
Transactions Overview Guide

by Mark Red Hat Little

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Transactions Overview .. 3

2.1. What is a transaction? .. 3

2.2. The Coordinator .. 4

2.3. The Transaction Context ... 4

2.4. Participants .. 5

2.5. Commit protocol ... 6

2.6. The Synchronization Protocol .. 7

2.7. Optimizations to the Protocol ... 8

2.8. Non-Atomic Transactions and Heuristic Outcomes .. 9

2.9. Interposition .. 10

2.10. A New Transaction Protocol .. 12

2.10.1. Addressing the Problems of Transactioning in Loosely Coupled Systems ... 12

A. Revision History .. 15

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

vii

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Preface

viii

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Transaction Fundamentals describes what transactions are, why ACID transactions are good

in most cases but extended transactions are necessary in other areas, and other useful information

to best use JBossTS.

1.1. Audience

This guide is most relevant for developers who want to understand the details behind transaction

systems.

1.2. Prerequisites

None.

2

Chapter 2.

3

Transactions Overview

2.1. What is a transaction?

Note

This chapter deals with the theory of transactional services. If you are familiar with

these principles, consider this chapter a reference.

Consider the following situation: a user wishes to purchase access to an on-line newspaper

and requires to pay for this access from an account maintained by an on-line bank. Once the

newspaper site has received the user’s credit from the bank, they will deliver an electronic token

to the user granting access to their site. Ideally the user would like the debiting of the account,

and delivery of the token to be “all or nothing” (atomic). However, hardware and software failures

could prevent either event from occurring, and leave the system in an indeterminate state.

• Atomic transactions (transactions) possess an “all-or-nothing” property, and are a well-known

technique for guaranteeing application consistency in the presence of failures. Transactions

possess the following ACID properties:

• Atomicity: The transaction completes successfully (commits) or if it fails (aborts) all of its effects

are undone (rolled back).

• Consistency: Transactions produce consistent results and preserve application specific

invariants.

• Isolation: Intermediate states produced while a transaction is executing are not visible to

others. Furthermore transactions appear to execute serially, even if they are actually executed

concurrently.

• Durability: The effects of a committed transaction are never lost (except by a catastrophic

failure).

A transaction can be terminated in two ways: committed or aborted (rolled back). When a

transaction is committed, all changes made within it are made durable (forced on to stable storage,

e.g., disk). When a transaction is aborted, all of the changes are undone. Atomic actions can also

be nested; the effects of a nested action are provisional upon the commit/abort of the outermost

(top-level) atomic action.

Transactions have emerged as the dominant paradigm for coordinating interactions between

parties in a (distributed) system, and in particular to manage applications that require concurrent

access to shared data. A classic transaction is a unit of work that either completely succeeds, or

fails with all partially completed work being undone. When a transaction is committed, all changes

made by the associated requests are made durable, normally by committing the results of the work

to a database. If a transaction should fail and is rolled back, all changes made by the associated

Chapter 2. Transactions Overview

4

work are undone. Transactions in distributed systems typically require the use of a transaction

manager that is responsible for coordinating all of the participants that are part of the transaction.

The main components involved in using and defining transactional

applications are:

• A Transaction Service: The Transaction Service captures the model of the underlying

transaction protocol and coordinates parties affiliated with the transaction according to that

model.

• A Transaction API: Provides an interface for transaction demarcation and the registration of

participants.

• A Participant: The entity that cooperates with the transaction service on behalf of its associated

business logic.

• The Context: Captures the necessary details of the transaction such that participants can enlist

within its scope.

2.2. The Coordinator

Associated with every transaction is a coordinator, which is responsible for governing the outcome

of the transaction. The coordinator may be implemented as a separate service or may be co-

located with the user for improved performance. Each coordinator is created by the transaction

manager service, which is in effect a factory for those coordinators.

A coordinator communicates with enrolled participants to inform them of the desired termination

requirements, i.e., whether they should accept (e.g., confirm) or reject (e.g., cancel) the work done

within the scope of the given transaction. For example, whether to purchase the (provisionally

reserved) flight tickets for the user or to release them. An application/client may wish to terminate

a transaction in a number of different ways (e.g., confirm or cancel). However, although the

coordinator will attempt to terminate in a manner consistent with that desired by the client, it is

ultimately the interactions between the coordinator and the participants that will determine the

actual final outcome.

