
Failure Recovery Guide

by Mark Red Hat Little

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. About This Guide .. 1

1.1. Audience .. 1

1.2. Prerequisites .. 1

2. Architecture of the Recovery Manager .. 3

2.1. Crash Recovery Overview ... 3

2.2. Recovery Manager .. 3

2.2.1. Managing recovery directly ... 5

2.2.2. Separate Recovery Manager .. 5

2.2.3. In process Recovery Manager .. 6

2.2.4. Recovering For Multiple Transaction Coordinators 6

2.3. Recovery Modules .. 7

2.3.1. JBossTS Recovery Module Classes .. 7

2.4. A Recovery Module for XA Resources ... 8

2.4.1. Assumed complete ... 10

2.5. Recovering XAConnections ... 11

2.6. Alternative to XAResourceRecovery ... 12

2.7. Shipped XAResourceRecovery implementations ... 13

2.8. TransactionStatusConnectionManager .. 15

2.9. Expired Scanner Thread .. 15

2.10. Application Process ... 16

2.11. TransactionStatusManager .. 16

2.12. Object Store ... 17

2.13. Socket free operation .. 17

3. How JBossTS manages the OTS Recovery Protocol ... 19

3.1. Recovery Protocol in OTS - Overview .. 19

3.2. RecoveryCoordinator in JBossTS ... 19

3.2.1. Understanding POA .. 19

3.3. The default RecoveryCoordinator in JacOrb .. 21

3.3.1. How Does it work ... 22

4. Configuration Options ... 23

4.1. Recovery Protocol in OTS - Overview .. 23

A. Revision History .. 25

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find… from the Character Map menu bar, type the name of the character in

the Search field and click Next. The character you sought will be highlighted in

the Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

vii

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause

irritation and frustration.

Preface

viii

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1.

1

About This Guide
The Failure Recovery Guide contains information on how to use JBossTS.

1.1. Audience

This guide is most relevant to engineers who are responsible for administering JBoss Transactions

installations.

1.2. Prerequisites

You should have installed JBossTS.

2

Chapter 2.

3

Architecture of the Recovery

Manager

2.1. Crash Recovery Overview

The main architectural components within Crash Recovery are illustrated in the diagram below:

Figure 2.1. Recovery Manager Architecture

The Recovery Manager is a daemon process1 responsible for performing crash recovery. Only

one Recovery Manager runs per node. The Object Store provides persistent data storage for

transactions to log data. During normal transaction processing each transaction will log persistent

data needed for the commit phase to the Object Store. On successfully committing a transaction

this data is removed, however if the transaction fails then this data remains within the Object Store.

The Recovery Manager functions by:

• Periodically scanning the Object Store for transactions that may have failed. Failed transactions

are indicated by the presence of log data after a period of time that the transaction would have

normally been expected to finish.

• Checking with the application process which originated the transaction whether the transaction

is still in progress or not.

• Recovering the transaction by re-activating the transaction and then replaying phase two of the

commit protocol.

The following sections describe the architectural components in more detail.

2.2. Recovery Manager

On initialization the Recovery Manager first loads in configuration information via a properties file.

This configuration includes a number of recovery activators and recovery modules, which are then

dynamically loaded.

The Recovery Manager is not specifically tied to an Object Request Broker or ORB. Hence, the

OTS recovery protocol is not implicitly enabled. To enable such protocol, we use the concept of

recovery activator, defined with the interface RecoveryActivator, which is used to instantiate a

recovery class related to the underlying communication protocol. For instance, when used with

OTS, the RecoveryActivitor has the responsibility to create a RecoveryCoordinator object able to

respond to the replay_completion operation.

All RecoveryActivator instances inherit the same interface. They are loaded via the following

recovery extension property:

Chapter 2. Architecture of th...

4

<entry key="RecoveryEnvironmentBean.recoveryActivators">

 list_of_class_names

<entry>

For instance the RecoveryActivator provided in the distribution of JTS/OTS, which shall not be

commented, is as follow:

<entry key="RecoveryEnvironmentBean.recoveryActivators">

 com.arjuna.ats.internal.jts.orbspecific.recovery.RecoveryEnablement

<entry>

When loaded all RecoveryActivator instances provide the method startRCservice invoked by

the Recovery Manager and used to create the appropriate Recovery Component able to

receive recovery requests according to a particular transaction protocol. For instance the

RecoveryCoordinator defined by the OTS protocol.

Each recovery module is used to recover a different type of transaction/resource, however each

recovery module inherits the same basic behavior.

Recovery consists of two separate passes/phases separated by two timeout periods. The first

pass examines the object store for potentially failed transactions; the second pass performs crash

recovery on failed transactions. The timeout between the first and second pass is known as the

backoff period. The timeout between the end of the second pass and the start of the first pass is

the recovery period. The recovery period is larger than the backoff period.

The Recovery Manager invokes the first pass upon each recovery module, applies the backoff

period timeout, invokes the second pass upon each recovery module and finally applies the

recovery period timeout before restarting the first pass again.

