
Arjuna CLF 2.0

Programmer's Guide

CLF-PG-9/17/08

Legal Notices

The information contained in this documentation is subject to change without notice.

Arjuna Technologies Limited makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. Arjuna
Technologies Limited shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company.

Software Version

Arjuna CLF 2.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

Arjuna Technologies Limited
Nanotechnology Centre
Herschel Building
Newcastle Upon Tyne
NE1 7RU
United Kingdom

© Copyright 2008 Arjuna Technologies Limited

Content

Table Of Contents

About This Guide...4

What This Guide Contains................................4
Audience...4
Organization..4
Documentation Conventions.............................4

Overview...6

CLF 2.0 Architecture..6
Package Overview:

com.arjuna.common.util.logging6
LogFactory..7
Setup of Log subsystem....................................7

Getting Started..8
Log Interface...10
Dependencies..11

Default File Logging.......................................12

Overview...12
Setup...12

FineGrained Logging....................................13

Overview...13
Usage..14

Index..16

About This Guide

What This Guide Contains

The Programmer's Guide contains information on how to use Arjuna CLF 2.0.

Audience

This guide is most relevant to engineers who are responsible for using Arjuna CLF 2.0
installations.

Organization

This guide contains the following chapters:

1. Chapter 1, Overview
2. Chapter 2, Migration to CLF 2.0
3. Chapter 3, Helper Classes
4. Chapter 4, The Log Interface

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the

4

following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note: and

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

5

Chapter 1

Overview

CLF 2.0 Architecture

CLF 2.0

Jakarta Commons Logging Core Services
Framework

(CSF) Logginglog4j
JDK
1.4

JDK
1.1

Avalon

Pure JDK 1.1 logging
(for compilation to MS .net)

Console-Appender can also
write to CSF log viewer

JMS

JDBCFile
(rolling)

Chain
saw

Chain
saw

console

Win NT
syslog

Tcp/ip
Socket

JMX

XML
Log

Figure 0-1 CLF 2.0 Architecture

Package Overview: com.arjuna.common.util.logging

Interface Summary
Logi18n A simple logging interface abstracting the various logging APIs

supported by CLF and providing an internationalization layer
based on resource bundles.

LogNoi18n A simple logging interface abstracting the various logging APIs
supported by CLF without internationalization support

Class Summary

CommonDebugLevel
The CommonDebugLevel class provides default finer
debugging value to determine if finer debugging is allowed or
not.

CommonFacilityCode The CommonFacilityCode class provides default finer facilitycode

6

file:///C:docscomarjunacommonutilloggingCommonDebugLevel.html
file:///C:docscomarjunacommonutilloggingCommonFacilityCode.html

value to determine if finer debugging is allowed or not.

CommonVisibilityLevel
The CommonVisibilityLevel class provides default finer visibility
value to determine if finer debugging is allowed or not.

LogFactory Factory for Log objects.

LogFactory

Factory for Log objects. LogFactory returns different subclasses of logger according to which
logging subsystem is chosen. The log system is selected through the property
com.arjuna.common.utils.logger. Supported log systems are:

• jakarta Jakarta Commons Logging (JCL). JCL can delegate to various other logging
subsystems, such as:

 log4j
 JDK 1.4 logging
 JDK 1.1 based logging (for compilation to Microsoft .net)
 Avalon

• dotnet .net logging. (must be JDK 1.1 compliant for compilation by the Microsoft
compiler)

Note that rather than implementing CSF and .net logging as additional loggers for JCL they
have been anchored at this level to maximise code reuse and guarantee that all .net dependent
code is 1.1 compliant. Log subsystems are not configured through CLF but instead rely on
their own configuration files for the setup of eg. debug level, appenders, etc...

Setup of Log subsystem

The underlying log system can be selected in two ways:

• Through the commonPropertyManager:
com.arjuna.common.internal.util.logging.commonPropertyManager.
propertyManager.setProperty(“com.arjuna.common.util.logger”, “csf”);

• As a System property (see following table)

Property Name Description
com.arjuna.common.util.logger

property name is defined as the
public constant:
LogFactory.LOGGER_PROPERTY

This property selects the log subsystem to use. Note that
this can only be set as a System property, e.g. as a
parameter to start up the client application:

java –Dcom.arjuna.common.util.logger=log4j ..

Table 2 System property to select the underlying log system to use.

Νοτε: The properties of the underlying log system are configured in a manner
specific to that log system, e.g., a log4j.properties file in the case that log4j
logging is used.