A transaction manager is typically responsible for managing coordinators for many transactions.

The initiator of the transaction (e.g., the client) communicates with a transaction manager and

asks it to start a new transaction and associate a coordinator with the transaction. Once created,

the context can be propagated to Web services in order for them to associate their work with the

transaction.

2.3. The Transaction Context

In order for a transaction to span a number of services, certain information has to be shared

between those services in order to propagate information about the transaction. This information

is known as the Context. The context is often automatically propagated and processed by

transaction-aware components of an application:

Participants

5

Contents of a Context

Transaction Identifier

Guarantees global uniqueness for an individual transaction.

Transaction Coordinator Location

The endpoint address participants contact to enroll.

Figure 2.1. Context Flow

2.4. Participants

The coordinator cannot know the details of how every transactional service is implemented; in

fact it is not necessary for it to do so in order to negotiate a transactional outcome. It treats each

service taking part in a transaction as a participant and communicates with it according to some

predefined participant coordination models appropriate to the type of transaction. When a service

begins performing work within the scope of a transaction it enrolls itself with the coordinator as

Chapter 2. Transactions Overview

6

a participant, specifying the participant model it wishes to follow. So, the term participant merely

refers a transactional service enrolled in a specific transaction using a specific participant model.

2.5. Commit protocol

A two-phase commit protocol is required to guarantee that all of the action participants either

commit or abort any changes made. See Figure 2.2, “Two-Phase Commit Overview” which

illustrates the main aspects of the commit protocol: during phase 1, the action coordinator, C,

attempts to communicate with all of the action participants, A and B, to determine whether they

will commit or abort. An abort reply from any participant acts as a veto, causing the entire action

to abort. Based upon these (lack of) responses, the coordinator arrives at the decision of whether

to commit or abort the action. If the action will commit, the coordinator records this decision on

stable storage, and the protocol enters phase 2, where the coordinator forces the participants to

carry out the decision. The coordinator also informs the participants if the action aborts.

When each participant receives the coordinator’s phase 1 message, they record sufficient

information on stable storage to either commit or abort changes made during the action. After

returning the phase 1 response, each participant who returned a commit response must remain

blocked until it has received the coordinator’s phase 2 message. Until they receive this message,

these resources are unavailable for use by other actions. If the coordinator fails before delivery of

this message, these resources remain blocked. However, if crashed machines eventually recover,

crash recovery mechanisms can be employed to unblock the protocol and terminate the action.

The Synchronization Protocol

7

Figure 2.2. Two-Phase Commit Overview

Note

During two-phase commit transactions, coordinators and resources keep track of

activity in non-volatile data stores so that they can recover in the case of a failure.

2.6. The Synchronization Protocol

Besides the two-phase commit protocol, traditional transaction processing systems employ an

additional protocol, often referred to as the synchronization protocol. With the original ACID

properties, Durability is important when state changes need to be available despite failures.

Applications interact with a persistence store of some kind, such as a database, and this interaction

can impose a significant overhead, because disk access is much slower to access than main

computer memory.

One solution to the problem disk access time is to cache the state in main memory and only operate

on the cache for the duration of a transaction. Unfortunately, this solution needs a way to flush

Chapter 2. Transactions Overview

8

the state back to the persistent store before the transaction terminates, or risk losing the full ACID

properties. This is what the synchronization protocol does, with Synchronization Participants.

Synchronizations are informed that a transaction is about to commit. At that point, they can

flush cached state, which might be used to improve performance of an application, to a durable

representation prior to the transaction committing. The synchronizations are then informed about

when the transaction completes and its completion state.

Procedure 2.1. The "Four Phase Protocol" Created By Synchronizations

Synchronizations essentially turn the two-phase commit protocol into a four-phase protocol:

1. Step 1

Before the transaction starts the two-phase commit, all registered Synchronizations are

informed. Any failure at this point will cause the transaction to roll back.

