Arjuna CLF 2.0
Programmer's Guide
CLF-PG-2/24/04
[image: image1.png]
Legal Notices

The information contained in this documentation is subject to change without notice.

Arjuna Technologies Limited makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Arjuna Technologies Limited shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™, Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
Arjuna is a trademark of Hewlett-Packard Company.
Software Version

Arjuna CLF 2.0
Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause 52.227-FAR14.

Arjuna Technologies Limited
Nanotechnology Centre
Herschel Building
Newcastle Upon Tyne
NE1 7RU
United Kingdom

© Copyright 2004 Arjuna Technologies Limited
Content
4About This Guide

4What This Guide Contains

4Audience

4Organization

4Documentation Conventions

6Overview

6CLF 2.0 Architecture

7Package Overview: com.arjuna.common.util.logging

7LogFactory

7Setup of Log subsystem

9Getting Started

10Log Interface

10Dependencies

11Default File Logging

11Overview

11Setup

12Fine-Grained Logging

12Overview

12Usage

15Index

About This Guide

What This Guide Contains

The Programmer's Guide contains information on how to use Arjuna CLF 2.0.

Audience

This guide is most relevant to engineers who are responsible for using Arjuna CLF 2.0 installations.

Organization

This guide contains the following chapters:

1. Chapter 1, Overview
2. Chapter 2, Migration to CLF 2.0

3. Chapter 3, Helper Classes

4. Chapter 4, The Log Interface

Documentation Conventions

The following conventions are used in this guide:

	Convention
	Description

	Italic
	In paragraph text, italic identifies the titles of documents that are being referenced. When used in conjunction with the Code text described below, italics identify a variable that should be replaced by the user with an actual value.

	Bold
	Emphasizes items of particular importance.

	Code
	Text that represents programming code.

	Function | Function
	A path to a function or dialog box within an interface. For example, “Select File | Open.” indicates that you should select the Open function from the File menu.

	() and |
	Parentheses enclose optional items in command syntax. The vertical bar separates syntax items in a list of choices. For example, any of the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate | NoMoreOftenThan)

	Note: and

Caution:
	A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to avoid damage to equipment, damage to software, loss of data, or invalid test results.

Table 1
Formatting Conventions
Overview

CLF 2.0 Architecture

[image: image2.emf]CLF 2.0

Jakarta Commons Logging

Core Services

Framework

(CSF) Logging

log4j

JDK

1.4

JDK

1.1

Avalon

Pure JDK 1.1 logging

(for compilation to MS .net)

Console-Appender can also

write to CSF log viewer

JMS

JDBC

File

(rolling)

Chain

saw

Chain

saw

console

Win NT

syslog

Tcp/ip

Socket

JMX

XML

Log

Figure 0‑1
CLF 2.0 Architecture

Package Overview: com.arjuna.common.util.logging
Interface Summary
	Logi18n
	A simple logging interface abstracting the various logging APIs supported by CLF and providing an internationalization layer based on resource bundles.

	LogNoi18n
	A simple logging interface abstracting the various logging APIs supported by CLF without internationalization support

Class Summary

	CommonDebugLevel
	The CommonDebugLevel class provides default finer debugging value to determine if finer debugging is allowed or not.

	CommonFacilityCode
	The CommonFacilityCode class provides default finer facilitycode value to determine if finer debugging is allowed or not.

	CommonVisibilityLevel
	The CommonVisibilityLevel class provides default finer visibility value to determine if finer debugging is allowed or not.

	LogFactory
	Factory for Log objects.

LogFactory

Factory for Log objects. LogFactory returns different subclasses of logger according to which logging subsystem is chosen. The log system is selected through the property com.arjuna.common.utils.logger. Supported log systems are:
· jakarta Jakarta Commons Logging (JCL). JCL can delegate to various other logging subsystems, such as:

· log4j

· JDK 1.4 logging

· JDK 1.1 based logging (for compilation to Microsoft .net)

· Avalon

· dotnet .net logging. (must be JDK 1.1 compliant for compilation by the Microsoft compiler)

Note that rather than implementing CSF and .net logging as additional loggers for JCL they have been anchored at this level to maximise code reuse and guarantee that all .net dependent code is 1.1 compliant. Log subsystems are not configured through CLF but instead rely on their own configuration files for the setup of eg. debug level, appenders, etc...

Setup of Log subsystem

The underlying log system can be selected in two ways:

· Through the commonPropertyManager:
com.arjuna.common.internal.util.logging.commonPropertyManager.
propertyManager.setProperty(“com.arjuna.common.util.logger”, “csf”);
· As a System property (see following table)
	Property Name
	Description

	com.arjuna.common.util.logger
property name is defined as the public constant: LogFactory.LOGGER_PROPERTY
	This property selects the log subsystem to use. Note that this can only be set as a System property, e.g. as a parameter to start up the client application:
java –Dcom.arjuna.common.util.logger=log4j ..

