JB0ssJTS Development Guide

Developing distributed
transactional applications
with JBossJTS

by Mark Red Hat Little, Jonathan Red Hat Halliday,
Andrew Red Hat Dinn, and Kevin Red Hat Connor

edited by Misty Red Hat Stanley-Jones

g (=] = o1 <Y Vii

R 0 o 1= o o PSPPI vii
2. PIEIEQUISITES ...iiitiieeiii ettt ettt e ettt e ettt e e et et e e e e et e e e et e e enb e eeee vii
3. DOCUMENT CONVENTIONS ...iiitiieiiiiiie et ettt e e et e et e e et e e et e e e et e e e eren s aeeennns vii
3.1. Typographic CONVENLIONSooiiiiiiieiiiii e vii

3.2. PUll-QUOLE CONVENLIONS ...ovviiiiiiii e e e e e e e et e e et e e eaaaeees (¢

3.3. NOteS and WAININGScoouuuiiiiiiieieiii et ettt e e e e e e enees iX

4. We Need FEedback!ooiiiiiiie e e X
1. Transaction ProCeSSiNG OVEIVIEWiiiiiiiiiiiiiii ettt ettt e et eeaae e eens 1
1.1. Defining @ tranSACHONiiiiiieii i e 1
1.2. COMMIL PIrOTOCOI ..ceveieiii et 2
1.3. TranSacCtioNal PrOXIESuiiiuuiiiiieiiii e e e e e e e e e et e e e e anaees 3
1.4. NeSted tranSACIONSiiiiiie et e e e e e e e e et e e e e e 4
1.5. The Object Transaction Service (OTS) ..cvuuieiiiiiiiii e e 4
2. JBOSSTS BaSICS tiiuiiitiiiiiiii ittt 7
2% I 1 1 £ To 11X 1o) o 1N 7
D N T = - 1A © S TSP 7
2.1.2. Enhanced OTS functionalitycccciiiiiiiiiiiiicie e e, 8
2.1.3. AAVANCEA AP ..o 8

2.2. JB0ossTS and the OTS implementationc.couoveiiiiiiiii i e 10
A T I 1 €= Vo o] = U PP 11
2.4, ORB portability ISSUBSuiiiiiieiiiieiii e e e e e e eaes 11
3. INtroduction t0 the OTS ..o e e e 13
3.1, DefiNiNg the OTS .o e 13
3.2. Action programming MOMEISuiiiiiuiieiiii e 14
TR T 111 =] 1 7= Tod =L PP UPTR PP 16
3.4, Transaction fACIOIYuiiiiiii e 17
3.4.1. OTS configuration filecocoiiiiiiiiii e 17
B N T 1 BT T 18
3.4.3. resolve_initial_referenCescocvviiiiii i 18
3.4.4. Overriding the default location mechanismscccoovviiviiiiiin e, 18

3.5, TranSaction tIMEOULSiiiiiiiieiiiiie et e e e et e e et e e e e e e eae e e e ettn e eeenenns 18
3.6. TranSaCtioN CONTEXESuiiiiiiiii et e e e e e e e e e e e e e eaeeeens 18
3.6.1. Nested tranSACONSuiiiiiiiieei e e et e e et e eeeate e eanes 20
3.6.2. Transaction Propagationoveieeueieriiiii e e eaeens 21
3.6.3. EXAMPIES ..ot 22

3.7. TranSaCtioN CONLIOIS .. c.uuiiiii et e e e e e e e e et e eanaeees 23
3.7.1. JBOSSTS SPECIFICS oevuiiiiiiiiii et e e e e e 24

3.8. The Terminator INTErfACEecoiiuiiiii e e ea e 24
3.8.1. JBOSSTS SPECIFICS .orvuiiiiiiiiiieiii et e e e e e 24

3.9. The Coordinator INTEIFACEiiiii e e e e 25
3.9.1. IBOSSTS SPECIFICS iivuiiiiiiiiiiiiii et e e e e 27
T O T o 1T 153 o PP 27
R J00 I B O [1 (=] 0| PPN 28

JB0ssJTS Development Guide

3.11.1. JBOSSTS SPECIICS ..evuueiiiiiieiiii ettt 31
T (=T o U] ol PP 32
3.13. SubtransactioNAWArERESOUITEuviiiniiiiiiieie et et e e e e e 34

3.13.1. JBOSSTS SPECITICS ..evvuiiiiieiiiieiie e e e e e e e e een 38
3.14. The Synchronization INTErfacecoviiiiiiiiiiii e 38

3.14.1. JBOSSTS SPECITICS ..evvuiiiiieiii i e e e 40
3.15. Transactions and registered rESOUICEScceuuuieiiiiiiee et e et e e 41
3.16. The TransactionalObject interfaceccoivviiiiiii i, 45
.17, INTEIPOSITION .ottt ettt e et 46
3.18. ReCOVEIYCOOIAINALONiiviiiiiieii e e e et e e e e e e e e e e e e e e et e e et e e eaneees 47
3.19. Checked transaction BENAVIOLoovuuiiiiiiiii e 47

3.19.1. JBOSSTS SPECITICS ..ivvuiiiiieiiii i e e e e e een 49
3.20. Summary of JBossTS implementation deciSioNSccoouivieiiiiinieiiiiineeciie, 50

4, Constructing an OTS appliCationcccouiiiiii i 53
4.1, Important NOtES fOr JBOSSTSceuiiiiiiii e 53

I I T = 1 4= o] O 53

4.1.2. Implicit context propagation and iNnterpositioncc.oeeveviiieiiiiinneeiinnnnen. 53
4.2. Writing applications using the raw OTS interfacescccooevviviiiiiiii i, 53
4.3. Transaction context MANAGEMENTccouuuuiiiiiiiieieii et e e eeeens 54

4.3.1. A transaction originator: indirect and impliCitc..ccoiveiiiiiiiin e 54

4.3.2. Transaction originator: direct and expliCitoccoeiiiiiiiiiiiiiiiiie, 54
4.4, Implementing a transactional ClIENtccoiiiiiiiiii i 55
4.5. Implementing @ recoverable SEIVENoiv i 55

4.5.1. Transactional ODJECTceiuiiiii e 56

4.5.2. RESOUICE ODJECTiiiiiiiiiii e 56

4.5.3. Reliable SEIVEIScouiiiiii e 56

45,4, EXAMPIES oo 56
4.6. Failure MOEISiiiiiiieee e 58

4.6.1. Transaction OFGINALOTviiiuiiieiiii e 59

4.6.2. TranSaCONAl SEIVELciiuuiieiiiiie e e et eeaae e 59
A7, SUMIMAIY ettt ettt et e e ettt e et et et e et r et et e e et et et r e e e e enn s 60

5. JBossTS interfaces for extending the OTS ... 61
5.1, Nested tranSaCHIONSccuuiiiiiiei e e e 61
5.2, EXIENAEA MESOUICTES ...oevuiiiiiiiiieieeii ettt et e e e e e at e e e e aan s 62
SIS AN (o] 0o 1o I = 1 1S7- Vo 1o o PPN 64
5.4. Context Propagation ISSUEScccuuieiiieeiieeiiiieeiia e et eeete e e e e st e e e st e eaaeeanneas 65
B. EXAMPIE ittt 69
6.1. The DasiC EXAMPIEciiiiiiii e e e e e e e e 69

6.1.1. Example implementation of the interfacecccooiiiiiii i, 69

(oI D 1= = 10 L Y=Y 1] o 76

7. FAIUIE RECOVEIY ittt e e et e et e e et eeeeba e eaene 79
7.1. Configuring the failure recovery subsystem for your ORBc.cccooeiiiiiiiinennnnn. 79

7.2, JTS SPECITIC TECOVEIY ..vuieiiiii ettt ettt ettt e e e e s 80
T.2.1. XA TESOUICE IBCOVEIY .iuuitiiiiie ettt et ettnete et sete e et e et e et e e e e e e enaeans 80

7.2.2. RECOVErY DENAVIOL ...cccoviiiiiii e 86

7.2.3. Expired entry removalco.iiiiiiiiiiiic e 87

7.2.4. RECOVEIY JOMAINS oottt ettt e s 88

7.3. Transaction status and replay_COMPAriSONccoviiiiieiiiieeiiieeee e e e 89

T N 7N U [0 O 1 T PP 91
S I B T3 1] o 101 (=T N N 1 PRSPPI 91

Lo TR o Yo] £ PSRN 93
1S 5 I T 1 (o To 113 1o) o I PP 93

9.2, RMIC EXIENSIONS ..tuiitiiiiiieei et e et et e e e e s e e e e e et e e et e e et e e et e e eneeennas 93
9.2.1. Command LiNE USAQEcccuiiiiiiiiiiieiiie e eee et e e e e e e e ea e eaaes 93

9.2.2. ANT USBUE ..oviiiiiiiiiie ettt e 93

10. ORB-SpeCific CONFIQUIAtiONciiiiiiii e e e e e 95
0T N - Uo7 @] 4 U 95

F N 1]I 1= {1 T 1T o 1= PP 97
= 1= =T o = 103
2 T Y] o] I 11 o] 105

Vi

Preface

1. Audience

This guide is specifically intended for service developers using JBoss Transactions. It is also
contains useful information about how transactional applications work in general.

2. Prerequisites

To understand this guide, you need a basic familiarity with Java service development and object-
oriented programming.

Other helpful knowledge

« A general understanding of the APIs, components, and objects that are present in Java
applications.

« A general understanding of Linux, UNIX, or Microsoft Windows server.

3. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention
to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://
fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if
the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:
Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

3.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight keycaps and key combinations. For example:

To see the contents of the file ny_next _bestsel |i ng_novel in your current
working directory, enter the cat ny_next _best sel | i ng_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced
bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a
key combination. For example:

Press Enter to execute the command.

Vii

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in nono- spaced bol d. For example:

File-related classes include fi | esyst emfor file systems, fi | e for files, and di r
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog
box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System - Preferences - Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click Close to switch the primary mouse button from the left to the right
(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications -
Accessories — Character Map from the main menu bar. Next, choose Search

- Find... from the Character Map menu bar, type the name of the character in
the Search field and click Next. The character you sought will be highlighted in
the Character Table. Double-click this highlighted character to place it in the Text
to copy field and then click the Copy button. Now switch back to your document

and choose Edit - Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
proportional bold and all distinguishable by context.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh user name@lomnai n. name
at a shell prompt. If the remote machine is exanpl e. comand your username on
that machine is john, type ssh j ohn@xanpl e. com

The mount -0 renount file-systemcommand remounts the named file
system. For example, to remount the / hone file system, the command is nount
-0 renount /honme.

viii

Pull-quote Conventions

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package- ver si on-r el ease.

Note the words in bold italics above — username, domain.name, file-system, package, version
and release. Each word is a placeholder, either for text you enter when issuing a command or
for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

Publican is a DocBook publishing system.

3.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in nono- spaced ronan and presented thus:

books Deskt op docunentation drafts nss phot os stuff svn
books tests Desktopl downl oads imges notes scripts svgs

Source-code listings are also set in nono- spaced ronan but add syntax highlighting as follows:

package org.j boss. book. jca. ex1;
i mport javax.naming. | nitial Context;

public class ExCient

{
public static void nmain(String args[])
throws Exception
{
Initial Context iniCtx = new Initial Context();
oj ect r ef = ini Ctx.|ookup("EchoBean");
EchoHone hone = (EchoHon®) ref;
Echo echo = hone. create();
Systemout . println("Created Echo");
Systemout. println("Echo.echo('Hello') =" + echo.echo("Hello"));
}
}

3.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.

Preface

@ Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring
a note should have no negative consequences, but you might miss out on a trick
that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled ‘Important’ will not cause data loss but may cause
irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

4. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

Transaction Processing Overview

1.1. Defining a transaction

A transaction is a unit of work that encapsulates multiple database actions such that that either
all the encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

Practical Example. If you subscribe to a newspaper using a credit card, you are using a
transactional system. Multiple systems are involved, and each of the systems needs the ability to
roll back its work, and cause the entire transaction to roll back if necessary. For instance, if the
newspaper's subscription system goes offline halfway through your transaction, you don't want
your credit card to be charged. If the credit card is over its limit, the newspaper doesn't want your
subscription to go through. In either of these cases, the entire transaction should fail of any part
of it fails. Neither you as the customer, nor the newspaper, nor the credit card processor, wants
an unpredictable (indeterminate) outcome to the transaction.

This ability to roll back an operation if any part of it fails is what JBoss Transactions is all about.
This guide assists you in writing transactional applications to protect your data.

"Transactions" in this guide refers to atomic transactions, and embody the "all-or-nothing" concept
outlined above. Transactions are used to guarantee the consistency of data in the presence of
failures. Transactions fulfill the requirements of ACID: Atomicity, Consistency, Isolation, Durability.

ACID Properties

Atomicity
The transaction completes successfully (commits) or if it fails (aborts) all of its effects are
undone (rolled back).

Consistency
Transactions produce consistent results and preserve application specific invariants.

Isolation
Intermediate states produced while a transaction is executing are not visible to others.
Furthermore transactions appear to execute serially, even if they are actually executed
concurrently.

Durability
The effects of a committed transaction are never lost (except by a catastrophic failure).

A transaction can be terminated in two ways: committed or aborted (rolled back). When a
transaction is committed, all changes made within it are made durable (forced on to stable storage,

Chapter 1. Transaction Proces...

e.g., disk). When a transaction is aborted, all of the changes are undone. Atomic actions can also
be nested; the effects of a nested action are provisional upon the commit/abort of the outermost
(top-level) atomic action.

1.2. Commit protocol

A two-phase commit protocol guarantees that all of the transaction participants either commit or
abort any changes made. Figure 1.1, “Two-Phase Commit” illustrates the main aspects of the
commit protocol.

Procedure 1.1. Two-phase commit protocol

1. During phase 1, the action coordinator, C, attempts to communicate with all of the action
participants, A and B, to determine whether they will commit or abort.

2. An abort reply from any participant acts as a veto, causing the entire action to abort.
3. Based upon these (lack of) responses, the coordinator chooses to commit or abort the action.

4. If the action will commit, the coordinator records this decision on stable storage, and the
protocol enters phase 2, where the coordinator forces the participants to carry out the
decision. The coordinator also informs the participants if the action aborts.

5. When each participant receives the coordinator’s phase-one message, it records sufficient
information on stable storage to either commit or abort changes made during the action.

6. After returning the phase-one response, each participant who returned a commit response
must remain blocked until it has received the coordinator’s phase-two message.

7. Until they receive this message, these resources are unavailable for use by other actions.
If the coordinator fails before delivery of this message, these resources remain blocked.
However, if crashed machines eventually recover, crash recovery mechanisms can be
employed to unblock the protocol and terminate the action.

Transactional proxies

Commit?

Commit?
Yes

Phase 1

Figure 1.1. Two-Phase Commit

1.3. Transactional proxies

The action coordinator maintains a transaction context where resources taking part in the action
need to be registered. Resources must obey the transaction commit protocol to guarantee ACID
properties. Typically, the resource provides specific operations which the action can invoke during
the commit/abort protocol. However, some resources may not be able to be transactional in this
way. This may happen if you have legacy code which cannot be modified. Transactional proxies
allow you to use these anomalous resources within an action.

The proxy is registered with, and manipulated by, the action as though it were a transactional
resource, and the proxy performs implementation specific work to make the resource it represents
transactional. The proxy must participate within the commit and abort protocols. Because the work
of the proxy is performed as part of the action, it is guaranteed to be completed or undone despite
failures of the action coordinator or action participants.

Con

Ph.

Chapter 1. Transaction Proces...

1.4. Nested transactions

Given a system that provides transactions for certain operations, you can combine them to form
another operation, which is also required to be a transaction. The resulting transaction’s effects are
a combination of the effects of its constituent transactions. This paradigm creates the concept of
nested subtransactions, and the resulting combined transaction is called the enclosing transaction.
The enclosing transaction is sometimes referred to as the parent of a nested (or child) transaction.
It can also be viewed as a hierarchical relationship, with a top-level transaction consisting of
several subordinate transactions.

An important difference exists between nested and top-level transactions.

The effect of a nested transaction is provisional upon the commit/roll back of its enclosing
transactions. The effects are recovered if the enclosing transaction aborts, even if the nested
transaction has committed.

Subtransactions are a useful mechanism for two reasons:

fault-isolation
If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing
transaction does not need to roll back.

modularity
If a transaction is already associated with a call when a new transaction begins, the new
transaction is nested within it. Therefore, if you know that an object requires transactions, you
can them within the object. If the object’s methods are invoked without a client transaction,
then the object’'s transactions are top-level. Otherwise, they are nested within the scope
of the client's transactions. Likewise, a client does not need to know whether an object is
transactional. It can begin its own transaction.

1.5. The Object Transaction Service (OTS)

The CORBA architecture, as defined by the OMG, is a standard which promotes the construction
of interoperable applications that are based upon the concepts of distributed objects. The
architecture principally contains the following components:

Object Request Broker (ORB)
Enables objects to transparently send and receive requests in a distributed, heterogeneous
environment. This component is the core of the OMG reference model.

Object Services
A collection of services that support functions for using and implementing objects. Such
services are necessary for the construction of any distributed application. The Object
Transaction Service (OTS) is the most relevant to JBossJTS.

The Object Transaction Service (OTS)

Common Facilities
Other useful services that applications may need, but which are not considered to be
fundamental. Desktop management and help facilities fit this category.

The CORBA architecture allows both implementation and integration of a wide variety of object
systems. In particular, applications are independent of the location of an object and the language
in which an object is implemented, unless the interface the object explicitly supports reveals such
details. As defined in the OMG CORBA Services documentation, object services are defined as
a collection of services (interfaces and objects) that support the basic functions for using and
implementing objects. These services are necessary to construct distributed application, and
are always independent of an application domain. The standards specify several core services
including naming, event management, persistence, concurrency control and transactions.

@ Note

The OTS specification allows, but does not require, nested transactions. JBossTS
is a fully compliant version of the OTS version 1.1 draft 5, and support nested
transactions.

The transaction service provides interfaces that allow multiple distributed objects to cooperate
in a transaction, committing or rolling back their changes as a group. However, the OTS does
not require all objects to have transactional behavior. An object's support of transactions can be
none at all, for some operations, or fully. Transaction information may be propagated between
client and server explicitly, or implicitly. You have fine-grained control over an object's support of
transactions. If your objects supports partial or complete transactional behavior, it needs interfaces
derived from interface Tr ansact i onal Qbj ect .

