
T-PG-4/4/07 i

JBoss Transactions 4.2.3

Transaction Core Programmers Guide

TX-PG-4/4/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are

registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,

Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here

as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in

the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as

indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted

material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms

and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it

will be useful, but WITHOUT A WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU

General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions 4.2.3

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
About This Guide ...6

What This Guide Contains..............................6
Audience ...6
Prerequisites..6
Organization ...6
Documentation Conventions...........................7
Additional Documentation..............................7
Contacting Us ...8

Overview ...9

Introduction...9
TxCore – the transaction engine9
Saving object states.......................................10
The object store...10
Recovery and persistence..............................11
The life-cycle of a Transactional Object for

Java..12
The concurrency controller...........................13
The transaction protocol engine....................14
Example ..15
The class hierarchy15

Using TxCore ..18

Introduction...18
State management ...18
Object states..18
The object store...20
Selecting an object store implementation21
StateManager ..21
Example ..26
Lock management and concurrency control .27
Selecting a lock store implementation28
LockManager..28
Locking policy ..30
Object construction and destruction31

General transaction issues33

Advanced transaction issues with TxCore....33
Checking transactions...................................33

Last resource commit optimisation34
Nested transactions35
Independent top-level transactions................36
Transactions within save_state and

restore_state37
Example ..37
Garbage collecting objects38
Transaction timeouts38

Hints and tips ..40

General ..40
Using transactions in constructors40
More on save_state and restore_state............41
Direct use of StateManager...........................42

Tools...43

Constructing a Transactional Objects for

Java application...54

Application construction54
Queue description ...54
Constructors and destructors55
save_state, restore_state and type56
enqueue/dequeue operations57
queueSize ..58
inspectValue/setValue operations58
The client...59
Comments ...60

Configuration options.....................................61

Options..61

Object store implementations........................63

The ObjectStore ..63
Persistent object stores64

Class definitions ..69

iv TX-PG-04/04/07

Class library ..69
LockManager..69
StateManager ..70
Input/OutputObjectState70
Input/OutputBuffer71
Uid ..71
AtomicAction ...72

Index ..73

AC-PG-4/4/07 5

JBoss Transactions 4.2.3Transaction Core Programmers Guide

6 TX-PG-04/04/07

About This Guide

What This Guide Contains

The Transaction Core Programmers Guide contains information on how to use JBoss

Transactions 4.2.3. This document provides a detailed look at the design and operation of the

TxCore transaction engine and the Transactional Objects for Java toolkit. It describes the

architecture and the interaction of components within this architecture.

Audience

This guide is most relevant to engineers who are responsible for administering JBoss

Transactions 4.2.3 installations. Although this guide is specifically intended for service

developers, it will be useful to anyone who would like to gain an understanding of

transactions and how they function.

Prerequisites

This guide assumes a basic familiarity with Java service development and object-oriented

programming. A fundamental level of understanding in the following areas will also be

useful:

• General understanding of the APIs, components, and objects that are present in Java

applications.

• A general understanding of the Windows and UNIX operating systems.

Organization

This guide contains the following chapters:

• Chapter 1, Overview: this chapter contains a description of the use of the TxCore

transaction engine the Transactional Object for Java classes and facilities.

• Chapter 2, Using TxCore: gives details on interfaces and classes defined by

TxCore and describes how they can be used to construct transactional applications.

• Chapter 3, General transactions issues: presents advanced issues with TxCore.

• Chapter 4, Hints and tips: illustrates some hints on the way to use TxCore

About This Guide

TX-PG-4/4/07 7

• Chapter 5, Tools: how to use the management tools shipped with TxCore.

• Chapter 6, Constructing a Transactional Object for Java application: this

chapter describes a detailed implementation of an application to illustrate various

mechanisms provided by TxCore.

• Chapter 7, Configuration options: shows configurations options of TxCore.

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced
by the user with an actual value.

Bold Emphasizes items of particular importance.

Code Text that represents programming code.

Function | Function A path to a function or dialog box within an interface. For example,
“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The
vertical bar separates syntax items in a list of choices. For
example, any of the following three items can be entered in this
syntax:

persistPolicy (Never | OnTimer | OnUpdate |

NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.2.3

documentation set:

• JBoss Transactions 4.2.3 Release Notes: Provides late-breaking information about

JBoss Transactions 4.2.3.

• JBoss Transactions 4.2.3 Installation Guide: This guide provides instructions for

installing JBoss Transactions 4.2.3.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

8 TX-PG-04/04/07

• JBoss Transactions 4.2.3 Failure Recovery Guide: Provides guidance for

administering the system.

• JBoss Transactions 4.2.3 Transactions API Guide: Provides guidance for

administering the system.

• JBoss Transactions 4.2.3 Web Services Transactions Programmers Guide: Provides

guidance for administering the system.

• JBoss Transactions 4.2.3 Administration Guide: Provides guidance for administering

the system.

Contacting Us

Questions or comments about JBoss Transactions 4.2.3 should be directed to our support

team.

AC-PG-4/4/07 9

Chapter 1

Overview
Introduction

This chapter contains a description of the use of the TxCore transaction engine and the

Transactional Objects for Java classes and facilities. The classes mentioned in this chapter

are the key to writing fault-tolerant applications using transactions. Thus, after describing

them we shall apply them in the construction of a simple application. The classes to be

described in this chapter can be found in the com.arjuna.ats.txoj and

com.arjuna.ats.arjuna packages.

TxCore – the transaction engine

In keeping with the object-oriented view, the mechanisms needed to construct reliable

distributed applications are presented to programmers in an object-oriented manner. Some

mechanisms need to be inherited, for example, concurrency control and state management;

while other mechanisms, such as object storage and transactions, are implemented as TxCore

objects that are created and manipulated like any other object.

Note: When the manual talks about using persistence and concurrency control
facilities it assumes that the Transactional Objects for Java (TXOJ)
classes are being used. If this is not the case then the programmer is
responsible for all of these issues.

TxCore exploits object-oriented techniques to present programmers with a toolkit of Java

classes from which application classes can inherit to obtain desired properties, such as

persistence and concurrency control. These classes form a hierarchy, part of which is shown

below and which will be described later in this document.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

10 TX-PG-04/04/07

StateManager

LockManager
Atomic

Transaction
Lock

User classesUser classes

Figure 1: TxCore class hierarchy.

Apart from specifying the scopes of transactions, and setting appropriate locks within objects,

the application programmer does not have any other responsibilities: TxCore and

Transactional Objects for Java (TXOJ) guarantee that transactional objects will be registered

with, and be driven by, the appropriate transactions, and crash recovery mechanisms are

invoked automatically in the event of failures.

Saving object states

TxCore needs to be able to remember the state of an object for several purposes, including

recovery (the state represents some past state of the object) and persistence (the state

represents the final state of an object at application termination). Since these requirements

have common functionality they are all implemented using the same mechanism: the classes

InputObjectState and OutputObjectState. The classes maintain an internal array into which

instances of the standard types can be contiguously packed (unpacked) using appropriate

pack (unpack) operations. This buffer is automatically resized as required should it have

insufficient space. The instances are all stored in the buffer in a standard form (so-called

network byte order) to make them machine independent. Any other architecture independent

format (such as XDR or ASN.1) could be implemented simply by replacing the operations

with ones appropriate to the encoding required.

The object store

Implementations of persistence can be affected by restrictions imposed by the Java

SecurityManager. Therefore, the object store provided with TxCore is implemented using the

techniques of interface/implementation. The current distribution has implementations which

write object states to the local file system or database, and remote implementations, where the

interface uses a client stub (proxy) to remote services.

Persistent objects are assigned unique identifiers (instances of the Uid class), when they are

created, and this is used to identify them within the object store. States are read using the

read_committed operation and written by the write_(un)committed operations.

Overview

TX-PG-4/4/07 11

Recovery and persistence

At the root of the class hierarchy is the class StateManager. This class is responsible for

object activation and deactivation and object recovery. The simplified signature of the class

is:

public abstract class StateManager

{

public boolean activate ();

public boolean deactivate (boolean commit);

public Uid get_uid (); // object’s identifier.

// methods to be provided by a derived class

public boolean restore_state (InputObjectState os);

public boolean save_state (OutputObjectState os);

protected StateManager ();

protected StateManager (Uid id);

};

Objects are assumed to be of three possible flavours. They may simply be recoverable, in

which case StateManager will attempt to generate and maintain appropriate recovery

information for the object. Such objects have lifetimes that do not exceed the application

program that creates them. Objects may be recoverable and persistent, in which case the

lifetime of the object is assumed to be greater than that of the creating or accessing

application, so that in addition to maintaining recovery information StateManager will

attempt to automatically load (unload) any existing persistent state for the object by calling

the activate (deactivate) operation at appropriate times. Finally, objects may possess

none of these capabilities, in which case no recovery information is ever kept nor is object

activation/deactivation ever automatically attempted.

If an object is recoverable or recoverable and persistent then StateManager will invoke the

operations save_state (while performing deactivate), and restore_state (while

performing activate) at various points during the execution of the application. These

operations must be implemented by the programmer since StateManager cannot detect user

level state changes. (We are examining the automatic generation of default save_state and

restore_state operations, allowing the programmer to override this when application

specific knowledge can be used to improve efficiency.) This gives the programmer the ability

to decide which parts of an object’s state should be made persistent. For example, for a

spreadsheet it may not be necessary to save all entries if some values can simply be

recomputed. The save_state implementation for a class Example that has integer member

variables called A, B and C could simply be:

public boolean save_state(OutputObjectState o)

{

 if (!super.save_state(o))

 return false;

 try

 {

 o.packInt(A);

 o.packInt(B);

JBoss Transactions 4.2.3Transaction Core Programmers Guide

12 TX-PG-04/04/07

 o.packInt(C));

 }

 catch (Exception e)

 {

 return false;

 }

 return true;

}

Note: it is necessary for all save_state and restore_state methods to call

super.save_state and super.restore_state. This is to cater for
improvements in the crash recovery mechanisms.

The life-cycle of a Transactional Object for Java

A persistent object not in use is assumed to be held in a passive state with its state residing in

an object store and activated on demand. The fundamental life cycle of a persistent object in

TXOJ is shown in Figure 2.

UserObject::restore_state

Active

UserObject::save_state

Volatile

Storage Passive

ObjectStore::read_committed

ObjectStore::write_committed

ObjectStore::commit_state

Non-volatile

Storage

User object ObjectState

in memory

ObjectState

in object

Figure 2: The life cycle of a persistent object.

• The object is initially passive, and is stored in the object store as an instance of the

class OutputObjectState.

Overview

TX-PG-4/4/07 13

• When required by an application the object is automatically activated by reading it

from the store using a read_committed operation and is then converted from an

InputObjectState instance into a fully-fledged object by the restore_state operation

of the object.

• When the application has finished with the object it is deactivated by converting it

back into an OutputObjectState instance using the save_state operation, and is then

stored back into the object store as a shadow copy using write_uncommitted. This

shadow copy can be committed, overwriting the previous version, using the

commit_state operation. The existence of shadow copies is normally hidden from

the programmer by the transaction system. Object de-activation normally only

occurs when the top-level transaction within which the object was activated

commits.

Note: During its life time, a persistent object may be made active then passive
many times.

The concurrency controller

The concurrency controller is implemented by the class LockManager which provides

sensible default behaviour while allowing the programmer to override it if deemed necessary

by the particular semantics of the class being programmed. As with StateManager and

persistence, concurrency control implementations are accessed through interfaces. As well as

providing access to remote services, the current implementations of concurrency control

available to interfaces include:

• local disk/database implementation, where locks are made persistent by being

written to the local file system or database.

• a purely local implementation, where locks are maintained within the memory of the

virtual machine which created them; this implementation has better performance

than when writing locks to the local disk, but objects cannot be shared between

virtual machines. Importantly, it is a basic Java object with no requirements which

can be affected by the SecurityManager.

The primary programmer interface to the concurrency controller is via the setlock

operation. By default, the runtime system enforces strict two-phase locking following a

multiple reader, single writer policy on a per object basis. However, as shown in Figure 1, by

inheriting from the Lock class it is possible for programmers to provide their own lock

implementations with different lock conflict rules to enable type specific concurrency control.