Property Value Description

7

file:///C:docscomarjunacommonutilloggingLog.html
file:///C:docscomarjunacommonutilloggingLogFactory.html
file:///C:docscomarjunacommonutilloggingCommonVisibilityLevel.html

log4j Log4j logging (log4j classes must be available in the classpath);
configuration through the log4j.properties file, which is picked up from
the CLASSPATH or given through a System property:
log4j.configuration

jdk14 JDK 1.4 logging API (only supported on JVMs of version 1.4 or higher).
Configuration is done through a file logging.properties in the
jre/lib directory.

simple Selects the simple JDK 1.1 compatible console-based logger provided
by Jakarta Commons Logging

jakarta Uses the default log system selection algorithm of the Jakarta
Commons Logging framework

dotnet Selects a .net logging implementation
Since a dotnet logger is not currently implemented, this is currently
identical to simple. Simple is a purely JDK1.1 console-based log
implementation.

noop Disables all logging

Table 3 Possible values for selecting the client-side logging system.

Example: To set off log4j (default log system), provide the following System properties:

-Dcom.arjuna.common.util.logger=log4j
-Dlog4j.configuration=file://c:/Projects/common/log4j.properties

Getting Started

Simple use example:

import com.arjuna.common.util.logging.*;

public class Test
{
 static Log mylog = LogFactory.getLog(Test.class);

 public static void main(String[] args)
 {
 String param0 = "foo";
 String param1 = "bar";

 // different log priorities
 mylog.debug("key1", new Object[]{param0, param1});
 mylog.info("key2", new Object[]{param0, param1});
 mylog.warn("key3", new Object[]{param0, param1});
 mylog.error("key4", new Object[]{param0, param1});
 mylog.fatal("key5", new Object[]{param0, param1});

 // optional throwable
 Throwable throwable = new Throwable();
 mylog.debug("key1", new Object[]{param0, param1}, throwable);
 mylog.info("key2", new Object[]{param0, param1}, throwable);
 mylog.warn("key3", new Object[]{param0, param1}, throwable);
 mylog.error("key4", new Object[]{param0, param1}, throwable);
 mylog.fatal("key5", new Object[]{param0, param1}, throwable);

 // debug guard to avoid an expensive operation if the logger does not
 // log at the given level:
 if (mylog.isDebugEnabled())
 {

8

 String x = expensiveOperation();
 mylog.debug("key6", new Object[]{x});
 }

 // **
 // fine-grained debug extensions
 mylog.debug(CommonDebugLevel.OPERATORS,
 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL,
 "This debug message is enabled since it matches default” +
 Finer Values");

 mylog.setVisibilityLevel(CommonVisibilityLevel.VIS_PACKAGE);
 mylog.setDebugLevel(CommonDebugLevel.CONSTRUCT_AND_DESTRUCT);
 mylog.setFacilityCode(CommonFacilityCode.FAC_ALL);

 mylog.mergeDebugLevel(CommonDebugLevel.ERROR_MESSAGES);

 if (mylog.debugAllowed(CommonDebugLevel.OPERATORS,
 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL))
 {
 mylog.debug(CommonDebugLevel.OPERATORS,
 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL,
 "key7", new Object[]{"foo", "bar"}, throwable);
 }
 }
}

Log Interface

A simple logging interface abstracting the various logging APIs supported by CLF.

The logging levels used by Log are (in order):

1. debug (the least serious)
2. info
3. warn
4. error
5. fatal (the most serious)

The mapping of these log levels to the concepts used by the underlying logging system is
implementation dependent. The implemention should ensure, though, that this ordering
behaves as expected.

Performance is often a logging concern. By examining the appropriate property, a component
can avoid expensive operations (producing information to be logged).

For example,

 if (log.isDebugEnabled()) {
 ... do something expensive ...
 log.debug(...);
 }

Configuration of the underlying logging system will generally be done external to the
Logging APIs, through whatever mechanism is supported by that system.

9

Dependencies
Name Description
commons-logging.jar Jakarta Commons Logging JAR (v. 1.0.3)
log4j-1.2.8.jar Log4j Jar file (required when using log4j)
mw-common.jar (for CSF logging)
csf.jar (for CSF logging)

Table 4 Jar file dependencies

Νοτε: At runtime, it is important, that log4j-1.2.8.jar appears after common.jar in
the CLASSPATH. The reason is the CLF overrides a class in log4j that is
required to print out correct line number information in the log.