Table 2
System property to select the underlying log system to use.
Note: The properties of the underlying log system are configured in a manner specific to that log system, e.g., a log4j.properties file in the case that log4j logging is used.

	Property Value
	Description

	log4j
	Log4j logging (log4j classes must be available in the classpath); configuration through the log4j.properties file, which is picked up from the CLASSPATH or given through a System property: log4j.configuration

	jdk14
	JDK 1.4 logging API (only supported on JVMs of version 1.4 or higher). Configuration is done through a file logging.properties in the jre/lib directory.

	simple
	Selects the simple JDK 1.1 compatible console-based logger provided by Jakarta Commons Logging

	jakarta
	Uses the default log system selection algorithm of the Jakarta Commons Logging framework

	dotnet
	Selects a .net logging implementation
Since a dotnet logger is not currently implemented, this is currently identical to simple. Simple is a purely JDK1.1 console-based log implementation.

	noop
	Disables all logging

Table 3
Possible values for selecting the client-side logging system.
Example: To set of log4j (default log system), provide the following System properties:

-Dcom.arjuna.common.util.logger=log4j
-Dlog4j.configuration=file://c:/Projects/common/log4j.properties

Getting Started
Simple use example:

import com.arjuna.common.util.logging.*;

public class Test

{

 static Log mylog = LogFactory.getLog(Test.class);

 public static void main(String[] args)

 {

 String param0 = "foo";

 String param1 = "bar";

 // different log priorities

 mylog.debug("key1", new Object[]{param0, param1});

 mylog.info("key2", new Object[]{param0, param1});

 mylog.warn("key3", new Object[]{param0, param1});

 mylog.error("key4", new Object[]{param0, param1});

 mylog.fatal("key5", new Object[]{param0, param1});

 // optional throwable

 Throwable throwable = new Throwable();

 mylog.debug("key1", new Object[]{param0, param1}, throwable);

 mylog.info("key2", new Object[]{param0, param1}, throwable);

 mylog.warn("key3", new Object[]{param0, param1}, throwable);

 mylog.error("key4", new Object[]{param0, param1}, throwable);

 mylog.fatal("key5", new Object[]{param0, param1}, throwable);

 // debug guard to avoid an expensive operation if the logger does not

 // log at the given level:

 if (mylog.isDebugEnabled())

 {

 String x = expensiveOperation();

 mylog.debug("key6", new Object[]{x});

 }

 // **

 // fine-grained debug extensions

 mylog.debug(CommonDebugLevel.OPERATORS,

 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL,

 "This debug message is enabled since it matches default” +

 Finer Values");
 mylog.setVisibilityLevel(CommonVisibilityLevel.VIS_PACKAGE);

 mylog.setDebugLevel(CommonDebugLevel.CONSTRUCT_AND_DESTRUCT);

 mylog.setFacilityCode(CommonFacilityCode.FAC_ALL);

 mylog.mergeDebugLevel(CommonDebugLevel.ERROR_MESSAGES);

 if (mylog.debugAllowed(CommonDebugLevel.OPERATORS,

 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL))

 {

 mylog.debug(CommonDebugLevel.OPERATORS,
 CommonVisibilityLevel.VIS_PUBLIC,
 CommonFacilityCode.FAC_ALL,
 "key7", new Object[]{"foo", "bar"}, throwable);

 }

 }

}

Log Interface

A simple logging interface abstracting the various logging APIs supported by CLF.

The logging levels used by Log are (in order):

1. debug (the least serious)
2. info

3. warn

4. error

5. fatal (the most serious)

The mapping of these log levels to the concepts used by the underlying logging system is implementation dependent. The implemention should ensure, though, that this ordering behaves as expected.

Performance is often a logging concern. By examining the appropriate property, a component can avoid expensive operations (producing information to be logged).

For example,
 if (log.isDebugEnabled()) {

 ... do something expensive ...

 log.debug(...);

 }

Configuration of the underlying logging system will generally be done external to the Logging APIs, through whatever mechanism is supported by that system.
Dependencies

	Name
	Description

	commons-logging.jar
	Jakarta Commons Logging JAR (v. 1.0.3)

	log4j-1.2.8.jar
	Log4j Jar file (required when using log4j)

	mw-common.jar
	(for CSF logging)

	csf.jar
	(for CSF logging)

Table 4
Jar file dependencies
Note: At runtime, it is important, that log4j-1.2.8.jar appears after common.jar in the CLASSPATH. The reason is the CLF overrides a class in log4j that is required to print out correct line number information in the log.

Default File Logging
Overview

Independent of the log system chosen, it is possible to log all messages over a given severity threshold into a file. This is useful to guarantee that e.g., error and fatal level messages are not lost despite a user has not set up a log framework, such as log4j

Setup

Usage of this feature is simple and can be controlled through a set of properties. These can be provided through the Property Manager or as System properties.

