
 WS-BA Coordinator/Participant Recovery
Overview

Table of Contents

WS-BA Participant Side APIs...2

WS-BA Coordinator Side Implementations..3

WS-BA Participant Side Processing..4

WS-BA Coordinator Side Processing..4

WS-BA Coordinator Side Recovery...6

WS-BA Coordinator Side Recovery State Processing..8

WS-BA Participant Side Recovery...9

Participant Recovery API...10

Participant Recovery Module API..10

WS-BA Participant Recovery State Processing..11

WS-BA Participant Side APIs

WS-BA has two generic participant interfaces

interface BusinessAgreementWithParticipantCompletionParticipant
{
 public void close () throws WrongStateException, SystemException;
 public void cancel () throws WrongStateException, SystemException;
 public void compensate ()

throws FaultedException, WrongStateException, SystemException;
 public String status () throws SystemException;
 public void unknown () throws SystemException;
 public void error () throws SystemException;
}

and

interface BusinessAgreementWithCoordinatorCompletionParticipant
 extends BusinessAgreementWithParticipantCompletionParticipant
{
 public void complete () throws WrongStateException, SystemException;
}

Each of these two interfaces is employed by both the 1.0 and 1.1 implementations. They are both
located in package com.arjuna.wst.

A web service which wishes to employ WS-BA to manage transactional resources must define
classes implementing these interfaces. It can then register instances of these classes as
participants using the enlistment APIs associated with the WS-BA business activity manager class.
The enlistment method used should correspond to the implemented interface.

The two implementations differ only in how the participant moves from state active to state
completed. BusinessAgreementWithCoordinatorCompletionParticipant is employed
where the service is responsible for initiating this transition. For example, this would be appropriate
in a situation where the service exposed an API to the client such as

@WebService class MyService
{
 @WebMethod String placeOrder(String productCode, int count);
 @WebMethod void cancelOrder(String orderId);
 @WebMethod void completeOrder();
}

The client might call placeOrder one or more times to make provisional orders and might
possibly call cancelOrder to delete any existing orders. Once completeOrder is invoked the
service would not be able to perform any more work within the scope of the business activity. At
this point it can perform any work required to persist i) the changes it has made during the activity
and ii) the data required in order to ensure that it can compensate the changes in the event that
the activity is cancelled. It should then notify the coordinator that it has completed using the
participant manager API (see below). If all orders had been cancelled when completeOrder was
called it might instead decide to exit the business activity using the participant manager API.

If instead the web service API omitted method completeOrder then there would be no way for it
to know that all the required orders had been placed and were not going to be cancelled
subsequently. In this case the service would have to register using CoordinatorCompletion.
The coordinator ensures that the completed method is called when the client notifies completion
of the whole business activity. The participant should still do the same work as if it had initiated the
completion process i.e. persist i) the changes it has made during the activity and ii) the data
required in order to ensure that it can compensate the changes in the event that the activity is

cancelled.

The close method is called when a client Close request is sent to the coordinator and all the
participants have completed successfully. The client responds to a Close request by deleting any
compensation state associated with the business activity, effectively forgetting the activity. This
method can only be called after the participant has persisted all changes associated with the
business activity so it represents a successful outcome.

The cancel method is called when a client Cancel request is sent to the coordinator and the
participant has not yet completed. In this case the client should respond by deleting any record of
uncommitted changes associated with the business activity. This method will not be called once a
ParticipantCompletion participant has called (or, rather, returned from calling) the
completed method. It will not be called once a CoordinatorCompletion participant has had
its completed method invoked. The cancel method may also be called if the coordinator
crashes.

The compensate method is called when a client Cancel request is sent to the coordinator and
the participant has already completed. In this case the client responds by deleting any record of
uncommitted changes associated with the business activity. This method can only be called after
the participant has persisted any changes associated with the business activity i.e. for a
ParticipantCompletion participant once it has called (returned from calling?) its completed
method and for a CoordinatorCompletion participant once it has had its completed method
invoked. The compensate method may also be called if the coordinator crashes.

status is called during top-down recovery to determine what? whether the participant has
completed or not? after all, there is a window at the active --> completed transition which we need
to close.

error is called during bottom-up recovery to notify the participant of what? that the last state
transition got through and it missed the reply?

