

AC-AG-3/13/08 i

ArjunaCore 4.3.0

Administration Guide

AC-AG-3/13/08

Legal Notices

The information contained in this documentation is subject to change without notice.

Arjuna Technologies Limited makes no warranty of any kind with regard to this material, including, but

not limited to, the implied warranties of merchantability and fitness for a particular purpose. Arjuna

Technologies Limited shall not be liable for errors contained herein or for incidental or consequential

damages in connection with the furnishing, performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are

registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,

Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here

as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in

the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as

indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted

material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms

and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it

will be useful, but WITHOUT A WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU

General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

ArjunaCore 4.3.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2008 JBoss Inc.

Contents
About This Guide..5

What This Guide Contains.............................5
Audience...5
Prerequisites..5
Organization..5
Documentation Conventions..........................5
Additional Documentation.............................6
Contacting Us..6

Administration of ArjunaCore.......................7

Introduction...7
ObjectStore management...............................7
ArjunaCore runtime information....................8
Failure recovery administration8
The Recovery Manager8
Configuring the Recovery Manager9
Periodic Recovery11
Expired entry removal13
Errors and Exceptions..................................13

AG-AC-3/13/08 5

About This Guide

What This Guide Contains

The Administration Guide contains information on how to use ArjunaCore 4.3.0.

Audience

This guide is most relevant to engineers who are responsible for administering ArjunaCore

4.3.0 installations.

Prerequisites

You should have installed ArjunaCore 4.3.0.

Organization

This guide contains the following chapters:

• Chapter 1, Administration of ArjunaCore: contains information on about how to

administer ArjunaCore.

Documentation Conventions

The following conventions are used in this guide:

ArjunaCore 4.3.0 Administration Guide

6 AC-AG-03/13/08

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.

Code Text that represents programming code.

Function | Function A path to a function or dialog box within an interface. For example,
“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |

NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the ArjunaCore 4.3.0

documentation set:

• ArjunaCore 4.3.0 Release Notes: Provides late-breaking information about

ArjunaCore 4.3.0.

• ArjunaCore 4.3.0 Installation Guide: This guide provides instructions for installing

ArjunaCore 4.3.0.

• ArjunaCore 4.3.0 Users Guide: Provides guidance for writing applications.

Contacting Us

Questions or comments about ArjunaCore 4.3.0 should be directed to our support team. Send

email to support@arjuna.com.

AG-AC-3/13/08 7

Chapter 1

Administration of
ArjunaCore

Introduction

Apart from ensuring that the run-time system is executing normally, there is little continuous

administration needed for the ArjunaCore software. There are a few points however, that

should be made:

• The present implementation of the ArjunaCore system provides no security or

protection for data. The objects stored in the ArjunaCore object store are (typically)

owned by the user who ran the application that created them. The Object Store and

Object Manager facilities make no attempt to enforce even the limited form of

protection that Unix/Windows provides. There is no checking of user or group IDs

on access to objects for either reading or writing.

• Persistent objects created in the Object Store never go away unless the

StateManager.destroy method is invoked on the object or some application

program explicitly deletes them. This means that the Object Store gradually

accumulates garbage (especially during application development and testing

phases). At present we have no automated garbage collection facility. Further, we

have not addressed the problem of dangling references. That is, a persistent object,

A, may have stored a Uid for another persistent object, B, in its passive

representation on disk. There is nothing to prevent an application from deleting B

even though A still contains a reference to it. When A is next activated and attempts

to access B, a run-time error will occur.

• There is presently no support for version control of objects or database

reconfiguration in the event of class structure changes. This is a complex research

area that we have not addressed. At present, if you change the definition of a class

of persistent objects, you are entirely responsible for ensuring that existing instances

of the object in the Object Store are converted to the new representation. The

ArjunaCore software can neither detect nor correct references to old object state by

new operation versions or vice versa.

• Object store management is critically important to the transaction service.

