
Transaction Bridging Guide

by Jonathan Red Hat Halliday

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Introduction ... 3

2.1. Contextual Overview ... 3

2.2. Transaction Bridging ... 3

3. Transaction Bridge Architecture ... 7

3.1. Overview .. 7

3.2. Shared Design Elements ... 8

3.3. Inbound Bridging .. 9

3.4. Outbound Bridging .. 10

3.5. Crash Recovery .. 11

4. Using the Transaction Bridge .. 13

4.1. Introduction ... 13

4.2. Deployment .. 13

4.3. Inbound Bridging ... 13

4.4. Outbound Bridging .. 14

4.5. Demonstration Application ... 14

4.5.1. Inbound Bridge .. 15

4.5.2. Outbound Bridge .. 15

4.6. Loops and Diamonds .. 15

4.7. Distributed JTA and the JTS .. 16

4.8. Logging .. 17

5. Known Limitations ... 19

A. Design Notes .. 21

A.1. General Points ... 21

A.2. Crash Recovery Considerations .. 21

A.2.1. Inbound Crash Recovery .. 22

A.2.2. Outbound Crash Recovery ... 22

A.3. Test framework .. 23

B. Revision History .. 25

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

vii

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Preface

viii

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Transaction Bridging Guide contains information on how to use JBoss Transactions. This

guide provides information on how to integrate JTA (XA) and XTS (WS-AT) transactions using

the transaction bridge.

1.1. Audience

This guide is most relevant for application developers working in environments that integrate

traditional JavaEE transactions usage and transactional Web Services.

1.2. Prerequisites

JBossTS uses the Java programming language and this manual assumes that you are familiar

with programming in Java. In addition, a familiarity with the JTA and XTS components of JBossTS

is assumed. You should read the relevant Programmer's Guides before tackling this document.

2

Chapter 2.

3

Introduction

2.1. Contextual Overview

Transactions provide a structuring mechanism for business logic. Use of transactions allows

for grouping of data manipulations into constructs with certain properties. Traditional ACID

transactions provide for properties of Atomicity, Consistency, Isolation and Durability.

In JavaEE applications, transaction support is provided via the Java Transaction API (JTA).

The classes and interfaces in the javax.transaction and javax.transaction.xa packages provide a

means by which the programmer may manage transaction demarcation (begin, commit, rollback)

and, where necessary, interact with the transaction management system (e.g. enlistResource).

In many JavaEE applications, further abstractions are provided on top of the JTA. For example,

EJB3 @TransactionAttribute annotations may be used for transaction boundary demarcation in

preference to explicit calls to the JTA's UserTransaction interface.

In distributed applications, the JTA implementation may provide propagation of transaction context

and transaction control calls between containers (JVMs) using either a propriety transport or JTS,

the Java mapping of the CORBA OTS standard on an RMI/IIOP transport. In JBossTS, both local

and distributed (JTS) implementations of the JTA are available.

In Web Services applications, ACID transaction management and interoperable context

propagation is provided for by the WS-AT standard. JBossTS XTS provides an implementation

of both the 1.0 and 1.2 versions of this standard. Bridging is provided only on the more recent

version. At the time of writing the standard covers only the web services API and protocol, not the

Java API through which the protocol may be driven. Therefore, XTS provides a custom Java API

to users, with characteristics broadly similar to the JTA.

For applications that combine traditional JavaEE transaction management and Web Service

transaction management, it is often desirable to have some mechanism for linking these

transaction types, such that a single transaction may span business logic written for either

transaction type. Examples include exposing existing JavaEE transactional business logic (e.g.

EJBs) as transactional Web Services, or allowing JavaEE transactional components to utilize

transactional Web Services.

2.2. Transaction Bridging

We use the term Transaction Bridging to describe the process of linking the JavaEE and Web

Services transaction domains. The transaction bridge component (txbridge) of JBossTS provides

bi-directional linkage, such that either type of transaction may encompass business logic designed

for use with the other type.

The technique used by the bridge is a combination of interposition and protocol mapping.

Interposition is used in transaction systems to allow a tree of transaction coordinators to be

constructed, usually for performance reasons. Interposed coordinators function as transaction

Chapter 2. Introduction

4

managers for nodes below them in the tree, whilst appearing as resources (participants in WS-

AT terminology) to the node above them.

