JBoss Transactions 4.3.0
Quick Start Guide
JBTS-QSG-3/13/08
[image: image1.jpg]. . a division of Red Hat

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™, Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it will be useful, but WITHOUT A WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.
Software Version

JBoss Transactions 4.3.0
Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2008 JBoss Inc.
Contents

5About This Guide

5What This Guide Contains

5Audience

5Prerequisites

5Organization

5Documentation Conventions

6Additional Documentation

6Contacting Us

7Quick Start to JTA

7Introduction

7Package layout

7Setting properties

7Specifying the object store location

8Demarcating Transactions

8UserTransaction

8TransactionManager

8The Transaction interface

9Local vs Distributed JTA implementations

9JDBC and Transactions

10Configurable options

11Quick Start to JTS/OTS

11Introduction

11Package layout

11Setting properties

12Starting and terminating the ORB and BOA/POA

13Specifying the object store location

13Implicit transaction propagation and interposition

14Obtaining Current

15Transaction termination

15Transaction factory

16Recovery manager

17Quick Start to Web Services Transactions

17Configuring the Web Services component

19Index

About This Guide

What This Guide Contains

The Quick Start Guide contains information on how to use JBoss Transactions 4.3.0.
Audience

This guide is most relevant to engineers who are responsible for administering JBoss Transactions 4.3.0 installations. It is intended for those who are familiar with transactions in general and the OTS/JTS and JTA in particular.

Prerequisites

Familiarity with the JTA, OTS, transactions and ORBs.
Organization

This guide contains the following chapters:

· Chapter 1, Quick Start to JTA: This chapter covers the key features required to construct a basic JTA application with JBossTS.

· Chapter 2, Quick Start to JTS/OTS: This chapter covers the key features required to construct a basic OTS application using the raw OMG/OTS interfaces, and to configure JBossTS.

Documentation Conventions

The following conventions are used in this guide:

	Convention
	Description

	Italic
	In paragraph text, italic identifies the titles of documents that are being referenced. When used in conjunction with the Code text described below, italics identify a variable that should be replaced by the user with an actual value.

	Bold
	Emphasizes items of particular importance.

	Code
	Text that represents programming code.

	Function | Function
	A path to a function or dialog box within an interface. For example, “Select File | Open.” indicates that you should select the Open function from the File menu.

	() and |
	Parentheses enclose optional items in command syntax. The vertical bar separates syntax items in a list of choices. For example, any of the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate | NoMoreOftenThan)

	Note:

Caution:
	A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to avoid damage to equipment, damage to software, loss of data, or invalid test results.

Table 1
Formatting Conventions
Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.3.0 documentation set:

· JBoss Transactions 4.3.0 Release Notes: Provides late-breaking information about JBoss Transactions 4.3.0.
· JBoss Transactions 4.3.0 Installation Guide: This guide provides instructions for installing JBoss Transactions 4.3.0.

· JBoss Transactions 4.3.0 Programmer’s Guide: Provides guidance for writing applications.

· JBoss Transactions API Programmer’s Guide: Provides guidance when using the JTA for building transactional applications.

· TxCore Failure Recovery Guide: Describes the failure recovery aspects of JBossTS.

· TxCore Programmer’s Guide: Describes how to write transactional applications using the non-distributed transaction engine at the heart of JBossTS.

Contacting Us

Questions or comments about JBoss Transactions 4.3.0 should be directed to our support team.

Quick Start to JTA

Introduction
This chapter will briefly cover the key features required to construct a JTA application. It is assumed that the reader is familiar with the concepts of the JTA.

Package layout

xe "Package layout"

 XE "Jar setup:ArjunaTS jars" \i The key Java packages (and corresponding jar files) for writing basic JTA applications are:

· com.arjuna.ats.jts: this package contains the JBossTS implementations of the JTS and JTA.

· com.arjuna.ats.jta: this package contains local and remote JTA implementation support.

· com.arjuna.ats.jdbc: this package contains transactional JDBC 2.0 support.

All of these packages appear in the lib directory of the JBossTS installation, and should be added to the programmer’s CLASSPATH.