The Transaction Service specification also distinguishes between recoverable objects and
transactional objects. Recoverable objects are those that contain the actual state that may be
changed by a transaction and must therefore be informed when the transaction commits or aborts
to ensure the consistency of the state changes. This is achieved be registering appropriate objects
that support the Resource interface (or the derived SubtransactionAwareResource interface) with
the current transaction. Recoverable objects are also by definition transactional objects.

In contrast, a simple transactional object does not necessarily need to be recoverable if its state
is actually implemented using other recoverable objects. A simple transactional object does not
need to participate the commit protocol used to determine the outcome of the transaction since
it maintains no state information of its own.

The OTS is a protocol engine that guarantees obedience to transactional behavior. It does not
directly support all of the transaction properties, but relies on some cooperating services:

Persistence/Recovery Service Supports properties of atomicity and durability.

Concurrency Control Service Supports the isolation properties.

Chapter 1. Transaction Proces...

You are responsible for using the appropriate services to ensure that transactional objects have
the necessary ACID properties.

Chapter 2.

JB0ossSTS Basics

2.1. Introduction

JBossTS is based upon the original Arjuna system developed at the University of Newcastle
between 1986 and 1995. Arjuna predates the OTS specification and includes many features not
found in the OTS. JBossTS is a superset of the OTS. Applications written using the standard OTS
interfaces are portable across OTS implementations.

JBossTS features in terms of OTS specifications

- full draft 5 compliance, with support for Synchronization objects and PropagationContexts.
 support for subtransactions.

« implicit context propagation where support from the ORB is available.

 support for multi-threaded applications.

« fully distributed transaction managers, i.e., there is no central transaction manager, and the
creator of a top-level transaction is responsible for its termination. Separate transaction manager
support is also available, however.

* transaction interposition.

« X/Open compliance, including checked transactions. This checking can optionally be disabled.
Note: checked transactions are disabled by default, i.e., any thread can terminate a transaction.

« JDBC support.
e Full JTA 1.1 support.

You can use JBossTS in three different levels, which correspond to the sections in this chapter,
and are each explored in their own chapters as well.

Because of differences in ORB implementations, JBossTS uses a separate ORB Portability library
which acts as an abstraction later. Many of the examples used throughout this manual use this
library. Refer to the ORB Portability Manual for more details.

2.1.1. Raw OTS

The OTS is only a protocol engine for driving registered resources through a two-phase commit
protocol. You are responsible for building and registering the Resour ce objects which handle
persistence and concurrency control, ensuring ACID properties for transactional application
objects. You need to register Resour ces at appropriate times, and ensure that a given Resour ce is

Chapter 2. JBossTS Basics

only registered within a single transaction. Programming at the raw OTS level is extremely basic.
You as the programmer are responsible for almost everything to do with transactions, including
managing persistence and concurrency control on behalf of every transactional object.

2.1.2. Enhanced OTS functionality

The OTS implementation of nested transactions is extremely limited, and can lead to the
generation of heuristic results. An example of such a result is when a subtransaction coordinator
discovers part of the way through committing that some resources cannot commit, but being
unable to tell the committed resources to abort. JBossTS allows nested transactions to execute a
full two-phase commit protocol, which removes the possibility that some resources will comment
while others roll back.

When resources are registered with a transaction, you have no control over the order in
which these resources are invoked during the commit/abort protocol. For example, if previously
registered resources are replaced with newly registered resources, resources registered with
a subtransaction are merged with the subtraction's parent. JBossTS provides an additional
Resource subtype which you this level of control.

2.1.3. Advanced API

The OTS does not provide any Resour ce implementations. You are responsible for implementing
these interfaces. The interfaces defined within the OTS specification are too low-level for most
application programmers. Therefore, JBossTS includes Transactional Objects for Java (TX0J),
which makes use of the raw Common Object Services interfaces but provides a higher-level API
for building transactional applications and frameworks. This API automates much of the activities
concerned with participating in an OTS transaction, freeing you to concentrate on application
development, rather than transactions.

The architecture of the system is shown in Figure 2. The API interacts with the concurrency control
and persistence services, and automatically registers appropriate resources for transactional
objects. These resources may also use the persistence and concurrency services.

JBossTS exploits object-oriented techniques to provide you with a toolkit of Java classes which
are inheritable by application classes, to obtain transactional properties. These classes form a
hierarchy, illustrated in Figure 2.1, “JBossTS class hierarchy”.

Advanced API

Figure 2.1. JBossTS class hierarchy

Your main responsibilities are specifying the scope of transactions and setting appropriate locks
within objects. JBossTS guarantees that transactional objects will be registered with, and be
driven by, the appropriate transactions. Crash recovery mechanisms are invoked automatically in
the event of failures. When using the provided interfaces, you do not need to create or register
Resour ce objects or call services controlling persistence or recovery. If a transaction is nested,
resources are automatically propagated to the transaction’s parent upon commit.

The design and implementation goal of JBossTS was to provide a programming system for
constructing fault-tolerant distributed applications. Three system properties were considered

highly important:

Integration of Mechanisms

Fault-tolerant distributed systems require a variety of system
functions for naming, locating and invoking operations upon
objects, as well as for concurrency control, error detection and
recovery from failures. These mechanisms are integrated in a
way that is easy for you to use.

Flexibility Mechanisms must be flexible, permitting implementation
of application-specific enhancements, such as type-specific
concurrency and recovery control, using system defaults.

Portability You need to be able to run JBossTS on any ORB.

JBossTS is implemented in Java and extensively uses the type-inheritance facilities provided
by the language to provide user-defined objects with characteristics such as persistence and

recoverability.

Chapter 2. JBossTS Basics

2.2. JBossTS and the OTS implementation

The OTS specification is written with flexibility in mind, to cope with different application
requirements for transactions. JBossTS supports all optional parts of the OTS specification. In
addition, if the specification allows functionality to be implemented in a variety of different ways,

JBossTS supports all possible implementations.

Table 2.1. JBossTS implementation of OTS specifications

OTS specification JBossTS default implementation

If the transaction service chooses to restrict the
availability of the transaction context, then it
should raise the Unavai | abl e exception.

An implementation of the transaction service
need not initialize the transaction context for
every request.

An implementation of the transaction service
may restrict the ability for the Coor di nator,
Terminator, and Control objects to be
transmitted or used in other execution
environments to enable it to guarantee
transaction integrity.

The transaction service may restrict the
termination of a transaction to the client that
started it.

A TransactionFactory is located using the
Fact oryFi nder interface of the life-cycle

service.

JBossTS does not restrict the availability of the
transaction context.

JBossTS only initializes the transaction context
if the interface supported by the target object
extends the Transacti onal Qbj ect interface.

JBossTS does not impose restrictions on the
propagation of these objects.

JBossTS allows the termination of a transaction
by any client that
interface. In addition, JBossTS does not impose
restrictions when clients use the Current
interface.

uses the Terminator

JBossTS provides multiple ways in which the
Transact i onFact ory can be located.

A transaction service implementation may use
the Event Service to report heuristic decisions.

An implementation of the transaction service
does not need to support nested transactions.

JBossTS does not use the Event Service to
report heuristic decisions.

JBossTS supports nested transactions.

Synchroni zati on objects must be called

whenever the transaction commits.

A transaction service implementation is not
required to support interposition.

JBossTS allows Synchr oni zat i ons to be called
no matter what state the transaction terminates
with.

JBossTS supports various types of interposition.

10

Thread class

2.3. Thread class

JBossTS is fully multi-threaded and supports the OTS notion of allowing multiple threads to be
active within a transaction, and for a thread to execute multiple transactions. A thread can only be
active within a single transaction at a time, however. By default, if a thread is created within the
scope of a transaction, the new thread is not associated with the transaction. If the thread needs
to be associated with the transaction, use the r esume method of either the At oni cTr ansacti on
class or the Current class.

However, if newly created threads need to automatically inherit the transaction context of their
parent, then they should extend the OTS_Thr ead class.

Example 2.1. Extending the ors_tThread class

public class OTS_Thread extends Thread

{
public void termnate ();
public void run ();
protected OTS Thread ();
15

Call the r un method of OTS_Thr ead at the start of the application thread class's r un method. Call
t er mi nat e before you exit the body of the application thread’s r un method.

2.4. ORB portability issues

Although the CORBA specification is a standard, it is written so that an ORB can be implemented in
multiple ways. As such, writing portable client and server code can be difficult. Because JBossTS
has been ported to most of the widely available ORBs, it includes a series of ORB Portability
classes and macros. If you write your application using these classes, it should be mostly portable
between different ORBs. These classes are described in the separate ORB Portability Manual.

11

12

Chapter 3.

Introduction to the OTS

Basic JBossTS programming involves using the OTS interfaces provided in the CosTr ansact i ons
module, which is specified in CosTransactions.idl. This chapter is based on the OIS
Speci fi cati onl, specifically with the aspects of OTS that are valuable for developing OTS
applications using JBossTS. Where relevant, each section describes JBossTS implementation
decisions and runtime choices available to you. These choices are also summarized at the end
of this chapter. Subsequent chapters illustrate using these interfaces to construct transactional
applications.

3.1. Defining the OTS

The raw CosTr ansact i ons interfaces reside in package org.omg.CosTransactions. The JBossTS
implementations of these interfaces reside in package com.arjuna.CosTransactions and its sub-
packages.

You can override many run-time decisions of JBossTS Java properties specified at run-time. The
property names are mentioned in the com arj una. ats. j ts. cormon. Envi r onnent class.

13

Chapter 3. Introduction to th...

Transaction
Context

Transaction originator | recoverable se

PRI A I
current sent with reque st current
TransactionFactory
Control
Terminator contr
Coorc

RESDUT’EE RECD"U
SubtransactionAwareResource

b L J | ¥
Transaction Service

ransaction
Context

Transaction
Conte xt

assod ated with thread associated with t

Figure 3.1. OTS architecture

3.2. Action programming models

A client application program can manage a transaction using direct or indirect context
management.

 Indirect context management means that an application uses the pseudo-object Current,
provided by the Transaction Service, to associate the transaction context with the application
thread of control.

« For direct context management, an application manipulates the Cont r ol object and the other
objects associated with the transaction.

An object may require transactions to be either explicitly or implicitly propagated to its operations.

« Explicit propagation means that an application propagates a transaction context by passing
objects defined by the Transaction Service as explicit parameters. Typically the object is the
Pr opagat i onCont ext structure.

14

Action programming models

 Implicit propagation means that requests are implicitly associated with the client’s transaction,
by sharing the client's transaction context. The context is transmitted to the objects without
direct client intervention. Implicit propagation depends on indirect context management, since it
propagates the transaction context associated with the Cur r ent pseudo-object. An object that
supports implicit propagation should not receive any Transaction Service object as an explicit
parameter.

A client may use one or both forms of context management, and may communicate with objects
that use either method of transaction propagation. This results in four ways in which client
applications may communicate with transactional objects:

Direct Context Management/Explicit Propagation
The client application directly accesses the Control object, and the other objects which
describe the state of the transaction. To propagate the transaction to an object, the client must
include the appropriate Transaction Service object as an explicit parameter of an operation.
Typically, the object is the Pr opagat i onCont ext structure.

Indirect Context Management/Implicit Propagation
The client application uses operations on the Current pseudo-object to create and control
its transactions. When it issues requests on transactional objects, the transaction context
associated with the current thread is implicitly propagated to the object.

Indirect Context Management/Explicit Propagation
for an implicit model application to use explicit propagation, it can get access to the Control
using the get_control operation on the Current pseudo object. It can then use a Transaction
Service object as an explicit parameter to a transactional object; for efficiency reasons
this should be the PropagationContext structure, obtained by calling get_txcontext on the
appropriate Coordinator reference. This is explicit propagation.

Direct Context Management/Implicit Propagation
A client that accesses the Transaction Service objects directly can use the r esune pseudo-
object operation to set the implicit transaction context associated with its thread. This way, the
client can invoke operations of an object that requires implicit propagation of the transaction
context.

The main difference between direct and indirect context management is the effect on the invoking
thread's transaction context. Indirect context management causes the thread’s transaction
context to be modified automatically by the OTS. For instance, if method begi n is called, the
thread’s notion of the current transaction is modified to the newly-created transaction. When the
transaction is terminated, the transaction previously associated with the thread, if one existed, is
restored as the thread’s context. This assumes that subtransactions are supported by the OTS
implementation.

If you use direct management, no changes to the thread's transaction context are made by the
OTS, leaving the responsibility to you.

15

Chapter 3. Introduction to th...

3.3. Interfaces

Table 3.1. Interfaces

Function Direct context mgmt Indirect context mgmt
Create a Transaction Factory::create begin
transaction originator
Control ::get_terminator set_timeout
Control :: get_coordi nator
Terminate a | Transaction Termi nat or: : conmi t commit rollback
transaction originator
Term nator::roll back
(implicit)
All
(explicit)
Rollback Server Terminator::rollback_only rol | back_only
transaction
Propagation of | Server Declaration of method parameter Transact i onal Obj ect
transaction to
server
Client control | All Request parameters get _control
of transaction
propagation to suspend
server r esune
Register with a | Recoverable Coordinator::register_resource N/A
transaction Server
Miscellaneous All Coor di nat or:: get _status N/A
Coordi nator::get_transacti on_nane
Coordi nator::is_same_transaction
Coordi nator:: hash_transaction
get _status
get _transacti on_name
Note

a

For clarity, subtransaction operations are not shown

16

Transaction factory

3.4. Transaction factory

The TransactionFactory interface allows the transaction originator to begin a top-level
transaction. Subtransactions must be created using the begi n method of Current, or the
creat e_subtransacti on method of the parent’s Coordinator.) Operations on the factory and
Coor di nat or to create new transactions use direct context management, and therefore do not
modify the calling thread’s transaction context.

The cr eat e operation creates a new top-level transaction and returns its Cont r ol object, which
you can use to manage or control participation in the new transaction. Method cr eat e takes a
parameter that is is an application-specific timeout value, in seconds. If the transaction does not
complete before this timeout elapses, it is rolled back. If the parameter is 0, no application-specific
timeout is established.

@ Note
Subtransactions do not have a timeout associated with them.

The Transaction Service implementation allows the Tr ansact i onFact ory to be a separate server
from the application, shared by transactions clients, and which manages transactions on their
behalf. However, the specification also allows the TransactionFactory to be implemented by an
object within each transactional client. This is the default implementation used by JBossTS,
because it removes the need for a separate service to be available in order for transactional
applications to execute, and therefore reduces a point of failure.

If your applications require a separate transaction manager, set the OrS_TRANSACTI ON_MANAGER
environment variable to the value YES. The system locates the transaction manager server in a
manner specific to the ORB being used. The server can be located in a number of ways.

» Registration with a name server.

» Addition to the ORB'’s initial references, using a JBossTS specific references file.

» The ORB'’s specific location mechanism, if applicable.

3.4.1. OTS configuration file

Similar to the resol ve_i ni ti al _ref erences, JBossTS supports an initial reference file where
you can store references for specific services, and use these references at runtime. The file,
CosSer vi ces. cf g, consists of two columns, separated by a single space.

* The service name, which is Tr ansact i onSer vi ce in the case of the OTS server.

* The IOR

17

Chapter 3. Introduction to th...

CosServi ces. cfg is usually located in the etc/ directory of the JBossTS installation. The
OTS server automatically registers itself in this file, creating it if necessary, if you use the
configuration file mechanism. Stale information is also automatically removed. The Transaction
Service locates CosServices. cfg at runtime, using the O bPortabilityEnvironment Bean
properties i ni ti al Ref erencesRoot and I nitial Ref erencesFile. initial ReferencesRoot
names a directory, and defaults to the current working directory. i ni ti al Ref er encesFi | e refers
to a file within the i ni ti al Ref er encesRoot , and defaults to the name CosSer vi ces. cf g.

3.4.2. Name service

If your ORB supports a name service, and you configure JBossTS to use it, the transaction
manager is automatically registered with it.

3.4.3. resolve_initial_references
JBossTS does not support resol ve_i nitial _references.
3.4.4. Overriding the default location mechanisms

You can override the default location mechanism with the RESOLVE_SERVI CE property variable,
which can have any of three possible values.

CONFIGURATION_FILE This is the default option, and directs the system to use the
CosServi ces. cf g file.

NAME_SERVICE JBossTS tries to use a name service to locate the transaction
factory. If the ORB does not support the name service
mechanism, JBossTS throws an exception.

BIND_CONNECT JBossTS uses the ORB-specific bind mechanism. If the ORB
does not support such a mechanism, JBossTS throws an
exception.

If RESOLVE_SERVI CE is specified when running the transaction factory, the factory registers itself
with the specified resolution mechanism.

3.5. Transaction timeouts

As of JBossTS 4.5, transaction timeouts are unified across all transaction components and are
controlled by ArjunaCore. Refer to the ArjunaCore Development Guide for more information.

3.6. Transaction contexts

Transaction contexts are fundamental to the OTS architecture. Each thread is associated with a
context in one of three ways.

Null The thread has no associated transaction.

18

Transaction contexts

A transaction ID The thread is associated with a transaction.

Contexts may be shared across multiple threads. In the presence of nested transactions, a
context remembers the stack of transactions started within the environment, so that the context
of the thread can be restored to the state before the nested transaction started, when the
nested transaction ends. Threads most commonly use object Cur r ent to manipulate transactional
information, which is represented by Cont r ol objects. Cur r ent is the broker between a transaction
and Cont r ol objects.

Your application can manage transaction contexts either directly or indirectly. In the direct
approach, the transaction originator issues a request to a Tr ansact i onFact ory to begin a new
top-level transaction. The factory returns a Control object that enables both a Ter mi nat or
interface and a Coor di nat or interface. Ter mi nat or ends a transaction. Coor di nat or associates
a thread with a transaction, or begins a nested transaction. You need to pass each interface as an
explicit parameter in invocations of operations, because creating a transaction with them does not
change a thread's current context. If you use the factory, and need to set the current context for a
thread to the context which its control object returns, use the r esume method of interface Current .

