
JBossJTS Administration Guide

Administration of the

JBossJTS toolkit,

used as part of the

Transaction Service

by Mark Red Hat Little, Jonathan Red Hat Halliday,

Andrew Red Hat Dinn, and Kevin Red Hat Connor

edited by Misty Red Hat Stanley-Jones

iii

Preface ... v

1. Prerequisities ... v

2. Document Conventions .. v

2.1. Typographic Conventions .. v

2.2. Pull-quote Conventions .. vii

2.3. Notes and Warnings .. vii

3. We Need Feedback! .. viii

1. Introduction ... 1

2. Starting and Stopping the Transaction Manager ... 3

3. OTS and Java EE Transaction Service Management ... 5

3.1. Starting the run-time system .. 5

3.1.1. OTS configuration file ... 6

3.1.2. Name service .. 6

3.1.3. resolve_initial_references .. 6

3.1.4. Resolution services supported per ORB .. 6

3.2. XA Specific management .. 7

3.3. Selecting the JTA implementation .. 7

4. Failure Recovery Administration ... 9

4.1. The Recovery Manager ... 9

4.2. Configuring the Recovery Manager .. 9

4.3. Output .. 10

4.4. Periodic Recovery ... 10

4.5. Expired Entry Removal .. 12

5. ORB-specific Configurations ... 13

5.1. JacORB .. 13

6. Initializing JBossTS Applications .. 15

A. Revision History .. 17

iv

v

Preface

1. Prerequisities

JBossJTS is the implementation of the JTS API provided for use with JBoss Transaction

Manager. For more details about the Transaction Manager, refer to the ArjunaCore Installation

and Administration Guide, which is also available from the JBoss Transactions website, http://

www.jboss.org/jbosstm.

2. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

2.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

http://www.jboss.org/jbosstm
http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Pull-quote Conventions

vii

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

2.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Preface

viii

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

Introduction
Since the release of JBossTS 4.1, the Web Services Transaction product has been merged into

JBoss Transactions. JBoss Transactions is thus a single product that is compliant with all of the

major distributed transaction standards and specifications.

Knowledge of Web Services is not required to administer a JBoss Transactions installation

that only uses the CORBA/J2EE component, nor is knowledge of CORBA required to use the

Web Services component. This, administrative tasks are separated when they touch only one

component or the other.

Apart from ensuring that the run-time system is executing normally, there is little continuous

administration needed for the JBossJTS software. Refer to Important Points for Administrators for

some specific concerns.

Important Points for Administrators

• The present implementation of the JBossJTS system provides no security or protection for data.

The objects stored in the JBossJTS object store are (typically) owned by the user who ran the

application that created them. The Object Store and Object Manager facilities make no attempt

to enforce even the limited form of protection that Unix/Windows provides. There is no checking

of user or group IDs on access to objects for either reading or writing.

• Persistent objects created in the Object Store never go away unless the StateManager.destroy

method is invoked on the object or some application program explicitly deletes them. This

means that the Object Store gradually accumulates garbage (especially during application

development and testing phases). At present we have no automated garbage collection facility.

Further, we have not addressed the problem of dangling references. That is, a persistent object,

A, may have stored a Uid for another persistent object, B, in its passive representation on

disk. There is nothing to prevent an application from deleting B even though A still contains a

reference to it. When A is next activated and attempts to access B, a run-time error will occur.

• There is presently no support for version control of objects or database reconfiguration in

the event of class structure changes. This is a complex research area that we have not

addressed. At present, if you change the definition of a class of persistent objects, you are

entirely responsible for ensuring that existing instances of the object in the Object Store are

converted to the new representation. The JBossJTS software can neither detect nor correct

references to old object state by new operation versions or vice versa.

• Object store management is critically important to the transaction service.

2

Chapter 2.

3

Starting and Stopping the

Transaction Manager
By default the transaction manager starts up in an active state such that new transactions can

be created immediately. If you wish to have more control over this it is possible to set the

CoordinatorEnvironmentBean.startDisabled configuration option to YES and in which case

no transactions can be created until the transaction manager is enabled via a call to method

TxControl.enable).