ObjectStore management

Within the transaction service installation, the object store is updated regularly whenever

transactions are created, or when Transactional Objects for Java is used. In a failure free

environment, the only object states which should reside within the object store are those

representing objects created with the Transactional Objects for Java API. However, if

ArjunaCore 4.3.0 Administration Guide

8 AC-AG-03/13/08

failures occur, transaction logs may remain in the object store until crash recovery facilities

have resolved the transactions they represent. As such it is very important that the contents of

the object store are not deleted without due care and attention, as this will make it impossible

to resolve in doubt transactions. In addition, if multiple users share the same object store it is

important that they realise this and do not simply delete the contents of the object store

assuming it is an exclusive resource.

ArjunaCore runtime information

Each module that comprises ArjunaCore possesses a class called Info. These classes all

provide a single toString method that returns an XML document representing the

configuration information for that module. So, for example:

<module-info name="arjuna"><source-identifier>unknown</source-

identifier><build-information>Arjuna Technologies [mlittle] (Windows 2000

5.0)</build-information><version>unknown</version><date>2002/06/15 04:06

PM</date><notes></notes><configuration><properties-file

dir="null">arjuna.properties</properties-file><object-store-

root>null</object-store-root></configuration></module-info>

Failure recovery administration

The failure recovery subsystem of ArjunaCore will ensure that results of a transaction are

applied consistently to all resources affected by the transaction, even if any of the application

processes or the machine hosting them crash or lose network connectivity. In the case of

machine (system) crash or network failure, the recovery will not take place until the system

or network are restored, but the original application does not need to be restarted – recovery

responsibility is delegated to the Recovery Manager process (see below). Recovery after

failure requires that information about the transaction and the resources involved survives the

failure and is accessible afterward: this information is held in the ActionStore, which is part

of the ObjectStore.

Caution: If the ObjectStore is destroyed or modified, recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction that was in

progress at the time of the failure may be inaccessible. For database resources, this may be

reported as tables or rows held by “in-doubt transactions”. For TransactionalObjects for Java

resources, an attempt to activate the Transactional Object (as when trying to get a lock) will

fail.

The Recovery Manager

The failure recovery subsystem of ArjunaCore requires that the stand-alone Recovery

Manager process be running for each ObjectStore (typically one for each node on the network

that is running ArjunaCore applications). The RecoveryManager file is located in the

arjunacore jar file within the package com.arjuna.ats.arjuna.recovery.RecoveryManager. To

start the Recovery Manager issue the following command:

java com.arjuna.ats.arjuna.recovery.RecoveryManager

Administration of ArjunaCore

AC-AG-3/13/08 9

If the -test flag is used with the Recovery Manager then it will display a “Ready” message

when initialised, i.e.,

java com.arjuna.ats.arjuna.recovery.RecoveryManager -test

Configuring the Recovery Manager

The RecoveryManager reads the properties defined in the arjuna.properties file and then also

reads the property file RecoveryManager.properties, from the same directory as it found the

arjuna properties file. An entry for a property in the RecoveryManager properties file will

override an entry for the same property in the main TransactionService properties file. Most

of the entries are specific to the Recovery Manager.

A default version of RecoveryManager.properties is supplied with the distribution – this can

be used without modification, except possibly the debug tracing fields (see below, Output).

The rest of this section discusses the issues relevant in setting the properties to other values

(in the order of their appearance in the default version of the file)

Output

It is likely that installations will want to have some form of output from the

RecoveryManager, to provide a record of what recovery activity has taken place.

RecoveryManager uses the logging tracing mechanism provided by the Arjuna Common

Logging Framework (CLF), which provides a high level interface that hides differences that

exist between existing logging APIs such Jakarta log4j or JDK 1.4 logging API. CLF

indirects all logging via the Apache Commons Logging framework and configuration is

assumed to occur through that framework.