 XE "Jar setup:additional jars" \i In order to fully utilize all of the facilities available within JBossTS, it will be necessary to add the following jar files to your CLASSPATH: jta-spec1_0_1.jar, jdbc2_0-stdext.jar and jndi.jar.

Setting properties

 XE "Setting properties"

 XE "Properties:setting" \i JBossJTA has also been designed to be configurable at runtime through the use of various property attributes. These attributes can be provided at runtime on command line or specified through a properties file.

Specifying the object store location

JBossJTA requires an object store in order to persistently record the outcomes of transactions in the event of failures. In order to specify the location of the object store it is necessary to specify the location XE "Property variables:OBJECTSTORE_DIR" \i when the application is executed; for examplexe "ObjectStore:specifying location" \i:

java –Dcom.arjuna.ats.arjuna.objectstore.objectStoreDir=/var/tmp/ObjectStore myprogram

The default location is a directory under the current execution directory.

By default, all object states will be stored within the defaultStore subdirectory of the object store root, e.g., /usr/local/Arjuna/TransactionService/ObjectStore/defaultStore. However, this subdirectory can be changed by setting the com.arjuna.ats.arjuna.objectstore.localOSRoot XE "Property variables:LOCALOSROOT" \i property variable accordingly.

Demarcating Transactions

The Java Transaction API consists of three elements: a high-level application transaction demarcation interface, a high-level transaction manager interface intended for application server, and a standard Java mapping of the X/Open XA protocol intended for transactional resource manager. All of the JTA classes and interfaces occur within the javax.transaction package, and the corresponding XE "Package" \b JBossJTA implementations within the com.arjuna.ats.jta package.

UserTransaction

xe "UserTransaction" \b

xe "Obtaining UserTransaction" \bThe UserTransaction interface provides applications with the ability to control transaction boundaries.

In JBossJTA, UserTransaction can be obtained from the static com.arjuna.ats.jta.UserTransaction.userTransaction() method. When obtained the UserTransaction object can be used to control transactions

//get UserTransaction

UserTransaction utx = com.arjuna.ats.jta.UserTransaction.userTransaction();
// start transaction work..

utx.begin();

.. do work

utx.commit();
TransactionManager

xe "TransactionManager" \b

xe "Obtaining TransactionManager" \bThe TransactionManager interface allows the application server to control transaction boundaries on behalf of the application being managed.

In JBossJTA, transaction manager implementations can be obtained from the static com.arjuna.ats.jta.TransactionManager.transactionManager() method

The Transaction interface

The Transaction interface allows operations to be performed on the transaction associated with the target object. Every top-level transaction is associated with one Transaction object when the transaction is created. The Transaction object can be used to:

· enlist the transactional resources in use by the application.

· register for transaction synchronization call backs.

· commit or rollback the transaction.

· obtain the status of the transaction.
A Transaction object can be obtained using the TransactionManager by invoking the method getTransaction() method.

Transaction txObj = TransactionManager.getTransaction();
Local vs Distributed JTA implementations

In order to ensure interoperability between JTA applications, it is recommended to rely on the JTS/OTS specification to ensure transaction propagation among transaction managers.

In order to select the local JTA implementation it is necessary to perform the following steps:

1. make sure the property com.arjuna.ats.jta.jtaTMImplementation is set to com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple.

2. make sure the property com.arjuna.ats.jta.jtaUTImplementation is set to com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple.

In order to select the distributed JTA implementation it is necessary to perform the following steps:

3. make sure the property com.arjuna.ats.jta.jtaTMImplementation is set to com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple.

4. make sure the property com.arjuna.ats.jta.jtaUTImplementation is set to com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple.
JDBC and Transactions

ArjunaJTS supports the construction of both local and distributed transactional applications which access databases using the JDBC 2.0 APIs. JDBC 2.0 supports two-phase commit of transactions, and is similar to the XA X/Open standard. The JDBC 2.0 support is found in the com.arjuna.ats.jdbc package.