WS-BA Coordinator Side Implementations

The two Participant interfaces described above are not just implemented by the web service
application code. They are also implemented by the BA coordinator stub classes. Stub instances
are created on the coordinator side when a BA participant is registered and installed in the
coordinator's participant list. They are used to forward operations invoked by the coordinator
across the wire to the registered participants.

BusinessAgreementWithCoordinatorCompletionStub implements
 BusinessAgreementWithCoordinatorCompletionParticipant,
PersistableParticipant
BusinessAgreementWithParticipantCompletionStub implements
 BusinessAgreementWithParticipantCompletionParticipant,
PersistableParticipant

The stub wraps a coordinator engine instance which actually dispatches the messages

CoordinatorCompletionCoordinatorEngine implements
 CoordinatorCompletionCoordinatorInboundEvents
ParticipantCompletionCoordinatorEngine implements
 ParticipantCompletionCoordinatorInboundEvents

The coordinator engine also implements an inbound events interface which allows it to serve as a
focus for messages dispatched from the participant. By routing incoming and outgoing messages
through this instance it is possible to ensure that all state changes in the participant are correctly
synchronized and ordered. The inbound events interface ensures that the engine only exposes
methods which correspond 1-1 with the Participant-Coordinator message protocol. Active

coordinator engines are stored in a lookup table keyed by participant id. This enables the
Coordinator service to lookup the target engine for a message and dispatch the message.

WS-BA Participant Side Processing

Incoming messages received from the coordinator are handled by a participant engine which
wraps the participant supplied by the web service in the enlist call. These messages are forwarded
to the participant by invoking the methods defined in the relevant participant interface. The engine
implementations come in two flavours

CoordinatorCompletionParticipantEngine implements
 CoordinatorCompletionParticipantInboundEvents
ParticipantCompletionParticipantEngine implements
 ParticipantCompletionParticipantInboundEvents

The participant inbound events interfaces ensure that the exposed operations correspond 1-1 with
the messages defined in the BA Coordinator-Participant message protocol. Active participant
engines are stored in a lookup table keyed by participant id. This enables the Participant service to
lookup the target engine for a message and dispatch the message.

The engine instances also serve as a focus for outgoing requests from the web service to the
coordinator invoked via the BAParticipantManager interface. By routing incoming and outgoing
messages through the engine it is possible to ensure that all state changes in the participant are
correctly synchronized and ordered.

When participant engines are created at enlist they are wrapped by an instance of a participant
manager stub class which implements the participant manager interface

BACoordinatorCompletionParticipantManagerStub implements
BAParticipantManager
BAParticipantCompletionParticipantManagerStub implements
BAParticipantManager

BAParticipantManager provides methods allowing the participant to notify changes in its state
to the coordinator

interface BAParticipantManager
{
 public void completed()
 throws WrongStateException, UnknownTransactionException,
SystemException;
 public void exit()
 throws WrongStateException, UnknownTransactionException,
SystemException;
 public void cannotComplete()
 throws WrongStateException, UnknownTransactionException,
SystemException;
 public void fail(final QName exceptionIdentifier) throws
SystemException;
}

n.b. cannotComplete is new with 1.1 and does not appear in 1.0. fail is called fault in 1.0.

If the web service invokes a method of the manager stub instance it is forwarded to the coordinator
by invoking the corresponding method of the engine instance.

WS-BA Coordinator Side Processing

On the XTS coordinator side information about participants is retained using instances of the two

participant stub classes

BusinessAgreementWithCoordinatorCompletionStub
BusinessAgreementWithParticipantCompletionStub

The participant stubs are not directly referenced from the BA coordinator which drives the business
activity. The coordinator class is ACCoordinator derived from classes BasicAction and
TwoPhaseCoordinator. It wraps the stubs in ParticipantRecord instances which may be
installed in the pending, prepared, failed and heuristic participant lists inherited from class
BasicAction.

The BA ACCoordinator class maps most of the BA coordination process onto the standard 2PC
operations implemented by classes TwoPhaseCoordinator and BasicAction. It does so in
part by adding extra behaviour in class ACCoordinator and in part by mapping the methods of
class ParticipantRecord invoked by BasicAction to behaviours appropriate to the BA
protocol. However, this requires a certain amount of stretching of the semantics of classes.