The recovery modules are loaded via the following recovery extension property:

<entry key="RecoveryEnvironmentBean.recoveryExtenstions">

 list_of_class_names

<entry>

The backoff period and recovery period are set using the following properties:

<entry key="RecoveryEnvironmentBean.recoveryBackoffPeriod">

<entry key="RecoveryEnvironmentBean.periodicRecoveryPeriod">

Managing recovery directly

5

The following java classes are used to implement the Recovery Manager:

• package com.arjuna.ats.arjuna.recovery :

RecoveryManager – The daemon process that starts up by instantiating an instance of the

RecoveryManagerImple class.

RecoveryEnvironment - Properties used by the recovery manager.

RecoveryConfiguration - Specifies the name of the Recovery Manager property file.(ie

RecoveryManager-properties.xml)

• package com.arjuna.ats.internal.ts.arjuna.recovery :

RecoveryManagerImple - Creates and starts instances of the RecActivatorLoader, the

PeriodicRecovery thread and the ExpiryEntryMonitor thread.

RecActivatorLoader - Dynamically loads in the RecoveryActivator specified in the Recovery

Manager property file. Each RecoveryActicator is specified as a recovery extension in the

properties file

PeriodicRecovery - Thread which loads each recovery module, then calls the first pass method

for each module, applies the backoff period timeout, calls the second pass method for each

module and applies the recovery period timeout.

RecoveryClassLoader - Dynamically loads in the recovery modules specified in

the Recovery Manager property file. Each module is specified as a recovery

extension in the properties file (e.g., com.arjuna.ats.arjuna.recovery.recoveryExtension1=

com.arjuna.ats.internal.ts.arjuna.recovery.AtomicActionRecoveryModule).

Note

By default, the recovery manager listens on the first available port on a given

machine. If you wish to control the port number that it uses, you can specify this

using the com.arjuna.ats.arjuna.recovery.recoveryPort attribute.

2.2.1. Managing recovery directly

As already mentioned, recovery typically happens at periodic intervals. If you require to drive

recovery directly, then there are two options, depending upon how the RecoveryManager has

been created.

2.2.2. Separate Recovery Manager

You can either use the com.arjuna.ats.arjuna.tools.RecoveryMonitor program to send a message

to the Recovery Manager instructing it to perform recovery, or you can create an instance of

Chapter 2. Architecture of th...

6

the com.arjuna.ats.arjuna.recovery.RecoveryDriver class to do likewise. There are two types of

recovery scan available:

• i. ASYNC_SCAN: here a message is sent to the RecoveryManager to instruct it to perform

recovery, but the response returns before recovery has completed.

• ii. SYNC: here a message is sent to the RecoveryManager to instruct it to perform recovery,

and the response occurs only when recovery has completed.

2.2.3. In process Recovery Manager

You can invoke the scan operation on the RecoveryManager. This operation returns only when

recovery has completed. However, if you wish to have an asynchronous interaction pattern, then

the RecoveryScan interface is provided:

Example 2.1. RecoveryScan interface

public interface RecoveryScan {

 public void completed();

}

An instance of an object supporting this interface can be passed to the scan operation and its

completed method will be called when recovery finishes. The scan operation returns immediately,

however.

2.2.4. Recovering For Multiple Transaction Coordinators

Sometimes a single Recovery Manager can be made responsible for recovering transactions

executing on behalf of multiple transaction coordinators. Conversely, due to specific configurations

it may be that multiple Recovery Managers share the same Object Store and in which case should

not conflict with each other, e.g., roll back transactions that they do not understand. Therefore,

when running recovery it is necessary to tell JBossTS which types of transactions it can recover

and which transaction identifiers it should ignore.

When necessary each transaction identifier that JBossTS creates may have a unique node

identifier encoded within it and JBossTS will only recover transactions and states that match

a specified node identifier. The node identifier for each JBossTS instance should be set via

the com.arjuna.ats.arjuna.nodeIdentifier property. This value must be unique across JBossTS

instances. The contents of this should be alphanumeric and not exceed 10 bytes in length. If

you do not provide a value, then JBossTS will fabricate one and report the value via the logging

infrastructure.

How this value is used will depend upon the type of resources being recovered and will be

discussed within the relevant sections for the Recovery Modules.

Recovery Modules

7

2.3. Recovery Modules

As stated before each recovery module is used to recover a different type of transaction/resource,

but each recovery module must implement the following RecoveryModule interface, which defines

two methods: periodicWorkFirstPass and periodicWorkSecondPass invoked by the Recovery

Manager.

Example 2.2. RecoveryModule interface

public interface RecoveryModule {

 /**

 * Called by the RecoveryManager at start up, and then

 * PERIODIC_RECOVERY_PERIOD seconds after the completion, for all

 * RecoveryModules of the second pass

 */

 public void periodicWorkFirstPass();

 /**

 * Called by the RecoveryManager RECOVERY_BACKOFF_PERIOD seconds after the

 * completion of the first pass

 */

 public void periodicWorkSecondPass();

}

2.3.1. JBossTS Recovery Module Classes

JBossTS provides a set of recovery modules that are responsible to manage recovery according

to the nature of the participant and its position in a transactional tree. The provided classes (that

all implements the RecoveryModule interface) are:

• com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule

Recovers AtomicAction transactions.