With the CLF applications make logging calls on logger objects. Loggers may use logging

Levels to decide if they are interested in a particular log message. Each log message has an

associated log Level, that gives the importance and urgency of a log message. The set of

possible Log Levels are DEBUG, INFO, WARN, ERROR and FATAL. Defined Levels are

ordered according to their integer values as follows: DEBUG < INFO < WARN < ERROR

< FATAL.

The CLF provides an extension to filter logging messages according to finer granularity an

application may define. That is, when a log message is provided to the logger with the

DEBUG level, additional conditions can be specified to determine if the log message is

enabled or not.

Note: These conditions are applied if and only the DEBUG level is enabled and
the log request performed by the application specifies debugging
granularity.

When enabled, Debugging is filtered conditionally on three variables:

• Debugging level: this is where the log request with the DEBUG Level is generated

from, e.g., constructors or basic methods.

ArjunaCore 4.3.0 Administration Guide

10 AC-AG-03/13/08

• Visibility level: the visibility of the constructor, method, etc. that generates the

debugging.

• Facility code: for instance the package or sub-module within which debugging is

generated, e.g., the object store.

According to these variables the CLF defines three interfaces. A particular product may

implement its own classes according to its own finer granularity. JBossTS uses the default

Debugging level and the default Visibility level provided by CLF, but it defines its own

Facility Code. JBossTS uses the default level assigned to its logger objects (DEBUG).

However, it uses the finer debugging features to disable or enable debug messages. Finer

debugging values used by the JBossTS are defined below:

Debugging level – JBossTS uses the default values defined in the class
com.arjuna.common.util.logging.DebugLevel

• NO_DEBUGGING: No diagnostics.

A logger object assigned with this values discard all debug requests

• FULL_DEBUGGING: Full diagnostics.

A Logger object assigned with this value allows all debug requests if the facility code and

the visibility level match those allowed by the logger.

Additional Debugging Values are:

• CONSTRUCTORS: Diagnostics from constructors.

• DESTRUCTORS: Diagnostics from finalizers.

• CONSTRUCT_AND_DESTRUCT: Diagnostics from constructors and finalizers.

• FUNCTIONS: Diagnostics from functions.

• OPERATORS: Diagnostics from operators, such as equals.

• FUNCS_AND_OPS: Diagnostics from functions and operations.

• ALL_NON_TRIVIAL: Diagnostics from all non-trivial operations.

• TRIVIAL_FUNCS: Diagnostics from trivial functions.

• TRIVIAL_OPERATORS: Diagnostics from trivial operations, and operators.

• ALL_TRIVIAL: Diagnostics from all trivial operations.

Visibility level – JBossTS uses the default values defined in the class
com.arjuna.common.util.logging.VisibilityLevel

• VIS_NONE: No Diagnostic

• VIS_PRIVATE : only from private methods.

• VIS_PROTECTED only from protected methods.

• VIS_PUBLIC only from public methods.

• VIS_PACKAGE only from package methods.

• VIS_ALL: Full Diagnostic

Facility Code – JBossTS uses the following values defined in the class
com.arjuna.common.util.logging.VisibilityLevel

• FAC_ATOMIC_ACTION = 0x0000001 (atomic action core module).

• FAC_BUFFER_MAN = 0x00000004 (state management (buffer) classes).

Administration of ArjunaCore

AC-AG-3/13/08 11

• FAC_ABSTRACT_REC = 0x00000008 (abstract records).

• FAC_OBJECT_STORE = 0x00000010 (object store implementations).

• FAC_STATE_MAN = 0x00000020 (state management and StateManager).

• FAC_SHMEM = 0x00000040 (shared memory implementation classes).

• FAC_GENERAL = 0x00000080 (general classes).

• FAC_CRASH_RECOVERY = 0x00000800 (detailed trace of crash recovery module and

classes).

• FAC_THREADING = 0x00002000 (threading classes).

• AC_JDBC = 0x00008000 (JDBC 1.0 and 2.0 support).

• FAC_RECOVERY_NORMAL = 0x00040000 (normal output for crash recovery

manager).