The ArjunaJTS approach to incorporating JDBC connections within transactions is to provide transactional JDBC drivers through which all interactions occur. These drivers intercept all invocations and ensure that they are registered with, and driven by, appropriate transactions. (There is a single type of transactional driver through which any JDBC driver can be driven. This driver is com.arjuna.ats.jdbc.TransactionalDriver, which implements the java.sql.Driver interface.)

Once the connection has been established (for example, using the java.sql.DriverManager.getConnection method), all operations on the connection will be monitored by JBossJTA. Once created, the driver and any connection can be used in the same way as any other JDBC driver or connection.

JBossJTA connections can be used within multiple different transactions simultaneously, i.e., different threads, with different notions of the current transaction, may use the same JDBC connection. JBossJTA does connection pooling for each transaction within the JDBC connection. So, although multiple threads may use the same instance of the JDBC connection, internally this may be using a different connection instance per transaction. With the exception of close, all operations performed on the connection at the application level will only be performed on this transaction-specific connection.

JBossJTA will automatically register the JDBC driver connection with the transaction via an appropriate resource. When the transaction terminates, this resource will be responsible for either committing or rolling back any changes made to the underlying database via appropriate calls on the JDBC driver.
Configurable options

 XE "Transactional Objects for Java:configuration" \i

 XE "Configurable options" \b The following table shows some of the configuration features, with default values shown in italics. For more detailed information, the relevant section numbers are provided. You should look at the various Programmers Guides for more options.

	Configuration Name
	Possible Values

	com.arjuna.ats.jta.supportSubtransactions
	YES/NO

	com.arjuna.ats.jta.jtaTMImplementation
	com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple/com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple

	com.arjuna.ats.jta.jtaUTImplementation
	com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple/com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple

	com.arjuna.ats.jta.xaBackoffPeriod
	Time in seconds.

	com.arjuna.ats.jdbc.isolationLevel
	Any supported JDBC isolation level.

Table 3: JBossJTA configuration options.
Quick Start to JTS/OTS

Introduction
This chapter will briefly cover the key features required to construct a basic OTS application using the raw OTS interfaces defined by the OMG specification. It is assumed that the reader is familiar with the concepts of the JTS/OTS and has read the relevant ORB specific portions of the JBossTS Programmer’s Guide. Further topics and the advanced facilities provided by JBossTS will be described in subsequent sections of this manual; references to chapters in the other manuals of the document set will be given in the relevant sections.

Package layout

xe "Package layout"

 XE "Jar setup:ArjunaTS jars" \i The key Java packages (and corresponding jar files) for writing basic OTS applications are:

· com.arjuna.orbportability: this package contains the classes which constitute the ORB portability library and other useful utility classes.

· org.omg.CosTransactions: this package contains the classes which make up the CosTransactions.idl module.

· com.arjuna.ats.jts: this package contains the JBossTS implementations of the JTS and JTA.

· com.arjuna.ats.arjuna: this package contains further classes necessary for the JBossTS implementation of the JTS.

· com.arjuna.ats.jta: this package contains local and remote JTA implementation support.

· com.arjuna.ats.jdbc: this package contains transactional JDBC 2.0 support.

All of these packages appear in the lib directory of the JBossTS installation, and should be added to the programmer’s CLASSPATH.

 XE "Jar setup:additional jars" \i In order to fully utilize all of the facilities available within JBossTS, it will be necessary to add the following jar files to your CLASSPATH: jta-spec1_0_1.jar, jdbc2_0-stdext.jar and jndi.jar.

Setting properties

 XE "Setting properties"

 XE "Properties:setting" \i JBossTS has been designed to be highly configurable at runtime through the use of various property attributes, which will be described in subsequent sections. Although these attributes can be provided at runtime on the command line, it is possible (and may be more convenient) to specify them through the single properties file jbossjts-properties.xml. At runtime JBossTS looks for its property file in the following order:

· the current working directory, i.e., where the application was executed from.

· the user’s home directory.

· the CLASSPATH (via the getResource() method).

If found, all entries within this file will be added to the system properties. Obviously non-JBossTS specific properties can also be specified in this file.