Example 3.1. Interfaces Terni nat or, Coor di nat or, and Contr ol

i nterface Term nator

{
void commt (in boolean report_heuristics) raises (HeuristicMxed, HeuristicHazard);
voi d rol |l back ();
I
i nterface Coordi nator
{
Status get_status ();
St atus get_parent_status ();
Status get _top_l evel _status ();
RecoveryCoordi nator regi ster_resource (in Resource r) raises (lnactive);
Control create_subtransaction () raises (Subtransacti onsUnavail abl e,
I nactive);
void rol I back_only () raises (lnactive);
i
interface Control
{
Term nator get_terminator () raises (Unavail able);
Coor di nator get_coordi nator () raises (Unavail able);
k5

19

Chapter 3. Introduction to th...

interface TransactionFactory

{

Control create (in unsigned |ong time_out);

be

When the factory creates a transaction, you can specify a timeout value in seconds. If the
transaction times out, it is subject to possible roll-back. Set the timeout to 0 to disable application-
specific timeout.

The cCurrent interface handles implicit context management. Implicit context management
provides simplified transaction management functionality, and automatically creates nested
transactions as required. Transactions created using Current do not alter a thread’s current
transaction context.

Example 3.2. Interface current

interface Current : CORBA:: Current

{
voi d begin () raises (SubtransactionsUnavail able);
void commt (in boolean report_heuristics) raises (NoTransacti on,
Heuri sticM xed,
Heuri sti cHazard);
void rol I back () raises (NoTransaction);
voi d rol I back_only () raises (NoTransaction);
Control get_control ();
Control suspend ();
void resume (in Control which) raises (InvalidControl);
) 5

3.6.1. Nested transactions

Subtransactions are a useful mechanism for two reasons:

fault-tolerance
If a subtransaction rolls back, the enclosing transaction does not also need to roll back. This
preserves as much of the work done so far, as possible.

modularity
Indirect transaction management does not require special syntax for creating subtransactions.
Begin a transaction, and if another transaction is associated with the calling thread, the new
transaction is nested within the existing one. If you know that an object requires transactions,

20

Transaction propagation

you can use them within the object. If the object's methods are invoked without a client
transaction, the object's transaction is top-level. Otherwise, it is nested within the client's
transaction. A client does not need to know whether an object is transactional.

The outermost transaction of the hierarchy formed by nested transactions is called the top-
level transaction. The inner components are called subtransactions. Unlike top-level transactions,
the commits of subtransactions depend upon the commit/rollback of the enclosing transactions.
Resources acquired within a subtransaction should be inherited by parent transactions when the
top-level transaction completes. If a subtransaction rolls back, it can release its resources and
undo any changes to its inherited resources.

In the OTS, subtransactions behave differently from top-level transactions at commit time. Top-
level transactions undergo a two-phase commit protocol, but nested transactions do not actually
perform a commit protocol themselves. When a program commits a nested transaction, it only
informs registered resources of its outcome. If a resource cannot commit, an exception is thrown,
and the OTS implementation can ignore the exception or roll back the subtransaction. You cannot
roll back a subtransaction if any resources have been informed that the transaction committed.

3.6.2. Transaction propagation

The OTS supports both implicit and explicit propagation of transactional behavior.

« Implicit propagation means that an operation signature specifies no transactional behavior, and
each invocation automatically sends transaction context associated with the calling thread.

« Explicit propagation means that applications must define their own mechanism for propagating
transactions. This has the following features:

» A client to control if its transaction is propagated with any operation invocation.

» A client can invoke operations on both transactional and non-transactional objects within a
transaction.

Transaction context management and transaction propagation are different things that may be
controlled independently of each other. Mixing of direct and indirect context management with
implicit and explicit transaction propagation is supported. Using implicit propagation requires
cooperation from the ORB. The client must send current context associated with the thread with
any operation invocations, and the server must extract them before calling the targeted operation.

If you need implicit context propagation, ensure that JBossTS is correctly initialized before you
create objects. Both client and server must agree to use implicit propagation. To use implicit
context propagation, your ORB needs to support filters or interceptors, or the CosTSPort abi l ity
interface.

Implicit context propagation Property variable OTS_CONTEXT_PROP_MODE set to CONTEXT.

21

Chapter 3. Introduction to th...

Interposition Property variable OTS_CONTEXT_PROP_MODE set to
| NTERPCSI T1 ON.

Important

Interposition is required to use the JBossTS Advanced API.

3.6.3. Examples

Example 3.3. Simple transactional client using direct context management
and explicit transaction propagation

{
org. ong. CosTransacti ons. Control c;
org. ong. CosTransactions. Term nator t;
or g. ong. CosTransacti ons. Propagati onCont ext pgt x;
¢ = transFact.create(0); /'l create top-level action
pgtx = c.get_coordinator().get_txcontext();
trans_obj ect.operation(arg, pgtx); /'l explicit propagation
t = c.get_termnator(); /] get term nator
t.conmm t (false); /'l so it can be used to conmit
}

The next example rewrites the same program to use indirect context management and implicit
propagation. This example is considerably simpler, because the application only needs to start
and either commit or abort actions.

Example 3.4. Indirect context management and implicit propagation

{
;:Iu.rrent . begin(); /] create new action
'.[.r;':ms_obj ect 2. operation(arg); /1 inplicit propagation
;:Iu.rrent.con'ﬂit(false); /1 sinple comm t

22

Transaction controls

The last example illustrates the flexibility of OTS by using both direct and indirect context
management in conjunction with explicit and implicit transaction propagation.

Example 3.5. Direct and direct context management with explicitly and
implicit propagation

{
org. ong. CosTransacti ons. Control c;
org. ong. CosTransactions. Term nator t;
org. ong. CosTransacti ons. Propagat i onCont ext pgt x;
¢ = transFact.create(0); /'l create top-level action
pgtx = c.get_coordinator().get_txcontext();
current.resune(c); /1 set inplicit context
trans_obj ect.operation(arg, pgtx); /1 explicit propagation
trans_obj ect 2. operati on(arg); /1 inplicit propagation
current.rol | back(); /1 oops! rollback
}

3.7. Transaction controls

The Control interface allows a program to explicitty manage or propagate a transaction
context. An object supporting the Control interface is associated with one specific transaction.
The Control interface supports two operations: get terminator and get_coordi nator.
get _term nator returns an instance of the Ter ni nat or interface. get _coor di nat or returns an
instance of the Coor di nat or interface. Both of these methods throw the Unavai | abl e exception if
the Cont r ol cannot provide the requested object. The OTS implementation can restrict the ability
to use the Terminator and Coordinator in other execution environments or threads. At a minimum,
the creator must be able to use them.

Obtain the Control object for a transaction when it is created either by using either
the Transacti onFactory oOr create_subtransacti on methods defined by the Coordi nat or
interface. Obtain a Control for the transaction associated with the current thread using the
get _control or suspend methods defined by the Current interface.

23

Chapter 3. Introduction to th...

3.7.1. JBossTS specifics

The transaction creator must be able to use its Control , but the OTS implementation decides
whether other threads can use Cont r ol . JBossTS places no restrictions the users of the Cont r ol .

The OTS specification does not provide a means to indicate to the transaction system that
information and objects associated with a given transaction can be purged from the system. In
JBossTS, the Current interface destroys all information about a transaction when it terminates.
For that reason, do not use any Cont r ol references to the transaction after it commits or rolls back.

However, if the transaction is terminated using the Terminator interface, it is up to the programmer
to signal that the transaction information is no longer required: this can be done using the
destroyControl method of the OTS class in the com.arjuna.CosTransactions package. Once the
program has indicated that the transaction information is no longer required, the same restrictions
on using Control references apply as described above. If destroyControl is not called then
transaction information will persist until garbage collected by the Java runtime.

In JBossTS, you can propagate Coordinators and Termi nators between execution
environments.

3.8. The terninator interface

The Ter mi nat or interface supports commi t and rol | back operations. Typically, the transaction
originator uses these operations. Each object supporting the Terminator interface is associated
with a single transaction. Direct context management via the Terminator interface does not change
the client thread’s notion of the current transaction.

The commi t operation attempts to commit the transaction. To successfully commit, the transaction
must not be marked r ol | back onl y, and all of its must participants agree to commit. Otherwise,
the TRANSACTI ON_ROLLEDBACK exception is thrown. If the report_heuri stics parameter is
true, the Transaction Service reports inconsistent results using the HeuristicM xed and
Heuri sti cHazar d exceptions.

When a transaction is committed, the coordinator drives any registered Resour ces using their
pr epar e or comni t methods. These Resources are responsible to ensure that any state changes
to recoverable objects are made permanent, to guarantee the ACID properties.

When rol | back is called, the registered Resources need to guarantee that all changes to
recoverable objects made within the scope of the transaction, and its descendants, is undone. All
resources locked by the transaction are made available to other transactions, as appropriate to
the degree of isolation the resources enforce.

3.8.1. JBossTS specifics

See Section 3.7.1, “JBossTS specifics” for how long Ter ni nat or references remain valid after a
transaction terminates.

24

The Coordinator interface

When a transaction is committing, it must make certain state changes persistent, so that it can
recover if a failure occurs, and continue to commit, or rollback. To guarantee ACID properties,
flush these state changes to the persistence store implementation before the transaction proceeds
to commit. Otherwise, the application may assume that the transaction has committed, when the
state changes may still volatile storage, and may be lost by a subsequent hardware failure. By
default, JBossTS makes sure that such state changes are flushed. However, these flushes can
impose a significant performance penalty to the application. To prevent transaction state flushes,
set the TRANSACTI ON_SYNC variable to OFF. Obviously, do this at your own risk.

When a transaction commits, if only a single resource is registered, the transaction manager
does not need to perform the two-phase protocol. A single phase commit is possible, and the
outcome of the transaction is determined by the resource. In a distributed environment, this
optimization represents a significant performance improvement. As such, JBossTS defaults to
performing single phase commit in this situation. Override this behavior at runtime by setting the
COWM T_ONE_PHASE property variable to NO.

3.9. The wordinator interface

The Coordinator interface is returned by the get _coor di nat or method of the Control interface.
It supports the operations resources need to participate in a transaction. These participants
are usually either recoverable objects or agents of recoverable objects, such as subordinate
coordinators. Each object supporting the Coor di nat or interface is associated with a single
transaction. Direct context management via the Coordinator interface does not change the client
thread’s notion of the current transaction. You can terminate transaction directly, through the
Ter mi nat or interface. In that case, trying to terminate the transaction a second time using
Cur rent causes an exception to be thrown for the second termination attempt.

The operations supported by the Coordinator interface of interest to application programmers are:

Table 3.2. Operations supported by the coor di nat or interface

get _status Return the status of the associated transaction. At any given
time a transaction can have one of the following status values

get_parent_status representing its progress:

get _top_l evel _status
StatusActive

The transaction is currently running, and has not been asked

to prepare or marked for rollback.

StatusMarkedRollback
The transaction is marked for rollback.

StatusPrepared

The transaction has been prepared, which means that all

subordinates have responded Vot eConmi t .

25

Chapter 3. Introduction to th...

StatusCommitted
The transaction has committed. It is likely that heuristics
exist. Otherwise, the transaction would have been destroyed
and St at usNoTr ansact i on returned.

StatusRolledBack
The transaction has rolled back. It is likely that heuristics
exist. Otherwise. the transaction would have been destroyed
and StatusNoTransaction returned.

StatusUnknown
The Transaction Service cannot determine the current status
of the transaction. This is a transient condition, and a
subsequent invocation should return a different status.

StatusNoTransaction
No transaction is currently associated with the target object.
This occurs after a transaction completes.

StatusPreparing
The transaction is in the process of preparing and the final
outcome is not known.

StatusCommitting
The transaction is in the process of committing.

StatusRollingBack
The transaction is in the process of rolling back.

i s_same_transaction
others

and

You can use these operations for transaction comparison.
Resources may use these various operations to guarantee that
they are registered only once with a specific transaction.

hash_transaction

hash_top_l evel _tran

Returns a hash code for the specified transaction.

regi ster_resource

Registers the specified Resource as a participant in the
transaction. The | nact i ve exception is raised if the transaction
is already prepared. The TRANSACTI ON_ROLLEDBACK exception
is raised if the transaction is marked rollback only. If
the Resource is a Subtransacti onAwar eResource and the
transaction is a subtransaction, this operation registers the
resource with this transaction and indirectly with the top-
level transaction when the subtransaction’s ancestors commit.
Otherwise, the resource is only registered with the current
transaction. This operation returns a RecoveryCoor di nat or
which this Resource can use during recovery. No ordering
of registered Resources is implied by this operation. If A is

26

JBossTS specifics

registered after B, the OTS can operate on them in any order
when the transaction terminates. Therefore, do not assume such
an ordering exists in your implementation.

register_subtran_aware Registers the specified subtransaction-aware resource with the
current transaction, so that it know when the subtransaction
commits or rolls back. This method cannot register the
resource as a participant in the top-level transaction. The
Not Subt r ansact i on exception is raised if the current transaction
is not a subtransaction. As with r egi st er _r esour ce, no ordering
is implied by this operation.

register_synchronization Registers the Synchroni zat i on object with the transaction so
that will be invoked before prepare and after the transaction
completes. Synchronizations can only be associated with top-
level transactions, and the Synchroni zati onsUnavail abl e
exception is raised if you try to register a Synchronization with
a subtransaction. As with regi st er _resour ce, no ordering is
implied by this operation.

rollback_only Marks the transaction so that the only possible outcome is for it
to rollback. The Inactive exception is raised if the transaction has
already been prepared/completed.

create_subtransaction A new subtransaction is created. Its parent is the current
transaction. The I nactive exception is raised if the current
transaction has already been prepared or completed. If
you configure the Transaction Service without subtransaction
support, the Subt r ansact i onsUnavai | abl e exception is raised.

3.9.1. JBossTS specifics

See Section 3.7.1, “JBossTS specifics” to control how long Coor di nat or references remain valid
after a transaction terminates.

@ Note

To disable subtransactions, set set the OTS_SUPPORT _SUBTRANSACTI ONS property
variable to NO.

3.10. Heuristics

The OTS permits individual resources to make heuristic decisions. Heuristic decisions are
unilateral decisions made by one or more participants to commit or abort the transaction, without
waiting for the consensus decision from the transaction service. Use heuristic decisions with care
and only in exceptional circumstances, because they can lead to a loss of integrity in the system.

27

Chapter 3. Introduction to th...

If a participant makes a heuristic decision, an appropriate exception is raised during commit or

abort processing.

Table 3.3. Possible heuristic outcomes

HeuristicRollback

Raised on an attempt to commit, to indicate that the resource
already unilaterally rolled back the transaction.

HeuristicCommit

Raised on an attempt to roll back, to indicate that the resource
already unilaterally committed the transaction.

HeuristicMixed

HeuristicHazard

Indicates that a heuristic decision has been made. Some updates
committed while others rolled back.

Indicates that a heuristic decision may have been made, and the
outcome of some of the updates is unknown. For those updates
which are known, they either all committed or all rolled back.

HeuristicMixed takes priority over HeuristicHazard. Heuristic decisions are only reported back to
the originator if the report _heuri sti cs argument is set to t r ue when you invoke the commit

operation.

3.11. Current

The Current interface defines operations that allow a client to explicitly manage the association
between threads and transactions, using indirect context management. It defines operations that
simplify the use of the Transaction Service.

Table 3.4. Methods of current

begin

commit

rollback

Creates a new transaction and associates it with the current
thread. If the client thread is currently associated with a
transaction, and the OTS implementation supported nested
transactions, the new transaction becomes a subtransaction of
that transaction. Otherwise, the new transaction is a top-level
transaction. If the OTS implementation does not support nested
transactions, the Subtransacti onsUnavai |l abl e exception is
thrown. The thread’s notion of the current context is modified to
be this transaction.

Commits the transaction. If the client thread does not have
permission to commit the transaction, the standard exception
NO_PERM SSI ON is raised. The effect is the same as performing
the conmi t operation on the corresponding Ter ni nat or object.
The client thread's transaction context is returned to its state
before the begi n request was initiated.

Rolls back the transaction. If the client thread does not have
permission to terminate the transaction, the standard exception
NO_PERM SSI ON is raised. The effect is the same as performing

28

Current

the roll back operation on the corresponding Term nat or
object. The client thread's transaction context is returned to its
state before the begi n request was initiated.

rollback_only

get_status

set_timeout

get_control

suspend

Limits the transaction's outcome to rollback only. If the
transaction has already been terminated, or is in the process of
terminating, an appropriate exception is thrown.

Returns the status of the current transaction, or exception
St at usNoTr ansact i on if no transaction is associated with the
thread.

Modifies the timeout associated with top-level transactions for
subsequent begi n requests, for this thread only. Subsequent
transactions are subject to being rolled back if they do not
complete before the specified number of seconds elapses.
Default timeout values for transactions without explicitly-set
timeouts are implementation-dependent. JBossTS uses a value
of 0, which results in transactions never timing out. There is no
interface in the OTS for obtaining the current timeout associated
with a thread. However, JBossTS provides additional support for
this. See Section 3.11.1, “JBossTS specifics”.

Obtains a Cont r ol object representing the current transaction.
If the client thread is not associated with a transaction,
a null object reference is returned. The operation is not
dependent on the state of the transaction. It does not raise the
TRANSACTI ON_ROLLEDBACK exception.

Obtains an object representing a transaction's context. If the
client thread is not associated with a transaction, a null object
reference is returned. You can pass this object to the resune
operation to re-establish this context in a thread. The operation
is not dependent on the state of the transaction. It does not raise
the TRANSACTI ON_ROLLEDBACK exception. When this call returns,
the current thread has no transaction context associated with it.

resume

Associates the client thread with a transaction. If the parameter is
a null object reference, the client thread becomes associated with
no transaction. The thread loses association with any previous
transactions.

29

Chapter 3. Introduction to th...

Client

1egin||

Current

TransactionFactory

b' rTeate()

control

h" new top-level

Control

<

change context of thread

«—

Figure 3.2. Creation of a top-level transaction using current

30

>

JBossTS specifics

Client Courrent Control Coordinator

begin(]

L get_controlf)

5 get_coordinator()

create subtransaction(]

rontrol

tchange contextof thread

Figure 3.3. Creation of a transaction using current

3.11.1. JBossTS specifics

Ideally, you should Obtain Current by using the life-cycle service factory finder. However, very
few ORBs support this. JBossTS provides method get _current of Current for this purpose. This
class hides any ORB-specific mechanisms required for obtaining Cur r ent .