Lock acquisition is (of necessity) under programmer control, since just as StateManager

cannot determine if an operation modifies an object, LockManager cannot determine if an

operation requires a read or write lock. Lock release, however, is under control of the system

and requires no further intervention by the programmer. This ensures that the two-phase

property can be correctly maintained.

public abstract class LockManager extends StateManager

{

public LockResult setlock (Lock toSet, int retry, int timeout);

};

JBoss Transactions 4.2.3Transaction Core Programmers Guide

14 TX-PG-04/04/07

The LockManager class is primarily responsible for managing requests to set a lock on an

object or to release a lock as appropriate. However, since it is derived from StateManager,

it can also control when some of the inherited facilities are invoked. For example,

LockManager assumes that the setting of a write lock implies that the invoking operation

must be about to modify the object. This may in turn cause recovery information to be saved

if the object is recoverable. In a similar fashion, successful lock acquisition causes activate

to be invoked.

The code below shows how we may try to obtain a write lock on an object:

public class Example extends LockManager

{

public boolean foobar ()

{

 AtomicAction A = new AtomicAction;

 boolean result = false;

 A.begin();

 if (setlock(new Lock(LockMode.WRITE), 0) == Lock.GRANTED)

 {

 /*

 * Do some work, and TXOJ will

 * guarantee ACID properties.

 */

 // automatically aborts if fails

 if (A.commit() == AtomicAction.COMMITTED)

 {

 result = true;

 }

 }

 else

 A.rollback();

 return result;

}

}

The transaction protocol engine

The transaction protocol engine is represented by the AtomicAction class, which uses

StateManager in order to record sufficient information for crash recovery mechanisms to

complete the transaction in the event of failures. It has methods for starting and terminating

the transaction, and, for those situations where programmers require to implement their own

resources, methods for registering them with the current transaction. Because TxCore

supports subtransactions, if a transaction is begun within the scope of an already executing

transaction it will automatically be nested.

Note: TxCore is multi-threaded aware, allowing each thread within an
application to share a transaction or execute within its own transaction.
Therefore, all TxCore classes are also thread safe.

Overview

TX-PG-4/4/07 15

Example

The simple example below illustrates the relationships between activation, termination and

commitment:

{

. . .

O1 objct1 = new objct1(Name-A);/* (i) bind to "old" persistent object A */

O2 objct2 = new objct2(); /* create a "new" persistent object */

OTS.current().begin(); /* (ii) start of atomic action */

objct1.op(...); /* (iii) object activation and invocations */

objct2.op(...);

. . .

OTS.current().commit(true); /* (iv) tx commits & objects deactivated */

} /* (v) */

The execution of the above code involves the following sequence of activities:

1. Creation of bindings to persistent objects; this could involve the creation of stub

objects and a call to remote objects. In the above example we re-bind to an existing

persistent object identified by Name-A, and a new persistent object. A naming

system for remote objects maintains the mapping between object names and locations

and is described in a later chapter.

2. Start of the atomic transaction.

3. Operation invocations: as a part of a given invocation the object implementation is

responsible to ensure that it is locked in read or write mode (assuming no lock

conflict), and initialised, if necessary, with the latest committed state from the object

store. The first time a lock is acquired on an object within a transaction the object’s

state is acquired, if possible, from the object store.

4. Commit of the top-level action. This includes updating of the state of any modified

objects in the object store.

5. Breaking of the previously created bindings.

The class hierarchy

The principal classes which make up the class hierarchy of TxCore are depicted below.

StateManager // Basic naming, persistence and recovery control

 LockManager // Basic two-phase locking concurrency control service

 User-Defined Classes

 Lock // Standard lock type for multiple readers/single writer

 User-Defined Lock Classes

 AbstractRecord // Important utility class, similar to Resource

 RecoveryRecord // handles object recovery

 LockRecord // handles object locking

 RecordList // Intentions list

 other management record types

AtomicAction // Implements transaction control abstraction

 TopLevelTransaction

Input/OutputBuffer // Architecture neutral representation of an objects’

state

 Input/OutputObjectState // Convenient interface to Buffer

ObjectStore // Interface to the object storage services

JBoss Transactions 4.2.3Transaction Core Programmers Guide

16 TX-PG-04/04/07

Figure 3: TXOJ class hierarchy.

Programmers of fault-tolerant applications will be primarily concerned with the classes

LockManager, Lock and AtomicAction. Other classes important to a programmer are Uid,

and ObjectState. Most TxCore classes are derived from the base class StateManager,

which provides primitive facilities necessary for managing persistent and recoverable objects.

These facilities include support for the activation and de-activation of objects, and state-based

object recovery. The class LockManager uses the facilities of StateManager and Lock to

provide the concurrency control (two-phase locking in the current implementation) required

for implementing the serialisability property of atomic actions. The implementation of atomic

action facilities is supported by AtomicAction and TopLevelTransaction.

Most TxCore system classes are derived from the base class StateManager, which provides

primitive facilities necessary for managing persistent and recoverable objects. These facilities

include support for the activation and de-activation of objects, and state-based object

recovery. The class LockManager uses the facilities of StateManager and provides the

concurrency control required for implementing the serialisability property of atomic actions.

Consider a simple example. Assume that Example is a user-defined persistent class suitably

derived from the LockManager. An application containing an atomic transaction Trans

accesses an object (called O) of type Example by invoking the operation op1 which involves

state changes to O. The serialisability property requires that a write lock must be acquired on

O before it is modified; thus the body of op1 should contain a call to the setlock operation

of the concurrency controller:

public boolean op1 (...)

{

 if (setlock (new Lock(LockMode.WRITE) == LockResult.GRANTED)

 {

 // actual state change operations follow

 ...

 }

}

Program 1: Simple Concurrency Control.

The operation setlock, provided by the LockManager class, performs the following

functions in this case:

1. Check write lock compatibility with the currently held locks, and if allowed:

2. Call the StateManager operation activate that will load, if not done already, the

latest persistent state of O from the object store. Then call the StateManager operation

modified which has the effect of creating an instance of either RecoveryRecord or

PersistenceRecord for O depending upon whether O was persistent or not (the Lock is

a WRITE lock so the old state of the object must be retained prior to modification) and

inserting it into the RecordList of Trans.

3. Create and insert a LockRecord instance in the RecordList of Trans.

Now suppose that action Trans is aborted sometime after the lock has been acquired. Then

the rollback operation of AtomicAction will process the RecordList instance

associated with Trans by invoking an appropriate Abort operation on the various records.

Overview

TX-PG-4/4/07 17

The implementation of this operation by the LockRecord class will release the WRITE lock

while that of RecoveryRecord/PersistenceRecord will restore the prior state of O.

It is important to realise that all of the above work is automatically being performed by

TxCore on behalf of the application programmer. The programmer need only start the

transaction and set an appropriate lock; TxCore and Transactional Objects for Java take care

of participant registration, persistence, concurrency control and recovery.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

18 TX-PG-04/04/07

Chapter 2

Using TxCore
Introduction

In this section we shall describe TxCore and Transactional Objects for Java in more detail,

and show how it can be used to construct transactional applications.

State management

Object states

TxCore needs to be able to remember the state of an object for several purposes, including

recovery (the state represents some past state of the object), and for persistence (the state

represents the final state of an object at application termination). Since all of these

requirements require common functionality they are all implemented using the same

mechanism - the classes Input/OutputObjectState and Input/OutputBuffer.

OutputBuffer

public class OutputBuffer

{

public OutputBuffer ();

public final synchronized boolean valid ();

public synchronized byte[] buffer();

public synchronized int length ();

 /* pack operations for standard Java types */

public synchronized void packByte (byte b) throws IOException;

public synchronized void packBytes (byte[] b) throws IOException;

public synchronized void packBoolean (boolean b) throws IOException;

public synchronized void packChar (char c) throws IOException;

public synchronized void packShort (short s) throws IOException;

public synchronized void packInt (int i) throws IOException;

public synchronized void packLong (long l) throws IOException;

public synchronized void packFloat (float f) throws IOException;

public synchronized void packDouble (double d) throws IOException;

public synchronized void packString (String s) throws IOException;

};

InputBuffer

public class InputBuffer

{

public InputBuffer ();

Using TxCore

TX-PG-4/4/07 19

public final synchronized boolean valid ();

public synchronized byte[] buffer();

public synchronized int length ();

 /* unpack operations for standard Java types */

public synchronized byte unpackByte () throws IOException;

public synchronized byte[] unpackBytes () throws IOException;

public synchronized boolean unpackBoolean () throws IOException;

public synchronized char unpackChar () throws IOException;

public synchronized short unpackShort () throws IOException;

public synchronized int unpackInt () throws IOException;

public synchronized long unpackLong () throws IOException;

public synchronized float unpackFloat () throws IOException;

public synchronized double unpackDouble () throws IOException;

public synchronized String unpackString () throws IOException;

};

The Input/OutputBuffer class maintains an internal array into which instances of the

standard Java types can be contiguously packed (unpacked) using the pack (unpack)

operations. This buffer is automatically resized as required should it have insufficient space.

The instances are all stored in the buffer in a standard form (so-called network byte order) to

make them machine independent.

OutputObjectState

class OutputObjectState extends OutputBuffer

{

public OutputObjectState (Uid newUid, String typeName);

public boolean notempty ();

public int size ();

public Uid stateUid ();

public String type ();

};

InputObjectState

class InputObjectState extends InputBuffer
{

public OutputObjectState (Uid newUid, String typeName, byte[] b);

public boolean notempty ();

public int size ();

public Uid stateUid ();

public String type ();

};

The class Input/OutputObjectState provides all the functionality of

Input/OutputBuffer (through inheritance) but adds two additional instance variables that

signify the Uid and type of the object for which the Input/OutputObjectState instance

is a compressed image. These are used when accessing the object store during storage and

retrieval of the object state.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

20 TX-PG-04/04/07

The object store

The object store provided with TxCore deliberately has a fairly restricted interface so that it

can be implemented in a variety of ways. For example, object stores are implemented in

shared memory; on the Unix file system (in several different forms); and as a remotely

accessible store. More complete information about the object stores available in TxCore can

be found in the Appendix.

Note: as with all TxCore classes the default object stores are pure Java
implementations; to access the shared memory and other more complex
object store implementations it is necessary to use native methods.

All of the object stores hold and retrieve instances of the class

Input/OutputObjectState. These instances are named by the Uid and Type of the

object that they represent. States are read using the read_committed operation and written

by the system using the write_uncommitted operation. Under normal operation new object

states do not overwrite old object states but are written to the store as shadow copies. These

shadows replace the original only when the commit_state operation is invoked. Normally

all interaction with the object store is performed by TxCore system components as

appropriate thus the existence of any shadow versions of objects in the store are hidden from

the programmer.

public class ObjectStore

{

public static final int OS_COMMITTED;

public static final int OS_UNCOMMITTED;

public static final int OS_COMMITTED_HIDDEN;

public static final int OS_UNCOMMITTED_HIDDEN;

public static final int OS_UNKNOWN;

 /* The abstract interface */

public abstract boolean commit_state (Uid u, String name)

 throws ObjectStoreException;

public abstract InputObjectState read_committed (Uid u, String name)

 throws ObjectStoreException;

public abstract boolean write_uncommitted (Uid u, String name,

 OutputObjectState os) throws ObjectStoreException;

 . . .

};

When a transactional object is committing it is necessary for it to make certain state changes

persistent in order that it can recover in the event of a failure and either continue to commit,

or rollback. When using Transactional Objects for Java, TxCore will take care of this

automatically. To guarantee ACID properties, these state changes must be flushed to the

persistence store implementation before the transaction can proceed to commit; if they are

not, the application may assume that the transaction has committed when in fact the state

changes may still reside within an operating system cache, and may be lost by a subsequent

machine failure. By default, TxCore ensures that such state changes are flushed. However,

doing so can impose a significant performance penalty on the application. To prevent

transactional object state flushes, set the

com.arjuna.ats.arjuna.objectstore.objectStoreSync variable to OFF.

Using TxCore

TX-PG-4/4/07 21

Selecting an object store implementation

TxCore comes with support for several different object store implementations. The Appendix

describes these implementations, how to select and configure a given implementation (using

the com.arjuna.ats.arjuna.objectstore.objectStoreType property variable) on a per object basis,

and indicates how additional implementations can be provided.

StateManager

The TxCore class StateManager manages the state of an object and provides all of the

basic support mechanisms required by an object for state management purposes.