Starting and terminating the ORB and BOA/POA

xe "Starting the ORB and BOA" It is important that JBossTS is correctly initialized prior to any application object being created. In order to guarantee this, the programmer must use the xe "initORB:overview" \iinitORB and xe "initOA:overview" \iinitBOA/initPOA methods of the ORBInterface class described in the ORB Portability Manual. Using the ORB_init and BOA_init/create_POA methods provided by the underlying ORB will not be sufficient, and may lead to incorrectly operating applications. For example:

public static void main (String[] args)
{
ORBInterface.initORB(args, null);
ORBInterface.initOA();
. . .
};

The ORBInterface class has operations orb() and boa()/poa()/rootPoa() for returning references to the orb and boa/child POA/root POA respectively after initialization has been performed. If the ORB being used does not support the BOA (e.g., Sun’s JDK 1.2) then boa() does not appear in the class definition, and initBOA will do nothing.

xe "Shutdown down the ORB and BOA"In addition, it is necessary to use xe "shutdownOA:overview" \ishutdownOA and xe "shutdownORB:overview" \ishutdownORB (in that order) prior to terminating an application to allow JBossTS to perform necessary cleanup routines. shutdownOA routine will either shutdown the BOA or the POA depending upon the ORB being used.

public static void main (String[] args)
{
. . .
ORBInterface.shutdownOA();
ORBInterface.shutdownORB();
};

No further CORBA objects should be used once shutdown has been called. It will be necessary to re-initialise the BOA/POA and ORB in such an event.

Note: In the rest of this document we shall use the term Object Adapter to mean either the Basic Object Adapter (BOA) or the Portable Object Adapter (POA). In addition, where possible we shall use the ORB Portability classes which attempt to mask the differences between POA and BOA.

Specifying the object store location

JBossTS requires an object store in order to persistently record the outcomes of transactions in the event of failures. In order to specify the location of the object store it is necessary to specify the location XE "Property variables:OBJECTSTORE_DIR" \i when the application is executed; for examplexe "ObjectStore:specifying location" \i:

java –Dcom.arjuna.ats.arjuna.objectstore.objectStoreDir=/var/tmp/ObjectStore myprogram

The default location is a directory under the current execution directory.

By default, all object states will be stored within the defaultStore subdirectory of the object store root, e.g., /usr/local/Arjuna/TransactionService/ObjectStore/defaultStore. However, this subdirectory can be changed by setting the com.arjuna.ats.arjuna.objectstore.localOSRoot XE "Property variables:LOCALOSROOT" \i property variable accordingly.

Implicit transaction propagation and interposition

 XE "Transaction context propagation" \b Transactions can be created within one domain (e.g., process) and used within another. Therefore, information about a transaction (the transaction context) needs to be propagated between these domains. This can be accomplished in two ways:

· Explicit propagation means that an application propagates a transaction context by passing context objects (instances of the Control interface or the PropagationContext structure) defined by the Transaction Service as explicit parameters. Note, for efficiency reasons it is recommended that the PropagationContext be passed, rather than the Control.

· Implicit propagation means that requests on objects are implicitly associated with the client’s transaction; they share the client’s transaction context. The context is transmitted implicitly to the objects, without direct client intervention.

 XE "Interposition" \b OTS objects supporting the Control interface are standard CORBA objects. When the interface is passed as a parameter in some operation call to a remote server only an object reference is passed. This ensures that any operations that the remote object performs on the interface (such as registering resources as participants within the transaction) are performed on the real object. However, this can have substantial penalties for the application if it frequently uses these interfaces due to the overheads of remote invocation. To avoid this overhead JBossTS supports interposition, whereby the server creates a local object which acts as a proxy for the remote transaction and fields all requests that would normally have been passed back to the originator. This surrogate registers itself with the original transaction coordinator to enable it to correctly participate in the termination of the transaction. Interposed coordinators effectively form a tree structure with their parent coordinators. This is shown in the figure below.