	Property Name
	Values
	Description

	com.arjuna.common.logging.default
	true/false
	Enable/disable default file-based logging

	com.arjuna.common.util.logging.
default.level
	Info/error/fatal
	Severity level for this log

	com.arjuna.common.util.logging.
default.showLogName
	true/false
	Record the fully qualified log name

	com.arjuna.common.util.logging.
default.showShortLogName
	true/false
	Record an abbreviated log name

	com.arjuna.common.util.logging.
default.showDate
	true/false
	Record the date

	com.arjuna.common.util.logging.
default.logFile
	error.log (default)
	File to use for default logging. This can be an absolute filename or relative to the working directory

	com.arjuna.common.util.logging.
default.logFileAppend
	true/false
	Append to the log file above in case that this file already exists

Table 5
Properties to control default file-based logging (default values are highlighted)
Fine-Grained Logging
Overview

Finer-grained logging in CLF is available through a set of debug methods:

public void debug(long dl, long vl, long fl, Object message);

public void debug(long dl, long vl, long fl, Throwable throwable);

public void debug(long dl, long vl, long fl, String key, Object[] params);

public void debug(long dl, long vl, long fl, String key, Object[] params,

 Throwable throwable);

All of these methods take the three following parameters in addition to the log messages and possible exception:
dl - The debug finer level associated with the log message. That is, the logger object allows to log only if the DEBUG level is allowed and dl is either equals or greater the debug level assigned to the logger Object See Table 6 for possible values.
vl - The visibility level associated with the log message. That is, the logger object allows to log only if the DEBUG level is allowed and vl is either equals or greater the visibility level assigned to the logger Object See Table 8 for possible values.
fl - The facility code level associated with the log message. That is, the logger object allows to log only if the DEBUG level is allowed and fl is either equals or greater the facility code level assigned to the logger Object See Table 7 for possible values.

The debug message is sent to the output only if the specified debug level, visibility level, and facility code match those allowed by the logger.

Note: The first two methods above do not use i18n. i.e., the messages are directly used for log output.

Usage

Possible values for debug finer level, visibility level and facility code level are declared in the classes DebugLevel, VisibilityLevel and FacilityCode respectively. This is useful for programmatically using fine-grained debugging.

	Debug Finer Level
	Value
	Description

	NO_DEBUGGING
	0x0000
	no debugging

	CONSTRUCTORS
	0x0001
	only output from constructors

	DESTRUCTORS
	0x0002
	only output from finalizers

	CONSTRUCT_AND_DESTRUCT
	CONSTRUCTORS | DESTRUCTORS
	

	FUNCTIONS
	0x0010
	only output from methods

	OPERATORS
	0x0020
	only output from methods such as equals, notEquals

	FUNCS_AND_OPS
	FUNCTIONS | OPERATORS
	

	ALL_NON_TRIVIAL
	CONSTRUCT_AND_DESTRUCT | FUNCTIONS | OPERATORS
	

	TRIVIAL_FUNCS
	0x0100
	only output from trivial methods

	TRIVIAL_OPERATORS
	0x0200
	only output from trivial operators

	ALL_TRIVIAL
	TRIVIAL_FUNCS | TRIVIAL_OPERATORS
	

	ERROR_MESSAGES
	0x0400
	only output from debugging error/warning messages

	FULL_DEBUGGING
	0xffff
	output all debugging messages

Table 6
Possible settings for finer debug level (class DebugLevel)
	Visibility Level
	Value
	Description

	VIS_NONE
	0x0000
	no visibility

	VIS_PRIVATE
	0x0001
	only from private methods

	VIS_PROTECTED
	0x0002
	only from protected methods

	VIS_PUBLIC
	0x0004
	only from public methods

	VIS_PACKAGE
	0x0008
	only from package methods

	VIS_ALL
	0xffff
	output all visbility levels

Table 7
Possible settings for visibility level (class VisibilityLevel)
	Facility Code Level
	Value
	Description

	FAC_NONE
	0x00000000
	no facility

	FAC_ALL
	0xffffffff
	output all facility codes

Table 8
Possible settings for facility code level (class FacilityCode)
At runtime, the fine-grained debug settings are controlled through a set of properties, listed in the table below:

	Property Name
	Default Value

	com.arjuna.common.util.logging.DebugLevel
	NO_DEBUGGING

	com.arjuna.common.util.logging.VisibilityLevel
	VIS_ALL

	com.arjuna.common.util.logging.FacilityCode
	FAC_ALL

Index

Error! No index entries found.

11
ii
CLF-PG-02/24/04

Error! Reference source not found.-2/24/04
iii

_1122740075.vsd
CLF 2.0�

Jakarta Commons Logging�

Core Services Framework (CSF) Logging�

log4j�

JDK 1.4�

JDK 1.1�

Avalon�

�

Pure JDK 1.1 logging �(for compilation to MS .net)�

Console-Appender can also write to CSF log viewer�

JMS�

JDBC�

File (rolling)�

Chain
saw�

Chain
saw�

console�

Win NT syslog�

Tcp/ip Socket�

�

�

�

�

�

JMX�

XML Log�

