directory. Both the demo

application and the stand-alone module rely on them for configuration.

For the most part the default values in these files are suitable. However, the

ObjectStoreEnvironmentBean.objectStoreDir property, which determines the location of the

persistent store used to record transaction state, should be modified to suit your environment. The

default value is C:/temp/ObjectStore. For production environments this directory should reside

on fault-tolerant media such as a RAID array.

When an application uses a standalone coordinator, you must enable and modify two

additional properties in wstx.xml. These properties are com.arjuna.mw.wst.coordinatorURL

and com.arjuna.mw.wst.terminatorURL. They specify the URLs needed by client application

to contact the standalone coordinator, and need to specify the correct hostname and port for the

stand-alone server.

Chapter 11. Web Service Trans...

84

JBossTS is extremely modular. To allow flexible deployment of individual components, the same

property values sometimes need to appear in more than one configuration file. Except in special

circumstances, maintain consistent values for properties that are defined in more than one file.

11.3. Deploying the transaction manager

The JBossTS XTS component consists of a number of .jar files containing the application’s class

files, plus Web service (.war) files which expose the necessary services. These components are

typically included in an application's Enterprise Archive (.ear) file during application development,

as this simplifies deployment of the transaction infrastructure. For production, you can install

the Transaction Manager as an application in its own right, allowing for centralized configuration

and management at the server level, independent of specific applications. The demonstration

application shipped with JBossTS provides a sample deployment descriptor illustrating how the

Transaction Manager components can be included in an application.

JBossTS 4.x uses fixed endpoints for its underlying protocol communication. Therefore, problems

may arise if you deploy multiple applications using JBossTS to the same server concurrently. If

you need to deploy several transactional applications in the same server, you must deploy the

Transaction Manger as a separate application, rather than embedding it within the development

of individual applications.

The coordinator/ directory in the JBossTS installation can assist in the configuration and

deployment of a stand-alone transaction manager.

Procedure 11.1. Using the coordinator/ diretory to configure and deploy a

stand-alone transaction manager

1. Install JBossTS 4.15.

2. Use a separate application server installation for the coordinator. This installation can be on

a separate machine. To set this up on JBoss Application Server, see http://www.yorku.ca/

dkha/jboss/docs/MultipleInstances.htm for more information.

3. Install Ant 1.4 or later.

Warning

A separate application server installation must be used, separate from the one

that clients and services are deployed into, to prevent conflicts between the

various JBossTS components.

4. Edit the build.xml included in the coordinator/ directory, to point to the application server

installation where the transaction coordinator will be deployed and the location of the JBossTS

installation. The files ws-c_jaxm_web-app.xml and ws-t_jaxm_web-app.xml in the dd/

http://www.yorku.ca/dkha/jboss/docs/MultipleInstances.htm
http://www.yorku.ca/dkha/jboss/docs/MultipleInstances.htm

Deployment descriptors

85

subdirectory of coordinator/ are the deployment descriptors for the WS-C and WS-T war

files. These files contain templated URLs. During the build phase, ant will substitute the

hostname and port values you specify in the build.xml into these files.

5. Run ant, with one of targets deploy-weblogic, deploy-jboss, or deploy-webmethods, to

create and deploy a new coordinator into the correct application server installation.

6. Finally, point your client at the required coordinator. To do this, generate the demo application.

specifying the port and hostname of the coordinator.

11.4. Deployment descriptors

In general, changing the contents of the various deployment descriptors used by JBossTS is not

necessary. However, if you do need to modify them they are all included in the coordinator module.

Not all JBossTS components have ready access to the information in the deployment descriptors.

Therefore, if you modify the JNDI names used by any of the WS-C or WS-T deployment

descriptors, you may need to inform other JBossTS components at runtime, by setting an

appropriate property in the wstx.xml configuration file.

Important

You need to prefix each property in this table with the string com.arjuna.mw.wst..

The prefix has been removed for formatting reasons, and has been replaced by

....