To ensure appropriate output, it is necessary to set some of the finer debug properties

explicitly in the CommonLogging.xml file, to enable logging messages issued by the

ArjunaCore module.

Messages describing the start and the periodical behavior made by the RecoveryManager are

output using the INFO level. If other debug tracing is wanted, the finer debugging level

should be set appropriately. For instance, the following configuration, in the

CommonLogging.xml, enables all debug messages related to the Crash Recovery protocol

and issued by the ArjunaCore module.

<!-- Common logging related properties. -->

 <property

 name="com.arjuna.common.util.logging.DebugLevel"

 value="0x00000000"/>

 <property

 name="com.arjuna.common.util.logging.FacilityLevel"

 value="0xffffffff"/>

 <property

 name="com.arjuna.common.util.logging.VisibilityLevel"

 value="0xffffffff"/>

Note: Two logger objects are provided, one manages I18N messages and a
second does not.

Setting the normal recovery messages to the INFO level allows the RecoveryManager

producing a moderate level of reporting. If nothing is going on, it just reports the entry into

each module for each periodic pass. To disable INFO messages produced by the Recovery

Manager, the logging level could be set to the higher level: ERROR. Setting the level to

ERROR means that the RecoveryManager will only produce error, warning or fatal

messages.

Periodic Recovery

The RecoveryManager scans the ObjectStore and other locations of information, looking for

transactions and resources that require, or may require recovery. The scans and recovery

processing are performed by recovery modules, (instances of classes that implement the

com.arjuna.ats.arjuna.recovery.RecoveryModule interface), each with responsibility for a

particular category of transaction or resource. The set of recovery modules used are

dynamically loaded, using properties found in the RecoveryManager property file.

ArjunaCore 4.3.0 Administration Guide

12 AC-AG-03/13/08

The interface has two methods: periodicWorkFirstPass and periodicWorkSecondPass. At an

interval (defined by property com.arjuna.ats.arjuna.recovery.periodicRecoveryPeriod), the

RecoveryManager will call the first pass method on each property, then wait for a brief

period (defined by property com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod), then call

the second pass of each module. Typically, in the first pass, the module scans (e.g. the

relevant part of the ObjectStore) to find transactions or resources that are in-doubt (i.e. are

part way through the commitment process). On the second pass, if any of the same items are

still in-doubt, it is possible the original application process has crashed and the item is a

candidate for recovery.

An attempt, by the RecoveryManager, to recover a transaction that is still progressing in the

original process(es) is likely to break the consistency. Accordingly, the recovery modules use

a mechanism (implemented in the com.arjuna.ats.arjuna.recovery.TransactionStatusManager

package) to check to see if the original process is still alive, and if the transaction is still in

progress. The RecoveryManager only proceeds with recovery if the original process has

gone, or, if still alive, the transaction is completed. (If a server process or machine crashes,

but the transaction-initiating process survives, the transaction will complete, usually

generating a warning. Recovery of such a transaction is the RecoveryManager’s

responsibility).

It is clearly important to set the interval periods appropriately. The total iteration time will be

the sum of the periodicRecoveryPeriod, recoveryBackoffPeriod and the length of time it takes

to scan the stores and to attempt recovery of any in-doubt transactions found, for all the

recovery modules. The recovery attempt time may include connection timeouts while trying

to communicate with processes or machines that have crashed or are inaccessible (which is

why there are mechanisms in the recovery system to avoid trying to recover the same

transaction for ever). The total iteration time will affect how long a resource will remain

inaccessible after a failure – periodicRecoveryPeriod should be set accordingly (default is

120 seconds). The recoveryBackoffPeriod can be comparatively short (default is 10 seconds)

– its purpose is mainly to reduce the number of transactions that are candidates for recovery

and which thus require a “call to the original process to see if they are still in progress

Note: In previous versions of ArjunaCore there was no contact mechanism, and
the backoff period had to be long enough to avoid catching transactions in
flight at all. From 3.0, there is no such risk.