• com.arjuna.ats.internal.jts.recovery.transactions.TransactionRecoveryModule

Recovers JTS Transactions. This is a generic class from which TopLevel and Server transaction

recovery modules inherit, respectively

• com.arjuna.ats.internal.jts.recovery.transactions.TopLevelTransactionRecoveryModule

• com.arjuna.ats.internal.jts.recovery.transactions.ServerTransactionRecoveryModule

Chapter 2. Architecture of th...

8

2.4. A Recovery Module for XA Resources

During recovery, the Transaction Manager needs to be able to communicate to all resource

managers that are in use by the applications in the system. For each resource manager, the

Transaction Manager uses the XAResource.recover method to retrieve the list of transactions that

are currently in a prepared or heuristically completed state. Typically, the system administrator

configures all transactional resource factories that are used by the applications deployed on the

system. An example of such a resource factory is the JDBC XADataSource object, which is a

factory for the JDBC XAConnection objects.

Because XAResource objects are not persistent across system failures, the Transaction Manager

needs to have some way to acquire the XAResource objects that represent the resource managers

which might have participated in the transactions prior to the system failure. For example, a

Transaction Manager might, through the use of JNDI lookup mechanism, acquire a connection

from each of the transactional resource factories, and then obtain the corresponding XAResource

object for each connection. The Transaction Manager then invokes the XAResource.recover

method to ask each resource manager to return the transactions that are currently in a prepared

or heuristically completed state.

Note

When running XA recovery it is necessary to tell JBossTS which types of Xid it

can recover. Each Xid that JBossTS creates has a unique node identifier encoded

within it and JBossTS will only recover transactions and states that match a

specified node identifier. The node identifier to use should be provided to JBossTS

via the property JTAEnvironmentBean.xaRecoveryNodes; multiple values may be

provided in a list. A value of ‘*’ will force JBossTS to recover (and possibly rollback)

all transactions irrespective of their node identifier and should be used with caution.

The contents of com.arjuna.ats.jta.xaRecoveryNode should be alphanumeric and

match the values of com.arjuna.ats.arjuna.nodeIdentifier.

One of the following recovery mechanisms will be used:

• If the XAResource is serializable, then the serialized form will be saved during transaction

commitment, and used during recovery. It is assumed that the recreated XAResource is valid

and can be used to drive recovery on the associated database.

• The com.arjuna.ats.jta.recovery.XAResourceRecovery,

com.arjuna.ats.jta.recovery.XARecoveryResourceManager and

com.arjuna.ats.jta.recovery.XARecoveryResource interfaces are used. These are described in

detail later in this document.

To manage recovery, we have seen in the previous chapter that the Recovery Manager triggers

a recovery process by calling a set of recovery modules that implements the two methods

defined by the RecoveryModule interface. To enable recovery of participants controlled via

A Recovery Module for XA Resources

9

the XA interface, a specific recovery module named XARecoveryModule is provided. The

XARecoveryModule, defined in the packages com.arjuna.ats.internal.jta.recovery.arjunacore and

com.arjuna.ats.internal.jta.recovery.jts, handles recovery of XA resources (databases etc.) used

in JTA.

Note

JBossTS supports two JTA implementations: a purely local version (no distributed

transactions) and a version layered on the JTS. Recovery for the former is

straightforward. In the following discussion we shall implicitly consider on the JTS

implementation.

Its behavior consists of two aspects: “transaction-initiated” and “resource-initiated” recovery.

Transaction-initiated recovery is possible where the particular transaction branch had progressed

far enough for a JTA Resource Record to be written in the ObjectStore.

A JTA Resource record contains the information needed to link the transaction, as known to

the rest of JBossTS, to the database. Resource-initiated recovery is necessary for branches

where a failure occurred after the database had made a persistent record of the transaction, but

before the JTA ResourceRecord was persisted. Resource-initiated recovery is also necessary for

datasources for which it is not possible to hold information in the JTA Resource record that allows

the recreation in the RecoveryManager of the XAConnection/XAResource that was used in the

original application.

Transaction-initiated recovery is automatic. The XARecoveryModule finds the JTA Resource

Record that need recovery, then uses the normal recovery mechanisms to find the status of

the transaction it was involved in (i.e., it calls replay_completion on the RecoveryCoordinator for

the transaction branch), (re)creates the appropriate XAResource and issues commit or rollback

on it as appropriate. The XAResource creation will use the same information, database name,

username, password etc., as the original application.

Resource-initiated recovery has to be specifically configured, by supplying the Recovery Manager

with the appropriate information for it to interrogate all the databases (XADataSources) that have

been accessed by any JBossTS application. The access to each XADataSource is handled

by a class that implements the com.arjuna.ats.jta.recovery.XAResourceRecovery interface,

as illustrated in Figure 4. Instances of classes that implements the XAResourceRecovery

interface are dynamically loaded, as controlled by properties with names beginning

“com.arjuna.ats.jta.recovery.XAResourceRecovery”.

Figure 2.2. Resource-initiated recovery and XA Recovery

The XARecoveryModule will use the XAResourceRecovery implementation to get a XAResource

to the target datasource. On each invocation of periodicWorkSecondPass, the recovery module

will issue an XAResource.recover request – this will (as described in the XA specification)

Chapter 2. Architecture of th...