Within a single transaction domain, interposition may be used to allow remote nodes to minimize

the number of network calls necessary at transaction termination. The top level node is known as

the root coordinator, whilst interposed coordinators are termed subordinate. This name indicates

that they are not autonomously responsible for determining the transaction outcome, but rather

are driven by their parent coordinator. Therefore, whilst a top level coordinator exposes only

the commit and rollback methods for transaction termination and handles the 2PC internally,

the subordinates additionally expose the prepare method to their parent, behaving much like

resources during the termination protocol.

Figure 2.1. Transaction interposition in a distributed JTA environment

In the transaction bridge, an interposed coordinator is registered into the existing transaction and

performs the additional task of protocol mapping. That is, it appears to its parent coordinator to

be a resource of its native transaction type, whilst appearing to its children to be a coordinator of

their native transaction type, even though these transaction types differ.

Transaction Bridging

5

Figure 2.2. Transactional bridging interposition

The interposed coordinator is responsible for performing mapping between the transaction

protocols. There is a strong correspondence between the API and protocol used by the JTA and

WS-AT transaction types, which is unsurprising given their common heritage and shared problem

domain. However, method signatures, exception types and such do differ. The bridge provides a

abstraction layer to mask these distinctions as far as possible.

The net result of this is that existing business logic perceives its expected transaction environment,

even though the transaction in which it is executing may be subordinate to one of a different type.

No changes are necessary to existing transactional applications to allow them to operate in the

scope of foreign transactions. This facilitates reuse of existing business logic components in new

environments and increases the possibilities for new architectures and interoperability.

6

Chapter 3.

7

Transaction Bridge Architecture

3.1. Overview

The transaction bridge resides in the package org.jboss.jbossts.txbridge and its subpackages.. It

consists of two distinct sets of classes, one for bridging in each direction.

The process of inflowing a WS-AT transaction context on a Web Service call into the container

and converting it to a local JTA transaction context such that existing transactional JavaEE code

(e.g. EJBs) may be called within its scope, is termed Inbound Transaction Bridging. When using

inbound bridging, a parent WS-AT transaction coordinator has a subordinate JTA coordinator

interposed into it via the transaction bridge.

The process of outflowing a WS-AT transaction context on a call to a transactional Web Service

from a business logic method operating in a JavaEE transaction scope, is termed Outbound

Transaction Bridging. When using outbound bridging, a parent JTA transaction coordinator has a

subordinate WS-AT coordinator interposed into it via the transaction bridge.

For the purpose of understanding this naming convention, it is simplest to view the JTA as being

local to the container in which it operates, whilst the Web Service protocol provides for transaction

context propagation between servers. This is an accurate representation of the situation that exists

where the local JTA version of JBossTS is being used alongside JBossTS XTS in an application

server. However, it is an oversimplification of the situation where the JTS option is used. We will

return to this case later.

Chapter 3. Transaction Bridge...

8

Figure 3.1. Simplified Bridge Architecture

3.2. Shared Design Elements

The design of the inbound and outbound bridges is conceptually very similar. Each provides the

following:

• A BridgeManager , essentially a factory singleton, providing a means of managing Bridge and

resource/participant instances. The chief role of the BridgeManager is to ensure a distinct

mapping of a parent transaction context to a single Bridge and resource/participant instance.

• A Bridge , which provides Thread to transaction context association and disassociation functions

for the subordinate transaction. The Bridge is usually called from the Handler, but may optionally

be driven directly.

• A Handler , which is registered into the JAX-WS processing pipeline to provide minimally

invasive management of Thread to transaction context bindings via the Bridge, an appropriate

Inbound Bridging

9

instance of which it obtains from the BridgeManager. Whilst the bridge provides handlers only

for JAX-WS, it's possible to use these as a model for the implementation of JAX-RPC versions

if desired.

• A VolatileParticipant and DurableParticipant (in the case of the InboundBridge) or

Synchronization and XAResource (in the case of the OutboundBridge) which are enlisted into

the parent transaction and wrap the Subordinate transaction coordinator, providing mapping of

the transaction termination protocol operations.

• A RecoveryManager , which is responsible for automatically restoring the state of crashed

transactions and allowing them to complete correctly.

3.3. Inbound Bridging

The process flow when using the inbound bridge is as follows:

1. A remote client starts a WS-AT transaction and invokes a transactional Web Service in the

scope of that transaction. The inbound WS invocation therefore has SOAP headers containing

the WS-AT transaction context. The coordinator used for this transaction is the root coordinator.

It may be remote from either or both of the client and the service it is invoking. The client needs

access to a WS-AT implementation, but not a JTA or the transaction bridge deployed.