If no timeout value is associated with Current, JBossSTS associates no timeout with the
transaction. The current OTS specification does not provide a means whereby the timeout
associated with transaction creation can be obtained. However, JBossTS Current supports a
get_timeout method.

By default, the JBossTS implementation of Current does not use a separate
Transacti onFact ory server when creating new top-level transactions. Each transactional

31

Chapter 3. Introduction to th...

client has a TransactionFactory co-located with it. Override this by setting the
OTS_TRANSACTI ON_NMANAGER variable to YES.

The transaction factory is located in the bi n/ directory of the JBossTS distribution. Start it by
executing the OTS script. Current locates the factory in a manner specific to the ORB: using
the name service, through r esol ve_i ni ti al _ref er ences, or via the CosSer vi ces. cf g file. The
CosSer vi ces. cf g file is similar to resol ve_i ni ti al _r ef er ences, and is automatically updated
when the transaction factory is started on a particular machine. Copy the file to each JBossTS
instance which needs to share the same transaction factory.

If you do not need subtransaction support, set the OTS_SUPPORT_SUBTRANSACTI ONS property
variable to NO. The set CheckedActi on method overrides the CheckedAct i on implementation
associated with each transaction created by the thread.

3.12. Resource

The Transaction Service uses a two-phase commit protocol to complete a top-level transaction
with each registered resource.

Example 3.6. Completing a top-level transaction

interface Resource

{

Vote prepare ();

void rol I back () raises (HeuristicCommt, HeuristicM xed,

Heuri sti cHazard);
void commit () raises (NotPrepared, HeuristicRollback,
Heuri sticM xed, HeuristicHazard);
voi d comi t_one_phase () raises (HeuristicRollback, HeuristicM xed,
Heuri sti cHazard);

void forget ();

IE

The Resour ce interface defines the operations invoked by the transaction service. Each Resour ce
object is implicitly associated with a single top-level transaction. Do not register a Resour ce with
the same transaction more than once. When you tell a Resour ce to prepare, commit, or abort, it
must do so on behalf of a specific transaction. However, the Resour ce methods do not specify the
transaction identity. It is implicit, since a Resour ce can only be registered with a single transaction.

Transactional objects must use the r egi st er _r esour ce method to register objects supporting the
Resour ce interface with the current transaction. An object supporting the Coor di nat or interface is
either passed as a parameter in the case of explicit propagation, or retrieved using operations on
the Current interface in the case of implicit propagation. If the transaction is nested, the Resour ce
is not informed of the subtransaction’s completion, and is registered with its parent upon commit.

This example assumes that transactions are only nested two levels deep, for simplicity.

32

Resource

/N

Figure 3.4. Resource and nested transactions

Do not register a given Resour ce with the same transaction more than once, or it will receive
multiple termination calls. When a Resour ce is directed to prepare, commit, or abort, it needs
to link these actions to a specific transaction. Because Resour ce methods do not specify the
transaction identity, but can only be associated with a single transaction, you can infer the identity.

A single Resour ce or group of Resour ces guarantees the ACID properties for the recoverable
object they represent. A Resource's work depends on the phase of its transaction.

33

Chapter 3. Introduction to th...

prepare
If none of the persistent data associated with the resource is modified by the transaction, the
Resource can return Vot eReadOnl y and forget about the transaction. It does not need to know
the outcome of the second phase of the commit protocol, since it hasn't made any changes.

If the resource can write, or has already written, all the data needed to commit the transaction
to stable storage, as well as an indication that it has prepared the transaction, it can return
Vot eConmi t . After receiving this response, the Transaction Service either commits or rolls
back. To support recovery, the resource should store the Recover yCoor di nat or reference
in stable storage.

The resource can return Vot eRol | back under any circumstances. After returning this
response, the resource can forget the transaction.

The Resource reports inconsistent outcomes using the HeuristicMxed and
Heur i sti cHazar d exceptions. One example is that a Resour ce reports that it can commit and
later decides to roll back. Heuristic decisions must be made persistent and remembered by
the Resour ce until the transaction coordinator issues the f or get method. This method tells
the Resour ce that the heuristic decision has been noted, and possibly resolved.

rollback
The resource should undo any changes made as part of the transaction. Heuristic exceptions
can be used to report heuristic decisions related to the resource. If a heuristic exception
is raised, the resource must remember this outcome until the forget operation is performed
so that it can return the same outcome in case rollback is performed again. Otherwise, the
resource can forget the transaction.

commit
If necessary, the resource should commit all changes made as part of this transaction. As
with r ol | back, it can raise heuristic exceptions. The Not Pr epar ed exception is raised if the
resource has not been prepared.

commit_one_phase
Since there can be only a single resource, the Heur i sti cHazar d exception reports heuristic
decisions related to that resource.

forget
Performed after the resource raises a heuristic exception. After the coordinator determines
that the heuristic situation is addressed, it issues f or get on the resource. The resource can
forget all knowledge of the transaction.

3.13. SubtransactionAwareResource

Recoverable objects that need to participate within a nested transaction may support the
Subt ransact i onAwar eResour ce interface, a specialization of the Resour ce interface.

34

SubtransactionAwareResource

Example 3.7. Interface subt ransact i onAwar eResour ce

i nterface Subtransacti onAwar eResource : Resource

{

void commit_subtransaction (in Coordinator parent);
voi d rol | back_subtransaction ();

be

A recoverable object is only informed of the completion of a nested transaction if it registers
a Subtransacti onAwar eResour ce. Register the object with either the regi ster_resource
of the Coordinator interface, or the register_subtran_aware method of the Current
interface. A recoverable object registers Resources to participate within the completion of
top-level transactions, and SubtransactionAwareResources keep track of the completion of
subtransactions. The conmi t _subt r ansact i on method uses a reference to the parent transaction
to allow subtransaction resources to register with these transactions.

SubtransactionAwareResources find out about the completion of a transaction after it terminates.
They cannot affect the outcome of the transaction. Different OTS implementations deal with
exceptions raised by SubtransactionAwareResources in implementation-specific ways.

Use method register_resource or method register_subtran_aware to register a
SubtransactionAwareResource with a transaction using.

register_resource
If the transaction is a subtransaction, the resource is informed of its completion, and
automatically registered with the subtransaction’s parent if the parent commits.

register_subtran_aware
If the transaction is not a subtransaction, an exception is thrown. Otherwise, the resource
is informed when the subtransaction completes. Unlike r egi st er _r esour ce, the resource
is not propagated to the subtransaction’s parent if the transaction commits. If you need this
propagation, re-register using the supplied parent parameter.

35

Chapter 3. Introduction to th...

Client

Current

get_control(]

gel_coordinator(]

Control

register_subtran_aware(sr)

Coordinator

commitf)

pet_control|)

gEt_terminator(d

>

commit[)

Figure 3.5. Method regi ster _subtran_awar e

36

SubtransactionAwareResource

Client Curretd Control

Coordinalor

Termini

| | |

Poget_control(]

(el coordinator()
register_resonrcefsr)

{ RecoveryCoordivator (for top-level)

booconnitf) ;

toet_control(] |

—

<+

I | I

| ' | |

! Ceb_terminator()

| i >

1 I

1 I I i

i |

| con nitf]

! ! | i h.
.

i i Yronn

Figure 3.6. Method regi ster_resource

37

Chapter 3. Introduction to th...

In either case, the resource cannot affect the outcome of the transaction completion. It can only act
on the transaction's decision, after the decision is made. However, if the resource cannot respond
appropriately, it can raise an exception. Thee OTS handles these exceptions in an implementation-
specific way.

3.13.1. JBossTS specifics

A Subt r ansact i onAwar eResour ce which raises an exception to the commitment of a transaction
may create inconsistencies within the transaction if other Subt r ansact i onAwar eResour ces think
the transaction committed. To prevent this possibility of inconsistency, JBossTS forces the
enclosing transaction to abort if an exception is raised.

JBossTS also provides extended subtransaction aware resources to overcome this, and other
problems. See Section for further details.

3.14. The Synchroni zat i on Interface

If an object needs natification before a transaction commits, it can register an object which is an
implements the Synchr oni zat i on interface, using the r egi st er _synchroni zat i on operation of
the Coor di nat or interface. Synchronizations flush volatile state data to a recoverable object or
database before the transaction commits. You can only associate Synchronizations with top-level
transactions. If you try to associate a Synchronization to a nested transaction, an exception is
thrown. Each object supporting the Synchr oni zat i on interface is associated with a single top-
level transaction.

Example 3.8. Synchronization

interface Synchroni zati on : Transacti onal Cbj ect

{
voi d before_conpletion ();
voi d after_conpletion (in Status s);

be

The method before_conpl etion is called before the two-phase commit protocol starts, and
af ter _conpl etion is called after the protocol completes. The final status of the transaction is
given as a parameter to after_conpl eti on. If before_conpl eti on raises an exception, the
transaction rolls back. Any exceptions thrown by af t er _conpl et i on do not affect the transaction
outcome.

The OTS only requires Synchronizations to be invoked if the transaction commits. If it rolls back,
registered Synchronizations are not informed.

Given the previous description of Control, Resource, Subtransacti onAwar eResour ce, and
Synchronization, the following UML relationship diagram can be drawn:

38

The Synchronization interface

Control Resoorce

prepare():Vote
comomoitf)
rollback()

| AN

et _coordinator(]
et_terminator()

oo oo

_ . . Subtransactiond w arel es
Synchronization

commit_subtransaction(C or
before_completion(] rollback _subtransaction(]

after_comopletion()

S

TransactionalO bject

Figure 3.7. Relationship between Control, Resource,
SubtransactionAwareResource, and Synchronization

39

Chapter 3. Introduction to th...

3.14.1. JBossTS specifics

Synchronizations must be called before the top-level transaction commit protocol starts, and after it
completes. By default, if the transaction is instructed to roll back, the Synchronizations associated
with the transaction is not contacted. To override this, and call Synchronizations regardless of the
transaction's outcome, set the OTS_SUPPORT_ROLLBACK_SYNC property variable to YES.

If you use distributed transactions and interposition, a local proxy for the top-level transaction
coordinator is created for any recipient of the transaction context. The proxy looks like a
Resour ce or Subt r ansact i onAwar eResour ce, and registers itself as such with the actual top-level
transaction coordinator. The local recipient uses it to register Resour ces and Synchr oni zat i ons
locally.

The local proxy can affect how Synchronizations are invoked during top-level transaction
commit. Without the proxy, all Synchronizations are invoked before any Resource or
SubtransactionAwareResource objects are processed. However, with interposition, only those
Synchronizations registered locally to the transaction coordinator are called. Synchronizations
registered with remote participants are only called when the interposed proxy is invoked. The local
proxy may only be invoked after locally-registered Resource or SubtransactionAwareResource
objects are invoked. With the OTS_SUPPORT_I NTERPOSED_SYNCHRONI ZATI ON property variable set
to YES, all Synchronizations are invoked before any Resource or SubtransactionAwareResource,
no matter where they are registered.

40

Transactions and registered resources

3.15. Transactions and registered resources

Control Roesource

| repare(|:Vote
cet_coordinator() prepared

: . commit{]
ret_terminator(] b ack ()

/\

Subtransactiond wareResource

commit_sobtransaction(Control)
rollback _sobtransaction()

Figure 3.8. Relationship between a transaction control and the resources
registered with it

In Figure 3.9, “Subtransaction commit”, a subtransaction with both Resource and
Subt r ansact i onAwar eResour ce objects commits. The Subt r ansact i onAwar eResour ces were
registered using regi st er _subtran_aware. The Resources do not know the subtransaction
terminated, but the Subt r ansact i onAwar eResour ces do. Only the Resour ces are automatically
propagated to the parent transaction.

Figure 3.9. Subtransaction commit

41

Chapter 3. Introduction to th...

Figure 3.10, “Subtransaction rollback” illustrates the impact of a subtransaction rolling back. Any
registered resources are discarded, and all Subt r ansact i onAwar eResour ces are informed of the

transaction outcome.

Client

rollback(]

Current

Control

Terminator

e
=
=

>

get_controlf]

gel_terminator()

[Ilha.[£l

Figure 3.10. Subtransaction rollback

change contextof thread

®rollback _suobtransar

Figure 3.11, “Top-level commit” shows the activity diagram for committing a top-level
transaction. Subtransactions within the top-level transaction which have also successfully
committed propagate Subtransacti onAwar eResources to the top-level transaction. These
Subt ransact i onAwar eResour ces then participate within the two-phase commit protocol. Any
registered Synchr oni zat i ons are contacted before pr epar e is called. Because of indirect context

42

Transactions and registered resources

management, when the transaction commits, the transaction service changes the invoking
thread’s transaction context.

43

Chapter 3. Introduction to th...

Clirnt Corrent Control Terminator ‘E::ulru Sohiransii
, : - AwareRes

commill]

fget_control]

—

PpE_terminitor() ¢

fomom il

> *hefore_conmpletion()

toprepire|]

>

Yprepire (|

—*connitf]

Yrommil|]

*after_completion(stitns]

fchangecontentol thread

Figtjre 3.11. Top-IevéI commit

44

The TransactionalObject interface

]
B

Clirnt Curent Control Terninitor |P.r.~'u:.'[r
|

ollbick(]

>

Crollback(]

>

Crollback]

Figure 3.12. Top-level rollback

3.16. The transacti onal Obj ect Interface

The Transact i onal Qbj ect interface indicates to an object that it is transactional. By supporting
this interface, an object indicates that it wants to associate the transaction context associated with
the client thread with all operations on its interface. The Tr ansact i onal Obj ect interface defines
no operations.

45

Chapter 3. Introduction to th...

OTS specifications do not require an OTS to initialize the transaction context of every request
handler. It is only a requirement if the interface supported by the target object is derived from
Transact i onal Chj ect. Otherwise, the initial transaction context of the thread is undefined.
A transaction service implementation can raise the TRANSACTI ON_REQUI RED exception if a
Transact i onal Qbj ect is invoked outside the scope of a transaction.

In a single-address space application, transaction contexts are implicitly shared between clients
and objects, regardless of whether or not the objects support the Tr ansact i onal Qbj ect interface.
To preserve distribution transparency, where implicit transaction propagation is supported, you
can direct JBossTS to always propagate transaction contexts to objects. The default is only to
propagate if the object is a Transacti onal Obj ect . Set the OTS_ALWAYS_PROPAGATE_CONTEXT
property variable to NOto override this behavior.

By default, JBossTS does not require objects which support the Tr ansact i onal Obj ect interface
to invoked within the scope of a transaction. The object determines whether it should be invoked
within a transaction. If so, it must throw the Tr ansact i onRequi r ed exception. Override this default
by setting the OTS_NEED_TRAN_CONTEXT shell environment variable to YES.

Important

Make sure that the settings for OTS_ALWAYS PROPAGATE CONTEXT and
OTS_NEED TRAN_CONTEXT are identical at the client and the server. If they are not
identical at both ends, your application may terminate abnormally.

3.17. Interposition

OTS objects supporting interfaces such as the Cont r ol interface are standard CORBA objects.
When an interface is passed as a parameter in an operation call to a remote server, only an object
reference is passed. This ensures that any operations that the remote server performs on the
interface are correctly performed on the real object. However, this can have substantial penalties
for the application, because of the overhead of remote invocation. For example, when the server
registers a Resour ce with the current transaction, the invocation might be remote to the originator
of the transaction.

To avoid this overhead, your OTS may support interposition. This permits a server to create a
local control object which acts as a local coordinator, and fields registration requests that would
normally be passed back to the originator. This coordinator must register itself with the original
coordinator, so that it can correctly participate in the commit protocol. Interposed coordinators
form a tree structure with their parent coordinators.

To use interposition, ensure that JBossTS is correctly initialized before creating objects.
Also, the client and server must both use interposition. Your ORB must support filters or
interceptors, or the CosTSPort abi | i ty interface, since interposition requires the use of implicit
transaction propagation. To use interposition, set the OTS_CONTEXT_PROP_MODE property variable
to | NTERPCSI TI ON.

46

RecoveryCoordinator

@ Note
Interposition is not required if you use the JBossTS advanced API.

3.18. RecoveryCoordinator

A reference to a RecoveryCoordi nator is returned as a result of successfully calling
regi st er _resour ce on the transaction's Coor di nat or . Each Recover yCoor di nat or is implicitly
associated with a single Resour ce. It can drive the Resour ce through recovery procedures in the
event of a failure which occurs during the transaction.

Resource

prepare():Vote
com mit()
rollback()

RecoveryCoordinator

replay_completion(Resource):5tatus

Figure 3.13. Resource and Recover yCoor di nat or

3.19. Checked transaction behavior

The OTS supports both checked and unchecked transaction behavior.

47

Chapter 3. Introduction to th...

Integrity constraints of checked transactions

« A transaction will not commit until all transactional objects involved in the transaction have
completed their transactional requests.

* Only the transaction originator can commit the transaction

Checked transactional behavior is typical transaction behavior, and is widely implemented.
Checked behavior requires implicit propagation, because explicit propagation prevents the OTS
from tracking which objects are involved in the transaction.

Unchecked behavior allows you to implement relaxed models of atomicity. Any use of explicit
propagation implies the possibility of unchecked behavior, since you as the programmer are in
control of the behavior. Even if you use implicit propagation, a server may unilaterally abort or
commit the transaction using the Curr ent interface, causing unchecked behavior.

Some OTS implementations enforce checked behavior for the transactions they support, to
provide an extra level of transaction integrity. The checks ensure that all transactional requests
made by the application complete their processing before the transaction is committed. A checked
Transaction Service guarantees that commit fails unless all transactional objects involved in the
transaction complete the processing of their transactional requests. Rolling back the transaction
does not require such as check, since all outstanding transactional activities will eventually roll
back if they are not directed to commit.

There are many possible implementations of checking in a Transaction Service. One provides
equivalent function to that provided by the request and response inter-process communication
models defined by X/Open. The X/Open Transaction Service model of checking widely
implemented. It describes the transaction integrity guarantees provided by many existing
transaction systems. These transaction systems provide the same level of transaction integrity
for object-based applications, by providing a Transaction Service interface that implements the
X/Open checks.