10

return a list of the transaction identifiers (Xid’s) that are known to the datasource and are in an

indeterminate (in-doubt) state. The list of these in-doubt Xid’s received on successive passes (i.e.

periodicWorkSecondPass-es) is compared. Any Xid that appears in both lists, and for which no

JTA ResourceRecord was found by the intervening transaction-initiated recovery is assumed to

belong to a transaction that was involved in a crash before any JTA ResourceRecord was written,

and a rollback is issued for that transaction on the XAResource.

This double-scan mechanism is used because it is possible the Xid was obtained from the

datasource just as the original application process was about to create the corresponding

JTA_ResourceRecord. The interval between the scans should allow time for the record to be

written unless the application crashes (and if it does, rollback is the right answer).

An XAResourceRecovery implementation class can be written to contain all the information

needed to perform recovery to some datasource. Alternatively, a single class can handle multiple

datasources. The constructor of the implementation class must have an empty parameter list

(because it is loaded dynamically), but the interface includes an initialise method which passes

in further information as a string. The content of the string is taken from the property value that

provides the class name: everything after the first semi-colon is passed as the value of the string.

The use made of this string is determined by the XAResourceRecovery implementation class.

For further details on the way to implement a class that implements the interface

XAResourceRecovery, read the JDBC chapter of the JTA Programming Guide. An implementation

class is provided that supports resource-initiated recovery for any XADataSource. This class could

be used as a template to build your own implementation class.

2.4.1. Assumed complete

If a failure occurs in the transaction environment after the transaction coordinator had told the

XAResource to commit but before the transaction log has been updated to remove the participant,

then recovery will attempt to replay the commit. In the case of a Serialized XAResource, the

response from the XAResource will enable the participant to be removed from the log, which will

eventually be deleted when all participants have been committed. However, if the XAResource is

not recoverable then it is extremely unlikely that any XAResourceRecovery instance will be able

to provide the recovery sub-system with a fresh XAResource to use in order to attempt recovery;

in which case recovery will continually fail and the log entry will never be removed.

There are two possible solutions to this problem:

• Rely on the relevant ExpiryScanner to eventually move the log elsewhere. Manual intervention

will then be needed to ensure the log can be safely deleted. If a log entry is moved, suitable

warning messages will be output.

• Set the com.arjuna.ats.jta.xaAssumeRecoveryComplete to true. This option is checked

whenever a new XAResource instance cannot be located from any registered

XAResourceRecovery instance. If false (the default), recovery assumes that there is a transient

problem with the XAResourceRecovery instances (e.g., not all have been registered with the

sub-system) and will attempt recovery periodically. If true then recovery assumes that a previous

Recovering XAConnections

11

commit attempt succeeded and this instance can be removed from the log with no further

recovery attempts. This option is global, so needs to be used with care since if used incorrectly

XAResource instances may remain in an uncommitted state.

2.5. Recovering XAConnections

When recovering from failures, JBossTS requires the ability to reconnect to databases that were

in use prior to the failures in order to resolve any outstanding transactions. Most connection

information will be saved by the transaction service during its normal execution, and can be

used during recovery to recreate the connection. However, it is possible that not all such

information will have been saved prior to a failure (for example, a failure occurs before such

information can be saved, but after the database connection is used). In order to recreate

those connections it is necessary to provide implementations of the following JBossTS interface

com.arjuna.ats.jta.recovery.XAResourceRecovery, one for each database that may be used by

an application.

Note

if using the transactional JDBC driver provided with JBossTS, then no additional

work is necessary in order to ensure that recovery occurs.

To inform the recovery system about each of the XAResourceRecovery instances, it is necessary

to specify their class names through the JTAEnvironmentBean.xaResourceRecoveryInstances

property variable, whose values is a list of space separated strings, each being a classname

followed by optional configuration information.

JTAEnvironmentBean.xaResourceRecoveryInstances=com.foo.barRecovery

Additional information that will be passed to the instance when it is created may be specified after

a semicolon:

JTAEnvironmentBean.xaResourceRecoveryInstances=com.foo.barRecovery;myData=hello

Note

These properties need to go into the JTA section of the property file.

Any errors will be reported during recovery.

Example 2.3. XAResourceRecovery interface

public interface XAResourceRecovery {

 public XAResource getXAResource() throws SQLException;

Chapter 2. Architecture of th...

12

 public boolean initialise(String p);

 public boolean hasMoreResources();

};

Each method should return the following information:

• initialise: once the instance has been created, any additional information which occurred on

the property value (anything found after the first semi-colon) will be passed to the object. The

object can then use this information in an implementation specific manner to initialise itself, for

example.

• hasMoreResources: each XAResourceRecovery implementation may provide multiple

XAResource instances. Before any call to getXAResource is made, hasMoreResources is

called to determine whether there are any further connections to be obtained. If this returns false,

getXAResource will not be called again during this recovery sweep and the instance will not be

used further until the next recovery scan. It is up to the implementation to maintain the internal

state backing this method and to reset the iteration as required. Failure to do so will mean that

the second and subsequent recovery sweeps in the lifetime of the JVM do not attempt recovery.

• getXAResource: returns an instance of the XAResource object. How this is created (and how the

parameters to its constructors are obtained) is up to the XAResourceRecovery implementation.