2. The call arrives at a web service container, which must have JBossTS JTA or JTS, XTS and

the transaction bridge deployed. The JAX-WS handler chain for the web service should have

both the XTS WS-AT transaction header processor and the inbound bridge handler registered,

such that they are invoked in that order.

3. The transaction header processor takes the WS-AT transaction context from XML, creates a

corresponding WS-AT TxContext and associates it to the Thread. The bridge handler calls the

InboundBridgeManager to obtain an InboundBridge instance corresponding to the TxContext.

4. As the BridgeManager is seeing the TxContext for the first time, it creates a new Bridge

instance. It also creates a new Bridge VolatileParticipant and DurableParticipant and registers

them with the WS-AT transaction coordinator. These Participants wrap a subordinate JTA

transaction.

5. The bridge header processor starts the bridge, which associates the JTA subordinate

transaction context to the Thread. At this point the Thread has transaction contexts for both

WS-AT and JTA.

6. The JAX-WS pipeline processing continues, eventually calling whatever business logic is

exposed. This may be e.g. an EJB using JSR-181 annotations. The business logic may use

the JTA transaction in the normal manner e.g. enlisting Synchronizations and XAResources or

performing other transactional activity either directly or though the usual JavaEE abstractions.

7. On the return path, the bridge header processor disassociates the JTA transaction context

from the Thread via the Bridge. The XTS context processor then does likewise for the WS-

AT TxContext.

Chapter 3. Transaction Bridge...

10

8. On subsequent web services calls to the same or other web services from the same client,

the process is repeated. However, the BridgeManager will, upon seeing the same WS-AT

transaction context again, return the existing Bridge instance and not register further Participant

instances. This allows substantially better performance than registering one Participant per web

service invocation.

9. Upon transaction termination by the client, the WS-AT transaction coordinator will drive the

enlisted bridge Participants through the transaction termination protocol. The Participants maps

these calls down to the JTA subtransaction coordinator, which in turn passes them on to

any Synchronizations or XAResources enlisted in the transaction. This process is not visible

to the business logic, except in so far as it may have registered its own Synchronizations,

XAResources or Participants with the transaction.

3.4. Outbound Bridging

The process flow when using the outbound bridge is as follows:

1. A client starts a JTA transaction and invokes a remote transactional Web Service in the scope

of that transaction. The client must have JBossTS JTA (or JTS) and XTS deployed, as well

as the transaction bridge. The coordinator used for the JTA transaction is the root coordinator.

The server hosting the target web service needs a WS-AT transaction implementation but not

a JTA or the transaction bridge.

2. The outbound WS invocation flows though a handler chain that has the outbound transaction

bridge handler and XTS header context processor registered, such that they are invoked in

that order.

3. The bridge handler calls the outbound bridge manager to obtain an outbound bridge instance

corresponding to the JTA transaction context. As the BridgeManager is seeing the context

for the first time, it creates a new Bridge instance. It also creates a Synchronization and

XAResource instance to wrap the subordinate WS-AT transaction and registers these with the

JTA transaction.

4. The bridge handler starts the bridge, which associates the subordinate WS-AT transaction

context to the Thread. The WS-AT header context processor then serializes this into XML in

the headers of the outbound Web Services call.

5. The receiving Web Service sees a WS-AT context and can work with it in the normal manner,

without knowing it is a subordinate context.

6. On the return path, the bridge handler disassociates the WS-AT TxContext from the Thread

via the Bridge.

7. On subsequent calls to the same or other transactional Web Services in the scope of the

same JTA transaction, the process is repeated. However, the BridgeManager will, upon seeing

the same JTA transaction context again, return the existing Bridge and not register another

Crash Recovery

11

Synchronization or XAResource with the parent JTA transaction. This allows substantially

better performance than registering once per web service invocation.

8. Upon transaction termination by the client, the JTA transaction coordinator will drive the enlisted

bridge Synchronization and XAResource through the transaction termination protocol. The

XAResource maps these calls down to the WS-AT subtransaction coordinator, which in turn

passes them on to any Volatile or Durable Participants enlisted in the transaction. This process

is not visible to the business logic, except in so far as it may have registered its own Participants,

XAResources or Synchronizatons with the transaction.

3.5. Crash Recovery

The bridge includes independent crash recovery systems for the inbound and outbound sides.

These are automatically installed and activated as part of the bridge deployment. They rely upon

the recovery mechanisms in the JTA and XTS components, which are likewise deployed and

activated by default as part of their respective components.