10

Chapter 2

Default File Logging

Overview

Independent of the log system chosen, it is possible to log all messages over a given severity
threshold into a file. This is useful to guarantee that e.g., error and fatal level messages are not
lost despite a user has not set up a log framework, such as log4j

Setup

Usage of this feature is simple and can be controlled through a set of properties. These can be
provided through the Property Manager or as System properties.

Property Name Values Description
com.arjuna.common.logging.default true/false Enable/disable default file-based

logging
com.arjuna.common.util.logging.
default.level

Info/error/fatal Severity level for this log

com.arjuna.common.util.logging.
default.showLogName

true/false Record the fully qualified log name

com.arjuna.common.util.logging.
default.showShortLogName

true/false Record an abbreviated log name

com.arjuna.common.util.logging.
default.showDate

true/false Record the date

com.arjuna.common.util.logging.
default.logFile

error.log
(default)

File to use for default logging. This
can be an absolute filename or
relative to the working directory

com.arjuna.common.util.logging.
default.logFileAppend

true/false Append to the log file above in case
that this file already exists

Table 5 Properties to control default file-based logging (default values are highlighted)

11

Chapter 3

Fine-Grained Logging

Overview

Finer-grained logging in CLF is available through a set of debug methods:

public void debug(long dl, long vl, long fl, Object message);
public void debug(long dl, long vl, long fl, Throwable throwable);
public void debug(long dl, long vl, long fl, String key, Object[] params);
public void debug(long dl, long vl, long fl, String key, Object[] params,
 Throwable throwable);

All of these methods take the three following parameters in addition to the log messages and
possible exception:

dl - The debug finer level associated with the log message. That is, the logger object allows to
log only if the DEBUG level is allowed and dl is either equals or greater the debug level assigned
to the logger Object See Table 6 for possible values.

vl - The visibility level associated with the log message. That is, the logger object allows to log
only if the DEBUG level is allowed and vl is either equals or greater the visibility level assigned
to the logger Object See Table 8 for possible values.

fl - The facility code level associated with the log message. That is, the logger object allows to
log only if the DEBUG level is allowed and fl is either equals or greater the facility code level
assigned to the logger Object See Table 7 for possible values.

The debug message is sent to the output only if the specified debug level, visibility level, and
facility code match those allowed by the logger.

Νοτε: The first two methods above do not use i18n. i.e., the messages are directly
used for log output.

12

Usage

Possible values for debug finer level, visibility level and facility code level are declared in the
classes DebugLevel, VisibilityLevel and FacilityCode respectively. This is useful for
programmatically using fine-grained debugging.

Debug Finer Level Value Description

NO_DEBUGGING 0x0000 no debugging
CONSTRUCTORS 0x0001 only output from constructors
DESTRUCTORS 0x0002 only output from finalizers

CONSTRUCT_AND_DESTRUCT CONSTRUCTORS |
DESTRUCTORS

FUNCTIONS 0x0010 only output from methods

OPERATORS 0x0020 only output from methods such as
equals, notEquals

FUNCS_AND_OPS FUNCTIONS |
OPERATORS

ALL_NON_TRIVIAL
CONSTRUCT_AND_DEST
RUCT | FUNCTIONS |
OPERATORS

TRIVIAL_FUNCS 0x0100 only output from trivial methods
TRIVIAL_OPERATORS 0x0200 only output from trivial operators

ALL_TRIVIAL TRIVIAL_FUNCS |
TRIVIAL_OPERATORS

ERROR_MESSAGES 0x0400 only output from debugging
error/warning messages

FULL_DEBUGGING 0xffff output all debugging messages

Table 6 Possible settings for finer debug level (class DebugLevel)

Visibility Level Value Description

VIS_NONE 0x0000 no visibility
VIS_PRIVATE 0x0001 only from private methods
VIS_PROTECTED 0x0002 only from protected methods
VIS_PUBLIC 0x0004 only from public methods
VIS_PACKAGE 0x0008 only from package methods
VIS_ALL 0xffff output all visbility levels

Table 7 Possible settings for visibility level (class VisibilityLevel)

Facility Code Level Value Description

FAC_NONE 0x00000000 no facility
FAC_ALL 0xffffffff output all facility codes

Table 8 Possible settings for facility code level (class FacilityCode)

13

At runtime, the fine-grained debug settings are controlled through a set of properties, listed in
the table below:

Property Name Default Value

com.arjuna.common.util.logging.DebugLevel NO_DEBUGGING

com.arjuna.common.util.logging.VisibilityLevel VIS_ALL

com.arjuna.common.util.logging.FacilityCode FAC_ALL

14

Appendix A

Index

15