The parameters to the constructors of this class should be similar to those used when creating

the initial driver or data source, and should obviously be sufficient to create new XAResources

that can be used to drive recovery.

Note

If you want your XAResourceRecovery instance to be called during each sweep

of the recovery manager then you should ensure that once hasMoreResources

returns false to indicate the end of work for the current scan it then returns true

for the next recovery scan.

2.6. Alternative to XAResourceRecovery

The iterator based approach used by XAResourceRecovery leads to a requirement for

implementations to manage state, which makes them more complex than necessary.

As an alternative, starting with JBossTS 4.4, users may provide an implementation of the public

interface

Example 2.4. XAResourceRecoveryHelper

public interface com.arjuna.ats.jta.recovery.XAResourceRecoveryHelper {

Shipped XAResourceRecovery implementations

13

 public boolean initialise(String p) throws Exception;

 public XAResource[] getXAResources() throws Exception;

}

During each recovery sweep the getXAResources method will be called and recovery attempted

on each element of the array. For the majority of resource managers it will be necessary to have

only one XAResource in the array, as the recover() call on it can return multiple Xids.

Unlike XAResourceRecovery instances, which are configured via the xml properties file and

instantiated by JBossTS, instances of XAResourceRecoveryHelper and constructed by the

application code and registered with JBossTS by calling

XARecoveryModule.addXAResourceRecoveryHelper(...)

The initialize method is not called by JBossTS in the current implementation, but is provided to

allow for the addition of further configuration options in later releases.

XAResourceRecoveryHelper instances may be deregistered, after which they will no longer be

called by the recovery manager. Deregistration may block for a time if a recovery scan is in

progress.

XARecoveryModule.removeXAResourceRecoveryHelper(...)

The ability to dynamically add and remove instances of XAResourceRecoveryHelper whilst the

system is running makes this approach an attractive option for environments in which e.g.

datasources may be deployed or undeployed, such as application servers. Care should be taken

with classloading behaviour in such cases.

2.7. Shipped XAResourceRecovery implementations

Recovery of XA datasources can sometimes be implementation dependant, requiring developers

to provide their own XAResourceRecovery instances. However, JBossTS ships with several out-

of-the-box implementations that may be useful.

Note

These XAResourceRecovery instances are primarily intended for when running

JBossTS outside of a container such as JBossAS, since they rely upon

XADataSources as the primary handle to drive recovery. If you are not

running JBossTS stand-alone then you should consult the relevant integration

documentation to ensure that the right recovery modules are being used.

Chapter 2. Architecture of th...

14

•
com.arjuna.ats.internal.jdbc.recovery.BasicXARecovery

: this expects an XML property file to be specified upon creation and from which it will read the

configuration properties for the datasource. For example:

Example 2.5. XML datasource

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"><

<properties>

 <entry key="DB_X_DatabaseUser">username</entry>

 <entry key="DB_X_DatabasePassword">password"</entry>

 <entry key="DB_X_DatabaseDynamicClass">DynamicClass</entry>

 <entry key="DB_X_DatabaseURL">theURL</entry>

</properties>

•
com.arjuna.ats.internal.jdbc.recovery.JDBCXARecovery

: this recovery implementation should work on any datasource that is exposed via JNDI. It

expects an XML property file to be specified upon creation and from which it will read the

database JNDI name, username and password. For example:

Example 2.6. JNDI datasource

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"><

<properties>

 <entry key="DatabaseJNDIName">java:ExampleDS</entry>

 <entry key="UserName">username</entry>

 <entry key="Password">password</entry>

</properties>

Because these classes are XAResourceRecovery instances they are passed any necessary

initialization information via the initialise operation. In the case of BasicXARecovery and

JDBCXARecovery this should be the location of a property file and is specified in the JBossTS

configuration file. For example:

com.arjuna.ats.jta.recovery.XAResourceRecoveryJDBC=com.arjuna.ats.internal.jdbc.recovery.JDBCXAResourceRecovery;thePropertyFile

TransactionStatusConnectionManager

15

2.8. TransactionStatusConnectionManager

The TransactionStatusConnectionManager object is used by the recovery modules to retrieve

the status of transactions and acts like a proxy for TransactionStatusManager objects.

It maintains a table of TransactionStatusConnector obects each of which connects to a

TransactionStatusManager object in an Application Process.

The transactions status is retrieved using the getTransactionStatus methods which take a

transaction Uid and if available a transaction type as parameters. The process Uid field in

the transactions Uid parameter is used to lookup the target TransactionStatusManagerItem

host/port pair in the Object Store. The host/port pair are used to make a TCP

connection to the target TransactionStatusManager object by a TransactionStatusConnector

object. The TransactionStatusConnector passes the transaction Uid/transaction type to the

TransactionStatusManager in order to retrieve the transactions status.

2.9. Expired Scanner Thread

When the Recovery Manager initialises an expiry scanner thread ExpiryEntryMonitor is created

which is used to remove long dead items from the ObjectStore. A number of scanner modules are

dynamically loaded which remove long dead items for a particular type.