2. Steps 2 and 3

The coordinator then conducts the normal two-phase commit protocol.

3. Step 4

Once the transaction has terminated, all registered Synchronizations are informed. However,

this is a courtesy invocation because any failures at this stage are ignored: the transaction

has terminated so there’s nothing to affect.

The synchronization protocol does not have the same failure requirements as the traditional

two-phase commit protocol. For example, Synchronization participants do not need the ability

to recover in the event of failures, because any failure before the two-phase commit protocol

completes cause the transaction to roll back, and failures after it completes have no effect on the

data which the Synchronization participants are responsible for.

2.7. Optimizations to the Protocol

There are several variants to the standard two-phase commit protocol that are worth knowing

about, because they can have an impact on performance and failure recovery. Table 2.1, “Variants

to the Two-Phase Commit Protocol” gives more information about each one.

Table 2.1. Variants to the Two-Phase Commit Protocol

Variant Description

Presumed Abort If a transaction is going to roll back, the

coordinator may record this information locally

and tell all enlisted participants. Failure

Non-Atomic Transactions and Heuristic Outcomes

9

Variant Description

to contact a participant has no effect on

the transaction outcome. The coordinator is

informing participants only as a courtesy.

Once all participants have been contacted,

the information about the transaction can be

removed. If a subsequent request for the status

of the transaction occurs, no information will be

available and the requester can assume that

the transaction has aborted. This optimization

has the benefit that no information about

participants need be made persistent until the

transaction has progressed to the end of the

prepare phase and decided to commit, since

any failure prior to this point is assumed to be

an abort of the transaction.

One-Phase If only a single participant is involved in

the transaction, the coordinator does not

need to drive it through the prepare phase.

Thus, the participant is told to commit, and

the coordinator does not need to record

information about the decision, since the

outcome of the transaction is the responsibility

of the participant.

Read-Only When a participant is asked to prepare, it can

indicate to the coordinator that no information

or data that it controls has been modified during

the transaction. Such a participant does not

need to be informed about the outcome of the

transaction since the fate of the participant has

no affect on the transaction. Therefore, a read-

only participant can be omitted from the second

phase of the commit protocol.

2.8. Non-Atomic Transactions and Heuristic Outcomes

In order to guarantee atomicity, the two-phase commit protocol is blocking. As a result of

failures, participants may remain blocked for an indefinite period of time, even if failure recovery

mechanisms exist. Some applications and participants cannot tolerate this blocking.

To break this blocking nature, participants that are past the prepare phase are allowed to make

autonomous decisions about whether to commit or rollback. Such a participant must record its

decision, so that it can complete the original transaction if it eventually gets a request to do so. If the

coordinator eventually informs the participant of the transaction outcome, and it is the same as the

Chapter 2. Transactions Overview

10

choice the participant made, no conflict exists. If the decisions of the participant and coordinator

are different, the situation is referred to as a non-atomic outcome, and more specifically as a

heuristic outcome.

Resolving and reporting heuristic outcomes to the application is usually the domain of complex,

manually driven system administration tools, because attempting an automatic resolution requires

semantic information about the nature of participants involved in the transactions.

Precisely when a participant makes a heuristic decision depends on the specific implementation.

Likewise, the choice the participant makes about whether to commit or to roll back depends upon

the implementation, and possibly the application and the environment in which it finds itself. The

possible heuristic outcomes are discussed in Table 2.2, “Heuristic Outcomes”.

Table 2.2. Heuristic Outcomes

Outcome Description

Heuristic Rollback The commit operation failed because some or

all of the participants unilaterally rolled back the

transaction.

Heuristic Commit An attempted rollback operation failed because

all of the participants unilaterally committed.

One situation where this might happen is if

the coordinator is able to successfully prepare

the transaction, but then decides to roll it

back because its transaction log could not be

updated. While the coordinator is making its

decision, the participants decides to commit.

Heuristic Mixed Some participants commit ed, while others

were rolled back.

Heuristic Hazard The disposition of some of the updates is

unknown. For those which are known, they

have either all been committed or all rolled

back.