[image: image2.wmf]

RDBMS

RDBMS

RDBMS

Machine 1

Queue

Machine 2

Root

coordinator

Subordinate

coordinator

Network invocations

for TX coordination

Client

App

Network invocations

for TX Control

Note: implicit transaction propagation does not imply interposition will be used at the server, but (typically) interposition requires implicit propagation.

xe "Implicit context propagation" \b

xe "Filters" \bIf implicit context propagation and interposition are required, then the programmer must ensure that JBossTS is correctly initialised prior to objects being created; obviously it is necessary for both client and server to agree on which, if any, protocol (implicit or interposition) is being used. Implicit context propagation is only possible on those ORBs which either support filters/interceptors, or the CosTSPortability interface. Currently this is HP-ORB, JacORB, the JDK 1.4 ORB and Orbix 2000. Depending upon which type of functionality is required, the programmer must perform the following:

· xe "Property variables:filters" \iImplicit context propagation:

· set the com.arjuna.ats.jts.contextPropMode xe "Property variables:OTS_CONTEXT_PROP_MODE" \iproperty variable to CONTEXT. If using Orbix 2000, see the Orbix 2000 configuration section in the Administrator’s Guide.

· Interposition:

· set the com.arjuna.ats.jts.contextPropMode property variable to INTERPOSITION. If using Orbix 2000, see the Orbix 2000 configuration section in the Administrator’s Guide.

 XE "Interposition:Transactional Objects for Java" \i If using the JBossTS advanced API then interposition is required.

Obtaining Current

xe "Current:overview" \i

xe "Current:obtaining" \iThe Current pseudo object can be obtained from the com.arjuna.ats.jts.OTSManager class using its get_current() method.

Transaction termination

xe "Control:accessibility" \iIt is implementation dependant as to how long a Control remains able to access a transaction after it terminates. In JBossTS, if using the Current interface then all information about a transaction is destroyed when it terminates. Therefore, the programmer should not use any Control references to the transaction after issuing the commit/rollback operations.

However, if the transaction is terminated explicitly using the Terminator interface then information about the transaction will be removed when all outstanding references to it are destroyed. However, the programmer can signal that the transaction information is no longer required using the destroyControl method of the OTS class in the com.arjuna.CosTransactions package. Once the program has indicated that the transaction information is no longer required, the same restrictions to using Control references apply as described above.

Transaction factory

 XE "Configuring ArjunaTS" \b

xe "Transaction manager:setting" \i

xe "Current:using a transaction manager" \iBy default, JBossTS does not use a separate transaction manager when creating transactions through the Current interface. Each transactional client essentially has its own transaction manager (TransactionFactory) which is co-located with it. By setting the xe "Property variables:OTS_TRANSACTION_MANAGER" \i com.arjuna.ats.jts.transactionManager property variable to YES this can be overridden at runtime. The transaction factory is located in the bin directory of the JBossTS distribution, and should be started by executing the start-transaction-service script located in <ats_root>/bin.

Typically Current locates the factory using the CosServices.cfg xe "CosServices.cfg:overview" \ifile located in the etc directory of the JBossTS distribution. This file is similar to resolve_initial_references, and is automatically updated (or created) when the transaction factory is started on a particular machine. This file must be copied to the installation of all machines which require to share the same transaction factory.

Note: xe "CosServices.cfg:overriding default name and location" \ithis is the default name and location of the configuration file. The name of the file can be specified at runtime using the com.arjuna.orbportability.initialReferencesFile variable, and its location can be changed using the com.arjuna.orbportability.initialReferencesRoot variable:

java –Dcom.arjuna.orbportability.initialReferencesFile=ref –Dcom.arjuna.orbportability.initialReferencesRoot=c:\\temp prog

It is possible to override the default location mechanism by using the com.arjuna.orbportability.resolveServicexe "Property variables:RESOLVE_SERVICE" \i property variable. This can have one of the following values:

· CONFIGURATION_FILE: the default, this causes the system to use the CosServices.cfg file.

· NAME_SERVICE: JBossTS will attempt to use a name service to locate the transaction factory. If this is not supported, an exception will be thrown.

· BIND_CONNECT: JBossTS will use the ORB-specific bind mechanism. If this is not supported, an exception will be thrown.

If com.arjuna.orbportability.resolveServicexe "Property variables:RESOLVE_SERVICE" \i is specified when the transaction factory is run, then the factory will register itself with the specified resolution mechanism.