It is the responsibility of the application(s) to use suitable XAResources (inbound) or

DurableParticipants (outbound). In general the former will be from XA datasources or messaging

systems, whilst the latter will be custom implementations. In either case it is important to ensure

recovery is correctly configured for the resource manager(s) before using them in production, via

the bridge or otherwise. The JBossTS documentation set details crash recovery configuration,

as does the application server administration guide. For resource manager specific information

e.g. Oracle db permissions settings for recovery connections, please consult the vendor's

documentation.

A bridged transaction will involve several distinct log writes, potentially on multiple hosts. Resolving

the transaction may require more than one crash recovery cycle, due to ordering constrains on

the events taking place during recovery. If a transaction fails to recover after all servers have

been restored to service for more than two recovery cycles duration, the JBossTS objectstore

browser and server logs may be useful for diagnosing the issue. Where a transaction involves

multiple bridges the number of recovery cycles required to resolve it may further increase. For

systems requiring maximum availability it is therefore not recommended to span a transaction

through more than one bridge.

Note that the 1PC commit optimization should not be used with outbound bridged transactions

in which the subordinate may contain more than one Participant. Even where only one

Participant is used, crash recovery logs may not correctly reflect the actual transaction

outcome. The 1PC optimization is on be default and may be disabled by setting <property

name="commitOnePhase">false </property> on CoordinatorEnvironmentBean.

See the 'Design Notes' appendix for detailed information on potential crash recovery scenarios

and how each is handled.

12

Chapter 4.

13

Using the Transaction Bridge

4.1. Introduction

This section describes how to use the transaction bridge in your applications. It is recommended

you first read the preceding chapters for a theoretical background in the way the bridge functions.

4.2. Deployment

The txbridge.jar file should be placed in JBossAS server/lt;config>/deploy directory. The server

must also be running JBossTS JTA (the default transaction manager) or JTS, and also JBossTS

XTS. The versions of all these components must be consistent.

4.3. Inbound Bridging

To use the inbound bridge, register the JAX-WS handler into the handler chain of any Web Service

as follows:

Example 4.1. Registering the handler for Inbound Bridging

<handler-chain>

 <protocol-bindings>##SOAP11_HTTP</protocol-bindings>

 <handler>

 <handler-name>TransactionBridgeHandler</handler-name>

 <handler-

class>org.jboss.jbossts.txbridge.inbound.JaxWSTxInboundBridgeHandler</handler-

class>

 </handler>

 <handler>

 <handler-name>WebServicesTxContextHandler</handler-name>

 <handler-class>com.arjuna.mw.wst11.service.JaxWSHeaderContextProcessor</

handler-class>

 </handler>

</handler-chain>

The web service may then operate as though running in the scope of a JTA transaction, as indeed

it is. For example, it can call (or indeed simply be) an EJB3 business logic method annotated with

@TansactionAttribute(TransactionAttributeType.MANDATORY).

Note that the handlers expect a WS-AT transaction context to be present on all inbound

invocations. If you wish deploy your service in such a way as to make transactional invocation

optional, you must expose it though two different endpoints, one transactional and one not, with

the handlers registered only on the former. This limitation may be addressed in future versions.

Chapter 4. Using the Transact...

14

4.4. Outbound Bridging

To use the outbound bridge, register the JAX-WS handler into the handler chain of any Web

Service client application as follows:

Example 4.2. Registering the handler for Outbound Bridging

<handler-chain>

 <protocol-bindings>##SOAP11_HTTP</protocol-bindings>

 <handler>

 <handler-name>TransactionBridgeHandler</handler-name>

 <handler-

class>org.jboss.jbossts.txbridge.outbound.JaxWSTxOutboundBridgeHandler</

handler-class>

 </handler>

 <handler>

 <handler-name>WebServicesTxContextHandler</handler-name>

 <handler-class>com.arjuna.mw.wst11.client.JaxWSHeaderContextProcessor</

handler-class>

 </handler>

</handler-chain>

The web service client may then make calls to web service implementations that expect to be

invoked in the scope of a WS-AT transaction.

Note that the handlers expect a JTA transaction context to be present on the client thread used

to make the outbound web service invocation. If the context is not always present, different stubs

must be used for the transactional and non-transactional cases and the handler chain registered

only on the former. This limitation may be addressed in future versions.

4.5. Demonstration Application

A simple demonstration application is available to show usage of the bridge. It is modeled to some

extent on the XTS 'Night Out' demonstrator application, with which readers are assumed to be

familiar.