It is possible to stop the creation of new transactions at any time by calling method

TxControl.disable. Transactions that are currently executing will not be affected. By default

recovery will be allowed to continue and the transaction system will still be available to manage

recovery requests from other instances in a distributed environment. (See the Failure Recovery

Guide for further details). However, if you wish to disable recovery as well as remove any

resources it maintains, then you can pass true to method TxControl.disable; the default is to

use false.

If you wish to shut the system down completely then it may also be necessary to terminate

the background transaction reaper (see the Programmers Guide for information about what the

reaper does.) In order to do this you may want to first prevent the creation of new transactions

(if you are not creating transactions with timeouts then this step is not necessary) using

method TxControl.disable. Then you should call method TransactionReaper.terminate.

This method takes a Boolean parameter: if true then the method will wait for the normal timeout

periods associated with any transactions to expire before terminating the transactions; if false

then transactions will be forced to terminate (rollback or have their outcome set such that they

can only ever rollback) immediately.

Note

if you intent to restart the recovery manager later after having terminated it then

you MUST use the TransactionReapear.terminate method with asynchronous

behavior set to false.

4

Chapter 3.

5

OTS and Java EE Transaction

Service Management

3.1. Starting the run-time system

The JBossTS run-time support consists of run-time packages and the OTS transaction manager

server. By default, JBossTS does not use a separate transaction manager server. Instead,

transaction managers are co-located with each application process to improve performance and

improve application fault-tolerance by reducing application dependency on other services.

When running applications which require a separate transaction manager, set the

JTSEnvironmentBean.transactionManager environment variable to value YES. The system

locates the transaction manager server in a manner specific to the ORB being used. This method

may be any of:

• Being registered with a name server.

• Being added to the ORB’s initial references.

• Via a JBossTS specific references file.

• By the ORB’s specific location mechanism (if applicable).

You override the default registration mechanism by using the

OrbPortabilityEnvironmentBean.resolveService environment variable, which takes the

following values:

Table 3.1. Possible values of OrbPortabilityEnvironmentBean.resolveService

CONFIGURATION_FILE This is the default, and causes the system to

use the CosServices.cfg file.

NAME_SERVICE JBossTS attempts to use a name service to

register the transaction factory. If this is not

supported, an exception is thrown.

BIND_CONNECT JBossTS uses the ORB-specific bind

mechanism. If this is not supported, an

exception is thrown.

RESOLVE_INITIAL_REFERENCES JBossTS attempts to register the transaction

service with the ORB's initial service

references. If the ORB does not support this, an

exception is thrown, and another option must

be used.

Chapter 3. OTS and Java EE Tr...

6

3.1.1. OTS configuration file

Similar to the resolve_initial_references, JBossTS supports an initial reference file where

references for specific services can be stored and used at runtime. The file, CosServices.cfg,

consists of two columns: the service name (in the case of the OTS server TransactionService),

and the IOR, separated by a single space. CosServices.cfg is located at runtime by the following

OrbPortabilityEnvironmentBean properties:

initialReferencesRoot The directory where the file is located,

defaulting to the current working directory.

initialReferencesFile The name of the configuration file itself,

CosServices.cfg by default.

The OTS server automatically registers itself in the CosServices.cfg file if the

OrbPortabilityEnvironmentBean option is used, creating the file if necessary. Stale information

is also automatically removed. Machines sharing the same transaction server should have access

to this file, or a copy of it locally.

Example 3.1. Example ORB reference file settings

 OrbPortabilityEnvironmentBean.initialReferencesFile=myFile

 OrbPortabilityEnvironmentBean.initialReferencesRoot=/tmp

3.1.2. Name service

If your ORB supports a name service, and JBossTS is configured to use it, the transaction manager

is registered with it automatically. There is no further work required.

Note

This option is not used for JacORB

3.1.3. resolve_initial_references

Currently this option is only supported for JacORB.

3.1.4. Resolution services supported per ORB

Resolution Mechanism ORB

OTS configuration file All available ORBs

Name Service JacORB

XA Specific management

7

Resolution Mechanism ORB

resolve_initial_references JacORB

3.2. XA Specific management

Each XA Xid that JBossTS creates must have a unique node identifier encoded within it. JBossTS

only recovers transactions and states that match a specified node identifier. Provide the node

identifier with the CoreEnvironmentBean.nodeIdentifier property. This value must be unique

across your JBossTS instances. If you do not provide a value, JBossTS generates one and reports

the value via the logging infrastructure.

