JB0ssJTS ORB Portability Guide

by Mark Red Hat Little, Jonathan Red Hat Halliday,
Andrew Red Hat Dinn, and Kevin Red Hat Connor

[l (=] = Vo1 < T \Y;

I o (T (=T [0y (= %

2. DOCUMENE CONVENLIONS ...iiiiiiii i et e e e e e e et e e et e e e e et e e eanaeeanaeees Y

2.1. TypographiC CONVENLIONSc..uiiiiiieiiii e e e e e e e e e e e e %

2.2. PUll-QUOtE CONVENTIONS ...ceiiiiieiiiiiie ettt vii

ARG T N [0 (13- T To BV = 14 a1 o PPN vii

3. We Need Feedback! ... viii
Y o To 10} A N T =T T o [PP 1
I I T 1= g o] PN 1

I o = (Yo [01T (TP 1

2. ORB POrtability API ..o et 3
2.1. Using the ORB and OA ..o e e e e e e e 3
2.1.1. ORB and OA InitialiSationoeeiiiiiiiiieiiiie e 7

2.1.2. ORB and OA ShULHOWNccuuiiiiiiiiiei et 7

2.1.3. Specifying the ORB 10 USEiiiiiiiiiiiiii e 8

2.1.4. INItIAlISALION COUR ...ivvviiiiiiii e e s 8

2.1.5. Locating ODjJects and SErVICEScccuuiiiiiiiiiiieiiiiieeee e 9

2.1.6. ORB location MEeChaniSIMScciiiiiiiiiiiiii e 11

AL REVISION HiISTOMY ...ttt ettt e et e et et e eeeaba e eeeee 13

Preface

1. Prerequisites

JBo0ssJTS works in conjunction with the rest of the JBoss Transactions suite. In addition to the
documentation here, consult the JBossJTS documentation, which ships as part of JBossJTS and
is also available on the JBoss Transaction Service website at http://www.jboss.org/jbosstm .

2. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention
to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://
fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if
the setis installed on your system. If not, alternative but equivalent typefaces are displayed. Note:
Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

2.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight keycaps and key combinations. For example:

To see the contents of the file ny_next _bestsel |i ng_novel in your current
working directory, enter the cat my_next _best sel | i ng_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced
bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a
key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in nono- spaced bol d. For example:

http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

File-related classes include fi | esyst emfor file systems, fi | e for files, and di r
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog
box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System - Preferences - Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click Close to switch the primary mouse button from the left to the right
(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications -
Accessories — Character Map from the main menu bar. Next, choose Search

- Find... from the Character Map menu bar, type the name of the character in
the Search field and click Next. The character you sought will be highlighted in
the Character Table. Double-click this highlighted character to place it in the Text
to copy field and then click the Copy button. Now switch back to your document

and choose Edit — Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
proportional bold and all distinguishable by context.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh user name@lomai n. name
at a shell prompt. If the remote machine is exanpl e. comand your username on
that machine is john, type ssh j ohn@xanpl e. com

The nmount -0 renount file-systemcommand remounts the named file
system. For example, to remount the / hone file system, the command is nount
-0 renount /hone.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package- ver si on-rel ease.

Note the words in bold italics above — username, domain.name, file-system, package, version
and release. Each word is a placeholder, either for text you enter when issuing a command or
for text displayed by the system.

Vi

Pull-quote Conventions

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in nono- spaced r oman and presented thus:

books Deskt op docunentation drafts nss phot os stuff svn
books tests Desktopl downl oads imges notes scripts svgs

Source-code listings are also set in nono- spaced ronan but add syntax highlighting as follows:

package org.j boss. book. jca. ex1;
i mport javax.nam ng. |l nitial Context;

public class ExCient

{
public static void main(String args[])
throws Exception
{
Initial Context iniCtx = new Initial Context();
hj ect r ef = ini &x.|ookup("EchoBean");
EchoHone hone = (EchoHon®e) ref;
Echo echo = hone. create();
Systemout . println("Created Echo");
Systemout. println("Echo.echo('Hello') =" + echo.echo("Hello"));
}
}

2.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.

@ Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring
a note should have no negative consequences, but you might miss out on a trick
that makes your life easier.

Vii

Preface

Important

Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled ‘Important’ will not cause data loss but may cause
irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

viii

Chapter 1.