Table 11.1. Deployment descriptor values and properties

JNDI Name Property

Activationrequester ...at.activationrequester

Activationcoordinator ...at.activationcoordinator

Completionparticipant ...at.completionparticipant

Registrationrequester ...at.registrationrequester

durable2pcdispatcher ...at.durable2pcdispatcher

durable2pcparticipant ...at.durable2pcparticipant

volatile2pcdispatcher ...at.volatile2pcdispatcher

volatile2pcparticipant ...at.volatile2pcparticipant

businessagreementwithparticipantcompletiondispatcher...ba.businessagreementwpcdispatcher

businessagreementwithparticipantcompletionparticipant...ba.businessagreementwpcparticipant

businessagreementwithcoordinatorcompletiondispatcher...ba.businessagreementwccdispatcher

Businessagreementwithcoordinatorcompletionparticipant...ba.businessagreementwccparticipant

86

87

Appendix A. Revision History
Revision History

Revision 0 Mon Jul 12 2010 MistyStanley-

Jones<mstanley@redhat.com>

Initial creation of book by publican

88

	Transactions XTS Administration And Development Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Introduction
	2.1. Managing service-Based Processes
	2.2. Servlets
	2.3. SOAP
	2.4. Web Services Description Language (WDSL)

	Chapter 3. Transactions Overview
	3.1. The Coordinator
	3.2. The Transaction Context
	3.3. Participants
	3.4. ACID Transactions
	3.5. Two Phase Commit
	3.6. The Synchronization Protocol
	3.7. Optimizations to the Protocol
	3.8. Non-Atomic Transactions and Heuristic Outcomes
	3.9. Interposition
	3.10. A New Transaction Protocol
	3.10.1. Transaction in Loosely Coupled Systems

	Chapter 4. Overview of Protocols Used by XTS
	4.1. WS-Coordination
	4.1.1. Activation
	4.1.2. Registration
	4.1.3. Completion

	4.2. WS-Transaction
	4.2.1. WS-Transaction Foundations
	4.2.2. WS-Transaction Architecture
	4.2.3. WS_Transaction Models
	4.2.3.1. Atomic Transactions
	4.2.3.2. Business Activities

	4.2.4. Application Messages
	4.2.4.1. WS-C, WS-Atomic Transaction, and WS-Business Activity Messages

	4.3. Summary

	Chapter 5. Getting Started
	5.1. Installing the XTS Service Archive into JBoss Transaction Service
	5.2. Creating Client Applications
	5.2.1. User Transactions
	5.2.2. Business Activities
	5.2.3. Client-Side Handler Configuration
	5.2.3.1. JAX-WS Client Context Handlers

	5.3. Creating Transactional Web Services
	5.3.1. Participants
	5.3.2. Service-Side Handler Configuration
	5.3.2.1. JAX-WS Service Context Handlers

	5.4. Summary

	Chapter 6. Participants
	6.1. Overview
	6.1.1. Atomic Transaction
	6.1.1.1. Durable2PCParticipant
	6.1.1.2. Volatile2PCParticipant

	6.1.2. Business Activity
	6.1.2.1. BusinessAgreementWithParticipantCompletion
	6.1.2.2. BusinessAgreementWithCoordinatorCompletion
	6.1.2.3. BAParticipantManager

	6.2. Participant Creation and Deployment
	6.2.1. Implementing Participants
	6.2.2. Deploying Participants

	Chapter 7. The XTS API
	7.1. API for the Atomic Transaction Protocol
	7.1.1. Vote
	7.1.2. TXContext
	7.1.3. UserTransaction
	7.1.4. UserTransactionFactory
	7.1.5. TransactionManager
	7.1.6. TransactionManagerFactory

	7.2. API for the Business Activity Protocol
	7.2.1. Compatibility
	7.2.2. UserBusinessActivity
	7.2.3. UserBusinessActivityFactory
	7.2.4. BusinessActivityManager
	7.2.5. BusinessActivityManagerFactory

	Chapter 8. Stand-Alone Coordination
	8.1. Introduction
	8.2. Configuring the Activation Coordinator

	Chapter 9. Participant Crash Recovery
	9.1. WS-AT Recovery
	9.1.1. WS-AT Coordinator Crash Recovery
	9.1.2. WS-AT Participant Crash Recovery
	9.1.2.1. WS-AT Participant Crash Recovery APIs
	9.1.2.1.1. Saving Participant Recovery State
	9.1.2.1.2. Recovering Participants at Reboot

	9.2. WS-BA Recovery
	9.2.1. WS-BA Coordinator Crash Recovery
	9.2.2. WS-BA Participant Crash Recovery APIs
	9.2.2.1. Saving Participant Recovery State
	9.2.2.2. Recovering Participants at Reboot
	9.2.2.3. Securing Web Service State Changes

	Chapter 10. Web Service Component
	Chapter 11. Web Service Transaction Service (XTS) Management
	11.1. Transaction manager overview
	11.2. Configuring the transaction manager
	11.3. Deploying the transaction manager
	11.4. Deployment descriptors

	Appendix A. Revision History