Recovery manager

You will need to start the recovery manager subsystem to ensure that transactions are recovered despite failures. In order to do this, you should run the start-recovery-manager script in <ats_root>/bin.
Quick Start to Web Services Transactions

Configuring the Web Services component

xe "Configuration" \bThe following table shows the configuration features available in JBossTS, with default values shown in italics. For more detailed information, the relevant section numbers are provided.

	Configuration Name
	Possible Values
	Relevant Section

	com.arjuna.orbportability.initialReferencesFile
	CosServices.cfg
	

	com.arjuna.orbportability.initialReferencesRoot
	The directory containing the file arjuna.properties.
	

	ArjunaJTS_LicenceKey
	System specific licence.
	

	com.arjuna.orbportability.resolveService
	CONFIGURATION_FILE/NAME_SERVICE/BIND_CONNECT
	

	com.arjuna.ats.arjuna.objectstore.objectStoreDir
	Any location that the application can write to.
	

	com.arjuna.ats.arjuna.objectstore.localOSRoot
	defaultStore
	

	PROPERTIES_FILE
	arjuna.properties
	

	com.arjuna.ats.arjuna.coordinator.asyncPrepare
	YES/NO
	

	com.arjuna.ats.arjuna.coordinator.asyncCommit
	YES/NO
	

	com.arjuna.ats.arjuna.coordinator.commitOnePhase
	YES/NO
	

	com.arjuna.ats.arjuna.coordinator.transactionSync
	ON/OFF
	

	com.arjuna.ats.arjuna.coordinator.enableStatistics
	ON/OFF
	

	com.arjuna.ats.jts.alwaysPropagateContext
	YES/NO
	

	com.arjuna.ats.jts.defaultTimeout
	No timeout
	

	com.arjuna.ats.jts.supportRollbackSync
	YES/NO
	

	com.arjuna.ats.jts.supportInterposedSynchronization
	YES/NO
	

	com.arjuna.ats.jts.supportSubtransactions
	YES/NO
	

	com.arjuna.ats.jts.checkedTransactions
	YES/NO
	

	com.arjuna.ats.jts.transactionManager
	YES/NO
	

	com.arjuna.ats.jts.needTranContext
	YES/NO
	

	com.arjuna.ats.arjuna.coordinator.txReaperTimeout
	120000000 microseconds
	

	com.arjuna.ats.arjuna.coordinator.txReaperMode
	NORMAL/DYNAMIC
	

	com.arjuna.ats.jts.contextPropMode
	NONE/CONTEXT/INTERPOSITION
	

Table 2: JBossTS configuration options.

Index

Configurable options
10
Configuration
17
Configuring ArjunaTS
15
Control

accessibility
15
CosServices.cfg

overriding default name and location
15
overview
15
Current

obtaining
14
overview
14
using a transaction manager
15
Filters
14
Implicit context propagation
14
initOA

overview
12
initORB

overview
12
Interposition
13
Transactional Objects for Java
14
Jar setup

additional jars
7, 11
ArjunaTS jars
7, 11
ObjectStore

specifying location
7, 13
Obtaining TransactionManager
8
Obtaining UserTransaction
8
Package
8
Package layout
7, 11

Properties

setting
7, 11
Property variables

filters
14
LOCALOSROOT
8, 13
OBJECTSTORE_DIR
7, 13
OTS_CONTEXT_PROP_MODE
14
OTS_TRANSACTION_MANAGER
15
RESOLVE_SERVICE
15, 16
Setting properties
7, 11

Shutdown down the ORB and BOA
12

shutdownOA

overview
12
shutdownORB

overview
12
Starting the ORB and BOA
12

Transaction context propagation
13
Transaction manager

setting
15
Transactional Objects for Java

configuration
10
TransactionManager
8
UserTransaction
8

_1110130335.doc

RDBMS

RDBMS

RDBMS

Machine 1

Queue

Machine 2

Root

coordinator

Subordinate

coordinator

Network invocations

for TX coordination

Client

App

Network invocations

for TX Control