About This Guide

The Programmer's Guide contains information on how to use the ORB Portability Layer. Although
the CORBA specification is a standard, it is written in such a way that allows for a wide variety
of implementations. Unless writing extremely simple applications, differences between ORB
implementations tend to produce code which cannot easily be moved between ORBs. This is
especially true for server-side code, which suffers from the widest variation between ORBs. There
have also been a number of revisions of the Java language mapping for IDL and for CORBA
itself. Many ORBSs currently in use support different versions of CORBA and/or the Java language

mapping.

The JBossJTS only supports the new Portable Object Adapter (POA) architecture described
in the CORBA 2.3 specification as a replacement for the Basic Object Adapter (BOA). Unlike
the BOA, which was weakly specified and led to a number of different (and often conflicting)
implementations, the POA was deliberately designed to reduce the differences between ORB
implementations, and thus minimize the amount of re-coding that would need to be done when
porting applications from one ORB to another. However, there is still scope for slight differences
between ORB implementations, notably in the area of threading. Note, instead of talking about
the POA, this manual will consider the Object Adapter (OA).

Because the JBossJTS must be able to run on a number of different ORBs, we have developed
an ORB portability interface which allows entire applications to be moved between ORBs with
little or no modifications. This portability interface is available to the application programmer in the
form of several Java classes. Note, the classes to be described in this document are located in
the com arj una. or bportabi | i ty package.

1.1. Audience

This document provides a detailed look at the ORB Portability layer and how it can be used to
facilitate the implementation of ORB portable applications. This guide provides a guide as to the
best practices of using the ORB portability layer.

1.2. Prerequisites

Familiarity with ORBSs.

Chapter 2.

ORB Portability API

2.1. Using the ORB and OA

The ORB class shown below provides a uniform way of using the ORB. There are methods for
obtaining a reference to the ORB, and for placing the application into a mode where it listens for
incoming connections. There are also methods for registering application specific classes to be
invoked before or after ORB initialisation. Note, some of the methods are not supported on all
ORBs, and in this situation, a suitable exception will be thrown. The ORB class is a factory class
which has no public constructor. To create an instance of an ORB you must call the getinstance
method passing a uniqgue name as a parameter. If this unique name has not been passed in
a previous call to getinstance you will be returned a new ORB instance. Two invocations of
getinstance made with the same unique name, within the same JVM, will return the same ORB
instance.

Example 2.1. orB.java
public class ORB {
public static ORB getlnstance(String uniqueld);

public synchroni zed void initORB()
t hrows SystenExcepti on;

public synchroni zed void initORB(Applet a, Properties p)
t hrows SystenExcepti on;

public synchroni zed void initORB(String[] s,
Properties p) throws SystenException;

public synchroni zed org. ong. CORBA. ORB orb();

publ i c synchroni zed bool ean set Or b(
org. ong. CORBA. ORB t heORB) ;

publi ¢ synchroni zed voi d shutdown();

public synchroni zed bool ean addAttri bute(Attribute p);
publi ¢ synchroni zed voi d addPr eShut down(Pr eShut down c¢);
publi ¢ synchroni zed voi d addPost Shut down(Post Shut down c);

publ i c synchroni zed voi d destroy()
t hrows SystenExcepti on;

public void run();

Chapter 2. ORB Portability API

public void run(String nane);

We shall now describe the various methods of the ORB class.

* ini t ORB: given the various parameters, this method initialises the ORB and retains a reference
to it within the ORB class. This method should be used in preference to the raw ORB interface
since the JBoss Transaction Service requires a reference to the ORB. If this method is not used,
setOrb must be called prior to using JBoss Transaction Service .

 or b : this method returns a reference to the ORB. After shutdown is called this reference may
be null.

e shut down : where supported, this method cleanly shuts down the ORB. Any pre- and post-
ORB shutdown classes which have been registered will also be called. See the section titled
ORB and OA Initialisation. This method must be called prior to application termination. It is the
application programmer’s responsibility to ensure that no objects or threads continue to exist
which require access to the ORB. It is ORB implementation dependant as to whether or not
outstanding references to the ORB remain useable after this call.

e addAttri bute : this method allows the application to register classes with JBoss Transaction
Service which will be called either before, or after the ORB has been initialised. See the section
titted ORB and OA Initialisation. If the ORB has already been initialised then the attribute object
will not be added, and false will be returned.

* run : these methods place the ORB into a listening mode, where it waits for incoming
invocations.