When running XA recovery, you need to specify which types of Xid JBossTS can recover. Use

the JTAEnvironmentBean.xaRecoveryNodes property to provide one or more values, in a space-

separated list.

Important

A value of ‘*’ forces JBossTS to recover, and possibly rollback, all transactions,

regardless of their node identifier. Use this value with extreme caution.

3.3. Selecting the JTA implementation

Two variants of the JTA implementation are now provided and accessible through the same

interface. These are:

Purely local JTA

Only non-distributed JTA transactions can be executed. This is the only version available with

the JBossJTA product.

Remote, CORBA-based JTA

Distributed JTA transactions can be executed. This version is only available with the JBossTS

product and requires a supported CORBA ORB.

Both of these implementations are fully compatible with the transactional JDBC driver provided

with JBossTS.

Procedure 3.1. Selecting the local JTA implementation

1. Set the property JTAEnvironmentBean.jtaTMImplementation to value

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple.

2. Set the property JTAEnvironmentBean.jtaUTImplementation to value

com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple.

Chapter 3. OTS and Java EE Tr...

8

Note

These settings are the default values for the properties and do not need to be

specified if the local implementation is required.

Procedure 3.2. Selecting the remote JTA implementation

1. Set the property JTAEnvironmentBean.jtaTMImplementation to value

com.arjuna.ats.internal.jta.transaction.jts..TransactionManagerImple.

2. Set the property JTAEnvironmentBean.jtaUTImplementation to value

com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple.

Chapter 4.

9

Failure Recovery Administration
The failure recovery subsystem of JBossJTS will ensure that results of a transaction are applied

consistently to all resources affected by the transaction, even if any of the application processes

or the machine hosting them crash or lose network connectivity. In the case of machine (system)

crash or network failure, the recovery will not take place until the system or network are restored,

but the original application does not need to be restarted. Recovery responsibility is delegated

to Section 4.1, “The Recovery Manager”. Recovery after failure requires that information about

the transaction and the resources involved survives the failure and is accessible afterward: this

information is held in the ActionStore, which is part of the ObjectStore.

Warning

If the ObjectStore is destroyed or modified, recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction that was in

progress at the time of the failure may be inaccessible. For database resources, this may be

reported as tables or rows held by “in-doubt transactions”. For TransactionalObjects for Java

resources, an attempt to activate the Transactional Object (as when trying to get a lock) will fail.

4.1. The Recovery Manager

The failure recovery subsystem of JBossJTS requires that the stand-alone Recovery Manager

process be running for each ObjectStore (typically one for each node on the network that

is running JBossJTS applications). The RecoveryManager file is located in the arjunaJTS JAR

file within the package com.arjuna.ats.arjuna.recovery.RecoveryManager. To start the Recovery

Manager issue the following command:

 java com.arjuna.ats.arjuna.recovery.RecoveryManager

If the -test flag is used with the Recovery Manager then it will display a Ready message when

initialized, i.e.,

 java com.arjuna.ats.arjuna.recovery.RecoveryManager -test

4.2. Configuring the Recovery Manager

The RecoveryManager reads the properties defined in the jbossts-properties.xml file.

Chapter 4. Failure Recovery A...

10

A default version of jbossts-properties.xml is supplied with the distribution. This can be used

without modification, except possibly the debug tracing fields, as shown in Section 4.3, “Output”.

4.3. Output

It is likely that installations will want to have some form of output from the RecoveryManager,

to provide a record of what recovery activity has taken place. RecoveryManager uses the

logging mechanism provided by jboss logging, which provides a high level interface that hides

differences that exist between existing logging APIs such Jakarta log4j or JDK logging API.

The configuration of jboss logging depends on the underlying logging framework that is used,

which is determined by the availability and ordering of alternatives on the classpath. Please consult

the jboss logging documentation for details. Each log message has an associated log Level, that

gives the importance and urgency of a log message. The set of possible Log Levels, in order of

least severity, and highest verbosity, is:

1. TRACE

2. DEBUG

3. INFO

4. WARN

5. ERROR

6. FATAL

Messages describing the start and the periodical behavior made by the RecoveryManager are

output using the INFO level. If other debug tracing is wanted, the finer debug or trace levels should

be set appropriately.