In X/Open, completion of the processing of a request means that the object has completed
execution of its method and replied to the request. The level of transaction integrity provided by a
Transaction Service implementing the X/Open model provides equivalent function to that provided
by the XATMI and TxRPC interfaces defined by X/Open for transactional applications. X/Open
DTP Transaction Managers are examples of transaction management functions that implement
checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propagation. When
implicit propagation is used, the objects involved in a transaction at any given time form a tree,
called the request tree for the transaction. The beginner of the transaction is the root of the tree.
Requests add nodes to the tree, and replies remove the replying node from the tree. Synchronous
requests, or the checks described below for deferred synchronous requests, ensure that the tree
collapses to a single node before commit is issued.

48

JBossTS specifics

If a transaction uses explicit propagation, the Transaction Service has no way to know which
objects are or will be involved in the transaction. Therefore, the use of explicit propagation is not
permitted by a Transaction Service implementation that enforces X/Open-style checked behavior.

Applications that use synchronous requests exhibit checked behavior. If your application uses
deferred synchronous requests, all clients and objects need to be under the control of a checking
Transaction Service. In that case, the Transaction Service can enforce checked behavior, by
applying a reply check and a comi tted check. The Transaction Service must also apply a
resume check, so that the transaction is only resumed by applications in the correct part of the
request tree.

reply check Before an object replies to a transactional request, a check is
made to ensure that the object has received replies to all the
deferred synchronous requests that propagated the transaction
in the original request. If this condition is not met, an exception
is raised and the transaction is marked as rollback-only. A
Transaction Service may check that a reply is issued within the
context of the transaction associated with the request.

commit check Before a commit can proceed, a check is made to ensure that the
commit request for the transaction is being issued from the same
execution environment that created the transaction, and that the
client issuing commit has received replies to all the deferred
synchronous requests it made that propagated the transaction.

resume check Before a client or object associates a transaction context with
its thread of control, a check is made to ensure that this
transaction context was previously associated with the execution
environment of the thread. This association would exist if
the thread either created the transaction or received it in a
transactional operation.

3.19.1. JBossTS specifics

Where support from the ORB is available, JBossTS supports X/Open checked transaction
behavior. However, unless the OTS_CHECKED TRANSACTI ONS property variable is set to YES,
checked transactions are disabled. This is the default setting.

@ Note
Checked transactions are only possible with a co-located transaction manager.

In a multi-threaded application, multiple threads may be associated with a transaction during
its lifetime, sharing the context. In addition, if one thread terminates a transaction, other
threads may still be active within it. In a distributed environment, it can be difficult to
guarantee that all threads have finished with a transaction when it terminates. By default,

49

Chapter 3. Introduction to th...

JBossTS issues a warning if a thread terminates a transaction when other threads are still
active within it, but allow the transaction termination to continue. You can choose to block
the thread which is terminating the transaction until all other threads have disassociated
themselves from its context, or use other methods to solve the problem. JBossTS provides
the com arj una. at s. arj una. coor di nat or . CheckedAct i on class, which allows you to override
the thread and transaction termination policy. Each transaction has an instance of this class
associated with it, and you can implement the class on a per-transaction basis.

Example 3.9. checkedActi on implementation

public class CheckedAction

{
public CheckedAction ();

public synchroni zed void check (boolean isConmmit, U d actUid,
Basi cLi st list);

b

When a thread attempts to terminate the transaction and there active threads exist within it, the
system invokes the check method on the transaction’s CheckedAct i on object. The parameters
to the check method are:

isCommit Indicates whether the transaction is in the process of committing
or rolling back.

actUid The transaction identifier.
list A list of all of the threads currently marked as active within this
transaction.

When check returns, the transaction termination continues. Obviously the state of the transaction
at this point may be different from that when check was called.

Set the CheckedAct i on instance associated with a given transaction with the set CheckedAct i on
method of Current.

3.20. Summary of JBossTS implementation decisions

« Any execution environment (thread, process) can use a transaction Control.

e Control s, Coordinators, and Ter i nat or s are valid for use for the duration of the transaction
if implicit transaction control is used, via Current. If you use explicit control, via the
Transact i onFact ory and Ter mi nat or , then use the dest r oyCont r ol method of the OTS class
in com arj una. CosTr ansact i ons to signal when the information can be garbage collected.

* You can propagate Coordinators and Ter i nat or S between execution environments.

50

Summary of JBossTS implementation decisions

If you try to commit a transaction when there are still active subtransactions within it, JBossTS
rolls back the parent and the subtransactions.

JBossTS includes full support for nested transactions. However, if a resource raises an
exception to the commitment of a subtransaction after other resources have previously been
told that the transaction committed, JBossTS forces the enclosing transaction to abort. This
guarantees that all resources used within the subtransaction are returned to a consistent state.
You can disable support for subtransactions by setting the OTS_SUPPORT_SUBTRANSACTI ONS
variable to NO.

Obtain Current from the get _current method of the OTS.

A timeout value of zero seconds is assumed for a transaction if none is specified using
set _timeout.

by default, Current does not use a separate transaction manager server by default. Override
this behavior by setting the OTS_TRANSACTI ON_MANAGER environment variable. Location of the
transaction manager is ORB-specific.

Checked transactions are disabled by default. To enable them, set the
OTS_CHECKED_TRANSACTI ONS property to YES.

51

52

Chapter 4.

Constructing an OTS application

4.1. Important notes for JBossTS

4.1.1. Initialization

JBossTS must be correctly initialized before you create any application object. To guarantee
this, use the i ni t ORB and POA methods described in the Orb Portability Guide. Consult the Orb
Portability Guide if you need direct use of the ORB_i nit and cr eat e_PQOA methods provided by
the underlying ORB.

4.1.2. Implicit context propagation and interposition

If you need implicit context propagation and interposition, initialize JBossTS correctly before you
create any objects. You can only use implicit context propagation on an ORB which supports
filters and interceptors, or the Cos TSPor t abi | i t y interface. You can set OTS_CONTEXT PROP_MODE
to CONTEXT or | NTERPGSI Tl ON, depending on which functionality you need. If you are using the
JBossTS API, you need to use interposition.

4.2. Writing applications using the raw OTS interfaces

Steps to participate in an OTS transaction

» Create Resource and Subtransacti onAwar eResour ce objects for each object which will
participate within the transaction or subtransaction. These resources manage the persistence,
concurrency control, and recovery for the object. The OTS invokes these objects during the
prepare, commit, or abort phase of the transaction or subtransaction, and the Resources
perform the work of the application.

* Register Resour ce and Subt r ansact i onAwar eResour ce objects at the correct time within the
transaction, and ensure that the object is only registered once within a given transaction. As part
of registration, a Resour ce receives a reference to a Recover yCoor di nat or . This reference
must be made persistent, so that the transaction can recover in the event of a failure.

e Correctly propagate resources such as locks to parent transactions and

Subt r ansact i onAwar eResour ce objects.

 Drive the crash recovery for each resource which was participating within the transaction, in
the event of a failure.

The OTS does not provide any Resource implementations. You need to provide these
implementations. The interfaces defined within the OTS specification are too low-level for most
situations. JBossTS is designed to make use of raw Common Object Services (COS) interfaces,
but provides a higher-level API for building transactional applications and framework. This API
automates much of the work involved with participating in an OTS transaction.

53

Chapter 4. Constructing an OT...

4.3. Transaction context management

If you use implicit transaction propagation, ensure that appropriate objects support the
Transact i onal Qbj ect interface. Otherwise, you need to pass the transaction contexts as
parameters to the relevant operations.

4.3.1. A transaction originator: indirect and implicit

Example 4.1. Indirect and implicit transaction originator

txn_crt. begin();
/1 should test the exceptions that m ght be raised

/1 the client issues requests, sone of which involve
/1 transactional objects;
BankAccount 1. makeDeposi t (deposit);

A transaction originator uses indirect context management and implicit transaction propagation.
txn_crt is a pseudo object supporting the Cur r ent interface. The client uses the begi n operation
to start the transaction, which becomes implicitly associated with the originator’s thread of control.

The program commits the transaction associated with the client thread. The report _heuri sti cs
argument is set to f al se, so the Transaction Service makes no reports about possible heuristic
decisions.

txn_crt.commit(false);

4.3.2. Transaction originator: direct and explicit

Example 4.2. Direct and explicit transaction originator

org. ong. CosTransacti ons. Control c;

org. ong. CosTransacti ons. Term nator t;

or g. ong. CosTransacti ons. Coor di nat or co;

org. ong. CosTransacti ons. Propagat i onCont ext pgt x;

c = TFactory.create(0);
c.get_termnator();

—
1

54

Implementing a transactional client

pgtx = c.get_coordinator().get_txcontext();

This transaction originator uses direct context management and explicit transaction propagation.
The client uses a factory object supporting the CosTransactions:: Transacti onFactory
interface to create a new transaction, and uses the returned Control object to retrieve the
Ter mi nat or and Coor di nat or objects.

The client issues requests, some of which involve transactional objects. This example uses explicit
propagation of the context. The Control object reference is passed as an explicit parameter of
the request. It is declared in the OMG IDL of the interface.

transactional _obj ect. do_operation(arg, pgtx);

The transaction originator uses the Term nator object to commit the transaction. The
report_heuristicsargumentissettof al se, sothe Transaction Service makes no reports about
possible heuristic decisions.

t.comit (false);

4.4. Implementing a transactional client

The commit operation of Current or the Ternminator interface takes the boolean
report_heuristics parameter. If the report_heuristics argument is fal se, the commit
operation can complete as soon as the Coor di nat or makes the decision to commit or roll back the
transaction. The application does not need to wait for the Coor di nat or to complete the commit
protocol by informing all the participants of the outcome of the transaction. This can significantly
reduce the elapsed time for the commit operation, especially where participant Resour ce objects
are located on remote network nodes. However, no heuristic conditions can be reported to the
application in this case.

Using the report _heuri sti cs option guarantees that the commit operation does not complete
until the Coor di nat or completes the commit protocol with all Resour ce objects involved in the
transaction. This guarantees that the application is informed of any non-atomic outcomes of the
transaction, through one of the exceptions Heuri sti cM xed or Heuri sti cHazard. However, it
increases the application-perceived elapsed time for the commit operation.

4.5. Implementing a recoverable server

A Recoverable Server includes at least one transactional object and one resource object, each
of which have distinct responsibilities.

55

Chapter 4. Constructing an OT...

4.5.1. Transactional object

The transactional object implements the transactional object's operations and registers a
Resour ce object with the Coor di nat or, so that the Recoverable Server's resources, including
any necessary recovery, can commit.

The Resource object identifies the involvement of the Recoverable Server in a particular
transaction. This requires a Resource object to only be registered in one transaction at a
time. Register a different Resour ce object for each transaction in which a recoverable server
is concurrently involved. A transactional object may receive multiple requests within the scope
of a single transaction. It only needs to register its involvement in the transaction once. The
i s_same_transacti on operation allows the transactional object to determine if the transaction
associated with the request is one in which the transactional object is already registered.

The hash_transacti on operations allow the transactional object to reduce the number of
transaction comparisons it has to make. All Coor di nat or s for the same transaction return the
same hash code. The i s_sane_t r ansact i on operation only needs to be called on Coor di nat or s
with the same hash code as the Coor di nat or of the current request.

4.5.2. Resource object

A Resour ce object participates in the completion of the transaction, updates the resources of the
Recoverable Server in accordance with the transaction outcome, and ensures termination of the
transaction, including across failures.

4.5.3. Reliable servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use the
same interface as a Recoverable Server to ensure application integrity for objects that do not
have recoverable state. In the case of a Reliable Server, the transactional object can register a
Resour ce object that replies Vot eReadOnl y to prepar e if its integrity constraints are satisfied.
It replies Vot eRol | back if it finds a problem. This approach allows the server to apply integrity
constraints which apply to the transaction as a whole, rather than to individual requests to the
server.

4.5.4. Examples

Example 4.3. Reliable server

/*
BankAccountl is an object with internal resources. It inherits from both the
Transacti onal Obj ect and the Resource interfaces:
*/
i nterface BankAccount 1:
CosTransacti ons: : Transacti onal Cbj ect, CosTransacti ons: : Resource

56

Examples

voi d nmakeDeposit (in float ant);

Ji s
/* The correspondi ng Java class is: */
public class BankAccountl1

{
public void nakeDeposit(float ant);

/*

Upon entering, the context of the transaction is inplicitly associated with
the object#s thread. The pseudo obj ect

supporting the Current interface is used to retrieve the Coordinator object
associated with the transaction

*/
voi d makeDeposit (float ant)
{
or g. ong. CosTransactions. Control c;
or g. ong. CosTransact i ons. Coor di nat or co;
c = txn_crt.get_control ();
co = c.get_coordinator();
/*

Before registering the resource the object should check whether it has al ready
been registered for the sane

transaction. This is done using the hash_transaction and is_sane_transaction
operations. that this object registers

itself as a resource. This inposes the restriction that the object may only
be involved in one transaction at a

tinme. This is not the reconmended way for recoverable objects to participate
wi thin transactions, and is only used as an

exanpl e. If nmore parallelismis required, separate resource objects should
be registered for involvenment in the sanme

transacti on.

*/
Recover yCoordi nator r;
r = co.register_resource(this);
/1 performs sone transactional activity |locally
bal ance = bal ance + f;
numtransacti ons++;
/1 end of transactional operation
Jis

57

Chapter 4. Constructing an OT...

Example 4.4. Transactional object

/* A BankAccount2 is an object with external resources that inherits fromthe
Transacti onal Obj ect interface: */
i nterface BankAccount2: CosTransactions:: Transacti onal Obj ect

{

voi d makeDeposit(in float ant);
ik

public class BankAccount 2

{
public void rmakeDeposit(float ant);

}
/*
Upon entering, the context of the transaction is inplicitly associated with the
obj ect#s thread. The nmakeDeposit
operation perforns some transacti onal requests on external, recoverabl e servers.
The objects resl and res2 are
recoverabl e objects. The current transaction context is inplicitly propagated
to these objects.
*/
voi d makeDeposit (float ant)
{
bal ance = resl. get_bal ance(ant);
bal ance = bal ance + ant;
resl. set _bal ance(bal ance);
res2.increnment_numtransactions();
} // end of transactional operation

4.6. Failure models

The Transaction Service provides atomic outcomes for transactions in the presence of application,
system or communication failures. From the viewpoint of each user object role, two types of failure
are relevant:

* Alocal failure, which affects the object itself.

« An external failure, such as failure of another object or failure in the communication with an
object.

The transaction originator and transactional server handle these failures in different ways.

58

Transaction originator

4.6.1. Transaction originator

Local failure
If a Transaction originator fails before the originator issues commi t, the transaction is rolled
back. If the originator fails after issuing commit and before the outcome is reported, the
transaction can either commit or roll back, depending on timing. In this case, the transaction
completes without regard to the failure of the originator.

External failure
Any external failure which affects the transaction before the originator issues conmi t causes
the transaction to roll back. The standard exception Tr ansact i onRol | edBack is raised in the
originator when it issues conmmi t .

If a failure occurs after commit and before the outcome is reported, the client may not be
informed of the outcome of the transaction. This depends on the nature of the failure, and the
use of the report _heuri stics option of conmi t. For example, the transaction outcome is
not reported to the client if communication between the client and the Coor di nat or fails.

A client can determine the outcome of the transaction by using method get _st at us on the
Coor di nat or . However, this is not reliable because it may return the status NoTr ansact i on,
which is ambiguous. The transaction could have committed and been forgotten, or it could
have rolled back and been forgotten.

An originator is only guaranteed to know the transaction outcome in one of two ways.

« if its implementation includes a Resour ce object, so that it can participate in the two-phase
commit procedure.

» The originator and Coor di nat or must be located in the same failure domain.

4.6.2. Transactional server

Local failure
If the Transactional Server fails, optional checks by a Transaction Service implementation
may make the transaction to roll back. Without such checks, whether the transaction rolls
back depends on whether the commit decision is already made, such as when an unchecked
client invokes comni t before receiving all replies from servers.

External failure
Any external failure affecting the transaction during the execution of a Transactional Server
causes the transaction to be rolled back. If the failure occurs while the transactional object’s
method is executing, the failure has no effect on the execution of this method. The method may
terminate normally, returning the reply to its client. Eventually the Tr ansact i onRol | edBack
exception is returned to a client issuing conmmi t .

Recoverable server
Behavior of a recoverable server when failures occur is determined by the two phase commit
protocol between the Coor di nat or and the recoverable server's Resour ce object.

59

Chapter 4. Constructing an OT...

4.7. Summary

When you develop OTS applications which use the raw OTS interfaces, be aware of the following
items:

» Create Resource and Subtransacti onAwar eResour ce objects for each object which will
participate within the transaction or subtransaction. These resources handle the persistence,
concurrency control, and recovery for the object. The OTS invokes these objects during the
prepare, commit, and abort phases of the transaction or subtransaction, and the Resour ces
then perform all appropriate work.

» Register Resour ce and Subt r ansact i onAwar eResour ce objects at the correct time within the
transaction, and ensure that the object is only registered once within a given transaction. As
part of registration, a Resour ce receives a reference to a Recover yCoor di nat or , which must
be made persistent so that recovery can occur in the event of a failure.

« For nested transactions, make sure that any propagation of resources, such as locks
to parent transactions, are done correctly. You also need to manage propagation of
Subt r ansact i onAwar eResour ce objects to parents.

« in the event of failures, drive the crash recovery for each Resour ce which participates within
the transaction.

The OTS does not provide any Resour ce implementations.

60

Chapter 5.

JBossTS interfaces for extending the
OTS

This chapter contains a description of the use of the JBossTS classes you can use to extend
the OTS interfaces. These advanced interfaces are all written on top of the basic OTS engine
described previously, and applications which use them run on other OTS implementations, only
without the added functionality.

Features

AtomicTransaction
Provides a more manageable interface to the OTS transaction than
CosTransactions: : Current. It automatically keeps track of transaction scope, and allows
you to create nested top-level transactions in a more natural manner than the one provided
by the OTS.

Advanced subtransaction-Resource classes
Allow nested transactions to use a two-phase commit protocol. These Resources can also
be ordered within JBossTS, enabling you to control the order in which Resour ces are called
during the commit or abort protocol.

Implicit context propagation between client and server
Where available, JBossTS uses implicit context propagation between client and server.
Otherwise, JBossTS provides an explicit interposition class, which simplifies the work involved
in interposition. The JBossTS API, Transactional Objects for Java (TXOJ), requires either
explicit or implicit interposition. This is even true in a stand-alone mode when using a separate
transaction manager. TXOJ is fully described in the ArjunaCore Development Guide.