The OA classes shown below provide a uniform way of using Object Adapters (OA). There are
methods for obtaining a reference to the OA. There are also methods for registering application
specific classes to be invoked before or after OA initialisation. Note, some of the methods are not
supported on all ORBs, and in this situation, a suitable exception will be thrown. The OA class is
an abstract class and provides the basic interface to an Object Adapter. It has two sub-classes
RootOA and ChildOA, these classes expose the interfaces specific to the root Object Adapter and
a child Object Adapter respectively. From the RootOA you can obtain a reference to the RootOA
for a given ORB by using the static method getRootOA. To create a ChildOA instance use the
createPOA method on the RootOA.

Example 2.2. oA java
public abstract class QA {
public synchroni zed static Root QA get Root QA(

ORB associ at edORB) ;

public synchroni zed void initPQA()
t hrows Syst enExcepti on;

Using the ORB and OA

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

public cl

publ i

publ i

publ i

publ i

publ i

publ i

public cl

¢ synchroni zed void initPQA(String[] args)
t hrows SystenExcepti on;

¢ synchroni zed void initQA()
t hrows Syst enExcepti on;

¢ synchroni zed void initOA(String[] args)
t hrows SystenExcepti on;

¢ synchroni zed Chil dOA creat ePOA(
String adapterNane, PolicyList policies)
t hrows Adapter Al readyExi sts, InvalidPolicy;

¢ synchroni zed org. ong. Portabl eServer. PQA r oot Poa() ;

¢ synchroni zed bool ean set Poa(
org. ong. Port abl eServer. POA t hePQA) ;

¢ synchroni zed org. ong. Port abl eServer. POA poa(
String adapt er Nane) ;

¢ synchroni zed bool ean setPoa(String adapt er Nane,
org. ong. Port abl eServer. POA t hePQA) ;

¢ synchroni zed bool ean addAttri bute(QAAttribute p);
¢ synchroni zed voi d addPr eShut down(QAPr eShut down c) ;
¢ synchroni zed voi d addPost Shut down(

QAPost Shut down c);

ass Root QA extends QA {
¢ synchroni zed voi d destroy()
t hrows Syst enExcepti on;
c org.ong. CORBA. Obj ect corbaRef erence(Servant obj);
¢ bool ean objectlsReady(Servant obj, byte[] id);
¢ bool ean obj ect|sReady(Servant obj);

¢ bool ean shut downCbj ect (or g. ong. CORBA. Cbj ect obj);

¢ bool ean shut downChj ect (Servant obj);

ass Chil dOA extends QA {

Chapter 2. ORB Portability API

public synchroni zed bool ean set Root Poa(POA t hePQA) ;

public synchroni zed voi d destroy()
t hrows SystenExcepti on;

publ i ¢ org. ong. CORBA. Obj ect cor baRef erence(Servant obj);

publi c bool ean object|sReady(Servant obj, byte[] id)
t hrows SystenExcepti on;

publ i c bool ean obj ect|sReady(Servant obj)
t hrows SystenExcepti on;

publ i ¢ bool ean shut downCbj ect (org. ong. CORBA. Cbj ect obj);

publ i ¢ bool ean shut downChj ect (Servant obj);

We shall now describe the various methods of the OA class.

* initPOA: this method activates the POA, if this method is called on the RootPOA the POA with
the name RootPOA will be activated.

e creat ePQA : if a child POA with the specified name for the current POA has not already been
created then this method will create and activate one, otherwise AdapterAlreadyExists will be
thrown. This method returns a ChildOA object.

* initOA : this method calls the initPOA method and has been retained for backwards
compatibility.

* root Poa : this method returns a reference to the root POA. After destroy is called on the root
POA this reference may be null.

» poa : this method returns a reference to the POA. After destroy is called this reference may
be null.

» dest roy : this method destroys the current POA, if this method is called on a RootPOA instance
then the root POA will be destroyed along with its children.

¢ shut down : this method shuts down the POA.

e addAttri bute : this method allows the application to register classes with JBoss Transaction
Service which will be called either before or after the OA has been initialised. See below. If
the OA has already been initialised then the attribute object will not be added, and false will
be returned.

ORB and OA Initialisation

2.1.1. ORB and OA Initialisation

It is possible to register application specific code with the ORB portability library
which can be executed either before or after the ORB or OA are initialised.
Application programs can inherit from either com arj una. orbportability.orb. Attribute or
com arjuna.orbportability.oa. Attribute and pass these instances to the addAttribute
method of the ORB/OA classes respectively:

Example 2.3. Attribute.java

package com arjuna. orbportability. orb;
public abstract class Attribute {
public abstract void initialise(String[] parans);

publi c bool ean post ORBInit();
k5

package com arjuna. orbportability. oa;
public abstract class QAAttribute {
public abstract void initialise(String[] parans);

publ i c bool ean postQAlnit();

By default, the post ORBI ni t / post QAl ni t methods return true, which means that any instances
of derived classes will be invoked after either the ORB or OA have been initialised. By redefining
this to return false, a particular instance will be invoked before either the ORB or OA have been
initialised.