Since transactions mostly run without visible effect, the demo is useful mainly as an example of

how to utilize the bridge. The bridge implementation does however contain trace level logging for

most functions. Used in conjunction with verbose logging from XTS, the transaction manager, the

Web Service stack and the EJB container, this can be used to gain a detailed understanding of

the flow of events in the system. Alternatively, stepping though the demo using a source debugger

can be instructive.

To deploy and run the demo application, edit demo/build.xml to ensure the jbossas.home and

jbossas.server properties are set correctly, then execute 'ant dist' to build the application artifacts.

Inbound Bridge

15

Start the application server, then deploy the service side of the demo using 'ant deploy-service'

Once it has deployed, the client app can be similarly installed using 'ant deploy-client'. Depending

on your server configuration, the client will then be accessible from e.g. http://localhost:8080/

txbridge-demo-client/

4.5.1. Inbound Bridge

The demonstrator exposes a EJB3 SLSB as a transactional web service ('Bistro') via the inbound

bridge. Note that the code implementing this service is standard EJB with JSR-181 annotations

and has no compile time dependency on XTS or the txbridge. The only point of linkage is the

usage of the @HandlerChain(file = "jaxws-handlers-server.xml") annotation to reference a xml

file containing the XTS and txbridge handlers, as detailed above. Other than this the service side

of the application uses only standard JavaEE elements and has no direct knowledge of WS-AT

transactions.

A client starts a WS-AT transaction and makes an invocation on the web service. The client

does not use JTA (XA) transactions. It uses @HandlerChain(file = "jaxws-handlers-client.xml") to

register the XTS header context processor, but is otherwise similar to the XTS demo client.

In this demo, the inbound bridge converts the WS-AT context to a JTA one and invokes the EJB

in that scope. By default the EJB is backed by the hsqldb embedded in JBossAS, for ease of

deployment. This database does not support XA, so the resource registered for it uses LRCO.

However, this point is not significant to the demo. Curious uses can readily use a true XA database

by deploying it into JBossAS via the usual <xa-datasource> in a -ds.xml file, then alter the demo's

dd/persistence.xml to reference it.

4.5.2. Outbound Bridge

The demonstrator client application can also be used to invoke the XTS Night Out demo

Restaurant Service via the outbound bridge. Deploy the XTS demo application services, then

select the 'JTA' transaction type in the client. In this scenario the client uses a JTA transaction

only, whilst the service understands WS-AT type transactions only. Note that the client has its own

copy of the service API, annotated with @HandlerChain(file = "jaxws-handlers-client.xml"), which

is the only point of linkage with the transaction bridge. Once again neither the client nor server

have any compile time dependency on the bridge.

4.6. Loops and Diamonds

In distributed environments that utilize transaction bridging, it is possible to construct

arrangements of servers such that a transaction context passes though more than one

interposition. These can give rise to some undesirable issues, including locking and performance

problems.

A simple case would be a loop in which a JTA transaction context is bridged outbound to a WS-

AT context, passed though one or more remote servers and inflowed back to the original server

through an inbound bridge. This may result in a new subordinate JTA context, rather than reuse

of the existing parent context in the original server.

http://localhost:8080/txbridge-demo-client/
http://localhost:8080/txbridge-demo-client/

Chapter 4. Using the Transact...

16

This situation has two main observable effects. Firstly, the parent JTA transaction and indirectly

subordinate JTA transaction are considered distinct and XAResources may not be shared

between them. In most cases this will cause isolation between the transactions, such that they

do not share locks or see eachother's changes. This may cause deadlocks in the application.

Secondly, performance will be poor relative to reuse of the original context, particularly if the

interposition chain becomes long.

A similar problem exists where a transaction context is propagated from a single source to a single

destination server via two or more separate routes, the abstract paths forming a diamond shape.

In such case the intermediate nodes operate independently and will bridge the original context

to two separate interposed contexts. To the destination server these will appear unrelated, rather

than as representations of the same transaction. Thus instead of recombining into a single shared

transaction context at the destination, they will behave as different transactions, giving rise once

again to potential deadlock and performance issues.

These problems may be partially addressed by having a shared context mapping service available

on the network, which each bridge consults when working with a previously unseen transaction

context for the first time. Using such a mechanism, bridge instances may identify transactions for

which an established mapping already exists and reuse that relationship rather than creating a

new one.

This shared service model does however cause some issues of its own with regard to performance

and availability. It is not currently implemented. Therefore, users are urged to be cautious when

constructing distributed applications. Whilst location abstraction is sometimes desirable, is is

important to maintain a clear understanding of the deployment relationships between transactional

components in the system.