StateManager is responsible for creating and registering appropriate resources concerned

with the persistence and recovery of the transactional object. If a transaction is nested, then

StateManager will also propagate these resources between child transactions and their

parents at commit time.

Objects in TxCore are assumed to be of three possible basic flavours. They may simply be

recoverable, in which case StateManager will attempt to generate and maintain appropriate

recovery information for the object (as instances of the class Input/OutputObjectState)

. Such objects have lifetimes that do not exceed the application program that creates them.

Objects may be recoverable and persistent, in which case the lifetime of the object is

assumed to be greater than that of the creating or accessing application so that in addition to

maintaining recovery information StateManager will attempt to automatically load

(unload) any existing persistent state for the object by calling the activate (deactivate)

operation at appropriate times. Finally, objects may possess none of these capabilities in

which case no recovery information is ever kept nor is object activation/deactivation ever

automatically attempted. This object property is selected at object construction time and

cannot be changed thereafter. Thus an object cannot gain (or lose) recovery capabilities at

some arbitrary point during its lifetime.

public class ObjectStatus

{

public static final int PASSIVE;

public static final int PASSIVE_NEW;

public static final int ACTIVE;

public static final int ACTIVE_NEW;

public static final int UNKNOWN_STATUS;

};

public class ObjectType

{

public static final int RECOVERABLE;

public static final int ANDPERSISTENT;

public static final int NEITHER;

};

public abstract class StateManager

{

public synchronized boolean activate ();

public synchronized boolean activate (String storeRoot);

public synchronized boolean deactivate ();

public synchronized boolean deactivate (String storeRoot, boolean commit);

public synchronized void destroy ();

JBoss Transactions 4.2.3Transaction Core Programmers Guide

22 TX-PG-04/04/07

public final Uid get_uid ();

public boolean restore_state (InputObjectState, int ObjectType);

public boolean save_state (OutputObjectState, int ObjectType);

public String type ();

 . . .

protected StateManager ();

protected StateManager (int ObjectType, ObjectName attr);

protected StateManager (Uid uid);

protected StateManager (Uid uid, ObjectName attr);

 . . .

protected final void modified ();

 . . .

};

public class ObjectModel

{

public static final int SINGLE;

public static final int MULTIPLE;

};

If an object is recoverable (or persistent) then StateManager will invoke the operations

save_state (while performing deactivation), restore_state (while performing

activate) and type at various points during the execution of the application. These

operations must be implemented by the programmer since StateManager does not have

access to a runtime description of the layout of an arbitrary Java object in memory and thus

cannot implement a default policy for converting the in memory version of the object to its

passive form. However, the capabilities provided by Input/OutputObjectState make the

writing of these routines fairly simple. For example, the save_state implementation for a

class Example that had member variables called A, B and C could simply be the following:

public boolean save_state (OutputObjectState os, int ObjectType)

{

 if (!super.save_state(os, ObjectType))

 return false;

 try

 {

 os.packInt(A);

 os.packString(B);

 os.packFloat(C);

 return true;

 }

 catch (IOException e)

 {

 return false;

 }

}

In order to support crash recovery for persistent objects it is necessary for all save_state

and restore_state methods of user objects to call super.save_state and

super.restore_state.

Using TxCore

TX-PG-4/4/07 23

Note: The type method is used to determine the location in the object store
where the state of instances of that class will be saved and ultimately
restored. This can actually be any valid string. However, you should avoid
using the hash character (#) as this is reserved for special directories that
TxCore requires.

The get_uid operation of StateManager provides read only access to an object’s internal

system name for whatever purpose the programmer requires (such as registration of the name

in a name server). The value of the internal system name can only be set when an object is

initially constructed - either by the provision of an explicit parameter or by generating a new

identifier when the object is created.

The destroy method can be used to remove the object’s state from the object store. This is

an atomic operation, and therefore will only remove the state if the top-level transaction

within which it is invoked eventually commits. The programmer must obtain exclusive access

to the object prior to invoking this operation.

Since object recovery and persistence essentially have complimentary requirements (the only

difference being where state information is stored and for what purpose) StateManager

effectively combines the management of these two properties into a single mechanism. That

is, it uses instances of the class Input/OutputObjectState both for recovery and

persistence purposes. An additional argument passed to the save_state and

restore_state operations allows the programmer to determine the purpose for which any

given invocation is being made thus allowing different information to be saved for recovery

and persistence purposes.

Object models

TxCore supports two models for objects, which as we shall show affect how an objects state

and concurrency control are implemented:

• SINGLE: only a single copy of the object exists within the application; this will

reside within a single JVM, and all clients must address their invocations to this

server. This model provides better performance, but represents a single point of

failure, and in a multi-threaded environment may not protect the object from

corruption if a single thread fails.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

24 TX-PG-04/04/07

Server process

object

Object store

client

Figure 4 SINGLE object model.

• MULTIPLE: logically a single instance of the object exists, but copies of it are

distributed across different JVMs; the performance of this model is worse than the

SINGLE model, but it provides better failure isolation.

Server process

object

Object store

client

object

Figure 5 MULTIPLE object model.

The default model is SINGLE. The programmer can override this on a per object basis by

providing an appropriate instance of the

com.arjuna.ats.arjuna.gandiva.ObjectName class at object construction.

Using TxCore

TX-PG-4/4/07 25

Note: The model can be changed between each successive instantiation of the
object, i.e., it need not be the same during the object’s lifetime.

To provide a suitable ObjectName class, it is necessary to perform the following steps:

• create a new instance of ObjectName.

• set the object model attribute using the

com.arjuna.ats.arjuna.ArjunaNames.StateManager_objectModel() name.

For example:

{

 ObjectName attr = new ObjectName(“SNS:myObjectName”);

 attr.setLongAttribute(ArjunaNames.StateManager_objectModel(),

 ObjectModel.SINGLE);

 AtomicObject obj = new AtomicObject(ObjectType.ANDPERSISTENT, attr);

}

Summary

In summary, the TxCore class StateManager manages the state of an object and provides

all of the basic support mechanisms required by an object for state management purposes.

Some operations must be defined by the class developer. These operations are: save_state,

restore_state, and type.

boolean save_state (OutputObjectState state, int ObjectType)

Invoked whenever the state of an object might need to be saved for future use - primarily for

recovery or persistence purposes. The ObjectType parameter indicates the reason that

save_state was invoked by TxCore. This enables the programmer to save different pieces

of information into the OutputObjectState supplied as the first parameter depending upon

whether the state is needed for recovery or persistence purposes. For example, pointers to

other TxCore objects might be saved simply as pointers for recovery purposes but as Uid’s

for persistence purposes. As shown earlier, the OutputObjectState class provides

convenient operations to allow the saving of instances of all of the basic types in Java. In

order to support crash recovery for persistent objects it is necessary for all save_state

methods to call super.save_state.

Note: save_state assumes that an object is internally consistent and that all
variables saved have valid values. It is the programmer's responsibility to
ensure that this is the case.

boolean restore_state (InputObjectState state, int ObjectType)

Invoked whenever the state of an object needs to be restored to the one supplied. Once again

the second parameter allows different interpretations of the supplied state. In order to support

crash recovery for persistent objects it is necessary for all restore_state methods to call

super.restore_state.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

26 TX-PG-04/04/07

String type ()

The TxCore persistence mechanism requires a means of determining the type of an object as

a string so that it can save/restore the state of the object into/from the object store. By

convention this information indicates the position of the class in the hierarchy. For example,

“/StateManager/LockManager/Object”.

Caution: The type method is used to determine the location in the object store
where the state of instances of that class will be saved and ultimately
restored. This can actually be any valid string. However, you should avoid
using the hash character (#) as this is reserved for special directories that
TxCore requires.

Example

Consider the following basic Array class derived from the StateManager class (in this

example, to illustrate saving and restoring of an object’s state, the highestIndex variable is

used to keep track of the highest element of the array that has a non-zero value):

public class Array extends StateManager

{

public Array ();

public Array (Uid objUid);

public void finalize (super.terminate(); };

 /* Class specific operations. */

public boolean set (int index, int value);

public int get (int index);

 /* State management specific operations. */

public boolean save_state (OutputObjectState os, int ObjectType);

public boolean restore_state (InputObjectState os, int ObjectType);

public String type ();

public static final int ARRAY_SIZE = 10;

private int[] elements = new int[ARRAY_SIZE];

private int highestIndex;

};

The save_state, restore_state and type operations can be defined as follows:

/* Ignore ObjectType parameter for simplicity */

public boolean save_state (OutputObjectState os, int ObjectType)

{

 if (!super.save_state(os, ObjectType))

 return false;

 try

 {

 packInt(highestIndex);

 /*

Using TxCore

TX-PG-4/4/07 27

 * Traverse array state that we wish to save. Only save active elements

 */

 for (int i = 0; i <= highestIndex; i++)

 os.packInt(elements[i]);

 return true;

 }

 catch (IOException e)

 {

 return false;

 }

}

public boolean restore_state (InputObjectState os, int ObjectType)

{

 if (!super.restore_state(os, ObjectType))

 return false;

 try

 {

 int i = 0;

 highestIndex = os.unpackInt();

 while (i < ARRAY_SIZE)

 {

 if (i <= highestIndex)

 elements[i] = os.unpackInt();

 else

 elements[i] = 0;

 i++;

 }

 return true;

 }

 catch (IOException e)

 {

 return false;

 }

}

public String type ()

{

 return "/StateManager/Array";

}

Lock management and concurrency control

Concurrency control information within TxCore is maintained by locks. Locks which are

required to be shared between objects in different processes may be held within a lock store,

similar to the object store facility presented previously. The lock store provided with TxCore

deliberately has a fairly restricted interface so that it can be implemented in a variety of ways.

For example, lock stores are implemented in shared memory; on the Unix file system (in

several different forms); and as a remotely accessible store. More information about the

object stores available in TxCore can be found in the Appendix.

Note: as with all TxCore classes the default lock stores are pure Java
implementations; to access the shared memory and other more complex
lock store implementations it is necessary to use native methods.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

28 TX-PG-04/04/07

public class LockStore

{

public abstract InputObjectState read_state (Uid u, String tName)

 throws

LockStoreException;

public abstract boolean remove_state (Uid u, String tname);

public abstract boolean write_committed (Uid u, String tName,

 OutputObjectState state);

};

Selecting a lock store implementation

TxCore comes with support for several different object store implementations. If the object

model being used is SINGLE, then no lock store is required for maintaining locks, since the

information about the object is not exported from it. However, if the MULTIPLE model is

used, then different run-time environments (processes, Java virtual machines) may need to

share concurrency control information. The implementation type of the lock store to use can

be specified for all objects within a given execution environment using the

com.arjuna.ats.txoj.lockstore.lockStoreType property variable. Currently this can have

one of the following values:

• BasicLockStore: this is an in-memory implementation which does not, by default,

allow sharing of stored information between execution environments. The

application programmer is responsible for sharing the store information.

• BasicPersistentLockStore: this is the default implementation, and stores locking

information within the local file system. Therefore execution environments that

share the same file store can share concurrency control information. The root of the

file system into which locking information is written is the LockStore directory

within the TxCore installation directory. This can be overridden at runtime by

setting the com.arjuna.ats.txoj.lockstore.lockStoreDir property

variable accordingly, or placing the location within the CLASSPATH:

java -D com.arjuna.ats.txoj.lockstore.lockStoreDir=/var/tmp/LockStore

myprogram

or

java –classpath $CLASSPATH;/var/tmp/LockStore myprogram

If neither of these approaches is taken, then the default location will be at the same level as

the etc directory of the installation.

LockManager

The concurrency controller is implemented by the class LockManager which provides

sensible default behaviour while allowing the programmer to override it if deemed necessary

by the particular semantics of the class being programmed. The primary programmer

interface to the concurrency controller is via the setlock operation. By default, the TxCore

runtime system enforces strict two-phase locking following a multiple reader, single writer

policy on a per object basis. Lock acquisition is under programmer control, since just as

Using TxCore

TX-PG-4/4/07 29

StateManager cannot determine if an operation modifies an object, LockManager cannot

determine if an operation requires a read or write lock. Lock release, however, is normally

under control of the system and requires no further intervention by the programmer. This

ensures that the two-phase property can be correctly maintained.