When invoked, each registered instance will be provided with the exact String parameters passed
to the initialise method for the ORB/OA.

2.1.2. ORB and OA shutdown

It is possible to register application specific code (via the addPr eShut down/ addPost Shut down
methods) with the ORB portability library which will be executed prior to, or after, shutting down
the ORB. The pre/post interfaces which are to be registered have a single work method, taking
no parameters and returning no results. When the ORB and OA are being shut down (using
shut down/ dest r oy), each registered class will have its work method invoked.

Example 2.4. shutdown. java

public abstract class PreShutdown {
public abstract void work();

Chapter 2. ORB Portability API

public abstract class Post Shutdown {
public abstract void work();

2.1.3. Specifying the ORB to use

JDK releases from 1.2.2 onwards include a minimum ORB implementation from Sun. If using such
a JDK in conjunction with another ORB it is necessary to tell the JVM which ORB to use. This
happens by specifying the or g. ong. CORBA. ORBCl ass and or g. ong. CORBA. ORBSi ngl et onCl ass
properties. The ORB Portability classes will ensure that these properties are automatically set
when required, i.e., during ORB initialisation. Of course it is still possible to specify these values
explicitly (and necessary if not using the ORB initialisation methods). Note: if you do not use the
ORB Portability classes for ORB initialisation then it will still be necessary to set these properties.
The ORB portability library attempts to detect which ORB is in use, it does this by looking for
the ORB implementation class for each ORB it supports. This means that if there are classes for
more than one ORB in the classpath the wrong ORB can be detected. Therefore it is best to only
have one ORB in your classpath. If it is necessary to have multiple ORBs in the classpath then
the property OrbPortabi | i t yEnvi r onment Bean. or bl npl enent ati on must be set to the value
specified in the table below.

(0]3=] Property Value
‘ JacORB v2 com arj una. orbportability.internal.or b#peci fic.jacorb. ¢
‘ JDK miniORB com arjuna. orbportability.internal.or b%peci fic.javaidl.

2.1.4. Initialisation code

The JBoss Transaction Service requires specialised code to be instantiated before and after
the ORB and the OA are initialised. This code can be provided at runtime through the use of
OrbPortabilityEnvironmentBean.orblnitializationProperties This mechanism is also available to
programmers who can register arbitrary code which the ORB Portability will guarantee to be
instantiated either before or after ORB/OA initialisation. For each application (and each execution
of the same application) the programmer can simultaneously provide multiple Java classes which
are instantiated before and after the ORB and or OA is initialised. There are few restrictions on
the types and numbers of classes which can be passed to an application at execution time. All
classes which are to be instantiated must have a public default constructor, i.e., a constructor
which takes no parameters. The classes can have any name. The property names used must
follow the format specified below:

« com..orbportability.orb.Prelnit — this property is used to specify a global pre-initialisation routine
which will be run before any ORB is initialised.

« com..orbportability.orb.PostInit — this property is used to specify a global post-initialisation
routine which will be run after any ORB is initialised.

Locating Objects and Services

» com..orbportability.orb.<ORB NAME>.Prelnit — this property is used to specify a pre-
initialisation routine which will be run when an ORB with the given name is initialised.

« com..orbportability.orb.<ORB NAME>.Postlnit — this property is used to specify a post-
initialisation routine which will be run after an ORB with the given name is initialised.

« com..orbportability.oa.Prelnit — this property is used to specify a global pre-initialisation routine
which will be run before any OA is initialised.

« com..orbportability.oa.PostInit — this property is used to specify a global post-initialisation routine
which will be run after any OA is initialised,

« com..orbportability.oa.<ORB NAME>.Prelnit — this property is used to specify a pre-initialisation
routine which will be run before an OA with the given name is initialised

e com..orbportability.o0a.<ORB NAME>.Postlnit — this property is used to specify a pre-
initialisation routine which will be run after an OA with the given name is initialised

Pre and post initialisation can be arbitrarily combined, for example:

j ava -
Dor bPor t abi | i t yEnvi ronment Bean. orbl ni tializati onProperti es="com .orbportability.orb.Prelnit=or(

com .orbportability.oa.Postlnit=orb.foo. All QAPostInit” org.foo. MyMai nd ass

2.1.5. Locating Objects and Services

Locating and binding to distributed objects within CORBA can be ORB specific. For example,
many ORBs provide implementations of the naming service, whereas some others may rely upon
proprietary mechanisms. Having to deal with the many possible ways of binding to objects can be
a difficult task, especially if portable applications are to be constructed. ORB Portability provides
the Services class in order to provide a more manageable, and portable binding mechanism. The
implementation of this class takes care of any ORB specific locations mechanisms, and provides
a single interface to a range of different object location implementations.