@ Note
the extensions to the CosTransactions.idl are located in the
com.arjuna.ArjunaOTS package and the Arj unaOTS. i dl file.

5.1. Nested transactions

The OTS implementation of nested transactions is extremely limited, and can lead to the
generation of inconsistent results. One example is a scenario in which a subtransaction
coordinator discovers part of the way through committing that a resources cannot commit. It may
not be able to tell the committed resources to abort.

In most transactional systems which support subtransactions, the subtransaction commit protocol
is the same as a top-level transaction’s. There are two phases, a pr epar e phase and a commi t

61

Chapter 5. JBossTS interfaces...

or abort phase. Using a multi-phase commit protocol avoids the above problem of discovering
that one resources cannot commit after others have already been told to commit. The prepare
phase generates consensus on the commit outcome, and the conmi t or abort phase enforces
the outcome.

JBossTS supports the strict OTS implementation of subtransactions for those resources derived
from CosTransacti ons: : Subtransacti onAwar eResour ce. However, if a resource is derived
from Arj unaOTS: : Arj unaSubt r anAwar eResour ce, it is driven by a two-phase commit protocol
whenever a nested transaction commits.

Example 5.1. ArjunaSubtranAwareResource

i nterface ArjunaSubtranAwar eResource :
CosTransacti ons: : Subtransacti onAwar eResour ce

CosTransactions:: Vote prepare_subtransaction ();

During the first phase of the commit protocol the prepare_subt ransacti on method is called,
and the resource behaves as though it were being driven by a top-level transaction, making any
state changes provisional upon the second phase of the protocol. Any changes to persistent
state must still be provisional upon the second phase of the top-level transaction, as well. Based
on the votes of all registered resources, JBossTS then calls either commi t _subt r ansacti on or

rol | back_subtransacti on.

@ Note
This scheme only works successfully if all resources registered within a given
subtransaction are instances of the Arj unaSubt r anAwar eResour ce interface, and
that after a resource tells the coordinator it can prepare, it does not change its mind.

5.2. Extended resources

When resources are registered with a transaction, the transaction maintains them within a list,
called the intentions list. At termination time, the transaction uses the intentions list to drive each
resource appropriately, to commit or abort. However, you have no control over the order in which
resources are called, or whether previously-registered resources should be replaced with newly
registered resources. The JBossTS interface Arj unaOTS: : OTSAbst r act Record gives you this
level of control.

Example 5.2. OTSAbstractRecord

i nterface OTSAbstract Record : ArjunaSubtranAwar eResource

62

Extended resources

{
readonly attribute | ong typeld;
readonly attribute string uid;
bool ean propagat eOnAbort ();
bool ean propagateOnCommit ();
bool ean saveRecord ();
voi d nerge (in OTSAbstractRecord record);
void alter (in OTSAbstractRecord record);
bool ean shoul dAdd (in OTSAbstract Record record);
bool ean shoul dAI'ter (in OTSAbstractRecord record);
bool ean shoul dverge (in OTSAbstract Record record);
bool ean shoul dRepl ace (in OISAbstract Record record);
i
typeld returns the record type of the instance. This is one of the values
of the enumerated type Record_type.
uid a stringified Uid for this record.
propagateOnAbort by default, instances of OTSAbstractRecord should not be
propagated to the parent transaction if the current transaction
rolls back. By returning TRUE, the instance will be propagated.
propagateOnCommit returning TRUE from this method causes the instance to be
propagated to the parent transaction if the current transaction
commits. Returning FALSE disables the propagation.
saveRecord returning TRUE from this method causes JBossTS to try to save
sufficient information about the record to persistent state during
commit, so that crash recovery mechanisms can replay the
transaction termination in the event of a failure. If FALSE is
returned, no information is saved.
merge used when two records need to merge together.
alter used when a record should be altered.
shouldAdd returns t r ue ii the record should be added to the list, f al se if it
should be discarded.
shouldMerge returns t r ue if the two records should be merged into a single
record, f al se otherwise.
shouldReplace returns t r ue if the record should replace an existing one, f al se

otherwise.

When inserting a new record into the transaction’s intentions list, JBossTS uses the following
algorithm:

63

Chapter 5. JBossTS interfaces...

1. if a record with the same type and uid has already been inserted, then the methods shoul dAdd,
and related methods, are invoked to determine whether this record should also be added.

2. If no such match occurs, then the record is inserted in the intentions list based on the t ype
field, and ordered according to the uid. All of the records with the same type appear ordered
in the intentions list.

OTSAbst ract Recor d is derived from Arj unaSubt r anAwar eResour ce. Therefore, all instances of
OTSAbst r act Recor d inherit the benefits of this interface.

5.3. AtomicTransaction

In terms of the OTS, At oni cTransact i on is the preferred interface to the OTS protocol engine.
It is equivalent to CosTransacti ons: : Current, but with more emphasis on easing application
development. For example, if an instance of At oni cTr ansact i on goes out of scope before it is
terminates, the transaction automatically rolls back. CosTr ansacti ons: : Current cannot provide
this functionality. When building applications using JBossTS, use At oni cTransact i on for the
added benefits it provides. It is located in the com.arjuna.ats.jts.extensions.ArjunaOTS package.

Example 5.3. AtomicTransaction

public class Atom cTransaction

{
public Atom cTransaction ();
public void begin () throws SystenException, Subtransacti onsUnavail abl e,
NoTr ansacti on;
public void commit (boolean report_heuristics) throws SystenException,
NoTransacti on, HeuristicM xed,
Heuri sti cHazard, Transacti onRol | edBack;
public void rollback () throws SystenException, NoTransacti on;
public Control control () throws SystenException, NoTransaction;
public Status get_status () throws SystenException;
/[* Allow action commt to be supressed */
public void rollbackOnly () throws SystenException, NoTransacti on;
public void registerResource (Resource r) throws SystenException, |nactive;
public void
regi st er Subt ransact i onAwar eResour ce (Subtransacti onAwar eResour ce)
t hrows SystenException, Not Subtransacti on;
public void
regi st er Synchroni zati on(Synchroni zati on s) throws SystenException,
| nacti ve;
)i

Table 5.1. AtomicTransaction's Methods

begin Starts an action

64

Context propagation issues

commit Commits an action

rollback Abort an action

Transaction nesting is determined dynamically. Any transaction started within the scope of another
running transaction is nested.

The TopLevel Transaction class, which is derived from AtonicTransaction, allows
creation of nested top-level transactions. Such transactions allow non-serializable and
potentially non-recoverable side effects to be initiated from within a transaction, so use
them with caution. You can create nested top-level transactions with a combination of
the CosTransactions:: Transacti onFactory and the suspend and resunme methods of
CosTransacti ons: : Current. However, the TopLevel Tr ansact i on class provides a more user-
friendly interface.

AtomicTransaction and ToplLevel Transaction are completely compatible with
CosTransacti ons: : Current. You an use the two transaction mechanisms interchangeably within
the same application or object.

At omi cTransacti on and TopLevel Transacti on are similar to CosTransactions:: Current.
They both simplify the interface between you and the OTS. However, you gain two advantages
by using At oni cTr ansact i on or TopLevel Transacti on.

« The ability to create nested top-level transactions which are automatically associated with the
current thread. When the transaction ends, the previous transaction associated with the thread,
if any, becomes the thread’s current transaction.

« Instances of At omi cTr ansact i on track scope, and if such an instance goes out of scope before
it is terminated, it is automatically aborted, along with its children.

5.4. Context propagation issues

When using TXOJ in a distributed manner, JBossTS requires you to use interposition between
client and object. This requirement also exists if the application is local, but the transaction
manager is remote. In the case of implicit context propagation, where the application object
is derived from CosTransacti ons:: Transacti onal Obj ect, you do not need to do anything
further. JBossTS automatically provides interposition. However, where implicit propagation is not
supported by the ORB, or your application does not use it, you must take additional action to
enable interposition.

The classcom arjuna. ats.jts. Explicitlnterposition allowsan application to create a local
control object which acts as a local coordinator, fielding registration requests that would normally
be passed back to the originator. This surrogate registers itself with the original coordinator, so
that it can correctly participate in the commit protocol. The application thread context becomes
the surrogate transaction hierarchy. Any transaction context currently associated with the thread
is lost. The interposition lasts for the lifetime of the explicit interposition object, at which point the
application thread is no longer associated with a transaction context. Instead, it is setto nul | .

65

Chapter 5. JBossTS interfaces...

interposition is intended only for those situations where the transactional object and the transaction
occur within different processes, rather than being co-located. If the transaction is created locally
to the client, do not use the explicit interposition class. The transaction is implicitly associated with
the transactional object because it resides within the same process.

Example 5.4. Explicitinterposition

public class Explicitlnterposition

{
public Explicitlnterposition ();
public void registerTransaction (Control control) throws InterpositionFailed,
public void unregisterTransaction () throws |nvalidTransacti on,
Syst enExcepti on;
b

A transaction context can be propagated between client and server in two ways: either as a
reference to the client’s transaction Control, or explicitly sent by the client. Therefore, there are two
ways in which the interposed transaction hierarchy can be created and registered. For example,
consider the class Example which is derived from LockManager and has a method increment:

Example 5.5. Explicitinterposition Example

publi ¢ bool ean increnment (Control control)

{
Explicitlnterposition inter = new Explicitlnterposition();
try
{
inter.registerTransaction(control);
}
catch (Exception e)
{
return fal se;
}
/] do real work
inter.unregisterTransaction(); // should catch exceptions!
/1 return val ue dependant upon outcone
}

66

Syst enExcept i

Context propagation issues

if the Control passed to the register operation of Explicitlnterposition is null, no
exception is thrown. The system assumes that the client did not send a transaction context to the
server. A transaction created within the object will thus be a top-level transaction.

When the application returns, or when it finishes with the interposed hierarchy, the program should
call unr egi st er Transact i on to disassociate the thread of control from the hierarchy. This occurs
automatically when the Expl i ci t | nt er posi ti on object is garbage collected. However, since this
may be after the transaction terminates, JBossTS assumes the thread is still associated with the
transaction and issues a warning about trying to terminate a transaction while threads are still
active within it.

67

68

Chapter 6.

Example

This example illustrates the concepts and the implementation details for a simple client/server
example using implicit context propagation and indirect context management.

6.1. The basic example

This example only includes a single unit of work within the scope of the transaction. consequently,
only a one-phase commit is needed.

The client and server processes are both invoked using the inplicit propagation and
i nt er posi ti on command-line options.

For the purposes of this worked example, a single method implements the Denvol nterface
interface. This method is used in the DemoClient program.

Example 6.1. idl interface

#i ncl ude <idl/CosTransactions.idl >
#pragma j avaPackage ""

nodul e Deno

{
exception DenpException {};
interface Denolnterface : CosTransactions:: Transacti onal Cbj ect
{
voi d work() raises (DenpException);
15
b

6.1.1. Example implementation of the interface
This section deals with the pieces needed to implement the example interface.
6.1.1.1. Resource

The example overrides the methods of the Resour ce implementation class. The DenoResour ce
implementation includes the placement of Syst em out. pri nt| n statements at judicious points,
to highlight when a particular method is invoked.

Only a single unit of work is included within the scope of the transaction. Therefore, the pr epar e or
conmi t methods should never be invoked, but the conmi t _one_phase method should be invoked.

69

Chapter 6. Example

Example 6.2. DemoResource

1 i mport org.ong. CosTransacti ons. *;

2 i mport org.ong. CORBA . Syst enExcepti on;

3

4 public class DenpbResource extends org.ong. CosTransacti ons . Resour cePOA
5 {

6 public Vote prepare() throws HeuristicM xed, HeuristicHazard,
7 Syst enExcepti on

8 {

9 System out. println("prepare called");

10

11 return Vote. VoteComit;

12 }

13

14 public void rollback() throws HeuristicCommit, HeuristicM xed,
15 Heuri sticHazard, SystenException

16 {

17 System out. println("roll back called");

18 }

19

20 public void commit() throws NotPrepared, HeuristicRoll back,
21 Heuri sticM xed, HeuristicHazard, SystenmException

22 {

23 Systemout.println("commit called");

24 }

25

26 public void commit_one_phase() throws HeuristicHazard, SystenmException
27 {

28 Systemout. println("conmmit_one_phase called");

29 }

30

31 public void forget() throws SystenException

32 {

33 Systemout.println("forget called");

34 }

35 }

6.1.1.2. Transactional implementation

At this stage, the Denp. i dl has been processed by the ORB'’s idl compiler to generate the
necessary client and server package.

Line 14 returns the transactional context for the Cur r ent pseudo object. After obtaining a Cont r ol
object, you can derive the Coordinator object (line 16).

70

Example implementation of the interface

Lines 17 and 19 create a resource for the transaction, and then inform the ORB that the resource
is ready to receive incoming method invocations.

Line 20 uses the Coordi nator to register a DenpResour ce object as a participant in the
transaction. When the transaction terminates, the resource receives requests to commit or rollback
the updates performed as part of the transaction.

Example 6.3. Transactional implementation

1 i nport Deno. *;

2 i mport org.ong. CosTransacti ons. *;

3 import comarjuna.ats.jts.*;

4 i mport com arjuna.orbportability.*;

5]

6 public class Denol npl emrent ati on ext ends Deno. Denpl nt er f acePCA
7 {

8 public void work() throws DenpbException

9 {

10 try

11 {

12

13 Control control = OTSManager.get_current().get_control ();
14

15 Coordi nator coordi nator = control.get_coordi nator();
16 DenmoResour ce resource = new DenpResource();

17

18 ORBManager . get POA() . obj ect | sReady(resource);

19 coordi nator.regi ster_resource(resource);

20

21 }

22 catch (Exception e)

23 {

24 t hr ow new DenpbException();

25 }

26 }

27

28 }

6.1.1.3. Server implementation
First, you need to to initialize the ORB and the POA. Lines 10 through 14 accomplish these tasks.

The servant class Denol npl enment at i on contains the implementation code for the Denol nt er f ace
interface. The servant services a particular client request. Line 16 instantiates a servant object for
the subsequent servicing of client requests.

Once a servant is instantiated, connect the servant to the POA, so that it can recognize the
invocations on it, and pass the invocations to the correct servant. Line 18 performs this task.

71

Chapter 6. Example

Lines 20 through to 21 registers the service through the default naming mechanism. More
information about the options available can be found in the ORB Portability Guide.

If this registration is successful, line 23 outputs a sani ty check message.

Finally, line 25 places the server process into a state where it can begin to accept requests from
client processes.

Example 6.4. DemoServer

1 i mport java.io.*;

2 i mport com arjuna.orbportability.*;

3

4 public class DenpServer

5 {

6 public static void nain (String[] args)

7 {

8 try

9 {

10 ORB myORB = ORB. getlnstance("test").initORB(args, null);
11 Root OA nyQA = QA get Root CA(nmyORB) . myORB. i ni t OA() ;
12

13 ORBManager . set ORB(myORB) ;

14 ORBManager . set POA(myQA) ;

15

16 Denol npl enent ati on obj = new Denol npl enent ati on();
17

18 my QA. obj ect | sReady(obj);

19

20 Servi ces serv = new Services(nmyORB);

21 serv.registerServi ce(myOA. corbaRef erence(obj), "DenoObj Reference",
22

23 System out . printl n("Cbject published.");

24

25 myQA. run();

26 }

27 catch (Exception e)

28 {

29 Systemerr.println(e);

30 }

31 }

32}

After the server compiles, you can use the command line options defined below to start a server
process. By specifying the usage of a filter on the command line, you can override settings in the

Transacti onServi ce. properti es file.

72

nul I');

Example implementation of the interface

@ Note
if you specify the interposition filter, you also imply usage of implicit context
propagation.

6.1.1.4. Client implementation

The client, like the server, requires you to first initialize the ORB and the POA. Lines 14 through
18 accomplish these tasks.

After a server process is started, you can obtain the object reference through the default
publication mechanism used to publish it in the server. This is done in lines 20 and 21. Initially the
reference is an instance of Cbj ect . However, to invoke a method on the servant object, you need
to narrow this instance to an instance of the Denol nt er f ace interface. This is shown in line 21.

Once we have a reference to this servant object, we can start a transaction (line 23), perform a
unit of work (line 25) and commit the transaction (line 27).

Example 6.5. DemoClient

1 i mport Denp. *;

2 import java.io.*;

3 i mport com arjuna.orbportability.*;

4 inmport comarjuna.ats.jts.*;

5 i mport org.ong. CosTransacti ons. *;

6 i nport org.ong.*;

7

8 public class Denod i ent

9 {

10 public static void main(String[] args)

11 {

12 try

13 {

14 ORB nyORB = ORB. getlnstance("test").initORB(args, null);
15 Root OA nyQA = QA get Root CA(nmyORB) . myORB. i ni t OA() ;
16

17 ORBManager . set ORB(myORB) ;

18 ORBManager . set POA(myQA) ;

19

20 Servi ces serv = new Servi ces(nmyORB);

21 Dermol nterface d = (Denol nterface) DenolnterfaceHel per.narrow serv. get Service("'
22

23 OTS. get _current (). begin();

24

25 d. work();

26

73

Chapter 6. Example

27 OrS.get _current().commt(true);
28 }

29 catch (Exception e)

30 {

31 Systemerr.println(e);

32 }

33 }

34 }

6.1.1.5. Sequence diagram

The sequence diagram illustrates the method invocations that occur between the client and server.
The following aspects are important:

* You do not need to pass the transactional context as a parameter in method wor k, since you
are using implicit context propagation.

» Specifying the use of interposition when the client and server processes are started, by using
appropriate filters and interceptors, creates an interposed coordinator that the servant process
can use, negating any requirement for cross-process invocations. The interposed coordinator
is automatically registered with the root coordinator at the client.

« The resource that commits or rolls back modifications made to the transactional object is
associated, or registered, with the interposed coordinator.

» The conmi t invocation in the client process calls the root coordinator. The root coordinator calls
the interposed coordinator, which in turn calls the conmi t _one_phase method for the resource.

74

Example implementation of the interface

SERVER PROCESS

CLIENT PROCESS

Den

i Coad.

hte

;

j 2Cument

Demoimplementation

The: intaposed coondnaor & crede
biythe appropriate fransaction ser

ikernter cephor.