The LockManager class is primarily responsible for managing requests to set a lock on an

object or to release a lock as appropriate. However, since it is derived from StateManager,

it can also control when some of the inherited facilities are invoked. For example, if a request

to set a write lock is granted, then LockManager invokes modified directly assuming that

the setting of a write lock implies that the invoking operation must be about to modify the

object. This may in turn cause recovery information to be saved if the object is recoverable.

In a similar fashion, successful lock acquisition causes activate to be invoked.

Therefore, LockManager is directly responsible for activating/de-activating persistent

objects, and registering Resources for managing concurrency control. By driving the

StateManager class, it is also responsible for registering Resources for

persistent/recoverable state manipulation and object recovery. The application programmer

simply sets appropriate locks, starts and ends transactions, and extends the save_state and

restore_state methods of StateManager.

public class LockResult

{

public static final int GRANTED;

public static final int REFUSED;

public static final int RELEASED;

};

public class ConflictType

{

public static final int CONFLICT;

public static final int COMPATIBLE;

public static final int PRESENT;

};

public abstract class LockManager extends StateManager

{

public static final int defaultTimeout;

public static final int defaultRetry;

public static final int waitTotalTimeout;

public synchronized int setlock (Lock l);

public synchronized int setlock (Lock l, int retry);

public synchronized int setlock (Lock l, int retry, int sleepTime);

public synchronized boolean releaselock (Uid uid);

 /* abstract methods inherited from StateManager */

public boolean restore_state (InputObjectState os, int ObjectType);

public boolean save_state (OutputObjectState os, int ObjectType);

public String type ();

protected LockManager ();

protected LockManager (int ObjectType, ObjectName attr);

protected LockManager (Uid storeUid);

protected LockManager (Uid storeUid, int ObjectType, ObjectName attr);

 . . .

};

JBoss Transactions 4.2.3Transaction Core Programmers Guide

30 TX-PG-04/04/07

The setlock operation must be parameterised with the type of lock required (READ /

WRITE), and the number of retries to acquire the lock before giving up. If a lock conflict

occurs, one of the following scenarios will take place:

If the retry value is equal to LockManager.waitTotalTimeout, then the thread which

called setlock will be blocked until the lock is released, or the total timeout specified has

elapsed, and in which REFUSED will be returned.

If the lock cannot be obtained initially then LockManager will try for the specified number

of retries, waiting for the specified timeout value between each failed attempt. The default is

100 attempts, each attempt being separated by a 0.25 seconds delay; the time between retries

is specified in micro-seconds.

If a lock conflict occurs the current implementation simply times out lock requests, thereby

preventing deadlocks, rather than providing a full deadlock detection scheme. If the requested

lock is obtained, the setlock operation will return the value GRANTED, otherwise the value

REFUSED is returned. It is the responsibility of the programmer to ensure that the remainder

of the code for an operation is only executed if a lock request is granted. Below are examples

of the use of the setlock operation.

res = setlock(new Lock(WRITE), 10); // Will attempt to set a

 // write lock 11 times (10

 // retries) on the object

 // before giving up.

res = setlock(new Lock(READ), 0); // Will attempt to set a read

 // lock 1 time (no retries) on

 // the object before giving up.

res = setlock(new Lock(WRITE); // Will attempt to set a write

 // lock 101 times (default of

 // 100 retries) on the object

 // before giving up.

The concurrency control mechanism is integrated into the atomic action mechanism, thus

ensuring that as locks are granted on an object appropriate information is registered with the

currently running atomic action to ensure that the locks are released at the correct time. This

frees the programmer from the burden of explicitly freeing any acquired locks if they were

acquired within atomic actions. However, if locks are acquired on an object outside of the

scope of an atomic action, it is the programmer's responsibility to release the locks when

required, using the corresponding releaselock operation.

Locking policy

Unlike many other systems, locks in TxCore are not special system types. Instead they are

simply instances of other TxCore objects (the class Lock which is also derived from

StateManager so that locks may be made persistent if required and can also be named in a

simple fashion). Furthermore, LockManager deliberately has no knowledge of the semantics

of the actual policy by which lock requests are granted. Such information is maintained by

the actual Lock class instances which provide operations (the conflictsWith operation) by

which LockManager can determine if two locks conflict or not. This separation is important

in that it allows the programmer to derive new lock types from the basic Lock class and by

Using TxCore

TX-PG-4/4/07 31

providing appropriate definitions of the conflict operations enhanced levels of concurrency

may be possible.

public class LockMode

{

public static final int READ;

public static final int WRITE;

};

public class LockStatus

{

public static final int LOCKFREE;

public static final int LOCKHELD;

public static final int LOCKRETAINED;

};

public class Lock extends StateManager

{

public Lock (int lockMode);

public boolean conflictsWith (Lock otherLock);

public boolean modifiesObject ();

public boolean restore_state (InputObjectState os, int ObjectType);

public boolean save_state (OutputObjectState os, int ObjectType);

public String type ();

 . . .

 };

The Lock class provides a modifiesObject operation which LockManager uses to

determine if granting this locking request requires a call on modified. This operation is

provided so that locking modes other than simple read and write can be supported. The

supplied Lock class supports the traditional multiple reader/single writer policy.

Object construction and destruction

Recall that TxCore objects can be recoverable; recoverable and persistent; or neither.

Additionally each object possesses a unique internal name. These attributes can only be set

when that object is constructed. Thus LockManager provides two protected constructors for

use by derived classes, each of which fulfils a distinct purpose:

LockManager ():

This constructor allows the creation of new objects, that is, no prior state is assumed to exist.

LockManager (int ObjectType, ObjectName attr):

As above, this constructor allows the creation of new objects, that is, no prior state is assumed

to exist. The ObjectType parameter determines whether an object is simply recoverable

(indicated by RECOVERABLE); recoverable and persistent (indicated by ANDPERSISTENT) or

neither (NEITHER). If an object is marked as being persistent then the state of the object will

be stored in one of the object stores. The shared parameter only has meaning if ot is

RECOVERABLE; if attr is not null and the object model is SINGLE (the default behaviour)

then the recoverable state of the object is maintained within the object itself (i.e., it has no

JBoss Transactions 4.2.3Transaction Core Programmers Guide

32 TX-PG-04/04/07

external representation), otherwise an in-memory (volatile) object store is used to store the

state of the object between atomic actions.

Constructors for new persistent objects should make use of atomic actions within themselves.

This will ensure that the state of the object is automatically written to the object store either

when the action in the constructor commits or, if an enclosing action exists, when the

appropriate top-level action commits. Later examples in this chapter illustrate this point

further.

LockManager(Uid objUid):

This constructor allows access to an existing persistent object, whose internal name is given

by the objUid parameter. Objects constructed using this operation will normally have their

prior state (identified by objUid) loaded from an object store automatically by the system.

LockManager(Uid objUid, ObjectName attr):

As above, this constructor allows access to an existing persistent object, whose internal name

is given by the objUid parameter. Objects constructed using this operation will normally

have their prior state (identified by objUid) loaded from an object store automatically by the

system. If the attr parameter is not null, and the object model is SINGLE (the default

behaviour), then the object will not be reactivated at the start of each top-level transaction.

The destructor of a programmer-defined class must invoke the inherited operation

terminate to inform the state management mechanism that the object is about to be

destroyed otherwise unpredictable results may occur.

Because LockManager inherits from StateManager, it will pass any supplied

ObjectName instance to the StateManager class. As such, it is possible to set the

StateManager object model as described earlier.

General transaction issues

TX-PG-4/4/07 33

Chapter 3

General transaction
issues

Advanced transaction issues with TxCore

Atomic actions (transactions) can be used by both application programmers and class

developers. Thus entire operations (or parts of operations) can be made atomic as required by

the semantics of a particular operation. This chapter will describe some of the more subtle

issues involved with using transactions in general and TxCore in particular.

Checking transactions

In a multi-threaded application, multiple threads may be associated with a transaction during

its lifetime, i.e., the thread’s share the context. In addition, it is possible that if one thread

terminates a transaction other threads may still be active within it. In a distributed

environment, it can be difficult to guarantee that all threads have finished with a transaction

when it is terminated. By default, TxCore will issue a warning if a thread terminates a

transaction when other threads are still active within it; however, it will allow the transaction

termination to continue. Other solutions to this problem are possible, e.g., blocking the thread

which is terminating the transaction until all other threads have disassociated themselves from

the transaction context. Therefore, TxCore provides the

com.arjuna.ats.arjuna.coordinator.CheckedAction class, which allows the

thread/transaction termination policy to be overridden. Each transaction has an instance of

this class associated with it, and application programmers can provide their own

implementations on a per transaction basis.

public class CheckedAction

{

public CheckedAction ();

public synchronized void check (boolean isCommit, Uid actUid,

 BasicList list);

};

When a thread attempts to terminate the transaction and there are active threads within it, the

system will invoke the check method on the transaction’s CheckedAction object. The

parameters to the check method are:

• isCommit: indicates whether the transaction is in the process of committing or

rolling back.

• actUid: the transaction identifier.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

34 TX-PG-04/04/07

• list: a list of all of the threads currently marked as active within this transaction.

When check returns, the transaction termination will continue. Obviously the state of the

transaction at this point may be different from that when check was called, e.g., the

transaction may subsequently have been committed.

Statistics gathering

By default, the JBossTS does not maintain any history information about transactions.

However, by setting the com.arjuna.ats.arjuna.coordinator.enableStatistics

property variable to YES, the transaction service will maintain information about the number

of transactions created, and their outcomes. This information can be obtained during the

execution of a transactional application via the com.arjuna.TxCore.Atomic.TxStats

class:

public class TxStats

{

 /**

 * Returns the number of transactions (top-level and nested)

 * created so far.

 */

public static int numberOfTransactions ();

 /**

 * Returns the number of nested (sub) transactions created so far.

 */

public static int numberOfNestedTransactions ();

 /**

 * Returns the number of transactions which have terminated with

 * heuristic outcomes.

 */

public static int numberOfHeuristics ();

 /**

 * Returns the number of committed transactions.

 */

public static int numberOfCommittedTransactions ();

 /**

 * Returns the number of transactions which have rolled back.

 */

public static int numberOfAbortedTransactions ();

}

Last resource commit optimisation

In some cases it may be necessary to enlist participants that aren’t two-phase commit aware

into a two-phase commit transaction. If there is only a single resource then there is no need

General transaction issues

TX-PG-4/4/07 35

for two-phase commit. However, what if there are multiple resources in the transaction? In

this case, the Last Resource Commit optimization (LRCO) comes into play. It is possible for

a single resource that is one-phase aware (i.e., can only commit or roll back, with no prepare),

to be enlisted in a transaction with two-phase commit aware resources. The coordinator treats

the one-phase aware resource slightly differently, in that it executes the prepare phase on all

other resource first, and if it then intends to commit the transaction it passes control to the

one-phase aware resource. If it commits, then the coordinator logs the decision to commit and

attempts to commit the other resources as well.

In order to utilise the LRCO, your participant must implement the

com.arjuna.ats.arjuna.coordinator.OnePhase interface and be registered with the

transaction through the BasicAction.add operation; since this operation expects instances

of AbstractRecord, you must create an instance com.arjuna.ats.arjuna.LastResourceRecord

and give your participant as the constructor parameter, as shown below:

try

{

 boolean success = false;

 AtomicAction A = new AtomicAction();

 OnePhase opRes = new OnePhase(); // used OnePhase interface

 System.err.println("Starting top-level action.");

 A.begin();

 A.add(new LastResourceRecord(opRes));

 A.add(new ShutdownRecord(ShutdownRecord.FAIL_IN_PREPARE));

 A.commit();

Nested transactions

There are no special constructs for nesting of transactions: if an action is begun while another

action is running then it is automatically nested. This allows for a modular structure to

applications, whereby objects can be implemented using atomic actions within their

operations without the application programmer having to worry about the applications which

use them, i.e., whether or not the applications will use atomic actions as well. Thus, in some

applications actions may be top-level, whereas in others they may be nested. Objects written

in this way can then be shared between application programmers, and TxCore will guarantee

their consistency.

If a nested action is aborted then all of its work will be undone, although strict two-phase

locking means that any locks it may have obtained will be retained until the top-level action

commits or aborts. If a nested action commits then the work it has performed will only be

committed by the system if the top-level action commits; if the top-level action aborts then all

of the work will be undone.