Example 2.5. Services.java

public class Services {
/**
* The various neans used to | ocate a service.
=)

public static final int RESCLVE_ | N Tl AL_REFERENCES = O0;
public static final int NAME SERVI CE = 1;

public static final int CONFI GURATI ON FILE = 2;

public static final int FILE = 3;

Chapter 2. ORB Portability API

public static final int NAMED CONNECT = 4;
public static final int BlIND CONNECT = 5;

public static org.ong. CORBA. Obj ect get Servi ce(
String serviceNane, Object[] parans,
i nt mechani sm throws |nvalidNang,
Cannot Proceed, Not Found, | CExcepti on;

public static org.ong. CORBA. Obj ect get Service(
String serviceNane, Object[] parans)
throws | nvalidNane, Cannot Proceed, Not Found,
| OExcepti on;

public static void registerService(
or g. ong. CORBA. Ohj ect obj Ref,
String serviceNane, Object[] parans,
int mechanism throws InvalidName, |COException,
Cannot Proceed, Not Found;

public static void registerService(
org. ong. CORBA. Ohj ect obj Ref,
String serviceNane, Object[] parans)
throws I nvalidName, | CException, CannotProceed,
Not Found;

There are currently several different object location and binding mechanisms supported by
Services (not all of which are supported by all ORBs, in which case a suitable exception will be
thrown):

1. RESOLVE_INITIAL_REFERENCES : if the ORB supported resolve_initial_references, then
Services will attempt to use this to locate the object.

2. NAME_SERVICE : Services will contact the name service for the object. The name service will
be located using resol ve_initial _references .

3. CONFIGURATION_FILE : as described in the Using the OTS Manual, the JBoss Transaction
Service supports an initial reference file where references for specific services and objects
can be stored and used at runtime. The file, CosServices.cfg, consists of two columns: the
service name (in the case of the OTS server TransactionService) and the IOR, separated by
a single space. CosServices.cfg is located at runtime by the OrbPortabilityEnvironmentBean
properties initialReferencesRoot (a directory, defaulting to the current working directory) and
initialReferencesFile (a name relative to the directory,'CosServices.cfg' by default).

4. FILE : object IORs can be read from, and written to, application specific files. The service name
is used as the file name.

5. NAMED_CONNECT : some ORBs support proprietary location and binding mechanisms.

10

ORB location mechanisms

6. BIND_CONNECT : some ORBs support the bind operation for locating services.

We shall now describe the various methods supported by the Services class:

« getService : given the name of the object or service to be located (serviceName), and the type
of mechanism to be used (mechanism), the programmer must also supply location mechanism
specific parameters in the form of params. If the name service is being used, then params[0]
should be the String kind field.

» getService : the second form of this method does not require a location mechanism to be
supplied, and will use an ORB specific default. The default for each ORB is shown in Table 2.

* registerService : given the object to be registered, the name it should be registered with, and the
mechanism to use to register it, the application programmer must specify location mechanism
specific parameters in the form of params. If the name service is being used, then params[0]
should be the String kind field.

2.1.6. ORB location mechanisms

The following table summarises the different location mechanisms that ORB Portability supports
for each ORB via the Services class:

Location Mechanism ORB
CONFIGURATION_FILE All available ORBs
FILE All available ORBs
BIND_CONNECT None

If a location mechanism isn’t specified then the default is the configuration file.

11

12

Appendix A. Revision History

Revision History

Revision 1 Wed Apr 13 2010 TomJenkinson<t om j enki nson@ edhat . con»
Initial converstion to docbook

13

14

	JBossJTS ORB Portability Guide
	Table of Contents
	Preface
	1. Prerequisites
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. ORB Portability API
	2.1. Using the ORB and OA
	2.1.1. ORB and OA Initialisation
	2.1.2. ORB and OA shutdown
	2.1.3. Specifying the ORB to use
	2.1.4. Initialisation code
	2.1.5. Locating Objects and Services
	2.1.6. ORB location mechanisms

	Appendix A. Revision History