Most of the operations of the coordinator are driven by requests dispatched from the client to the
coordinator in accordance with the BusinessActivityTerminator message protocol. This is
not a part of the BA spec but is critical to the operation of the BA protocol. The client application
code does not see this protocol because it is wrapped up inside the implementation of the
UserBusinessActivity class. The protocol dispatches complete, close and cancel
requests to the coordinator in response to invocations of the corresponding methods of
UserBusinessActivitry and notifies the client of any faults detected during processing of the
request.

The ACCoordinator provides method complete which is used to implement coordinator driven
completion in response to a Complete message from the BusinessActivityTerminator. It
invokes the complete method of each ParticipantRecord which uses the participant stub to
dispatch a complete message to each non-completed participant registered for coordinator
completion. Any failures are recorded by marking the action as ABORT_ONLY and result in an
exception being sent back to the client.

The ACCoordinator is not invoked directly when a close or cancel message is dispatched by
the BusinessActivityTerminator. The UserActivity instance identified by the business
activity id is terminated by calling end with either a success or failure status code supplied as
argument. This eventually leads to the end or cancel methods of TwoPhaseCoordinator being
invoked and these ultimately lead to invocations of BasicAction.End or BasicAction.Abort,
depending upon the current state of the activity.

The prepare stage of the BA coordinator two phase commit is normally an empty step because the
BA participant records in the BasicAction participant list always return a successful outcome in
response to a call to topLevelPrepare. However, this step is not totally redundant. Firstly,
invocation of the prepare operation changes the state of the BasicAction from ACTIVE to
PREPARING, invalidating further attempts to add participants to the activity. Secondly, on
completion of the prepare phase details of all completed (and non-exited) participants will be saved
in the coordinator record written to the transaction log.

The BA participant records implement method topLevelCommit by dispatching a close
message via the coordinator engine. Method toplevelAbort is implemented by sending a
cancel message if the participant has not completed and a compensate message if it has
completed. So, these implementations propagate the close or cancel request through to all
participants by hijacking the implementations of BasicAction.End and BasicAction.Abort.

Note that a BA ParticipantRecord will return a NOT_PREPARED result from topLevelCommit
if the resource has not exited and is not in state COMPLETED. This allows the close operation to
continue. It results in a heuristic decision being recorded for the transaction. but this is thrown

away if no other type of error occurs.

Hmm, does this ensure that all outcomes are consistent, though? Should a close not check that
all participants have completed? If they are not it could i) return an exception to the client ii) wait
for the participant to complete (including, possibly, logging a heuristic TX and then closing it later)
or iii) force a cancel i.e. rollback the activity.

Ok, let's vote for throwing an exception in the client. After all the participant's completed message
is unacknowledged so it cannot be guaranteed to have arrived before the client attempts a close
no matter when the participant dispatched it. This would allow the client to retry for as long as it
wants or give up and cancel instead.

Note that at present the BA ParticipantRecord will return a SystemError if dispatch of a
close or cancel message times out, resulting in a heuristic outcome for the transaction.

The BA ACCoordinator also implements methods participantCompleted,
participantFaulted and delistParticipant which are invoked in response to messages
dispatched via the participant manager methods completed, fail and cannotComplete/exit.

participantCompleted marks a participant record as completed, ensuring that it performs the
correct action if it's toplevelAbort method is called. It should only ever be invoked with a
participant id which identifies a participant registered for ParticipantCompletion.

participantFaulted and delistParticipant mark a participant record as exited, ensuring
that it is not involved in any further completion processing.

WS-BA Coordinator Side Recovery

In order to be able to guarantee coordinator side recovery the WS-BA implementation could
perform all of the following log operations:

1. write or update a log record of all participant stubs when a participant is enlisted

2. write or update a log record of all participant stubs when a participant notifies that it
has completed

3. write or update a log record of all participant stubs when a client Complete
message is received, rewriting it after each participant Complete message is sent
and Completed message is returned (the participant states should change from
ACTIVE to COMPLETING to COMPLETED before each write).

4. write or update the log record of all non-terminated participant stubs when a client
Close or Cancel message is received, rewriting it after each
close/cancel/compensate message is dispatched and is subsequently
confirmed (the participant states should change from COMPLETED to
CLOSING/CANCELLING before each write)

5. delete the log record of participant stubs after successfully handling a client Close
or Cancel message

6. update the log record if any one of the participants returns a Fail message or
times out responding to a Close, Cancel or Compensate message. in the former
case the log record will contain heuristic participants, in the latter failed participants.