Setting the normal recovery messages to the INFO level allows the RecoveryManager to produce

a moderate level of reporting. If nothing is going on, it just reports the entry into each module for

each periodic pass. To disable INFO messages produced by the Recovery Manager, the logging

level could be set to the higher level of ERROR, which means that the RecoveryManager will only

produce ERROR, WARNING, or FATAL messages.

4.4. Periodic Recovery

The RecoveryManager scans the ObjectStore and other locations of information, looking for

transactions and resources that require, or may require recovery. The scans and recovery

processing are performed by recovery modules. These recovery modules are instances of classes

that implement the com.arjuna.ats.arjuna.recovery.RecoveryModule interface. Each

module has responsibility for a particular category of transaction or resource. The set of recovery

modules used is dynamically loaded, using properties found in the RecoveryManager property file.

Periodic Recovery

11

The interface has two methods: periodicWorkFirstPass and periodicWorkSecondPass.

At an interval defined by property com.arjuna.ats.arjuna.recovery.periodicRecoveryPeriod, the

RecoveryManager calls the first pass method on each property, then waits for a brief period,

defined by property com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod. Next, it calls the

second pass of each module. Typically, in the first pass, the module scans the relevant part of

the ObjectStore to find transactions or resources that are in-doubt. An in-doubt transaction may

be part of the way through the commitment process, for instance. On the second pass, if any of

the same items are still in-doubt, the original application process may have crashed, and the item

is a candidate for recovery.

An attempt by the RecoveryManager to recover a transaction that is still progressing in the original

process is likely to break the consistency. Accordingly, the recovery modules use a mechanism,

implemented in the com.arjuna.ats.arjuna.recovery.TransactionStatusManager package, to check

to see if the original process is still alive, and if the transaction is still in progress. The

RecoveryManager only proceeds with recovery if the original process has gone, or, if still alive,

the transaction is completed. If a server process or machine crashes, but the transaction-initiating

process survives, the transaction completes, usually generating a warning. Recovery of such a

transaction is the responsibility of the RecoveryManager.

It is clearly important to set the interval periods appropriately. The total iteration time will be

the sum of the periodicRecoveryPeriod and recoveryBackoffPeriod properties, and the length

of time it takes to scan the stores and to attempt recovery of any in-doubt transactions found,

for all the recovery modules. The recovery attempt time may include connection timeouts while

trying to communicate with processes or machines that have crashed or are inaccessible.

There are mechanisms in the recovery system to avoid trying to recover the same transaction

indefinitely. The total iteration time affects how long a resource will remain inaccessible after

a failure. – periodicRecoveryPeriod should be set accordingly. Its default is 120 seconds. The

recoveryBackoffPeriod can be comparatively short, and defaults to 10 seconds. –Its purpose is

mainly to reduce the number of transactions that are candidates for recovery and which thus

require a call to the original process to see if they are still in progress.

Note

In previous versions of JBossJTS, there was no contact mechanism, and the back-

off period needed to be long enough to avoid catching transactions in flight at all.

From 3.0, there is no such risk.

Two recovery modules, implementations of the

com.arjuna.ats.arjuna.recovery.RecoveryModule interface, are supplied with JBossJTS.

These modules support various aspects of transaction recovery, including JDBC recovery. It

is possible for advanced users to create their own recovery modules and register them with

the Recovery Manager. The recovery modules are registered with the RecoveryManager using

RecoveryEnvironmentBean.recoveryModuleClassNames. These will be invoked on each pass

of the periodic recovery in the sort-order of the property names – it is thus possible to predict the

Chapter 4. Failure Recovery A...

12

ordering, but a failure in an application process might occur while a periodic recovery pass is in

progress. The default Recovery Extension settings are:

<entry key="RecoveryEnvironmentBean.recoveryModuleClassNames">

 com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule

 com.arjuna.ats.internal.txoj.recovery.TORecoveryModule

 com.arjuna.ats.internal.jts.recovery.transactions.TopLevelTransactionRecoveryModule

 com.arjuna.ats.internal.jts.recovery.transactions.ServerTransactionRecoveryModule

 com.arjuna.ats.internal.jta.recovery.jts.XARecoveryModule

</entry>

4.5. Expired Entry Removal

The operation of the recovery subsystem cause some entries to be made in the ObjectStore

that are not removed in normal progress. The RecoveryManager has a facility for scanning

for these and removing items that are very old. Scans and removals are performed by

implementations of the com.arjuna.ats.arjuna.recovery.ExpiryScanner interface. These

implementations are loaded by giving the class names as the value of a property

RecoveryEnvironmentBean.expiryScannerClassNames. The RecoveryManager calls the scan()

method on each loaded Expiry Scanner implementation at an interval determined by the property