Contrl

Transadion Fackon

implidt confed propagation

The tramsactional caited does not reed tabe passal

aparamets inthe work) mehiod, as we areusing

worl]

cbj 1ICurrent

DemCient

|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|

mator |

]
|
|
|
(=1} er_rﬁc* e TEsou I g

!
|
I
ommit_one_phase]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g
|

T
1
I
I
|
I
I
I
|
I
I
I
1
I
I
I
|
I
I
I
|
I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
1
| N
_rune_pmu__l

b

_ph

Commit_one

:
|
g
|
|
|
M
|
:

75

Chapter 6. Example

6.1.1.6. Interpretation of output

The server process first stringifies the servant instance, and writes the servant IOR to a temporary
file. The first line of output is the sanity check that the operation was successful.

In this simplified example, the coordinator object has only a single registered resource.
Consequently, it performs a conmi t _one_phase operation on the resource object, instead of
performing a pr epar e operation, followed by a cormi t orrol | back.

The output is identical, regardless of whether implicit context propagation or interposition is
used, since interposition is essentially performance aid. Ordinarily, you may need to do a lot of
marshaling between a client and server process.

Example 6.6. Server output

Obj ect reference witten to file
conmi t _one_phase cal |l ed

6.2. Default settings

These settings are defaults, and you can override them at run-time by using property variables,
or in the properties file in the et ¢/ directory of the installation.

* Unless a CORBA object is derived from CosTransacti ons: : Transact i onal Obj ect ,you do
not need to propagate any context. In order to preserve distribution transparency, JBossTS
defaults to always propagating a transaction context when calling remote objects, regardless
of whether they are marked as transactional objects. You can override this by setting the
com arjuna. ats.jts. al waysPropagat eCont ext property variable to NO.

« If an object is derived from CosTr ansacti ons: : Transact i onal Qbj ect, and no client context
is present when an invocation is made, JBossTS transmits a null context. Subsequent
transactions begun by the object are top-level. If a context is required, then set the
com arjuna. ats.jts. needTranCont ext property variable to YES, in which case JBossTS
raises the Tr ansact i onRequi r ed exception.

« JBossTS needs a persistent object store, so that it can record information about
transactions in the event of failures. If all transactions complete successfully, this
object store has no entries. The default location for this must be set using the
Qbj ect St or eEnvi r onnent Bean. obj ect St or eDi r variable in the properties file.

« If you wuse a separate transaction manager for Current, its location is
obtained from the CosServices.cfg file. CosServices.cfg is located at runtime
by the O bPortabilityEnvironmentBean properties initial ReferencesRoot and
i ni tial Ref erencesFi | e. The former is a directory, defaulting to the current working directory.
The latter is a file name, relative to the directory. The default value is CosSer vi ces. cf g.

76

Default settings

» Checked transactions are not enabled by default. This means that threads other than the
transaction creator may terminate the transaction, and no check is made to ensure all
outstanding requests have finished prior to transaction termination. To override this, set the
JTSEnvi r onment Bean. checkedTr ansact i ons property variable to YES.

if a value of 0 is specified for the timeout of a top-level transaction, or no timeout is specified,
JBossTS does not impose any timeout on the transaction. To override this default timeout, set
the Coor di nat or Envi r onment Bean. def aul t Ti meout property variable to the required timeout
value in seconds.

77

78

Chapter 7.

Failure Recovery

The failure recovery subsystem of JBossTS ensure that results of a transaction are applied
consistently to all resources affected by the transaction, even if any of the application processes
or the hardware hosting them crash or lose network connectivity. In the case of hardware crashes
or network failures, the recovery does not take place until the system or network are restored,
but the original application does not need to be restarted. Recovery is handled by the Recovery
Manager process. For recover to take place, information about the transaction and the resources
involved needs to survive the failure and be accessible afterward. This information is held in the
Acti onSt ore , which is part of the (bj ect Store . If the Qbj ect St or e is destroyed or modified,
recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction which was in
progress at the time of the failure may be inaccessible. Database resources may report this as
as tables or rows held by in-doubt transactions . For TXOJ resources, an attempt to activate the
Transactional Object, such as when trying to get a lock, fails.

7.1. Configuring the failure recovery subsystem for
your ORB

Although some ORB-specific configuration is necessary to configure the ORB sub-system, the
basic settings are ORB-independent. The configuration which applies to JBossTS is in the
Recover yManager - properties. xm file andthe orportability-properties.xnl file. Contents
of each file are below.

Example 7.1. RecoverManager-properties.xml

<entry key="RecoveryEnvironnent Bean. recoveryActi vat or Cl assNanes" >
comarjuna.ats.internal.jts.orbspecific.recovery. RecoveryEnabl enent
</entry>

Example 7.2. orportability-properties.xml

/="com arj una. or bporttrgbi l i ty. orb. PostInit2">com arjuna.ats.internal.jts.recovery. Recoverylnit</
entry>

These entries cause instances of the named classes to be loaded. The named classes then
load the ORB-specific classes needed and perform other initialization. This enables failure
recovery for transactions initiated by or involving applications using this property file. The
default Recover yManager - properti es. xnl file and or portability-properties.xm with the
distribution include these entries.

79

Chapter 7. Failure Recovery

Important

Failure recovery is NOT supported with the JavalDL ORB that is part of JDK.
Failure recovery is supported for JacOrb only.

To disable recovery, remove or comment out the Recover yEnabl enent line in the property file.
7.2. JTS specific recovery

7.2.1. XA resource recovery

Recovery of XA resources accessed via JDBC is handled by the XARecover yMdul e . This module
includes both transaction-initiated and resource-initiated recovery.

« Transaction-initiated recovery is possible where the particular transaction branch progressed
far enough for a JTA_Resour ceRecor d to be written in the ObjectStore. The record contains
the information needed to link the transaction to information known by the rest of JBossTS in
the database.

» Resource-initiated recovery is necessary for branches where a failure occurred after the
database made a persistent record of the transaction, but before the JTA Resour ceRecord
was written. Resource-initiated recovery is also necessary for datasources for which it is
impossible to hold information in the JTA Resour ceRecor d that allows the recreation in the
RecoveryManager of the XAConnect i on or XAResour ce used in the original application.

Transaction-initiated recovery is automatic. The XARecoveryMdule finds the
JTA_Resour ceRecor d which needs recovery, using the two-pass mechanism described above.
It then uses the normal recovery mechanisms to find the status of the transaction the resource
was involved in, by running r epl ay_conpl et i on onthe Recover yCoor di nat or for the transaction
branch. Next, it creates or recreates the appropriate XAResour ce and issues commi t orrol | back
on it as appropriate. The XAResource creation uses the same database name, username,
password, and other information as the application.

Resource-initiated recovery must be specifically configured, by supplying the Recover yManager
with the appropriate information for it to interrogate all the XADataSources accessed
by any JBossTS application. The access to each XADataSource is handled
by a class that implements the comarjuna.ats.jta.recovery. XAResour ceRecovery
interface. Instances of this class are dynamically loaded, as controlled by property
JTAEnvi r onment Bean. xaResour ceRecover yl nst ances .

The XARecover yMdul e uses the XAResour ceRecovery implementation to get an XAResour ce
to the target datasource. On each invocation of peri odi cWrkSecondPass , the recovery
module issues an XAResour ce. recover request. This request returns a list of the transaction
identifiers that are known to the datasource and are in an in-doubt state. The list of these in-
doubt Xids is compared across multiple passes, using peri odi cWr kSecondPass- es . Any Xid
that appears in both lists, and for which no JTA Resour ceRecord is found by the intervening

80

XA resource recovery

transaction-initiated recovery, is assumed to belong to a transaction involved in a crash before
any JTA Resource_Record was written, and a rol | back is issued for that transaction on the
XAResour ce .

This double-scan mechanism is used because it is possible the Xid was obtained from the
datasource just as the original application process was about to create the corresponding
JTA ResourceRecord. The interval between the scans should allow time for the record to be
written unless the application crashes (and if it does, rollback is the right answer).

An XAResour ceRecovery implementation class can contain all the information needed to perform
recovery to a specific datasource. Alternatively, a single class can handle multiple datasources
which have some similar features. The constructor of the implementation class must have an
empty parameter list, because it is loaded dynamically. The interface includes an initialise
method, which passes in further information as a string . The content of the string is taken from
the property value that provides the class name. Everything after the first semi-colon is passed as
the value of the string. The XAResour ceRecovery implementation class determines how to use
the string.

An XAResour ceRecovery implementation class,
com arjuna. ats.internal.jdbc.recovery. Basi cXARecovery , supports resource-initiated
recovery for any XADataSource. For this class, the string received in method initialise is
assumed to contain the number of connections to recover, and the name of the properties file
containing the dynamic class name, the database username, the database password and the
database connection URL. The following example is for an Oracle 8.1.6 database accessed via
the Sequelink 5.1 driver:

XAConnect i onRecover yEnpay=com arj una. ats. i nternal . j dbc. recovery. Basi cXARecovery; 2; Or aRecover:

This implementation is only meant as an example, because it relies upon usernames
and passwords appearing in plain text properties files. You can create your own
implementations of XAConnecti onRecovery . See the javadocs and the example
com.arjuna.ats.internal.jdbc.recovery.BasicXARecovery .

Example 7.3. XAConnectionRecovery implementation

* Copyright (C) 2000, 2001,

* Hewl ett - Packar d,

* Arjuna Labs,

* Newcast| e upon Tyne,
* Tyne and War,

* UK

81

Chapter 7. Failure Recovery

*
/
package com arjuna.ats.internal.jdbc.recovery;

i mport com arjuna. ats. jdbc. Transacti onal Dri ver;
i mport com arjuna. ats.jdbc. common. j dbcPropertyManager ;
i mport com arjuna. ats. jdbc. | oggi ng.jdbcLogger;

i mport com arjuna.ats.internal.jdbc.*;

i mport com arjuna.ats.jta.recovery. XAConnecti onRecovery;
i mport com arj una. ats. arj una. conmon. *;

i mport com arj una. conmon. util .| oggi ng. *;

i mport java.sql.?*;

i mport javax.sql.*;

i mport javax.transaction.*;

i mport javax.transaction. xa. *;
i mport java.util.*;

i mport java.l ang. Nurmber For mat Excepti on

/**

* This class inplenents the XAConnecti onRecovery interface for XAResources.

* The parameter supplied in setParanmeters can contain arbitrary information

* necessary to initialise the class once created. In this instance it contains
* the nane of the property file in which the db connection information is

* specified, as well as the nunber of connections that this file contains

* informati on on (separated by ;).

* | MPORTANT: this is only an *exanpl e* of the sorts of things an

* XAConnecti onRecovery inplenmentor could do. This inplenentation uses

* a property file which is assuned to contain sufficient information to

* recreate connections used during the normal run of an application so that

* we can performrecovery on them It is not recommended that information such
* as user nane and password appear in such a raw text format as it opens up

* a potential security hole

* The db paraneters specified in the property file are assuned to be
* in the format:

* DB x_Dat abaseURL=

* DB _x_Dat abaseUser =

* DB _x_Dat abasePasswor d=

* DB_x_Dat abaseDynam cCl ass=

* DB_JNDI _x_Dat abaseURL=
* DB_JNDI _x_Dat abaseUser =
* DB JNDI _x_ Dat abasePasswor d=

* where x is the nunber of the connection information.

82

XA resource recovery

*

* @ince JTS 2.1.
*/

public class Basi cXARecovery inpl ements XAConnecti onRecovery
{
/*
* Some XAConnectionRecovery inplenentations will do their startup work
* here, and then do little or nothing in setDetails. Since this one needs
* to know dynam c cl ass nane, the constructor does not hing.
*/
publ i c Basi cXARecovery () throws SQLException
{
nunber Of Connecti ons = 1;
connectionl ndex = 0;
props = null;

/**

* The recovery nodul e will have chopped off this class nanme already.
* The paraneter should specify a property file fromwhich the url,

* user nane, password, etc. can be read.

*/

public boolean initialise (String paranmeter) throws SQ.Exception

{
i nt breakPosition = paraneter.indexCO (BREAKCHARACTER) ;

String fileNane = paraneter;

if (breakPosition !'= -1)
{
fileName = paraneter.substring(0, breakPosition -1);
try
{
nunber Of Connecti ons = | nteger. parsel nt (paraneter. substring(breakPositi
}
catch (Number For mat Excepti on e)
{
[/ Produce a Warni ng Message
return fal se;
}

Pr opert yManager . addProperti esFil e(fil eNane);

try

Pr opert yManager. | oadProperti es(true);

83

Chapter 7. Failure Recovery

props = PropertyManager. getProperties();

}
catch (Exception e)
{
[/ Produce a Warni ng Message
return fal se;
}

return true;

publi ¢ synchroni zed XAConnecti on get Connection () throws SQ.Exception
{

JDBC2Recover yConnecti on conn = nul | ;
i f (hasMoreConnections())
{
connecti onl ndex++;

conn = get St andar dConnecti on();

if (conn == null)
conn = get JNDI Connecti on();

if (conn == null)
/1 Produce a Warni ng nessage
}
return conn;
}
publi ¢ synchroni zed bool ean hasMreConnections ()
{
i f (connectionl ndex == nunber Of Connect i ons)
return fal se;
el se
return true;
}

private final JDBC2RecoveryConnecti on get StandardConnection () throws SQLException
{

String nunber = new String(""+connectionl ndex);

String url = new String(dbTag+nunber +url Tag) ;

String password = new String(dbTag+nunber +passwor dTag) ;

String user = new String(dbTag+nunber +user Tag) ;

String dynani cCl ass = new String(dbTag+nunber +dynani cCl assTag) ;
Properties dbProperties = new Properties();

84

XA resource recovery

String theUser = props.getProperty(user);
String thePassword = props. get Property(password);

if (theUser !'= null)

{
dbProperti es. put (Arj unaJDBC2Dri ver . user Nane, theUser);
dbProperties. put (Arj unaJDBC2Dri ver. password, thePassword);
String dc = props. get Property(dynam cC ass);
if (dc !'= null)

dbProperties. put (Arj unaJDBC2Dri ver. dynamni cC ass, dc);

return new JDBC2RecoveryConnection(url, dbProperties);

}

el se
return null;

private final JDBC2RecoveryConnecti on get JNDI Connection () throws SQLExcepti on

{

pri
pri
pr
pri
pri
pri
pr
pri
pri

/*

String nunber = new String(""+connectionl ndex);

String url = new String(dbTag+j ndi Tag+nunber +ur| Tag) ;

String password = new String(dbTag+j ndi Tag+nunber +passwor dTag) ;
String user = new String(dbTag+j ndi Tag+nunber +user Tag) ;
Properties dbProperties = new Properties();

String theUser = props.getProperty(user);

String thePassword = props. get Property(password);

if (theUser !'= null)

{
dbProperties. put (Arj unaJDBC2Dri ver. user Nane, theUser);
dbProperti es. put (Arj unaJDBC2Dri ver. password, thePassword);
return new JDBC2Recover yConnection(url, dbProperties);
}
el se
return null;
vate int nunber Of Connecti ons;
vate int connect i onl ndex;

vate Properties props;
vate static final String dbTag = "DB_";

vate static final String urlTag = "_Dat abaseURL";

vate static final String passwordTag = "_Dat abasePassword";

vate static final String userTag = "_Dat abaseUser";

vate static final String dynam cd assTag = "_Dat abaseDynam cCl ass";
vate static final String jndi Tag = "JNDI _";

85

Chapter 7. Failure Recovery

* Exanpl e:

* DB2_Dat abaseURL=j dbc\ : arj una\ : sequel i nk\://qa02\: 20001
* DB2_Dat abaseUser =t est er 2

* DB2_Dat abasePasswor d=t est er

* DB2_Dat abaseDynam cC ass=

* com arjuna.ats.internal.jdbc.drivers.sequelink 5 1

* DB_JNDI _Dat abaseURL=j dbc\: arj una\:j ndi
* DB _JNDI _Dat abaseUser=testerl

* DB _JNDI _Dat abasePasswor d=t est er

* DB_JNDI _Dat abaseNanme=enpay

* DB _JNDI _Host =qa02

* DB_JNDI _Port =20000

*/

private static final char BREAKCHARACTER = ';'; // delimter for paraneters

7.2.2. Recovery behavior

Property OTS_I SSUE_RECOVERY_ROLLBACK controls whether the RecoveryManager explicitly
issues a rollback request when repl ay_conpl et i on asks for the status of a transaction that is
unknown. According to the pr esune- abort mechanism used by OTS and JTS, the transaction
can be assumed to have rolled back, and this is the response that is returned to the Resour ce
, including a subordinate coordinator, in this case. The Resour ce should then apply that result
to the underlying resources. However, it is also legitimate for the superior to issue a rollback, if
OTS_| SSUE_RECOVERY_ROLLBACK is set to YES .

The OTS transaction identification mechanism makes it possible for a transaction coordinator to
hold a Resour ce reference that will never be usable. This can occur in two cases:

» The process holding the Resour ce crashes before receiving the commit or rollback request from
the coordinator.

86

Expired entry removal

» The Resour ce receives the commit or rollback, and responds. However, the message is lost or
the coordinator process has crashed.

In the first case, the Recover yManager for the Resour ce Qbj ect St or e eventually reconstructs a
new Resour ce (with a different CORBA object reference (IOR), and issues ar epl ay_conpl eti on
request containing the new Resour ce IOR. The Recover yManager for the coordinator substitutes
this in place of the original, useless one, and issues conmi t to the new reconstructed Resour ce
. The Resour ce has to have been in a commit state, or there would be no transaction intention
list. Until the repl ay_conpl et i on is received, the Recover yManager tries to send commi t to its
Resour ce reference.—This will fail with a CORBA System Exception. Which exception depends
on the ORB and other details.

In the second case, the Resour ce no longer exists. The Recover yManager at the coordinator will
never get through, and will receive System Exceptions forever.

The Recover yManager cannot distinguish these two cases by any protocol mechanism. There is
a perceptible cost in repeatedly attempting to send the commit to an inaccessible Resource . In
particular, the timeouts involved will extend the recovery iteration time, and thus potentially leave
resources inaccessible for longer.