7. identify logged participant stub details during recovery processing and recreate and
activate participant stubs from the saved details

It is possible to elide most of these steps if a 'presumed abort' protocol is adopted. In this situation
it is assumed that participants resend messages to the coordinator in order to identify progress of
the transaction.

Steps 1 and 2 can be elided into step 3. If the coordinator crashes before a client Complete
message has been sent then after coordinator restart a client Complete, Close or Cancel
message will be rejected with an UnknownTransaction exception thrown in the client.

Things are not quite so simple as far as participants are concened. A send or resend of
Completed by a ParticipantCompletion participant will be ignored (that is as per both the
spec and the current implementation). For CoordinatorCompletion participants there is no
Completed message for them to resend so in either case the participant will not automatically
detect that the business activity is no longer active. However, participants can still initiate departure
from the transaction via the participant manager API, posting either a CannotComplete, an Exit
or a Fail message (which one?). After a restart the coordinator will fail safe by acknowledging
these messages. So, for presumed abort to work correctly the participant web service must
implement some sort of timeout mechanism for presumed abort to work successfully.

The XTS participant side implementation cannot really drive this timeout process itself, even
assuming that the BA context specified a timeout value. The correct behaviour for a timeout
initiated from the participant side is to dispatch a CannotComplete, an Exit or a Fail message
so that the coordinator is notified and can acknowledge the termination request. If the XTS
implementation performed this action autonomously, say by posting a Fail message, then the
registered participant would not be aware of the termination attempt nor its outcome. The XTS
participant implementation could perhaps remedy this by calling the registered participant's
cancel method before posting the termination request or after it has been acknowledged but this
still leaves a window open between sending the message to the coordinator and calling cancel
where the coordinator, XTS participant and registered partiicpant's view of the participant state are
different.

Step 3 can be simplified to write the participant list when the client Complete message has been
successfully handled. The participant list will identify all COMPLETED participants and indicate that
the transaction has COMPLETED i.e. that it is still pending a client Close or Compensate
message. If the coordinator crashes between handling Complete and a subsequent client Close
or Cancel then it can reinstate the transaction, reactivate the participants and resend the
participant Complete messages. This risks resending a message to some participants. The XTS
implementation on the participant side must ensure that the registered participant's complete
method is only called once.

Step 4 can be simplified merely to to rewrite the participant list once when the client Close or
Cancel message is received before proceeding to handle it. The list will also indicate whether the
transaction is CLOSING or CANCELLING, allowing the appropriate action to be taken after crash
recovery. If the coordinator crashes before Step 5 or 6 then it can reinstate the transaction,
reactivate the participants and resend the participant Complete, Cancel or Compensate
messages. This risks resending a message to some participants. The XTS implementation on the
participant side must ensure that the registered participant's close, cancel or compensate
methods are only called once.

Steps 5 and 6 are both necessary and cannot be simplified. Step 6 is only appropriate where a
failure occurs during handling of a client Close or Cancel request. In the case where Fail
responses result in a heuristic outcome the log record will be rewritten with state CLOSED or
CANCELLED and will list all heuristic participants. In the case where a communications failure
occurs and the participant does not confirm a Close, Cancel or Compensate message the log
record will be rewritten with state CLOSING or CANCELLING and will list all failed participants (and
possibly some heuristic ones). In this case the periodic recovery thread will reinstate the

coordinator and reactivate the participants after a suitable delay and retry the Close or Cancel
operation for all failed participants. Depending upon the outcome it will proceed to step 5 or 6.

Step 7 could employ calls to getStatus to establish the true state of participants. However, if the
participants adopt the measures described above there should be no need to use this mechanism.

So the real requirement is that the implementation must:

1. write a log record of all completed participant stubs after performing a successful
complete indicating that the transaction is COMPLETING

2. rewrite the log record of all completed participant stubs before performing a close
or cancel indicating whether the transaction is CLOSING or CANCELLING

3. rewrite the log record with any of the participants which timeout before responding
to a Close or Compensate message – they will be listed as failed participants in
this case

4. rewrite the log record with any of the participants which respond to a Close or
Compensate message with a Fail message – they will be listed as heuristic
participants in this case

5. delete the log record of participant stubs if all participants successfully responded to
a Close or Cancel message

6. identify logged participant stub details during crash recovery and resend Close or
Compensate messages as appropriate