RecoveryEnvironmentBean.expiryScanInterval. This value is given in hours, and defaults to

12hours. An expiryScanInterval value of zero suppresses any expiry scanning. If the value

supplied is positive, the first scan is performed when RecoveryManager starts. If the value is

negative, the first scan is delayed until after the first interval, using the absolute value.

The kinds of item that are scanned for expiry are:

TransactionStatusManager items

One TransactionStatusManager item is created by every application process that uses

JBossJTS. It contains the information that allows the RecoveryManager to determine if the

process that initiated the transaction is still alive, and its status. The expiry time for these items

is set by the property com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime,

expressed in hours. The default is 12, and 0 (zero) means never to expire.The expiry time

should be greater than the lifetime of any single processes using JBossJTS.

The Expiry Scanner properties for these are:

 <entry key="RecoveryEnvironmentBean.expiryScannerClassNames">

 com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner

</entry>

Chapter 5.

13

ORB-specific Configurations

5.1. JacORB

For JacORB to function correctly it needs a valid jacorb.properties or .jacorb_properties

file in one of the following places, in searched order:

1. The classpath

2. The home directory of the user running the JBoss Transaction Service. The home directory is

retrieved using System.getProperty(“user.home”);

3. The current directory

4. The lib/ directory of the JDK used to run your application. This is retrieved using

System.getProperty(“java.home”);

Note

A template jacorb.properties file is located in the JacORB installation directory.

Within the JacORB properties file there are two important properties which must be tailored to

suit your application.

• jacorb.poa.thread_pool_max

• jacorb.poa.thread_pool_min

These properties specify the minimum and maximum number of request processing threads that

JacORB uses in its thread pool. If no threads are available, may block until a thread becomes

available.. For more information on configuring JacORB, refer to the JacORB documentation.

Important

JacORB includes its own implementation of the classes defined in the

CosTransactions.idl file. Unfortunately these are incompatible with the version

shipped with JBossTS. Therefore, the JBossTS jar files absolutely must appear in

the CLASSPATH before any JacORB jars.

When running the recovery manager, it should always uses the same well-known port for each

machine on which it runs. Do not use the OAPort property provided by JacORB unless the recovery

manager has its own jacorb.properties file or the property is provided on the command line

when starting the recovery manager. If the recovery manager and other components of JBossTS

Chapter 5. ORB-specific Confi...

14

share the same jacorb.properties file, use the JTSEnvironmentBean.recoveryManagerPort

and JTSEnvironmentBean.recoveryManagerAddress properties.

Chapter 6.

15

Initializing JBossTS Applications
JBossTS most be initialized correctly before any application object is created. To guarantee this,

use the initORB and create_POA methods described in the Orb Portability Guide. Consult the Orb

Portability Guide if you need to use the underlying ORB_init and create_POA methods provided

by the ORB instead of the JBossTS methods.

16

17

Appendix A. Revision History
Revision History

Revision 0 Wed Sep 1 2010 MistyStanley-

Jones<misty@redhat.com>

Conversion to Docbook

18

	JBossJTS Administration Guide
	Table of Contents
	Preface
	1. Prerequisities
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. Introduction
	Chapter 2. Starting and Stopping the Transaction Manager
	Chapter 3. OTS and Java EE Transaction Service Management
	3.1. Starting the run-time system
	3.1.1. OTS configuration file
	3.1.2. Name service
	3.1.3. resolve_initial_references
	3.1.4. Resolution services supported per ORB

	3.2. XA Specific management
	3.3. Selecting the JTA implementation

	Chapter 4. Failure Recovery Administration
	4.1. The Recovery Manager
	4.2. Configuring the Recovery Manager
	4.3. Output
	4.4. Periodic Recovery
	4.5. Expired Entry Removal

	Chapter 5. ORB-specific Configurations
	5.1. JacORB

	Chapter 6. Initializing JBossTS Applications
	Appendix A. Revision History