4.7. Distributed JTA and the JTS

The JavaEE transaction engine in JBossTS comes in two varieties. These are the local only JTA,

which does not support propagation of transaction context or transaction control calls between

JVMs and the JTAX, which provides the JTA API implemented by a JTS engine that does support

distributed usage.

JBossAS uses the local JTA implementation by default, but can be reconfigured to use the JTS

via the JTA API, such that it supports distributed transactions without requiring any changes to

business applications.

In environments requiring transaction propagation of JTA transactions, it is feasible to use either

the JTS or an outbound and inbound bridge pair to achieve this. In the former case the transport

is RMI/IIOP for the transaction control and RMI/IIOP or JRMP for the transactional business logic

calls. In the latter case the transport is Web Services for both transaction control and business

logic.

From a transaction management perspective the JTS solution is preferred, due to simplicity (no

protocol mapping is needed), maturity (JBossTS JTS was the world's first JTS implementation

Logging

17

and has been extensively used and tested in production environments) and performance (binary

vs. xml).

It is possible to use transactions that propagate context on some calls via JTS and on others

via Web Services, such as a client invoking both EJBs via RMI/IIOP and Web services with WS-

AT context. In such cases it's possible for a transaction to have multiple representations that the

infrastructure cannot determine are related, even if they actually represent different contexts in

the same interposition hierarchy. Care must therefore be taken to avoid the problems described

previously in 'Loops and Diamonds'.

4.8. Logging

The transaction bridge uses the jboss-logging system. When running inside JBossAS 6, logging is

configured via the server's deploy/jboss-logging.xml file. To enable full logging for the transaction

bridge, which may be useful for debug purposes, the following should be used:

Example 4.3. Configuring Transaction Bridge Logging

<logger category="org.jboss.jbossts.txbridge">

 <level name="ALL" />

</logger>

Note that the transaction bridge is a thin layer on top of the XTS and JTA/JTS components

of JBossTS, and that it also interacts with other parts of the application server. To gain a

comprehensive understanding of the system's operation, it may be necessary to enable verbose

logging for some of these other components also. The JBossTS logging system is discussed in

detail in the accompanying documentation set, but for ease of reference the following may be

used to enable verbose logging:

Example 4.4. Configuring verbose logging

<logger category="com.arjuna">

 <level name="ALL" />

</logger>

Note also that deployment ordering issues can result in JBossTS components, including the

transaction bridge, becoming active before the logging system is fully configured. In such cases a

default logging level may apply during startup, resulting in some more detailed debug messages

being missed.

18

Chapter 5.

19

Known Limitations
The current transaction bridge release has the following limitations:

• The bridge operates only on WS-AT 1.2, not 1.0, although XTS includes implementations of both

versions of WS-AT. Care must therefore be taken to deploy and configure the system correctly.

• The bridge provides JAX-WS handlers only, not JAX-RPC, although it is possible to create such

if required.

• Long running activities that occur during the transaction termination process may cause

timeouts in the transaction system, which can in turn cause inconsistent transaction outcomes

or incomplete transaction termination. To minimize this problem, it is advised to manually flush

data that would otherwise be flushed by Synchronizations during termination, such as hibernate

session state.

• A transaction context must always be present on the Thread in order for the context processors

to operate correctly, as detailed previously in 'Using the Transaction Bridge'.

• A subordinate transaction context will be created and registered into the parent transaction

unconditionally, which can cause unnecessary overhead in situations where no transactional

activity takes place in the scope of the subordinate. Care should be taken to register the bridge

handlers only on methods that do require them. In future releases this may be addressed by

the use of WS-Policy or lazy initialization techniques.

• Transaction mappings are local to BridgeManagers, which are singletons. This means

mappings are classloader scoped and not shared across JVMs. This gives rise to issues where

transactional resources are accessed indirectly though multiple bridges or transaction context

transports, as described in 'Loops and Diamonds'.

• Crash recovery is subject to certain timing issues, due to the interaction between recovery of the

JTA/XA and XTS sides of the transaction. It may take more than one crash recovery cycle for a

bridged transaction to recover fully. Note that recovery of subordinate transactions is dependent

on the recovery of their parent, so care must be taken to ensure the correct recovery of any

external transaction manager used in that role. The transaction bridge does not currently provide

dedicated tooling for the manual resolution of orphaned subordinates, instead relying on the

general purpose objectstore maintenance tooling provided by JbossTS.

• Note that crash recovery will not behave correctly for outbound bridged transactions if 1PC

commit optimization is used in the parent JTA transaction. This is not specific to the bridge,

but rather is a generic issue with any transaction in which a single resource is an interposed

subordinate coordinator. Inbound bridges transactions are unaffected as XTS (WS-AT) does

not utilize a 1PC optimization.