Note that it is possible that a client Complete or Close message may arrive before some
participant completion participants have sent a Completed message. In the case of a client
Complete message this could be regarded as an error. Alternatively, it could be ignored on the
assumption that the participant will complete at a later date. In the case of a client Close message
this is clearly an error. There is a choice of how to handle these cases. One option is to throw a
system exception which will be communicated back to the client. Another is to cancel the activity,
throwing a rollback exception from the client call. A third option is to delay the client Complete or
Close request until all the participant Completed messages arrive. A final option is to perform the
requested operation, sending Complete or Close requests. Note that in the case of a client
Close request the last option would require the participant side implementation to break the BA
specification. The ParticipantCompletion participant stub would have to be willing to accept
a Close message and to call the enlisted participant's close method while in state ACTIVE.

The current XTS implementation will regard both these cases as errors and will handle them by
rejecting the client message, throwing an exception from the client call. At a later date the
implementation may extend the client (Termination) protocol to allow alternative behaviour. For
example, the client may be provided with a method to check that all participants have completed or
it may be able to send a variant of the Complete or Close messages which reverts to a Cancel
if there are uncompleted participants.

WS-BA Coordinator Side Recovery State Processing

Saving, restoring and deletion of participant stub recovery state is managed by the WS-BA
ACCoordinator class using the participant list management capabilities of class
TwoPhaseCoordinator. Participant stubs are referenced from ParticipantRecord instances
located in the coordinators participant list. At complete the details or each active stub are
converted to a byte format and composed to construct the coordinator's saved state, each sub-

entry tagged with type XTS_RECORD, the type associated with the ParticipantRecord class.
The combined transaction state is then saved to the TX object store in a location associated with
the WS-BA ACCoordinator class.

During normal operation the XTS implementation maintains an active WS-BA participant stub map,
an in-memory map from WS-BA participant ids to participant stubs. This is used to identify the
primary target for incoming participant messages: Fail, Exit, CannotComplete, Completed,
Cancelled, Closed and Compensated. The map is updated during enlist, complete and
close/cancel processing to reflect the presence of active participant stubs and saved/deleted WS-
BA Participant stub records in the TX object store.

During bootstrap the ACCoordinatorRecoveryModule recovery module recreates XTS WS-BA
participant stub records as it scans ACCoordinator entries in the TX object store. Each WS-BA
stub record is entered in the active participant map as it is recreated. So, once the first recovery
scan is completed all active WS-BA participants are entered in the map. This point can be detected
using a flag which defaults to false and is set to true after the first scan is completed.

Up to this point incoming participant messages may legitimately employ a participant id which is
not found in the WS-BA active participant map. In such a case incoming messages which do not
identify an entry in the map will be silently dropped to ensure that a valid response is provided
when recovery is ready. After this point it is assumed that the message has been resent and
processing follows the transition tables in the WS-BA spec.

WS-BA Participant Side Recovery

In order to be able to perform participant side recovery the XTS implementation must:

● save details of participants when they transition to state completed (before sending
a Completed message if completion is participant driven, before sending a
Completed response if this is coordinator driven)

● delete saved details of participants when they are either closed or compensated
(after calling the enlisted web service participant's close/compensate method)

● delete saved details of participants when they fail during compensate (after
confirmation of the Fail message by a Failed response -- n.b. this requires a
fail call to pre-empt any compensate call which is trying to delete the record).

● identify saved participant details during crash recovery and recreate a participant
from the saved details (this requires a helper to recreate the web service's
participant -- does it also require identifying the participant's notion of what state it is
in to close all the windows in the actions listed above?)

Saving, restoring and deletion of participant data, including the application-specific recovery state,
is managed by the WS-BA implementation. However, recreation of saved participants during
recovery involves creating and initialising instances of application-specific classes using the saved
recovery state. Since this requires loading application-specific classes it must be done by
application code. Hence, it will be necessary for the XTS implementation to provide a registration
mechanism allowing applications to provide a recovery module to perform this step in the recovery
process.

Recovery modules must be able to recognise that saved participant details belong to their
associated application rather than some other application. This will be achieved by requiring
participants to employ identifiers which are unique to their application (as well as unique within all
participants created by that application). The id employed when the participant is registered will be
used for this purpose.