Heuristic decisions should be used with care and only in exceptional circumstances, since the

decision may possibly differ from that determined by the transaction service. This type of difference

can lead to a loss of integrity in the system. Try to avoid needing to perform resolution of heuristics,

either by working with services and participants that do not cause heuristics, or by using a

transaction service that provides assistance in the resolution process.

2.9. Interposition

Interposition is a scoping mechanism which allows coordination of a transaction to be delegated

across a hierarchy of coordinators. See Figure 2.3, “Interpositions” for a graphical representation

of this concept.

Interposition

11

Figure 2.3. Interpositions

Interposition is particularly useful for Web Services transactions, as a way of limiting the amount

of network traffic required for coordination. For example, if communications between the top-level

coordinator and a web service are slow because of network traffic or distance, the web service

might benefit from executing in a subordinate transaction which employs a local coordinator

Chapter 2. Transactions Overview

12

service. In Figure 2.3, “Interpositions”,to prepare, the top-level coordinator only needs to send

one prepare message to the subordinate coordinator, and receive one prepared or aborted

reply. The subordinate coordinator forwards a prepare locally to each participant and combines

the results to decide whether to send a single prepared or aborted reply.

2.10. A New Transaction Protocol

Many component technologies offer mechanisms for coordinating ACID transactions based on

two-phase commit semantics. Some of these are CORBA/OTS, JTS/JTA, and MTS/MSDTC.

ACID transactions are not suitable for all Web Services transactions, as explained in Reasons

ACID is Not Suitable for Web Services.

Reasons ACID is Not Suitable for Web Services

• Classic ACID transactions assume that an organization that develops and deploys applications

owns the entire infrastructure for the applications. This infrastructure has traditionally taken the

form of an Intranet. Ownership implies that transactions operate in a trusted and predictable

manner. To assure ACIDity, potentially long-lived locks can be kept on underlying data

structures during two-phase commit. Resources can be used for any period of time and released

when the transaction is complete.

In Web Services, these assumptions are no longer valid. One obvious reason is that the owners

of data exposed through a Web service refuse to allow their data to be locked for extended

periods, since allowing such locks invites denial-of-service attacks.

• All application infrastructures are generally owned by a single party. Systems using classical

ACID transactions normally assume that participants in a transaction will obey the directives

of the transaction manager and only infrequently make unilateral decisions which harm other

participants in a transaction.

Web Services participating in a transaction can effectively decide to resign from the transaction

at any time, and the consumer of the service generally has little in the way of quality of service

guarantees to prevent this.

2.10.1. Addressing the Problems of Transactioning in Loosely

Coupled Systems

Though extended transaction models which relax the ACID properties have been proposed over

the years, standards such as OASIS WS-TX provide a new transaction protocol to implement

these concepts for the Web services architecture. The are designed to accommodate four

underlying requirements inherent in any loosely coupled architecture like Web services:.

Requirements of Web Services

• Ability to handle multiple successful outcomes to a transaction, and to involve operations whose

effects may not be isolated or durable.

Addressing the Problems of Transactioning in Loosely Coupled Systems

13

• Coordination of autonomous parties whose relationships are governed by contracts, rather than

the dictates of a central design authority.

• Discontinuous service, where parties are expected to suffer outages during their lifetimes, and

coordinated work must be able to survive such outages.

• Interoperation using XML over multiple communication protocols. XTS uses SOAP encoding

carried over HTTP.

14

15

Appendix A. Revision History
Revision History

Revision 1 Tue Apr 12 2010 TomJenkinson<tom.jenkinson@redhat.com>

Initial creation of book by publican

16

	Transactions Overview Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Transactions Overview
	2.1. What is a transaction?
	2.2. The Coordinator
	2.3. The Transaction Context
	2.4. Participants
	2.5. Commit protocol
	2.6. The Synchronization Protocol
	2.7. Optimizations to the Protocol
	2.8. Non-Atomic Transactions and Heuristic Outcomes
	2.9. Interposition
	2.10. A New Transaction Protocol
	2.10.1. Addressing the Problems of Transactioning in Loosely Coupled Systems

	Appendix A. Revision History