20

21

Appendix A. Design Notes

A.1. General Points

This section records key design points relating to the bridge implementation. The target

audience for this section is software engineers maintaining or extending the transaction bridge

implementation. It is unlikely to contain material useful to users, except in so far as they wish to

contribute to the project. An in-depth knowledge of JBossTS internals may be required to make

sense of some parts of this appendix.

The txbridge is written as far as possible as a user application layered on top of the JTA and XTS

implementations. It accesses these underlying components through standard or supported APIs

as far as possible. For example, XAResource is favored over AbstractRecord, the JCA standard

XATerminator is used for driving subordinates and so on. This facilitates modularity and portability.

It follows that functionality required by the bridge should first be evaluated for inclusion in one of

the underlying modules, as experience has shown it is often also useful for other user applications.

For example, improvements to allows subordinate termination code portability between JTA and

JTS, and support for subordinate crash recovery have benefited from this approach. The txbridge

remains a thin layer on top of this functionality, containing only purpose specific code.

The 'loops and diamonds' problem boils down to providing deterministic, bi-directional 1:1 mapping

between an Xid (which is fixed length) and a WS-AT context (which is unbounded length in the

spec, although bounded for instances created by the XTS). Consistent hashing techniques get

you so far with independent operation, but the only 100% solution is to have a shared service on

the network providing the mapping lookup. Naturally this then becomes a single point of failure as

well as a scalability issue. For some scenarios it may be possible to use interceptors to propagate

the Xid on the web services call as extra data, instead of trying to reproduce the mapping at the

other end. Unfortunately XA does not provide for this kind of extensibility, although CORBA does,

leading to the possibility of solving the issue without a centralized approach in mixed JTS+WS-

AT environments.

Requiring a tx context on all calls is a bit limiting, but JBossWS native lacks a WS-Policy

implementation. Things may change with the move to CXF. This is really a wider issue with XTS,

not just the bridge.

A.2. Crash Recovery Considerations

As usual with transactions, it's the crash recovery that provides for the most complexity. Recovery

for the inbound and outbound sides is handled independently. Because of event ordering between

recovery modules (JTA, XTS), it requires two complete cycles to resolve some of these crash

recovery situations.

Appendix A. Design Notes

22

A.2.1. Inbound Crash Recovery

An inbound transaction involves at least four log writes. Top down (i.e. in reverse order of log

creation) these are: The WS-AT coordinator log (assumed here to be XTS, but may be 3rd party),

the XTS Participant log in the receiving server, the JCA Subordinate transaction log and at least

one XA Resource Manager log (which are 3rd party e.g. Oracle).

There is no separate log created by the txbridge. The XTS Participant log inlines the Serializable

BridgeDurableParticipant via its writeObject method. Recorded state includes its identity (the Xid)

and the identity of the separately logged JTA subordinate tx (a Uid).

XTS is responsible for the top level coordinator log. JBossTS is responsible for the JTA

subordinate tx log and 3rd party RMs are each responsible for their own.

The following situations may exist at recovery time, according to the point in time at which the

crash occurred:

RM log only: In this case, the InboundBridgeRecoveryManager's XAResourceOrphanFilter

implementation will be invoked via JBossTS XARecoveryModule, will recognize the orphaned

Xids by their formatId (which they inherit from the JCA subordinate, which the txbridge previously

created with a specially constructed inflowed Xid) and will vote to have the XARecoveryModule

roll them back as no corresponding JCA subordinate log exists, so presumed abort applies.

RM log and JTA subordinate tx log: The InboundBridgeRecoverytManager's scan of indoubt

subordinate JTA transactions identifies the JTA subordinate as being orphaned and rolls it back,

which in turn causes the rollback of the RM's XAResource.

RM log, JTA subordinate log and XTS Participant log: XTS is responsible for detecting that the

Participant is orphaned (by re-sending Prepared to the Coordinator and receiving 'unknown tx'

back) and initiating rollback under the presumed abort convention.

WS-AT coordinator log and all downstream logs: The coordinator re-sends Commit to the

Participant and the transaction completes.

A.2.2. Outbound Crash Recovery

An outbound transaction involves log writes for the JTA parent transaction and the XTS

BridgeWrapper coordinator. There is not a separate log created by the txbridge. The JTA tx log

inlines the Serializable BridgeXAResource via its writeObject method. Recorded state includes the

JTA tx id and bridgeWrapper id String. In addition a Web Service participating in the subordinate

transaction will create a log. Assuming it's XTS, the participant side log will inline any Serializable

Durable2PCParticipant, effectively forming the RM log.