A participant must support saving of its recovery state by implementing a method which encodes
the recovery state as a byte array. At complete, this byte array will be obtained and written to disk
by the WS-BA implementation, along with the participant identifier and the endpoint of the
participant's coordinator. This participant recovery record will be deleted at the appropriate point
during close or compensate. During recovery processing saved recovery records for
outstanding transactions will be identified and reloaded. The byte array saved in the record will be
used to reconstruct a web service participant and re-register it as an active participant with the
participant service using the saved identifier and endpoint.

A recovery module must implement a method which discriminates amongst candidate identifiers.
For those which are associated with its application, it will be required to construct a participant from
the saved recovery state byte array. If the recovery module does not recognise a participant id
then it will be assumed to belong to some other application.

Participant Recovery API

Participants are normally expected to implement the save state functionality by implementing
interface Serializable. In such cases participants will be automatically serialized to a byte
stream using Java serialization and the resulting byte data is stored in the recovery record.
Specifically, for a participant completion participant this happens immediately after the call to the
participant manager's completed method whereas for a coordinator completion participant this
happens immediately upon return from the participant's completed method. The stream will be
written by means of a single call to ObjectOuputStream.writeObject with the participant as
argument. Alternatively, if the participant does not implement Serializable it can implement the
following interface in package com.arjuna.wst:

public interface PersistableBAParticipant
{
 byte[] getRecoveryState() throws Exception;
}

In this case, getRecoveryState will be invoked at the points defined above and the returned
byte sequence will be written by the BA implementation.

One or other of these interfaces must be implemented, otherwise the complete operation on the
participant will fail and, ultimately, the participant will be cancelled.

Participant Recovery Module API

A recovery module must implement the following interface in package
org.jboss.xts.recovery:

public interface XTSBARecoveryModule
{
 public BusinessAgreementWithParticipantCompletionParticipant
 deserializeParticipantCompletionParticipant(String id,
ObjectInputStream stream) throws Exception;

 public BusinessAgreementWithParticipantCompletionParticipant
 recreateParticipantCompletionParticipant(String id, byte[]
recoveryState) throws Exception;

 public BusinessAgreementWithCoordinatorCompletionParticipant
 deserializeCoordinatorCompletionParticipant(String id,
ObjectInputStream stream) throws Exception;

 public BusinessAgreementWithCoordinatorCompletionParticipant
 recreateCoordinatorCompletionParticipant(String id, byte[]
recoveryState) throws Exception;
}

If a participant was saved using serialization then one of the deserialize methods will be called
to allow the module a chance to deserialize it. If a participant was saved by invoking the
getRecoveryState method of PersistableBAParticipant then one of the recreate
methods will be called to recreate it. The BA implementation records which type of completion
protocol the participant was registered under so it knows which of the two possible deserialize
or recreate methods is appropriate for the data saved in the record. Note that for any given
recovery module all four of these methods may be called since the recovery module may be
offered the opportunity to recreate participants which belong to other applications.

id is the identifier under which the participant was registered. The recovery module should
only attempt to reconstruct a participant if it recognizes the id.

stream is a stream from which the application can read its participant by invoking method
readObject of class ObjectInputStream.

recoveryState is a byte array containing data returned from a call to
getRecoveryState.

Whichever method is called, if it returns null then it is assumed that the recovery record does not
belong to the recovery module's application. If an exception is thrown then it is assumed that the
record does belong to the module's application and a warning is logged. Although this may indicate
that the recovery data has been corrupted the participant recovery record is not deleted. The
recovery thread will retry the reconstruction operation when it next runs in case the error is a
transient one which can be recovered from. In such cases participant records must be deleted from
the log manually by an administrator.

An application must register its recovery module during application deployment and unregister it
during undeployment using the following API in package
org.jboss.xts.recovery.participant.BA:

public class XTSBARecoveryManager
{
 ...
 public void registerRecoveryModule(XTSBARecoveryModule module);
 public void unregisterRecoveryModule(XTSBARecoveryModule module);
 ...
}

WS-BA Participant Recovery State Processing

An XTS WS-BA participant recovery record is modelled in-memory by class
BAParticipantRecord. Each record will contain details of a single participant: a String
identifier; an enum field indicating whether the participant is registered fro participant ompletion or
coordinator completion; an XML format String representation of the associated coordinator
endpoint reference (including any reference parameters); and a byte[] participant recovery state.
No subordinate state is required so no persistence record types need be defined by the participant
recovery system.