The committing or aborting of a nested action does not automatically affect the outcome of

the action within which it is nested. This is application dependant, and allows a programmer

to structure atomic actions to contain faults, undo work, etc.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

36 TX-PG-04/04/07

Asynchronously committing a transaction

By default, JBossTS executes the commit protocol of a top-level transaction in a synchronous

manner, i.e., all registered resources will be told to prepare in order by a single thread, and

then they will be told to commit or rollback. This has several possible disadvantages:

• In the case of many registered resources, the prepare operating can logically be

invoked in parallel on each resource. The disadvantage is that if an “early” resource

in the list of registered resource forces a rollback during prepare, possibly many

prepare operations will have been made needlessly.

• In the case where heuristic reporting is not required by the application, the second

phase of the commit protocol can be done asynchronously, since its success or

failure is not important.

Therefore, JBossTS provides runtime options to enable possible threading optimizations. By

setting the com.arjuna.ats.arjuna.coordinator.asyncPrepare environment

variable to YES, during the prepare phase a separate thread will be created for each registered

participant within the transaction. By setting

com.arjuna.ats.arjuna.coordinator.asyncCommit to YES, a separate thread will

be created to complete the second phase of the transaction if knowledge about heuristics

outcomes is not required.

Independent top-level transactions

In addition to normal top-level and nested atomic actions TxCore also supports independent

top-level actions, which can be used to relax strict serialisability in a controlled manner. An

independent top-level action can be executed from anywhere within another atomic action

and behaves exactly like a normal top-level action, that is, its results are made permanent

when it commits and will not be undone if any of the actions within which it was originally

nested abort.

General transaction issues

TX-PG-4/4/07 37

A

B

C

Figure 6 Independent Top-Level Action.

Figure 6 shows a typical nesting of atomic actions, where action B is nested within action A.

Although atomic action C is logically nested within action B (it had its Begin operation

invoked while B was active) because it is an independent top-level action, it will commit or

abort independently of the other actions within the structure. Because of the nature of

independent top-level actions they should be used with caution and only in situations where

their use has been carefully examined.

Top-level actions can be used within an application by declaring and using instances of the

class TopLevelTransaction. They are used in exactly the same way as other transactions.

Transactions within save_state and restore_state

Caution must be exercised when writing the save_state and restore_state operations

to ensure that no atomic actions are started (either explicitly in the operation or implicitly

through use of some other operation). This restriction arises due to the fact that TxCore may

invoke restore_state as part of its commit processing resulting in the attempt to execute

an atomic action during the commit or abort phase of another action. This might violate the

atomicity properties of the action being committed (aborted) and is thus discouraged.

Example

If we consider the Array example given previously, the set and get operations could be

implemented as shown below.

Note: this is a simplification of the code, ignoring error conditions and
exceptions.

public boolean set (int index, int value)

{

 boolean result = false;

 AtomicAction A = new AtomicAction();

 A.begin();

JBoss Transactions 4.2.3Transaction Core Programmers Guide

38 TX-PG-04/04/07

 // We need to set a WRITE lock as we want to modify the state.

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)

 {

 elements[index] = value;

 if ((value > 0) &&(index > highestIndex

 highestIndex = index;

 A.commit(true);

 result = true;

 }

 else

 A.rollback();

 return result;

}

public int get (int index) // assume -1 means error

{

 AtomicAction A = new AtomicAction();

 A.begin();

 // We only need a READ lock as the state is unchanged.

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)

 {

 A.commit(true);

 return elements[index];

 }

 else

 A.rollback();

 return -1;

}

Garbage collecting objects

Java objects are deleted when the garbage collector determines that they are no longer

required. Deleting an object that is currently under the control of a transaction must be

approached with caution since if the object is being manipulated within a transaction its fate

is effectively determined by the transaction. Therefore, regardless of the references to a

transactional object maintained by an application, TxCore will always retain its own

references to ensure that the object is not garbage collected until after any transaction has

terminated.

Transaction timeouts

By default transactions live until they are terminated by the application that created them or a

failure occurs. However, it is possible to set a timeout (in seconds) on a per transaction basis

such that if the transaction has not terminated before the timeout expires it will be

automatically rolled back.

In TxCore, the timeout value is provided as a parameter to the AtomicAction constructor. If

a value of AtomicAction.NO_TIMEOUT is provided (the default) then the transaction will

General transaction issues

TX-PG-4/4/07 39

not be automatically timed out. Any other positive value is assumed to the timeout for the

transaction (in seconds). A value of zero is taken to be a global default timeout, which can be

provided by the property com.arjuna.ats.arjuna.coordinator.defaultTimeout.

Unless changed the default value is 60 seconds.

When a top-level transaction is created with a non-zero timeout, it is subject to being rolled

back if it has not completed within the specified number of seconds. JBossTS uses a separate

reaper thread which monitors all locally created transactions, and forces them to roll back if

their timeouts elapse. To prevent this thread from consuming application time, it only runs

periodically. The default checking period is 120000 milliseconds, but can be overridden by

setting the com.arjuna.ats.arjuna.coordinator.txReaperTimeout property

variable to another valid value, in microseconds. Alternatively, if the

com.arjuna.ats.arjuna.coordinator.txReaperMode is set to DYNAMIC, the

transaction reaper will wake whenever a transaction times out. This has the advantage of

terminating transactions early, but may suffer from continually rescheduling the reaper

thread.

If a value of 0 is specified for the timeout of a top-level transaction (or no timeout is

specified), then JBossTS will not impose any timeout on the transaction, i.e., it will be

allowed to run indefinitely. This default timeout can be overridden by setting the

com.arjuna.ats.arjuna.coordinator.defaultTimeout property variable when

using ArjunaCore or ArjunaJTS, or com.arjuna.ats.jts.defaultTimeout if using

ArjunaJTS, to the required timeout value in seconds.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

40 TX-PG-04/04/07

Chapter 4

Hints and tips
General

Using transactions in constructors

Examples throughout this manual have used transactions in the implementation of

constructors for new persistent objects. This is deliberate because it guarantees correct

propagation of the state of the object to the object store. Recall that the state of a modified

persistent object is only written to the object store when the top-level transaction commits.

Thus, if the constructor transaction is top-level and it commits, then the newly created object

is written to the store and becomes available immediately. If however, the constructor

transaction commits but is nested because some other transaction started prior to object

creation is running, then the state will be written only if all of the parent transactions commit.

On the other hand, if the constructor does not use transactions then it is possible for

inconsistencies in the system to arise. For example, if no transaction is active when the object

is created then its state will not be saved to the store until the next time the object is modified

under the control of some transaction.

Consider this simple example:

AtomicAction A = new AtomicAction();

Object obj1;

Object obj2;

obj1 = new Object(); // create new object

obj2 = new Object("old"); // existing object

A.begin(0);

obj2.remember(obj1.get_uid()); // obj2 now contains reference to obj1

A.commit(true); // obj2 saved but obj1 is not

Here the two objects are created outside of the control of the top-level action A. obj1 is a

new object; obj2 an old existing object. When the remember operation of obj2 is invoked

the object will be activated and the Uid of obj1 remembered. Since this action commits the

persistent state of obj2 could now contain the Uid of obj1. However, the state of obj1

itself has not been saved since it has not been manipulated under the control of any action. In

fact, unless it is modified under the control of some action later in the application it will never

be saved. If, however, the constructor had used an atomic action the state of obj1 would have

automatically been saved at the time it was constructed and this inconsistency could not arise.

Hints and tips

TX-PG-4/4/07 41

More on save_state and restore_state

TxCore may invoke the user-defined save_state operation of an object effectively at any

time during the lifetime of an object including during the execution of the body of the object’s

constructor (particularly if it uses atomic actions). It is important, therefore, that all of the

variables saved by save_state are correctly initialised.

Caution must be also exercised when writing the save_state and restore_state

operations to ensure that no transactions are started (either explicitly in the operation or

implicitly through use of some other operation). This restriction arises due to the fact that

TxCore may invoke restore_state as part of its commit processing resulting in the

attempt to execute an atomic transaction during the commit or abort phase of another

transaction. This might violate the atomicity properties of the transaction being committed

(aborted) and is thus discouraged.

In order to support crash recovery for persistent objects it is necessary for all save_state

and restore_state methods of user objects to call super.save_state and

super.restore_state.

Packing objects

All of the basic types of Java (int, long, etc.) can be saved and restored from an

Input/OutputObjectState instance by using the pack (and unpack) routines provided

by Input/OutputObjectState. However packing and unpacking objects should be

handled differently. This is because packing objects brings in the additional problems of

aliasing. That is two different object references may in actual fact point at the same item. For

example:

public class Test

{

public Test (String s);

 ...

private String s1;

private String s2;

};

public Test (String s)

{

 s1 = s;

 s2 = s;

}

Here, both s1 and s2 point at the same string and a naive implementation of save_state

could end up by copying the string twice. From a save_state perspective this is simply

inefficient. However, it makes restore_state incorrect since it would unpack the two

strings into different areas of memory destroying the original aliasing information. The

current version of TxCore will pack and unpack separate object references.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

42 TX-PG-04/04/07

Direct use of StateManager

The examples throughout this manual have always derived user classes from LockManager.

The reasons for this are twofold. Firstly, and most importantly, the serialisability constraints

of atomic actions require it, and secondly it reduces the need for programmer intervention.

However, if only access to TxCore's persistence and recovery mechanisms is required, direct

derivation of a user class from StateManager is possible.

Classes derived directly from StateManager must make use of its state management

mechanisms explicitly (these interactions are normally undertaken by LockManager). From

a programmer's point of view this amounts to making appropriate use of the operations

activate, deactivate and modified, since StateManager's constructors are

effectively identical to those of LockManager.

boolean activate ()

boolean activate (String storeRoot)

Activate loads an object from the object store. The object’s UID must already have been

set via the constructor and the object must exist in the store. If the object is successfully read

then restore_state is called to build the object in memory. Activate is idempotent so

that once an object has been activated further calls are ignored. The parameter represents the

root name of the object store to search for the object. A value of null means use the default

store.

boolean deactivate ()

boolean deactivate (String storeRoot)

The inverse of activate. First calls save_state to build the compacted image of the

object which is then saved in the object store. Objects are only saved if they have been

modified since they were activated. The parameter represents the root name of the object

store into which the object should be saved. A value of null means use the default store.

void modified ()

Must be called prior to modifying the object in memory. If it is not called the object will not

be saved in the object store by deactivate.

Tools

TX-PG-4/4/07 43

Chapter 5

Tools
Introduction

This chapter explains how to start and use the tools framework and what tools are available.

Starting the Transaction Service tools

The way to start the transaction service tools differs on the operating system being used:

Windows:

Double click on the ‘Start Tools’ link in the JBoss Transaction Service program group in the

start menu.

UNIX:

Start a bash shell and type:

cd < JBossTS INSTALL DIRECTORY >

./run-tools.sh

Once you have done this the tools window will appear. This is the launch area for all of the

tools shipped with the JBoss Transaction Service. At the top of the window you will notice a

menu bar (see Figure 7).

Figure 7 - Menu bar

This menu bar has four menus:

The File menu:

Open JMX Browser – this displays the JMX browser window (see Using the JMX Browser

for more information on how to use the JMX browser).

JBoss Transactions 4.2.3Transaction Core Programmers Guide

44 TX-PG-04/04/07

Open Object Store Browser – this displays the JBossTS Object Store browser window (see

Using the Object Store Browser for more information on how to use the Object Store

browser).

Settings – this option opens the settings dialog which lets you configure the different tools

available.

Exit – this closes the tools window and exits the application, any unsaved/unconfirmed

changes will be lost.

The Performance menu:

Open – this opens a performance window – see the section named ‘Using the Performance

Tool’ for more information on the performance tool.

Close All – this closes all of the currently open performance windows – see the section

named ‘Using the Performance Tool’ for more information on the performance tool.

The Window menu:

Cascade Windows – this arranges the windows in a diagonal line to you find a specific

window.

1. xxxxxx – For each window currently visible an extra menu option will be available here.

Selecting this menu option will bring the associated window to the front of the desktop.

The Help menu:

About – this displays the about window which displays the product information.

Using the Performance Tool

The performance tool can be used to display performance information about the transaction

service. This information is gathered using the Performance JMX bean which means that the

transaction service needs to be integrated into an Application Server to give any performance

information.

Tools

TX-PG-4/4/07 45

The performance information is displayed via a multi-series graph. To view this graph

simply open a performance window by selecting Performance > Open (see Figure 8).