The following situations may exist at recovery time, according to the point in time at which the

crash occurred:

RM log (i.e. XTS Participant log, inlining Serializable Durable2PCParticipant) only: XTS is

responsible for detecting that the Participant is orphaned (its direct parent, the subordinate

Test framework

23

coordinator, is missing) and rolling it back. The bridge recovery code is not involved – XTS

recovery deserializes and drives any app DurableParticipants directly.

RM log and XTS subordinate log: The DurableParticipant(s) (i.e. client side) and XTS subordinate

coordinator / BridgeWrapper (i.e. server side) and reinstantiated by XTS. The BridgeWrapper,

being subordinate to a missing parent, must be identified and explicitly rolledback by the bridge

recovery code. The bridge recovery manager is itself a RecoveryModule, thus invoked periodically

to perform this task. It identified its own BridgeWrapper instance from amongst all those awaiting

recovery by means of an id prefix specific to the txbridge code. See JBTM-725 for further details.

RM log, XTS subordinate log and JTA parent log (with inlined BridgeXAResource): Top down

recovery by the JTA recovery module drives tx to completion, taking the normal JTA parent-

>BridgeXAResource->XTS subordinate->DurableParticipant path. Note that if the bridge is the

only XAResource in the parent, the JTA must have 1PC commit optimization disabled or it won't

write a log for recovery.

A.3. Test framework

The test suite for the txbridge is split along two axis. Firstly, the inbound and outbound sides of the

bridge have their own test suites in a parallel code package hierarchy. These are largely mirrors,

containing tests which have matching intent but different implementation details. Secondly, the

tests are split between those for normal execution and those for crash recovery.

The tests use a framework consisting of a basic servlet acting as client (the code pre-

dates the availability of XTS lightweight client), a basic web service as server and a set of

utility classes implementing the appropriate interfaces (Participant/Synchronization/XAResource).

These classes contain the bare minimum of test logic. In order to make the tests as easy to

understand and modify as possible, an attempt is made to capture the entirety of the test logic

within the junit test function instead of splitting it over the framework classes. To facilitate this,

extensive use is made of byteman and its associated dtest library, which provides basic distributed

mock-like execution tracing and configuration. You probably need to take a detour and read the

dtest docs before proceeding further.

The basic tests all follow the same pattern: make a call through the bridge, following different logic

paths in each test, and verify that the test resources see the expected method calls. For example,

in a test that runs a transaction successfully, expect to see commit called on enlisted resources

and rollback not called. For a test that configures the prepare to fail, expect to see rollback called

and commit not called. The tests verify behavior in the presence of 'expected' errors e.g. prepare

failures, but generally don't cover unexpected failures e.g. exceptions thrown from commit.

Test normal execution targets in the tests/build.xml assume the server is started manually with

byteman installed and has XTS, txbridge and the test artifacts deployed. Note that it also contains

targets that may be called to achieve the last of these steps.

The crash rec tests start (and subsequently restart) the server automatically, but assume the that

XTS, txbridge and the test artifacts are deployed. To manage the server they need to be provided

with JBOSS_HOME and JAVA_HOME values in the build.xml.

24

25

Appendix B. Revision History
Revision History

Revision 1 Tue Apr 12 2010 TomJenkinson<tom.jenkinson@redhat.com>

Initial creation of book by publican

26

	Transaction Bridging Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Introduction
	2.1. Contextual Overview
	2.2. Transaction Bridging

	Chapter 3. Transaction Bridge Architecture
	3.1. Overview
	3.2. Shared Design Elements
	3.3. Inbound Bridging
	3.4. Outbound Bridging
	3.5. Crash Recovery

	Chapter 4. Using the Transaction Bridge
	4.1. Introduction
	4.2. Deployment
	4.3. Inbound Bridging
	4.4. Outbound Bridging
	4.5. Demonstration Application
	4.5.1. Inbound Bridge
	4.5.2. Outbound Bridge

	4.6. Loops and Diamonds
	4.7. Distributed JTA and the JTS
	4.8. Logging

	Chapter 5. Known Limitations
	Appendix A. Design Notes
	A.1. General Points
	A.2. Crash Recovery Considerations
	A.2.1. Inbound Crash Recovery
	A.2.2. Outbound Crash Recovery

	A.3. Test framework

	Appendix B. Revision History