To avoid this, the Recover yManager only attempts to send conmi t to a Resour ce a limited number
of times. After that, it considers the transaction assumed complete . It retains the information about
the transaction, by changing the object type in the Acti onSt or e , and if the Resour ce eventually
does wake up and a repl ay_conpl eti on request is received, the Recover yManager activates
the transaction and issues the commit request to the new Resource IOR. The number of times
the Recover yManager attempts to issue conmi t as part of the periodic recovery is controlled by
the property variable COMM TTED_TRANSACTI ON_RETRY_LI M T, and defaults to 3 .

7.2.3. Expired entry removal

The operation of the recovery subsystem causes some entries to be made in the Qbj ect Store
that are not removed in normal progress. The RecoveryManager has a facility for scanning
for these and removing items that are very old. Scans and removals are performed by
implementations of the >com arj una. ats. arj una. recovery. Expi ryScanner . Implementations
of this interface are loaded by giving the class names as the value of the property
Recover yEnvi r onnent Bean. expi r yScanner Cl assNanes . The Recover yManager calls the scan
method on each loaded Expi r yScanner implementation at an interval determined by the property
Recover yEnvi r onnent Bean. expi ryScanl nt er val . This value is given in hours, and defaults to
12 . A property value of 0 disables any expiry scanning. If the value as supplied is positive, the
first scan is performed when Recover yManager starts. If the value is negative, the first scan is
delayed until after the first interval, using the absolute value.

There are two kinds of item that are scanned for expiry:

Contact items One contact item is created by every application process that uses JBossTS.
They contain the information that the Recover yManager uses to determine
if the process that initiated the transaction is still alive, and what the

87

Chapter 7. Failure Recovery

transaction status is. The expiry time for these is set by the property
Recover yEnvi ronnent Bean. t r ansact i onSt at usManager Expi ryTi e ,
which is expressed in hours. The defaultis 12, and 0 suppresses the expiration.
This is the interval after which a process that cannot be contacted is considered
to be dead. It should be long enough to avoid accidentally removing valid
entries due to short-lived transient errors such as network downtime.

Assumed complete
transactions

The expiry time is counted from when the transactions were assumed
to be complete. A replay_conpl etion request resets the clock. The
risk with removing assumed complete transactions it that a prolonged
communication outage means that a remote Resource cannot connect to
the RecoveryManager for the parent transaction. If the assumed complete
transaction entry is expired before the communications are recovered, the
eventual repl ay_conpl etion will find no information and the Resource
will be rolled back, although the transaction committed. Consequently,
the expiry time for assumed complete transactions should be set to a
value that exceeds any anticipated network outage. The parameter is
ASSUMED COVPLETE_EXPI RY_TI ME. Itis expressed in hours, with 240 being the
default, and 0 meaning never to expire.

Example 7.4. ExpiryScanner properties

<entry key="RecoveryEnvironnent Bean. expi r yScanner Cl assNanes" >
com arjuna.ats.internal.arjuna.recovery. Expi redTransacti onSt at usManager Scanner
comarjuna.ats.internal.jts.recovery. contact.ExpiredContact Scanner
comarjuna.ats.internal.jts.recovery.transactions. Expi redTopl evel Scanner
comarjuna.ats.internal.jts.recovery.transactions. Expi redServer Scanner

</entry>

There are two Expi ryScannner s for the assumed complete transactions, because there are
different types in the ActionStore.

7.2.4. Recovery domains

A key part of the recovery subsystem is that the RecoveryManager hosts the OTS
Recover yCoor di nat or objects that handle recovery for transactions initiated in application
processes. Information passes between the application process and the Recover yManager in one

of three ways:

* RecoveryCoor di nat or object references (IORs) are created in the application process. They
contain information identifying the transaction in the object key. They pass the object key to the
Resour ce objects, and the Recover yManager receives it.

e The application process and the RecoveryManager access the same jbossts-
properties. xm , and therefore use the same Obj ect Store .

88

Transaction status and replay_comparison

» The Recover yCoor di nat or invokes CORBA directly in the application, using information in the
contact items. Contact items are kept in the Cbj ect Store .

Multiple recovery domains may useful if you are doing a migration, and separate Cbj ect St or es
are useful. However, multiple RecoveryManagers can cause problems with XA datasources if
resource-initiated recovery is active on any of them.

7.3. Transaction status and repl ay_conpari son

When a transaction successfully commits, the transaction log is removed from the system.
The log is no longer required, since all registered Resources have responded successfully
to the two-phase commit sequence. However, if a Resource calls repl ay_conpl etion on
the RecoveryCoordi nat or after the transaction it represents commits, the status returned is
St at usRol | edback . The transaction system does not keep a record of committed transactions,
and assumes that in the absence of a transaction log, the transaction must have rolled back. This
is in line with the presunmed abort protocol used by the OTS.

89

90

Chapter 8.

JTA and JTS

8.1. Distributed JTA

This guide describes how to use the JTA interfaces for purely local transactions. This is a high-
performance implementation, but you can only use it to execute transactions within the same
process. If you need support for distributed transactions, the JTA needs to use the JTS. Another
advantage of this approach is interoperability with other JTS-compliant transaction systems.

You need to do this configuration manually, because some applications may be using JBossTS
in a purely local manner, or may need to differentiate between transactions managed by JTS and
JTA.

Procedure 8.1. Making the JTA interfaces JTS-aware

1. Set JTAENvi r onnent Bean. j t aTM npl enent at i on to
comarjuna.ats.internal.jta.transaction.jts. Transacti onManager| npl e.

2. Set JTAEnvi ronnment Bean. j t aUTI npl enent ati on to
comarjuna.ats.internal.jta.transaction.jts. UserTransactionl npl e.

91

92

Chapter 9.

Tools

9.1. Introduction

This chapter includes descriptions of JTS specific tools.

9.2. RMIC Extensions

The RMIC extensions allow stubs and tie classes to be generated for transactional RMI-IIOP
objects. A transactional object is one which wishes to receive transactional context when one
of its methods is invoked. Without transactional object support an RMI-IIOP object won't have
transactional context propagated to it when its methods are invoked.

The tool works in two ways: i) via the command line, ii) via ANTs RMIC compiler task. Examples
of how to use the tool via these methods are covered in the following sections.

9.2.1. Command Line Usage

As this tool delegates compilation to the Sun RMIC tool it accepts the same command line
parameters. So for more details please see it's documentation for details (http://java.sun.com/
j2se/1.4.2/docs/tooldocs/tools.html#rmi). The following is an example of how this can be used:

java com arj una. common. t ool s. rm ct ool . RM CTool <par anet er s>

9.2.2. ANT Usage

The RMICTool also acts as a plug-in for the ANT RMIC task. To use the RMICTool simply specify
the fully qualified classname as the compiler attribute, e.qg.

Example 9.1. Example ANT rni c declaration

eonpicl er ="com arj una. cormon. t ool s. rm ct ool . RM Cibassnane="RM Obj ect bape" bui | d-
dir"
verify="true" iiop="true" iiopopts="-poa" classpathref="build.classpath" />

The RMICTool JAR file must either be specified in your system classpath or it should be copied
into the lib directory of your ANT distribution for it to be found.

93

94

Chapter 10.

ORB-specific configuration

10.1. JacORB

Take care to use only the patched version of JacORB shipped with JBossTS. Correct functioning
of the transaction system, particularly with regard to crash recovery, is unlikely to work with an
unpatched JacORB. For each deployment of JacORB, ensure that the j acor b. i npl nane in the
jacorb. properti es file is unique.

95

96

Appendix A. IDL definitions

Because of differences between ORBs, and errors in certain ORBSs, the idl available with JBossTS
may differ from that shown below. You should always inspect the idl files prior to implementation
to determine what, if any, differences exist.

Example A.1. CosTransactions.idl

#i f ndef COSTRANSACTI ONS_| DL_
#defi ne COSTRANSACTI ONS_| DL_
nodul e CosTransacti ons
{
enum Status { StatusActive, StatusharkedRol |l back, StatusPrepared,
St at usCommi tt ed, St atusRol | edback, StatusUnknown,
St at usPreparing, StatusCommitting, StatusRollingBack,
St at usNoTr ansacti on };

enum Vote { VoteConmit, VoteRollback, VoteReadOnly };

/1 Standard exceptions - some Ob supports them
exception Transacti onRequired {};
exception Transacti onRol | edBack {};
exception InvalidTransaction {};

/1 Heuristic exceptions
exception HeuristicRollback {};

exception HeuristicCommit {};
exception HeuristicM xed {};
exception HeuristicHazard {};

/'l Exception from ORB
exception WongTransaction {};

/1 Other transaction rel ated exceptions
exception SubtransactionsUnavail able {};
exception Not Subtransaction {};
exception Inactive {};
exception Not Prepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavail able {};
exception Synchronizati onUnavail abl e {};

/1 Forward references for later interfaces
nterface Control;
nterface Term nator;
nterface Coordi nator;
nterface Resource;
nterface RecoveryCoordi nator;
nterface Subtransacti onAwar eResour ce;
nterface TransactionFactory;
nterface Transactional Qoj ect;

97

Appendix A. IDL definitions

interface Current;
i nterface Synchronizati on;

/1l Formally part of CosTSInteroperation

struct otid_t

heuri stics) raises (NoTransacti on,

rai ses (lnvalidControl);

rai ses (Unavail abl e);

{
| ong formatlD;
| ong bequal _| engt h;
sequence <octet> tid;
iE
struct Transldentity
{
Coor di nat or coord;
Term nator term
otid_t otid;
b
struct Propagati onCont ext
{
unsi gned | ong tineout;
Transldentity current Transacti on;
sequence <Transldentity> parents;
any i npl enent ati on_specific_data;
%
interface Current : CORBA:: Current
{
voi d begin () raises (SubtransactionsUnavail abl e);
void commit (in boolean report _
void rol I back () raises (NoTransaction);
void rol I back_only () raises (NoTransaction);
Status get_status ();
string get_transaction_nanme ();
voi d set_tineout (in unsigned | ong seconds);
Control get_control ();
Control suspend ();
void resume (in Control which)
iE
i nterface TransactionFactory
{
Control create (in unsigned long tine_out);
Control recreate (in PropagationContext ctx);
%
interface Control
{
Term nator get_termnator () raises (Unavail able);
Coor di nat or get _coordinator ()
s
i nterface Term nator
{

Heuri sticM xed, Heuri ¢

98

void comit (in boolean report_heuristics) raises (HeuristicMxed, HeuristicHazard, Trar
void roll back ();
be
i nterface Coordinator
{
Status get_status ();
Stat us get_parent_status ();
Status get _top_level _status ();

bool ean is_sane_transaction (in Coordinator tc);

bool ean is_related_transaction (in Coordinator tc);
bool ean is_ancestor_transaction (in Coordinator tc);
bool ean i s_descendant _transaction (in Coordinator tc);

bool ean is_top_ |l evel transaction ();

unsi gned | ong hash_transaction ();
unsi gned | ong hash_top_l evel tran ();

Recover yCoordi nat or regi ster_resource (in Resource r) raises (lnactive);

voi d regi ster_synchronization (in Synchronization sync) raises (lnactive, Synchronizatic
voi d register_subtran_aware (in Subtransacti onAwareResource r) raises (lnactive, Not Subt
void roll back_only () raises (lnactive)

string get_transaction_nanme ();

Control create_subtransaction () raises (SubtransactionsUnavail able, |nactive);

Propagat i onCont ext get _txcontext () raises (Unavail able);

i
i nterface RecoveryCoordi nat or
{
Status replay_conpletion (in Resource r) raises (NotPrepared);
i
interface Resource
{

Vote prepare () raises (HeuristicMxed, HeuristicHazard)
voi d rol I back () raises (HeuristicCommit, HeuristicM xed, HeuristicHazard);
void commit () raises (NotPrepared, HeuristicRollback, HeuristicMxed, HeuristicHazard);
voi d comit_one_phase () raises (HeuristicHazard);
void forget ();
i
interface Subtransacti onAwar eResource : Resource
{
void comit_subtransaction (in Coordinator parent);
voi d rol | back_subtransaction ();
s
interface Transacti onal Qbj ect

{

99

Appendix A. IDL definitions

i nt

be

#en

iE
erface Synchronization : Transacti onal Obj ect
{
voi d before_conpletion ();
voi d after_conpletion (in Status s);
i
dif

Example A.2. ArjunaOTS.IDL

#if
#de

#in
nmod

{

ndef ARJUNAOTS | DL_
fine ARJUNAOTS |DL_

clude <idl/CosTransactions.idl >
ul e ArjunaOTS

exception ActiveTransaction {};
exception BadControl {};
exception Destroyed {};

exception ActiveThreads {};
exception InterpositionFailed {};

interface U dCoordi nator : CosTransacti ons: : Coordi nat or

{

readonly attribute string uid;
readonly attribute string topLevel Ui d;

IE
interface ActionControl : CosTransactions:: Control
{
CosTransactions:: Control getParentControl ()
rai ses (CosTransactions:: Unavail abl e,
CosTransacti ons: : Not Subt ransacti on);
voi d destroy () raises (ActiveTransaction, ActiveThreads, BadControl,
Dest royed) ;
IE

i nterface ArjunaSubtranAwareResource :
CosTransacti ons: : Subt ransact i onAwar eResour ce

{

CosTransacti ons: : Vote prepare_subtransaction ();
b
interface ArjunaTransaction : U dCoordinator, CosTransactions:: Terni nator
{
i

interface OTSAbstract Record : ArjunaSubtranAwar eResource

100

readonly attribute | ong typeld;
readonly attribute string uid;

bool ean
bool ean

bool ean

pr opagat eOnAbort ();
propagat eOnCommit ();

saveRecord ();

voi d nerge (in OTSAbstractRecord record);
void alter (in OTSAbstractRecord record);

bool ean
bool ean
bool ean
bool ean

shoul dAdd (in OTSAbstract Record record);
shoul dAl ter (in OTSAbstractRecord record);
shoul dMerge (i n OTSAbstract Record record);
shoul dRepl ace (in OTSAbstract Record record);

101

102

References

[OMG95] Copyright © 1995 OMG. OMG. CORBAservices: Common Object Services
Specification. [OMG Document Number 95-3-31]

[JTA99] Copyright © 1999 Sun Microsystems. Sun Microsystems. Java Transaction API.

103

104

Appendix B. Revision History

Revision History
Revision 1 Wed Nov 17 2010 MistyStanley-
Jones<ni st y@ edhat . conr
Initial conversion to Docbook
Revision 2 Thu Apr 14 2011 TomJenkinson<t om j enki nson@ edhat . con»
Moved some content to main developers guide and added tools information

105

106

	JBossJTS Development Guide
	Table of Contents
	Preface
	1. Audience
	2. Prerequisites
	3. Document Conventions
	3.1. Typographic Conventions
	3.2. Pull-quote Conventions
	3.3. Notes and Warnings

	4. We Need Feedback!

	Chapter 1. Transaction Processing Overview
	1.1. Defining a transaction
	1.2. Commit protocol
	1.3. Transactional proxies
	1.4. Nested transactions
	1.5. The Object Transaction Service (OTS)

	Chapter 2. JBossTS Basics
	2.1. Introduction
	2.1.1. Raw OTS
	2.1.2. Enhanced OTS functionality
	2.1.3. Advanced API

	2.2. JBossTS and the OTS implementation
	2.3. Thread class
	2.4. ORB portability issues

	Chapter 3. Introduction to the OTS
	3.1. Defining the OTS
	3.2. Action programming models
	3.3. Interfaces
	3.4. Transaction factory
	3.4.1. OTS configuration file
	3.4.2. Name service
	3.4.3. resolve_initial_references
	3.4.4. Overriding the default location mechanisms

	3.5. Transaction timeouts
	3.6. Transaction contexts
	3.6.1. Nested transactions
	3.6.2. Transaction propagation
	3.6.3. Examples

	3.7. Transaction controls
	3.7.1. JBossTS specifics

	3.8. The Terminator interface
	3.8.1. JBossTS specifics

	3.9. The Coordinator interface
	3.9.1. JBossTS specifics

	3.10. Heuristics
	3.11. Current
	3.11.1. JBossTS specifics

	3.12. Resource
	3.13. SubtransactionAwareResource
	3.13.1. JBossTS specifics

	3.14. The Synchronization interface
	3.14.1. JBossTS specifics

	3.15. Transactions and registered resources
	3.16. The TransactionalObject interface
	3.17. Interposition
	3.18. RecoveryCoordinator
	3.19. Checked transaction behavior
	3.19.1. JBossTS specifics

	3.20. Summary of JBossTS implementation decisions

	Chapter 4. Constructing an OTS application
	4.1. Important notes for JBossTS
	4.1.1. Initialization
	4.1.2. Implicit context propagation and interposition

	4.2. Writing applications using the raw OTS interfaces
	4.3. Transaction context management
	4.3.1. A transaction originator: indirect and implicit
	4.3.2. Transaction originator: direct and explicit

	4.4. Implementing a transactional client
	4.5. Implementing a recoverable server
	4.5.1. Transactional object
	4.5.2. Resource object
	4.5.3. Reliable servers
	4.5.4. Examples

	4.6. Failure models
	4.6.1. Transaction originator
	4.6.2. Transactional server

	4.7. Summary

	Chapter 5. JBossTS interfaces for extending the OTS
	5.1. Nested transactions
	5.2. Extended resources
	5.3. AtomicTransaction
	5.4. Context propagation issues

	Chapter 6. Example
	6.1. The basic example
	6.1.1. Example implementation of the interface
	6.1.1.1. Resource
	6.1.1.2. Transactional implementation
	6.1.1.3. Server implementation
	6.1.1.4. Client implementation
	6.1.1.5. Sequence diagram
	6.1.1.6. Interpretation of output

	6.2. Default settings

	Chapter 7. Failure Recovery
	7.1. Configuring the failure recovery subsystem for your ORB
	7.2. JTS specific recovery
	7.2.1. XA resource recovery
	7.2.2. Recovery behavior
	7.2.3. Expired entry removal
	7.2.4. Recovery domains

	7.3. Transaction status and replay_comparison

	Chapter 8. JTA and JTS
	8.1. Distributed JTA

	Chapter 9. Tools
	9.1. Introduction
	9.2. RMIC Extensions
	9.2.1. Command Line Usage
	9.2.2. ANT Usage

	Chapter 10. ORB-specific configuration
	10.1. JacORB

	Appendix A. IDL definitions
	References
	Appendix B. Revision History