Figure 8 - Performance window

This window contains a multi-series graph which can display the following information:

• Number of transactions.

• Number of committed transactions.

• Number of aborted transactions.

• Number of nested transactions.

• Number of heuristics raised.

To turn these series on and off simply select the menu option from the series menu:

When series are turned on they appear in the legend at the bottom of the graph. The colour

next to the series name (e.g. Transactions Created) is the colour of the line representing that

data.

The data shown is graphed against time. The Y-axis represents the number of transactions

and the X-axis represents time.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

46 TX-PG-04/04/07

At any point the sampling of data can be stopped and restarted using the ‘Sampling’ menu

and the data currently visible in the graph can be saved to a Comma Separate Values (CSV)

file for importing the data into a spreadsheet application using the ‘Save to .csv’ menu option

from the ‘Data’ menu.

Using the JMX Browser

To open the JMX browser window click on the File menu and then click the Open JMX

Browser option. The JMX browser window will then be displayed (see Figure 9).

Figure 9 - JMX Browser window.

The window is made up of two main sections: the details panel and the MBean panel. The

MBean panel displays the MBeans exposed by the MBean server. These are grouped by

domain name. The details panel displays information about the currently selected MBean.

To select an MBean just left-click it with the mouse and it will become highlighted. The

information displayed in the details panel is as follows (see Figure 10 for an example):

• The total number of MBeans registered on this server,

• The number of constructors exposed by this MBean,

• The number of attributes exposed by this MBean,

• The number of operations exposed by this MBean,

• The number of notifications exposed by this MBean,

• A brief description of the MBean.

There is also a View link which when clicked displays the attributes and operations exposed

by this MBean. From there you can view readable attributes, alter writeable attributes and

invoke operations.

Tools

TX-PG-4/4/07 47

Figure 10 - An example of what the details panel displays.

Using Attributes and Operations

When the View link is clicked the View JMX Attributes and Operations window is displayed

(see Figure 11. From here you can view all readable attributes exposed by the selected

MBean. You can also alter writeable attributes. If an attribute is read-only then you will not

be able to alter an attributes value. To alter an attributes value just double click on the current

value and enter the new value. If the button is enabled then you can click this to

view a more suitable editing method. If the attribute type is a JMX object name then clicking

this button will display the JMX attributes and operations for that object.

At any point you can click the button to refresh the attribute values. If an

exception occurs while retrieving the value of an attribute the exception will be displayed in

place of the attributes value.

You can also invoke operations upon an MBean. A list of operations exposed by an MBean

is displayed below the attributes list. To invoke an operation simply select it from the list and

click the button. If the operation requires parameters a further window will be

displayed, from this window you must specify values for each of the parameters required (see

Figure 12). You specify parameter values in the same way as you specify JMX attribute

values. Once you have specified a value for each of the parameters click the Invoke button to

perform the invocation.

Once the method invocation has completed its return value will be displayed.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

48 TX-PG-04/04/07

Figure 11 - View JMX Attributes and Operations window.

Figure 12 - Invoke Operation Parameters.

Tools

TX-PG-4/4/07 49

Using the Object Store Browser

To open the Object Store browser window click on the File menu and then click the Open

Object Store Browser option. The Object Store browser window will then be displayed (see

Figure 13).

Figure 13 - Object Store Browser window

The object store browser window is split into four sections:

• Objet Store Roots – this is a pull down of the currently available object store roots.

Selecting an option from the list will repopulate the hierarchy view with the contents

of the selected root.

• Object Store Hierarchy – this is a tree which shows the current object store

hierarchy. Selecting a node from this tree will display the objects stored in that

location.

Object Store
Hierarchy

Object Store
Roots

Objects

Object Details

JBoss Transactions 4.2.3Transaction Core Programmers Guide

50 TX-PG-04/04/07

• Objects – this is a list of icons which represent the objects stored in the selected

location.

• Object Details – this shows information about the currently selected object (only if

the object’s type is known to the state viewer repository see Writing an OSV for

information on how to write a object state viewers).

Object State Viewers (OSV)

When an object is selected in the objects pane of the main window the registered Object State

Viewer (or OSV) for that object type is invoked. An OSV’s job is to make information

available via the user interface to the user to show information about the selected object.

Distributed with the standard tools is an OSV for Atomic Actions, the OSV displays

information on the Abstract Records in it’s various lists (e.g. heuristic, failed, read-only, etc).

It is also possible to write your own OSVs which can be used to display information about

object types you have defined. This subject is covered next.

Writing an OSV

Writing an OSV plugin allows you to extend the capabilities of the Object Store browser to

show the state of user defined abstract records. An OSV plug-in is simply a class which

implements the interface:

 com.arjuna.ats.tools.objectstorebrowser.stateviewers.StateViewerInterface

It must be packaged in a JAR within the plugins directory. This example shows how to create

an OSV plugin for an abstract record subclass which looks as follows:

public class SimpleRecord extends AbstractRecord

{

 private int _value = 0;

 public void increase()

 {

 _value++;

 }

 public int get()

 {

 return _value;

 }

 public String type()

 {

 return “/StateManager/AbstractRecord/SimpleRecord”;

 }

 public boolean restore_state(InputObjectState os, int i)

 {

 boolean returnValue = true;

 try

 {

Tools

TX-PG-4/4/07 51

 _value = os.unpackInt();

 }

 catch (java.io.IOException e)

 {

 returnValue = false;

 }

 return returnValue;

 }

 public boolean save_state(OutputObjectState os, int i)

 {

 boolean returnValue = true;

 try

 {

 os.packInt(_value);

 }

 catch (java.io.IOException e)

 {

 returnValue = false;

 }

 return returnValue;

 }

}

When this abstract record is viewed in the object store browser it would be nice to see the

current value. This is easy to do as we can read the state into an instance of our abstract

record and call getValue(). The following is the object store browser plug-in source code:

public class SimpleRecordOSVPlugin implements StateViewerInterface

{

 /**

 * A uid node of the type this viewer is registered against has been

expanded.

 * @param os

 * @param type

 * @param manipulator

 * @param node

 * @throws ObjectStoreException

 */

 public void uidNodeExpanded(ObjectStore os,

 String type,

 ObjectStoreBrowserTreeManipulationInterface

 manipulator,

 UidNode node,

 StatePanel infoPanel)

 throws ObjectStoreException

 {

 // Do nothing

 }

 /**

 * An entry has been selected of the type this viewer is registered

against.

 *

 * @param os

 * @param type

 * @param uid

 * @param entry

 * @param statePanel

JBoss Transactions 4.2.3Transaction Core Programmers Guide

52 TX-PG-04/04/07

 * @throws ObjectStoreException

 */

 public void entrySelected(ObjectStore os,

 String type,

 Uid uid,

 ObjectStoreViewEntry entry,

 StatePanel statePanel)

 throws ObjectStoreException

 {

 SimpleRecord rec = new SimpleRecord();

 if (rec.restore_state(os.read_committed(uid, type),

ObjectType.ANDPERSISTENT))

 {

 statePanel.setData(“Value”, rec.getValue());

 }

 }

 /**

 * Get the type this state viewer is intended to be registered against.

 * @return

 */

 public String getType()

 {

 return “/StateManager/AbstractRecord/SimpleRecord”;

 }

}

The method uidNodeExpanded is invoked when a UID (Unique Identification) representing

the given type is expanded in the object store hierarchy tree. This is not required by this

plugin as this abstract record is not visible in the object store directly it is only viewable via

one of the lists in an atomic action. The method entrySelected is invoked when an entry is

selected from the object view which represents an object with the given type. In both

methods the StatePanel is used to display information regarding the state of the object. The

state panel has the following methods that assist in display this information:

• setInfo(String info) – This method can be used to show general information.

• setData(String name, String value) – This method is used to put information

into the table which is displayed by the object store browser tool.

• enableDetailsButton(DetailsButtonListener listener) – This method is used

to enable the details button. The listener interface allows a plug-in to be informed

when the button is pressed. It is up to the plug-in developer to decide how to display

this further information.

In this example we read the state from the object store and use the value returned by

getValue() to put an entry into the state panel table. The getType() method returns the

type this plug-in is to be registered against.

 To add this plug-in to the object store browser it is necessary to package it into a JAR (Java

Archive) file with a name that is prefixed with 'osbv-'. The JAR file must contain certain

information within the manifest file so that the object store browser knows which classes are

plug-ins. All of this can be performed using an Apache ANT (http://ant.apache.org)

script, as follows:

TX-PG-4/4/07 53

 <jar jarfile="osbv-simplerecord.jar">

 <fileset dir="build" includes="*.class”/>

 <manifest>

 <section name="arjuna-tools-objectstorebrowser">

 <attribute name="plugin-classname-1" value="

SimpleRecordOSVPlugin "/>

 </section>

 </manifest>

 </jar>

Once the JAR has been created with the correct information in the manifest file it just needs

to be placed in the 'bin/tools/plugins' directory.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

54 TX-PG-04/04/07

Chapter 6

Constructing a
Transactional Objects for

Java application
Application construction

There are two distinct phases to the development of a TxCore application:

• Developing new classes with certain characteristics (for example, Persistent,

Recoverable, Concurrency Controlled).

• Developing the application(s) that make use of the new classes of objects.

Although these two phases may be performed in parallel and by a single person, we shall

refer to the first step as the job of the class developer and the second as the job of the

applications developer. The class developer will be concerned about defining appropriate

save_state and restore_state operations for the class, setting appropriate locks in

operations, and invoking the appropriate TxCore class constructors. The applications

developer will be more concerned with defining the general structure of the application,

particularly with regard to the use of atomic actions.

This chapter illustrates the points made in previous sections by outlining a simple application:

in this case a simple FIFO Queue class for integer values will be developed. The

implementation of the Queue will be with a doubly linked list structure, and it will be

implemented as a single object. We shall be using this example throughout the rest of this

manual to help illustrate the various mechanisms provided by TxCore. While this is an

unrealistic example application it enables all of the TxCore modifications to be described

without requiring in depth knowledge of the application code.

In the rest of this chapter we shall assume that the application is not distributed. If this is not

the case, then context information must be propagated either implicitly or explicitly.

Queue description

The queue is a traditional FIFO queue, where elements are added to the front and removed

from the back. The operations provided by the queue class allow the values to be placed on to

the queue (enqueue) and to be removed from it (dequeue), and it is also possible to change

or inspect the values of elements in the queue. In this example implementation, an array is

Constructing a Transactional Objects for Java application

TX-PG-4/4/07 55

used to represent the queue. A limit of QUEUE_SIZE elements has been imposed for this

example.

The Java interface definition of this simple queue class is given below:

public class TransactionalQueue extends LockManager

{

public TransactionalQueue (Uid uid);

public TransactionalQueue ();

public void finalize ();

public void enqueue (int v) throws OverFlow, UnderFlow,

 QueueError, Conflict;

public int dequeue () throws OverFlow, UnderFlow,

 QueueError, Conflict;

public int queueSize ();

public int inspectValue (int i) throws OverFlow,

 UnderFlow, QueueError, Conflict;

public void setValue (int i, int v) throws OverFlow,

 UnderFlow, QueueError, Conflict;

public boolean save_state (OutputObjectState os, int ObjectType);

public boolean restore_state (InputObjectState os, int ObjectType);

public String type ();

public static final int QUEUE_SIZE = 40; // maximum size of the queue

private int[QUEUE_SIZE] elements;

private int numberOfElements;

};

Constructors and destructors

As stated in the previous section, to use an existing persistent object requires the use of a

special constructor that is required to take the Uid of the persistent object; the

implementation of such a constructor is given below:

public TransactionalQueue (Uid u)

{

 super(u);

 numberOfElements = 0;

}

The constructor that creates a new persistent object is similar:

public TransactionalQueue ()

{

 super(ObjectType.ANDPERSISTENT);

 numberOfElements = 0;

 try

 {

 AtomicAction A = new AtomicAction();

 A.begin(0); // Try to start atomic action

JBoss Transactions 4.2.3Transaction Core Programmers Guide

56 TX-PG-04/04/07

 // Try to set lock

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)

 {

 A.commit(true); // Commit

 }

 else // Lock refused so abort the atomic action

 A.rollback();

 }

 catch (Exception e)

 {

 System.err.println(“Object construction error: “+e);

 System.exit(1);

 }

}

The use of an atomic action within the constructor for a new object follows the guidelines

outlined earlier and ensures that the object’s state will be written to the object store when the

appropriate top level atomic action commits (which will either be the action A or some

enclosing action active when the TransactionalQueue was constructed). The use of

atomic actions in a constructor is simple: an action must first be declared and its begin

operation invoked; the operation must then set an appropriate lock on the object (in this case a

WRITE lock must be acquired), then the main body of the constructor is executed. If this is

successful the atomic action can be committed, otherwise it is aborted.