Two recovery modules (implementations of the

com.arjuna.ats.arjuna.recovery.RecoveryModule interface) are supplied with

ArjunaCore, supporting various aspects of transaction recovery including JDBC recovery. It

is possible for advanced users to create their own recovery modules and register them with

the Recovery Manager. The recovery modules are registered with the RecoveryManager

using properties that begin with “com.arjuna.ats.arjuna.recovery.RecoveryExtension”. These

will be invoked on each pass of the periodic recovery in the sort-order of the property names

– it is thus possible to predict the ordering (but note that a failure in an application process

might occur while a periodic recovery pass is in progress). The default Recovery Extension

settings are:

com.arjuna.ats.arjuna.recovery.recoveryExtension1 =

com.arjuna.ats.internal.ts.arjuna.recovery.AtomicActionRecoveryModule

Administration of ArjunaCore

AC-AG-3/13/08 13

com.arjuna.ats.arjuna.recovery.recoveryExtension2 =

com.arjuna.ats.txoj.recovery.TORecoveryModule

Expired entry removal

The operation of the recovery subsystem will cause some entries to be made in the

ObjectStore that will not be removed in normal progress. The RecoveryManager has a facility

for scanning for these and removing items that are very old. Scans and removals are

performed by implementations of the com.arjuna.ats.arjuna.recovery.ExpiryScanner

interface. Implementations of this interface are loaded by giving the class name as the value

of a property whose name begins with “com.arjuna.ats.arjuna.recovery.expiryScanner”. The

RecoveryManager calls the scan() method on each loaded Expiry Scanner implementation at

an interval determined by the property “com.arjuna.ats.arjuna.recovery.expiryScanInterval”.

This value is given in hours – default is 12. An expiryScanInterval value of zero will suppress

any expiry scanning. If the value as supplied is positive, the first scan is performed when

RecoveryManager starts; if the value is negative, the first scan is delayed until after the first

interval (using the absolute value)

The kinds of item that are scanned for expiry are:

TransactionStatusManager items : one of these is created by every application process that

uses ArjunaCore – they contain the information that allows the RecoveryManager to

determine if the process that initiated the transaction is still alive, and what the transaction

status is. The expiry time for these is set by the property

com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime (in hours – default is

12, zero means never expire). The expiry time should be greater than the lifetime of any

single ArjunaCore-using process.

The Expiry Scanner properties for these are:

com.arjuna.ats.arjuna.recovery.expiryScannerTransactionStatusManager =

com.arjuna.ats.internal.ts.arjuna.recovery.ExpiredTransactionStatusManagerS

canner

Errors and Exceptions

In this section we shall cover the types of errors and exceptions which may be thrown or

reported during a transactional application and give probable indications of their causes.

• NO_MEMORY: the application has run out of memory (thrown an

OutOfMemoryError) and ArjunaCore has attempted to do some cleanup (by

running the garbage collector) before re-throwing the exception. This is probably a

transient problem and retrying the invocation should succeed.

• com.arjuna.ats.arjuna.exceptions.FatalError: an error has occurred

which means that the transaction system must shut down. Prior to this error being

thrown the transaction service will have ensured that all running transactions have

rolled back. If caught, the application should tidy up and exit. If further work is

attempted, application consistency may be violated.

ArjunaCore 4.3.0 Administration Guide

14 AC-AG-03/13/08

• com.arjuna.ats.arjuna.exceptions.LicenceError: an attempt has been

made to use the transaction service in a manner inconsistent with the current licence.

The transaction service will not allow further forward progress for existing or new

transactions.

• com.arjuna.ats.arjuna.exceptions.ObjectStoreError: an error

occurred while the transaction service attempted to use the object store. Further

forward progress is not possible.

• Object store warnings about access problems on states may occur during the normal

execution of crash recovery. This is the result of multiple concurrent attempts to

perform recovery on the same transaction. It can be safely ignored.