Scanner modules are loaded at initialisation and are specified as properties beginning with

<entry key="RecoveryEnvironmentBean.expiryScanners">

 list of class names

</entry>

All the scanner modules are called periodically to scan for dead items by the ExpiryEntryMonitor

thread. This period is set with the property:

<entry key="RecoveryEnvironmentBean.expiryScanInterval">

 number_of_hours

</entry>

All scanners inherit the same behaviour from the java interface ExpiryScanner. A scan method is

provided by this interface and implemented by all scanner modules, this is the method that gets

called by the scanner thread.

The ExpiredTransactionStatusManagerScanner removes long dead

TransactionStatusManagerItems from the Object Store. These items will remain in the Object

Store for a period of time before they are deleted. This time is set by the property:

<entry key="RecoveryEnvironmentBean.transactionStatusManagerExpiryTime">

Chapter 2. Architecture of th...

16

 number_of_hours

</entry> (default 12 hours)

The AtomicActionExpiryScanner moves transaction logs for AtomicActions that are assumed to

have completed. For instance, if a failure occurs after a participant has been told to commit but

before the transaction system can update the log, then upon recovery JBossTS recovery will

attempt to replay the commit request, which will obviously fail, thus preventing the log from being

removed. This is also used when logs cannot be recovered automatically for other reasons, such

as being corrupt or zero length. All logs are moved to a location based on the old location appended

with /Expired.

Note

AtomicActionExpiryScanner is disabled by default. To enable it simply add it to the

JBossTS properties file. You do not need to enable it in order to cope with (move)

corrupt logs.

2.10. Application Process

This represents the user transactional program. A Local transaction (hash) table, maintained within

the running application process keeps trace of the current status of all transactions created by

that application process, The Recovery Manager needs access to the transaction tables so that

it can determine whether a transaction is still in progress, if so then recovery does not happen.

The transaction tables are accessed via the TransactionStatusManager object. On application

program initialisation the host/port pair that represents the TransactionStatusManager is written to

the Object Store in ‘../Recovery/TransactionStatusManager’ part of the Object Store file hierarchy

and identified by the process Uid of the application process.

The Recovery Manager uses the TransactionStatusConnectionManager object to retrieve the

status of a transaction and a TransactionStatusConnector object is used to make a TCP

connection to the TransactionStatusManager.

2.11. TransactionStatusManager

This object acts as an interface for the Recovery Manager to obtain the status of

transactions from running JBossTS application processes. One TransactionStatusManager

is created per application process by the class com.arjuna.ats.arjuna.coordinator.TxControl.

Currently a tcp connection is used for communication between the RecoveryManager and

TransactionStatusManager. Any free port is used by the TransactionStatusManager by default,

however the port can be fixed with the property:

<entry key="RecoveryEnvironmentBean.transactionStatusManagerPort">

 port

Object Store

17

</entry>

On creation the TransactionStatusManager obtains a port which it stores with the host in the

Object Store as a TransactionStatusManagerItem. A Listener thread is started which waits for

a connection request from a TransactionStatusConnector. When a connection is established a

Connection thread is created which runs a Service (AtomicActionStatusService) which accepts

a transaction Uid and a transaction type (if available) from a TransactionStatusConnector,

the transaction status is obtained from the local thransaction table and returned back to the

TransactionStatusConnector

2.12. Object Store

All objects are identified by a unique identifier Uid. One of the values of which is a process id in

which the object was created. The Recovery Manager uses the process id to locate transaction

status manager items when contacting the originator application process for the transaction

status. Therefore, exactly one recovery manager per ObjectStore must run on each nodes and

ObjectStores must not be shared by multiple nodes.

2.13. Socket free operation

The use of TCP/IP sockets for TransactionStatusManager and RecoveryManager provides

for maximum flexibility in the deployment architecture. It is often desirable to run the

RecoveryManager in a separate JVM from the Transaction manager(s) for increased reliability.

In such deployments, TCP/IP provides for communication between the RecoveryManager

and transaction manager(s), as detailed in the preceding sections. Specifically, each JVM

hosting a TransactionManager will run a TransactionStatusManager listener, through which

the RecoveryManager can contact it to determine if a transaction is still live or not. The

RecoveryManager likewise listens on a socket, through which it can be contacted to perform

recovery scans on demand. The presence of a recovery listener is also used as a safety check

when starting a RecoveryManager, since at most one should be running for a given ObjectStore.

There are some deployment scenarios in which there is only a single TransactionManager

accessing the ObjectStore and the RecoveryManager is co-located in the same JVM. For such

cases the use of TCP/IP sockets for communication introduces unnecessary runtime overhead.

Additionally, if several such distinct processes are needed for e.g. replication or clustering,

management of the TCP/IP port allocation can become unwieldy. Therefore it may be desirable

to configure for socketless recovery operation.

The property CoordinatorEnvironmentBean.transactionStatusManagerEnable can be set to a

value of NO to disable the TransactionStatusManager for any given TransactionManager. Note

that this must not be done if recovery runs in a separate process, as it may lead to incorrect

recovery behavior in such cases. For an in-process recovery manager, the system will use direct

access to the ActionStatusService instead.

The property RecoveryEnvironmentBean.recoveryListener can likewise be used to disable the

TCP/IP socket listener used by the recovery manager. Care must be taken not to inadvertently start

Chapter 2. Architecture of th...

18

multiple recovery managers for the same ObjectStore, as this error, which may lead to significant

crash recovery problems, cannot be automatically detected and prevented without the benefit of

the socket listener.