The destructor of the queue class is only required to call the terminate operation of
LockManager

public void finalize ()

{

 super.terminate();

}

save_state, restore_state and type

The implementations of save_state and restore_state are relatively simple for this

example:

public boolean save_state (OutputObjectState os, int ObjectType)

{

 if (!super.save_state(os, ObjectType))

 return false;

 try

 {

 os.packInt(numberOfElements);

 if (numberOfElements > 0)

 {

 for (int i = 0; i < numberOfElements; i++)

 os.packInt(elements[i]);

 }

 return true;

 }

 catch (IOException e)

Constructing a Transactional Objects for Java application

TX-PG-4/4/07 57

 {

 return false;

 }

}

public boolean restore_state (InputObjectState os, int ObjectType)

{

 if (!super.restore_state(os, ObjectType))

 return false;

 try

 {

 numberOfElements = os.unpackInt();

 if (numberOfElements > 0)

 {

 for (int i = 0; i < numberOfElements; i++)

 elements[i] = os.unpackInt();

 }

 return true;

 }

 catch (IOException e)

 {

 return false;

 }

}

Because the Queue class is derived from the LockManager class, the operation type should

be:

public String type ()

{

 return "/StateManager/LockManager/TransactionalQueue";

}

enqueue/dequeue operations

If the operations of the queue class are to be coded as atomic actions, then the enqueue

operation could have the structure given below (the dequeue operation would be similarly

structured):

public void enqueue (int v) throws OverFlow, UnderFlow, QueueError

{

 AtomicAction A = new AtomicAction();

 boolean res = false;

 try

 {

 A.begin(0);

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)

 {

 if (numberOfElements < QUEUE_SIZE)

 {

 elements[numberOfElements] = v;

 numberOfElements++;

 res = true;

 }

 else

JBoss Transactions 4.2.3Transaction Core Programmers Guide

58 TX-PG-04/04/07

 {

 A.rollback();

 throw new UnderFlow();

 }

 }

 if (res)

 A.commit(true);

 else

 {

 A.rollback();

 throw new Conflict();

 }

 }

 catch (Exception e1)

 {

 throw new QueueError();

 }

}

queueSize

The implementation of queueSize is shown below:

public int queueSize () throws QueueError, Conflict

{

 AtomicAction A = new AtomicAction();

 int size = -1;

 try

 {

 A.begin(0);

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)

 size = numberOfElements;

 if (size != -1)

 A.commit(true);

 else

 {

 A.rollback();

 throw new Conflict();

 }

 }

 catch (Exception e1)

 {

 throw new QueueError();

 }

 return size;

}

inspectValue/setValue operations

The implementation of inspectValue is shown below. setValue is similar, and not

shown.

Constructing a Transactional Objects for Java application

TX-PG-4/4/07 59

public int inspectValue (int index) throws UnderFlow,

 OverFlow, Conflict, QueueError

{

 AtomicAction A = new AtomicAction();

 boolean res = false;

 int val = -1;

 try

 {

 A.begin();

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)

 {

 if (index < 0)

 {

 A.rollback();

 throw new UnderFlow();

 }

 else

 {

 // array is 0 - numberOfElements -1

 if (index > numberOfElements -1)

 {

 A.rollback();

 throw new OverFlow();

 }

 else

 {

 val = elements[index];

 res = true;

 }

 }

 }

 if (res)

 A.commit(true);

 else

 {

 A.rollback();

 throw new Conflict();

 }

 }

 catch (Exception e1)

 {

 throw new QueueError();

 }

 return val;

}

The client

Rather than show all of the code for the client, we shall concentrate on a representative

portion. Before invoking operations on the object, the client must obviously first bind to it. In

the local case this simply requires the client to create an instance of the object.

public static void main (String[] args)

{

TransactionalQueue myQueue = new TransactionalQueue();

JBoss Transactions 4.2.3Transaction Core Programmers Guide

60 TX-PG-04/04/07

Before invoking one of the queue’s operations, the client starts a transaction. The queueSize

operation is shown below:

AtomicAction A = new AtomicAction();

int size = 0;

try

{

 A.begin(0);

 try

 {

 size = queue.queueSize();

 }

 catch (Exception e)

 {

 }

 if (size >= 0)

 {

 A.commit(true);

 System.out.println(“Size of queue: “+size);

 }

 else

 A.rollback();

}

catch (Exception e)

{

 System.err.println(“Caught unexpected exception!”);

}

Comments

Since the queue object is persistent, then the state of the object will survive any failures of the

node on which it is located. The state of the object that will survive is that produced by the

last top-level committed atomic action performed on the object. If it is the intention of an

application to perform two enqueue operations atomically, for example, then this can be

done by nesting the enqueue operations in another enclosing atomic action. In addition,

concurrent operations on such a persistent object will be serialised, thereby preventing

inconsistencies in the state of the object. However, since the elements of the queue objects are

not individually concurrency controlled, certain combinations of concurrent operation

invocations will be executed serially, whereas logically they could be executed concurrently.

For example, modifying the states of two different elements in the queue. In the next section

we address some of these issues.

Configuration options

TX-PG-4/4/07 61

Chapter 7

Configuration options
Options

The following table shows the configuration features, with default values shown in italics.

More details about each option can be found in the relevant sections of this document.

Configuration Name Possible Values Description

com.arjuna.ats.arjuna.objectstore.s
toreSync

ON/OFF Turns synchronization
of the object store on or
off. Use with caution.

com.arjuna.ats.arjuna.objectstore.s
toreType

ShadowStore/ShadowNoFi
leLockStore/JDBCStore/Ha
shedStore

Specify the type of
object store
implementation to use.

com.arjuna.ats.arjuna.objectstore.h
ashedDirectories

255/any integer value Set the number of
directories to hash
object states over for
the HashedStore object
store implementation.

com.arjuna.ats.txoj.lockstore.lockSt
oreType

BasicLockStore/BasicPersi
stentLockStore

Specify the type of the
lock store
implementation to use.

com.arjuna.ats.txoj.lockstore.lockSt
oreDir

Windows: .\LockStore

Unix: ./LockStore

Specify the location of
the lock store.

com.arjuna.ats.arjuna.objectstore.o
bjectStoreDir

Any location the
application can write to.

Specify the location of
the object store.

com.arjuna.ats.arjuna.objectstore.l
ocalOSRoot

defaultStore Specify the name of the
object store root.

com.arjuna.ats.arjuna.coordinator.
actionStore

ActionStore/HashedAction
Store/JDBCActionStore

The transaction log
implementation to use.

com.arjuna.ats.arjuna.coordinator.
asyncCommit

YES/NO Turns on or off (default)
asynchronous commit.

com.arjuna.ats.arjuna.coordinator.
asyncPrepare

YES/NO Turns on or off (default)
asynchronous prepare.

com.arjuna.ats.arjuna.objectstore.tr
ansactionSync

ON/OFF Turns synchronization
of the object store on or
off. Use with caution.

com.arjuna.ats.arjuna.objectstore.j
dbcUserDbAccess

JDBCAccess class name The JDBCAccess
implementation to use
for user-level object
stores.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

62 TX-PG-04/04/07

com.arjuna.ats.arjuna.objectstore.j
dbcTxDbAccess

JDBCAccess class name The JDBCAccess
implementation to use
for transaction object
stores.

com.arjuna.ats.arjuna.coordinator.c
ommitOnePhase

YES/NO Enable or disable the
one-phase commit
optimization.

com.arjuna.ats.arjuna.coordinator.r
eadonlyOptimisation

YES/NO Enable or disable read-
only optimization for the
second phase abort.

com.arjuna.ats.arjuna.coordinator.
enableStatistics

YES/NO Start/stop collecting
transaction statistic
information.

com.arjuna.ats.arjuna.coordinator.s
tartDisabled

YES/NO Start with the
transaction system
enabled or disabled.
Toggle via the
com.arjuna.ats.arjuna.c
oordinator.TxControl
class.

com.arjuna.ats.arjuna.coordinator.
defaultTimeout

Integer Timeout in milliseconds

Table 2 TxCore configuration options.

Object store implementations

TX-PG-4/4/07 63

Appendix A

Object store
implementations

The ObjectStore

In this appendix we shall examine the various TxCore object store implementations and give

guidelines as to how other implementations may be created and plugged into an application.

This release of JBossTS contains several different implementations of a basic object store.

Each serves a particular purpose and is generally optimised for that purpose. All of the

implementations are derived from the ObjectStore interface. This defines the minimum

operations which must be provided in order for an object store implementation to be used by

JBossTS. The default object store implementation can be overridden at runtime by setting the

com.arjuna.ats.arjuna.objectstore.objectStoreType property variable to one of

the types described below.

/*

 * This is the base class from which all object store types are derived.

 * Note that because object store instances are stateless, to improve

 * efficiency we try to only create one instance of each type per process.

 * Therefore, the create and destroy methods are used instead of new

 * and delete. If an object store is accessed via create it *must* be

 * deleted using destroy. Of course it is still possible to make use of

 * new and delete directly and to create instances on the stack.

 */

public class ObjectStore

{

public static final int OS_COMMITTED;

public static final int OS_COMMITTED_HIDDEN;

public static final int OS_HIDDEN;

public static final int OS_INVISIBLE;

public static final int OS_ORIGINAL;

public static final int OS_SHADOW;

public static final int OS_UNCOMMITTED;

public static final int OS_UNCOMMITTED_HIDDEN;

public static final int OS_UNKNOWN;

public ObjectStore (ClassName type);

public ObjectStore (ClassName type, String osRoot);

public ObjectStore (String osRoot);

public synchronized boolean allObjUids (String s, InputObjectState buff)

 throws ObjectStoreException;

public synchronized boolean allObjUids (String s, InputObjectState buff,

 int m) throws ObjectStoreException;

public synchronized boolean allTypes (InputObjectState buff)

 throws ObjectStoreException;

public synchronized int currentState(Uid u, String tn)

 throws ObjectStoreException;

JBoss Transactions 4.2.3Transaction Core Programmers Guide

64 TX-PG-04/04/07

public synchronized boolean commit_state (Uid u, String tn)

 throws ObjectStoreException;

public synchronized boolean hide_state (Uid u, String tn)

 throws ObjectStoreException;

public synchronized boolean reveal_state (Uid u, String tn)

 throws ObjectStoreException;

public synchronized InputObjectState read_committed (Uid u, String tn)

 throws ObjectStoreException;

public synchronized InputObjectState read_uncommitted (Uid u, String tn)

 throws ObjectStoreException;

public synchronized boolean remove_committed (Uid u, String tn)

 throws ObjectStoreException;

public synchronized boolean remove_uncommitted (Uid u, String tn)

 throws ObjectStoreException;

public synchronized boolean write_committed (Uid u, String tn,

 OutputObjectState buff)

 throws

ObjectStoreException;

public synchronized boolean write_uncommitted (Uid u, String tn,

 OutputObjectState buff)

 throws

ObjectStoreException;

public static void printState (PrintStream strm, int res);

};

JBossTS programmers need not usually interact with any of the object store implementations

directly other than possibly to create them in the first place (even this is not necessary if the

default store type is used as JBossTS will create stores as necessary). All stores manipulate

instances of the class ObjectState which are named using a type (via the object's type()

operation) and a Uid. For atomic actions purposes object states in the store can be principally

in two distinct states: OS_COMMITTED, and OS_UNCOMMITTED. An object state starts

in the OS_COMMITTED state but when modified under the control of an atomic action a

new second object state may be written that is in the OS_UNCOMMITTED state. If the

action commits this second object state replaces the original and becomes

OS_COMMITTED. If the action aborts, this second object state is simply discarded. All of

the implementations provided with this release handle these state transitions by making use of

shadow copies of object states, however, any other implementation that maintains this

abstraction is permissible. Object states may become hidden (and thus inaccessible) under the

control of the crash recovery system.