Since the endpoint reference format differs between the 1.0 and 1.1 implementations and since
recovery processing will differ depending upon the protocol in use it is necessary to implement this
class in two flavours, one for the WS-BA 1.0 protocol and another for the 1.1 protocol.

Class BAParticipantRecord implements the PersistableParticipant interface enabling
the standard TX object state read_committed and write_committed operations to be used
for creation, retrieval and deletion of the object store entry containing the record. Where
appropriate delegation to methods on the 1.0 or 1.1 subclasses is used to generate the required
disk data representation. The saved state includes details of the implementation class so that on
recovery a valid in-memory version of the record can be reconstructed.

XTS WS-BA participant records are saved as top-level TX store entries, stored in a location in the
TX object store defined by the XTS WS-BA participant record type (akin to the ACCoordinator
type used on the coordinator side to store XTS WS-BA coordinator (transaction) state). WS-BA
participant recovery records differ from other object store entries in that they are not derived from
AbstractRecord nor from StateManager. The former class is only appropriate where the
record is capable of being driven through prepare, commit and/or abort by a BasicAction, which
is only appropriate on the coordinator side. The latter class is only appropriate as a superclass of
classes which will be saved and restored when an Action is current in the saving/restoring thread
context and that is not the case in the threads which handle Participant service incoming
messages. Note, however, that this should present no problem in managing the object store
entries in the absence of heuristic outcomes. A participant recovery record will only be written at
complete. The BA implementation should ensure that the entry is deleted in response to exit or
fail operations initiated by the participant. Recovery processing should always ensure that a
close or compensate initiated by the coordinator eventually causes the entry to be deleted. This
does present an issue for any tools provided to scan the object store as these need to be aware of
the existence of BA recovery records and need to support manual deletion of records in the case
that a crashed coordinator cannot proceed to recovery.

During normal operation the XTS implementation maintains an active WS-BA participant map, an
in-memory map from WS-BA participant ids to WS-BA participant engines. An engine represents
an active participant and is the primary target for incoming Complete, Close and Cancel
messages. The map is updated in response to enlistParticipant, exit, fail, cancel,
compensate or close operations to reflect the presence of: active participants; and saved or
deleted WS-BA participant recovery records in the TX object store.

During bootstrap the XTS recovery module will scan for all XTS WS-BA participant recovery
records. Each WS-BA record will be reconstructed in memory and be entered into a recovered

participant map, an in-memory map from WS-BA participant ids to in-memory participant recovery
records. Once all records have been scanned and loaded into the recovery map each of the XTS
WS-BA recovery modules registered with the XTS implementation will be used to try to restore an
active participant from the recovery state located in each of the participant recovery records.

If a BA recovery module successfully converts an entry to a participant the recovery record will be
atomically removed from the recovery map and a WS-BA participant engine entered into the active
participant map. If no module successfully converts the entry to a participant a recovery warning
will be generated and the entry will be left in the recovered participant map for conversion on a
later recovery pass, possibly by a newly registered recovery module (registration may not be
complete before the first recovery scan is completed). n.b. existing modules get another bite at the
cherry i.e. the recovery records is passed to all modules registered at the time of the scan, not just
to those which have been registered since the last scan. This covers the case where the failure to
initially process the record was because the module needed to wait on other internal/external
resources to start up.

An incoming Close or Compensate message may contain a participant id which is not found in
the WS-BA active participant map. This may happen during bootstrap because the initial recovery
scan is not complete. It may also happen after the initial scan because the recovery state has not
yet been converted to a participant. The former case can be detected using a flag which defaults to
false and is set to true after the first scan is completed. In the latter case there will be an entry for
the participant in the recovered participant map.

In these two cases incoming Close or Compensate messages will be silently dropped to ensure
that a valid response is provided when recovery is ready. If neither of these exemptions applies it
is assumed that the message has been resent and processing follows the transition tables in the
WS-BA spec: the response to a Close message will be to send a Closed response (i.e. to
presume that the Close has been resent); the response to a Compensate request will be to send
an Compensated response (i.e. to presume that the Compensate has been resent).

	WS-BA Participant Side APIs
	WS-BA Coordinator Side Implementations
	WS-BA Participant Side Processing
	WS-BA Coordinator Side Processing
	WS-BA Coordinator Side Recovery
	WS-BA Coordinator Side Recovery State Processing
	WS-BA Participant Side Recovery
	Participant Recovery API
	Participant Recovery Module API

	WS-BA Participant Recovery State Processing