Chapter 3.

19

How JBossTS manages the OTS

Recovery Protocol

3.1. Recovery Protocol in OTS - Overview

To manage recovery in case of failure, the OTS specification has defined a recovery protocol.

Transaction’s participants in a doubt status could use the RecoveryCoordinator to determine

the status of the transaction. According to that transaction status, those participants can take

appropriate decision either by roll backing or committing.

Figure 3.1. Resource and RecoveryCoordinator relationship

A reference to a RecoveryCoordinator is returned as a result of successfully calling

register_resource on the transaction Coordinator. This object, which is implicitly associated with

a single Resource, can be used to drive the Resource through recovery procedures in the event

of a failure occurring during the transaction.

3.2. RecoveryCoordinator in JBossTS

On each resource registration a RecoveryCoordinator Object is expected to be created and

returned to the application that invoked the register_resource operation. Behind each CORBA

object there should be an object implementation or Servant object, in POA terms, which performs

operations made on a RecoveryCoordinator object. Rather than to create a RecoveryCoordinator

object with its associated servant on each register_resource, JBossTS enhances performance by

avoiding the creation of servants but it relies on a default RecoveryCoordinator object with it’s

associated default servant to manage all replay_completion invocations.

In the next sections we first give an overview of the Portable Object Adapter architecture, then we

describe how this architecture is used to provide RecoveryCoordinator creation with optimization

as explained above.

3.2.1. Understanding POA

Basically, the Portable Object Adapter, or POA is an object that intercepts a client request and

identifies the object that satisfies the client request. The Object is then invoked and the response

is returned to the client.

Figure 3.2. Overview of the POA

The object that performs the client request is referred as a servant, which provides the

implementation of the CORBA object requested by the client. A servant provides the

Chapter 3. How JBossTS manage...

20

implementation for one or more CORBA object references. To retreive a servant, each POA

maintains an Active Object Map that maps all objects that have been activated in the POA to a

servant. For each incoming request, the POA looks up the object reference in the Active Object

Map and tries to find the responsible servant. If none is found, the request is either delegated to

a default servant, or a servant manager is invoked to activate or locate an appropriate servant. In

addition to the name space for the objects, which are identified by Object Ids, a POA also provides

a name space for POAs. A POA is created as a child of an existing POA, which forms a hierarchy

starting with the root POA.

Each POA has a set of policies that define its characteristics. When creating a new POA, the

default set of policies can be used or different values can be assigned that suit the application

requirements. The POA specification defines:

• Thread policy – Specifies the threading model to be used by the POA. Possible values are:

• ORB_CTRL_MODEL – (default) The POA is responsible for assigning requests to threads.

• SINGLE_THREAD_MODEL – the POA processes requests sequentially

• Lifespan policy - specifies the lifespan of the objects implemented in the POA. The lifespan

policy can have the following values:

• TRANSIENT (Default) Objects implemented in the POA cannot outlive the process in which

they are first created. Once the POA is deactivated, an OBJECT_NOT_EXIST exception

occurs when attempting to use any object references generated by the POA.

• PERSISTENT Objects implemented in the POA can outlive the process in which they are

first created.

• Object ID Uniqueness policy - allows a single servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:

• UNIQUE_ID (Default) Activated servants support only one Object ID.

• MULTIPLE_ID Activated servants can have one or more Object IDs. The Object ID must be

determined within the method being invoked at run time.

• ID Assignment policy - specifies whether object IDs are generated by server applications or by

the POA. The ID Assignment policy can have the following values:

• USER_ID is for persistent objects, and

• SYSTEM_ID is for transient objects

• Servant Retention policy - specifies whether the POA retains active servants in the Active Object

Map. The Servant Retention policy can have the following values:

• RETAIN (Default) The POA tracks object activations in the Active Object Map. RETAIN is

usually used with ServantActivators or explicit activation methods on POA.

The default RecoveryCoordinator in JacOrb

21

• NON_RETAIN The POA does not retain active servants in the Active Object Map.

NON_RETAIN is typically used with ServantLocators.

• Request Processing policy - specifies how requests are processed by the POA.

• USE_ACTIVE_OBJECT_MAP (Default) If the Object ID is not listed in the Active Object Map,

an OBJECT_NOT _EXIST exception is returned. The POA must also use the RETAIN policy

with this value.

• USE_DEFAULT_SERVANT If the Object ID is not listed in the Active Object Map or the

NON_RETAIN policy is set, the request is dispatched to the default servant. If no default

servant has been registered, an OBJ_ADAPTER exception is returned. The POA must also

use the MULTIPLE_ID policy with this value.

• USE_SERVANT_MANAGER If the Object ID is not listed in the Active Object Map or the

NON_RETAIN policy is set, the servant manager is used to obtain a servant.

• Implicit Activation policy - specifies whether the POA supports implicit activation of servants.

The Implicit Activation policy can have the following values:

• IMPLICIT_ACTIVATION The POA supports implicit activation of servants.

Servants can be activated by converting them to an object reference with

org.omg.PortableServer.POA.servant_to_reference() or by invoking _this()on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this value.

• NO_IMPLICIT_ACTIVATION (Default) The POA does not support implicit activation of

servants.

It appears that to redirect replay_completion invocations to a default servant we need

to create a POA with the Request Processing policy assigned with the value set to

USE_DEFAULT_SERVANT. However to reach that default Servant we should first reach the POA

that forward the request to the default servant. Indeed, the ORB uses a set of information to

retrieve a POA; these information are contained in the object reference used by the client. Among

these information there are the IP address and the port number where resides the server and also

the POA name. To perform replay_completion invocations, the solution adopted by JBossTS is

to provide one Servant, per machine, and located in the RecoveryManager process, a separate

process from client or server applications. The next section explains how the indirection to a default

Servant located on a separate process is provided for JacORB.

3.3. The default RecoveryCoordinator in JacOrb

JacORB does not define additional policies to redirect any request on a RecoveryCoordinator

object to a default servant located in the Recovery Manager process. However it provides a set of

APIs that allows building object references with specific IP address, port number and POA name

in order to reach the appropriate default servant.

Chapter 3. How JBossTS manage...

22

3.3.1. How Does it work

When the Recovery Manager is launched it seeks in the configuration the RecoveryActivator

that need be loaded. Once done it invokes the startRCservice method of each loaded instances.

As seen in in the previous chapter (Recovery Manager) the class to load that implements the

RecoveryActivator interface is the class RecoveryEnablement. This generic class, located in the

package com.arjuna.ats.internal.jts.orbspecific.recovery, hides the nature of the ORB being used

by the application (JacORB). The following figure illustrates the behavior of the RecoveryActivator

that leads to the creation of the default servant that performs replay_completion invocations

requests.

In addition to the creation of the default servant, an object reference to a RecoveryCoordinator

object is created and stored in the ObjectStore. As we will see this object reference will be used to

obtain its IP address, port number and POA name and assign them to any RecoveryCoordinator

object reference created on register_resource.

Figure 3.3. Recovery Manager

When an application registers a resource with a transaction, a RecoveryCoordinator object

reference is expected to be returned. To build that object reference, the Transaction Service uses

the RecoveryCoordinator object reference created within the Recovery Manager as a template.

The new object reference contains practically the same information to retrieve the default servant

(IP address, port number, POA name, etc.), but the Object ID is changed; now, it contains the

Transaction ID of the transaction in progress and also the Process ID of the process that is creating

the new RecoveryCoordinator object reference, as illustrated in Figure 11.

Figure 3.4. Resource registration and returned RecoveryCoordinator Object

reference build from a reference stored in the ObjectStore.

Since a RecoveryCoordintaor object reference returned to an application contains all

information to retrieve the POA then the default servant located in the Recovery

Manager, all replay_completion invocation, per machine, are forwarded to the same default

RecoveryCoordinator that is able to retreive the Object ID from the incoming request to extract the

transaction identifier and the process identifier needed to determine the status of the requested

transaction.

Chapter 4.

23

Configuration Options

4.1. Recovery Protocol in OTS - Overview

JBossTS is highly configurable. For full details of the configuration mechanism used, see the

Programmer's Guide.

The following table shows the configuration features, with default values shown in italics. More

details about each option can be found in the relevant sections of this document.

Note

You need to prefix each property in this table with the string

com.arjuna.ats.arjuna.recovery. The prefix has been removed for formatting

reasons, and has been replaced by ...

Configuration Name Possible Values Description

...periodicRecoveryPeriod 120/any positive integer Interval between recovery

attempts, in seconds.

...recoveryBackoffPeriod 10/any positive integer Interval between first and

second recovery passes, in

seconds.

...expiryScanInterval 12/any integer Interval between expiry scans,

in hours. 0 disables scanning.

Negative values postpone the

first run.

...transactionStatusManagerExpiryTime12/any positive integer Interval after which a

non-contactable process is

considered dead. 0 = never.

24

25

Appendix A. Revision History
Revision History

Revision 1 Tue Apr 12 2010 TomJenkinson<tom.jenkinson@redhat.com>

Initial creation of book by publican

26

	Failure Recovery Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Architecture of the Recovery Manager
	2.1. Crash Recovery Overview
	2.2. Recovery Manager
	2.2.1. Managing recovery directly
	2.2.2. Separate Recovery Manager
	2.2.3. In process Recovery Manager
	2.2.4. Recovering For Multiple Transaction Coordinators

	2.3. Recovery Modules
	2.3.1. JBossTS Recovery Module Classes

	2.4. A Recovery Module for XA Resources
	2.4.1. Assumed complete

	2.5. Recovering XAConnections
	2.6. Alternative to XAResourceRecovery
	2.7. Shipped XAResourceRecovery implementations
	2.8. TransactionStatusConnectionManager
	2.9. Expired Scanner Thread
	2.10. Application Process
	2.11. TransactionStatusManager
	2.12. Object Store
	2.13. Socket free operation

	Chapter 3. How JBossTS manages the OTS Recovery Protocol
	3.1. Recovery Protocol in OTS - Overview
	3.2. RecoveryCoordinator in JBossTS
	3.2.1. Understanding POA

	3.3. The default RecoveryCoordinator in JacOrb
	3.3.1. How Does it work

	Chapter 4. Configuration Options
	4.1. Recovery Protocol in OTS - Overview

	Appendix A. Revision History