Browsing of the contents of a store is possible through the allTypes and allObjUids

operations. allTypes returns an InputObjectState containing all of the type names of all

objects in a store, terminated by a null name. allObjUids returns an

InputObjectState that contains all of the Uids of all objects of a given type terminated

by the special Uid.nullUid().

Persistent object stores

This section briefly describes the characteristics and optimisations of each of the supplied

implementations of the persistent object store. Persistent object states are mapped onto the

structure of the file system supported by the host operating system.

Object store implementations

TX-PG-4/4/07 65

Common functionality

In addition to the features mentioned earlier all of the supplied persistent object stores obey

the following rules:

• Each object state is stored in its own file that is named using the Uid of the object.

• The type of an object (as given by the type() operation) determines the directory

into which the object is placed.

• All of the stores have a common root directory that is determined when JBossTS is

configured. This directory name is automatically prepended to any store specific

root information.

• All stores also have the notion of a localised root directory that is automatically

prepended to the type of the object to determine the ultimate directory name. The

localised root name is specified when the store is created. By default the localised

root name is defaultStore.

Thus the default directory layout is then:

<ObjectStore root Directory from configure>

 /JBossTS/ObjectStore/

 <ObjectStore Type1> FragmentedStore/

 <Default root> defaultStore/

 <StateManager> StateManager

 <LockManager> LockManager/

 <User Types>

 <Localised root 2> myStore/

 <StateManager> StateManager/

 <ObjectStore Type2> ActionStore/

 <Default root> defaultStore/

The shadowing store

This is the original version of the object store as provided in prior releases and is

implemented by the class ShadowingStore. It is simple but slow. It uses pairs of files to

represent objects (the shadow version and the committed version) and files are opened,

locked, operated upon, unlocked and closed on every interaction with the object store. Thus

significant portions of time can be spent in the system simply opening, closing and renaming

files, all of which are very expensive operations.

If overriding the object store implementation, the type of this object store is

“ShadowingStore”.

No file-level locking

Since transactional objects are concurrency controlled through LockManager, it is not

necessary to impose additional locking at the file level, as the basic ShadowingStore

implementation does. Therefore, the default object store implementation for JBossTS,

JBoss Transactions 4.2.3Transaction Core Programmers Guide

66 TX-PG-04/04/07

ShadowNoFileLockStore, relies upon user-level locking. This enables it to provide better

performance than the ShadowingStore implementation.

If overriding the object store implementation, the type of this object store is

“ShadowNoFileLockStore”.

The hashed store

The HashedStore has the same structure for object states as the shadowing stores but has an

alternate directory structure that is better suited to storing large numbers of objects of the

same type. Using this store objects are scattered amongst a set of directories by applying a

hashing function to the object's Uid. By default 255 sub-directories are used. However, this

can be overridden by setting the HASHED_DIRECTORIES environment variable accordingly.

If overriding the object store implementation, the type of this object store is “HashedStore”.

The JDBC store

The JDBCStore uses a JDBC database to save persistent object states; when used in

conjunction with the Transactional Objects for Java API nested transaction support is

available. In the current implementation, all object states are stored as Binary Large Objects

(BLOBs) within the same table. The limitation on object state size imposed by using BLOBs

is 64k; if an attempt is made to store an object state which exceeds this limit an error will be

output and the state will not be stored. The transaction will subsequently be forced to roll

back.

When using the JDBC object store, the application must provide an implementation of the

following interface, located in the com.arjuna.ats.arjuna.objectstore package:

public interface JDBCAccess

{

public Connection getConnection () throws SQLException;

public void putConnection (Connection conn) throws SQLException;

public void initialise (ObjectName objName);

}

The implementation of this class is responsible for providing the Connection which the

JDBC ObjectStore will use to save and restore object states:

• getConnection: returns the Connection to use. This method will be called whenever

a connection is required and the implementation should use whatever policy is

necessary for determining what connection to return. This method need not return

the same Connection instance more than once.

• putConnection: this method will be called to return one of the Connections acquired

from getConnection. Connections are returned if any errors occur when using them.

• initialise: this can be used to pass additional arbitrary information to the

implementation.

Object store implementations

TX-PG-4/4/07 67

The JDBC object store will initially request the number of Connections defined in the

com.arjuna.ats.arjuna.objectstore.jdbcPoolSizeInitial property and will use no more than

defined in the com.arjuna.ats.arjuna.objectstore.jdbcPoolSizeMaximum property.

The implementation of the JDBCAccess interface to use should be set in the

com.arjuna.ats.arjuna.objectstore.jdbcUserDbAccess property variable.

If overriding the object store implementation, the type of this object store is “JDBCStore”.

A JDBC object store can be used for managing the transaction log. In this case, the

transaction log implementation should be set to “JDBCActionStore” and the JDBCAccess

implementation must be provided via the

com.arjuna.ats.arjuna.objectstore.jdbcTxDbAccess property variable. In this

case, the default table name is JBossTSTxTable.

Note: It is possible to use the same JDBCAccess implementation for both the
user object store and also the transaction log.

The cached store

This object store used the hashed object store, but does not read or write states to the

persistent backing store immediately. It maintains the states in a volatile memory cache and

either flushes the cache periodically or when it is full. The failure semantics associated with

this object store are different to the normal persistent object stores, because a failure could

result in states in the cache being lost.

If overriding the object store implementation, the type of this object store is “CachedStore”.

The store can be configured with the following properties:

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.hash sets

the number of internal stores to hash the states over. The default value is 128.

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.size is

the maximum size the cache can reach before a flush is triggered. The default is

10240 bytes.

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.removedI

tems is the maximum number of removed items that the cache can contain before a

flush is triggered. By default, calls to remove a state that is in the cache will simply

remove the state from the cache, but leave a blank entry (rather than remove the

entry immediately, which would affect the performance of the cache). When

triggered, these entries are removed from the cache. The default value is twice the

size of the hash.

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.workItem

s is the maximum number of items that are allowed to build up in the cache before it

is flushed. The default value is 100.

JBoss Transactions 4.2.3Transaction Core Programmers Guide

68 TX-PG-04/04/07

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.scanPeri

od sets the time in milliseconds for periodically flushing the cache. The default is

120 seconds.

• com.arjuna.ats.internal.arjuna.objectstore.cacheStore.sync

determines whether flushes of the cache are sync-ed to disk. The default is OFF. To

enable, set to ON.

Class definitions

TX-PG-4/4/07 69

Appendix B

Class definitions
Introduction

This appendix contains an overview of those classes that the application programmer will

typically use. The aim of this appendix is to provide a quick reference guide to these classes

for use when writing applications in TxCore. For clarity only the public and protected

interfaces of the classes will be given.

Class library

LockManager

public class LockResult

{

public static final int GRANTED;

public static final int REFUSED;

public static final int RELEASED;

};

public class ConflictType

{

public static final int CONFLICT;

public static final int COMPATIBLE;

public static final int PRESENT;

};

public abstract class LockManager extends StateManager

{

public static final int defaultRetry;

public static final int defaultTimeout;

public static final int waitTotalTimeout;

public final synchronized boolean releaselock (Uid lockUid);

public final synchronized int setlock (Lock toSet);

public final synchronized int setlock (Lock toSet, int retry);

public final synchronized int setlock (Lock toSet, int retry, int

sleepTime);

public void print (PrintStream strm);

public String type ();

public boolean save_state (OutputObjectState os, int ObjectType);

public boolean restore_state (InputObjectState os, int ObjectType);

protected LockManager ();

protected LockManager (int ot);

protected LockManager (int ot, ObjectName attr);

protected LockManager (Uid storeUid);

protected LockManager (Uid storeUid, int ot);

protected LockManager (Uid storeUid, int ot, ObjectName attr);

JBoss Transactions 4.2.3Transaction Core Programmers Guide

70 TX-PG-04/04/07

protected void terminate ();

};

StateManager

public class ObjectStatus

{

public static final int PASSIVE;

public static final int PASSIVE_NEW;

public static final int ACTIVE;

public static final int ACTIVE_NEW;

};

public class ObjectType

{

public static final int RECOVERABLE;

public static final int ANDPERSISTENT;

public static final int NEITHER;

};

public abstract class StateManager

{

public boolean restore_state (InputObjectState os, int ot);

public boolean save_state (OutputObjectState os, int ot);

public String type ();

public synchronized boolean activate ();

public synchronized boolean activate (String rootName);

public synchronized boolean deactivate ();

public synchronized boolean deactivate (String rootName);

public synchronized boolean deactivate (String rootName, boolean commit);

public synchronized int status ();

public final Uid get_uid ();

public void destroy ();

public void print (PrintStream strm);

protected void terminate ();

protected StateManager ();

protected StateManager (int ot);

protected StateManager (int ot, ObjectName objName);

protected StateManager (Uid objUid);

protected StateManager (Uid objUid, int ot);

protected StateManager (Uid objUid, int ot, ObjectName objName);

protected synchronized final void modified ();

};

Input/OutputObjectState

class OutputObjectState extends OutputBuffer

{

public OutputObjectState (Uid newUid, String typeName);

public boolean notempty ();

public int size ();

public Uid stateUid ();

public String type ();

};

Class definitions

TX-PG-4/4/07 71

class InputObjectState extends ObjectState

{

public OutputObjectState (Uid newUid, String typeName, byte[] b);

public boolean notempty ();

public int size ();

public Uid stateUid ();

public String type ();

};

Input/OutputBuffer

public class OutputBuffer

{

public OutputBuffer ();

public final synchronized boolean valid ();

public synchronized byte[] buffer();

public synchronized int length ();

 /* pack operations for standard Java types */

public synchronized void packByte (byte b) throws IOException;

public synchronized void packBytes (byte[] b) throws IOException;

public synchronized void packBoolean (boolean b) throws IOException;

public synchronized void packChar (char c) throws IOException;

public synchronized void packShort (short s) throws IOException;

public synchronized void packInt (int i) throws IOException;

public synchronized void packLong (long l) throws IOException;

public synchronized void packFloat (float f) throws IOException;

public synchronized void packDouble (double d) throws IOException;

public synchronized void packString (String s) throws IOException;

};

public class InputBuffer

{

public InputBuffer ();

public final synchronized boolean valid ();

public synchronized byte[] buffer();

public synchronized int length ();

 /* unpack operations for standard Java types */

public synchronized byte unpackByte () throws IOException;

public synchronized byte[] unpackBytes () throws IOException;

public synchronized boolean unpackBoolean () throws IOException;

public synchronized char unpackChar () throws IOException;

public synchronized short unpackShort () throws IOException;

public synchronized int unpackInt () throws IOException;

public synchronized long unpackLong () throws IOException;

public synchronized float unpackFloat () throws IOException;

public synchronized double unpackDouble () throws IOException;

public synchronized String unpackString () throws IOException;

};

Uid

public class Uid implements Cloneable

{

public Uid ();

JBoss Transactions 4.2.3Transaction Core Programmers Guide

72 TX-PG-04/04/07

public Uid (Uid copyFrom);

public Uid (String uidString);

public Uid (String uidString, boolean errorsOk);

public synchronized void pack (OutputBuffer packInto) throws IOException;

public synchronized void unpack (InputBuffer unpackFrom) throws

IOException;

public void print (PrintStream strm);

public String toString ();

public Object clone () throws CloneNotSupportedException;

public synchronized void copy (Uid toCopy) throws UidException;

public boolean equals (Uid u);

public boolean notEquals (Uid u);

public boolean lessThan (Uid u);

public boolean greaterThan (Uid u);

public synchronized final boolean valid ();

public static synchronized Uid nullUid ();

};

AtomicAction

public class AtomicAction

{

public AtomicAction ();

public void begin () throws SystemException, SubtransactionsUnavailable,

 NoTransaction;

public void commit (boolean report_heuristics) throws SystemException,

 NoTransaction, HeuristicMixed,

HeuristicHazard,TransactionRolledBack;

public void rollback () throws SystemException, NoTransaction;

public Control control () throws SystemException, NoTransaction;

public Status get_status () throws SystemException;

 /* Allow action commit to be supressed */

public void rollbackOnly () throws SystemException, NoTransaction;

public void registerResource (Resource r) throws SystemException, Inactive;

public void registerSubtransactionAwareResource

(SubtransactionAwareResource sr)

 throws SystemException,

NotSubtransaction;

public void registerSynchronization (Synchronization s) throws

SystemException,

 Inactive;

};

Index

TX-PG-4/4/07 73

Index

ArjunaTS

advanced programming 9

class hierarchy 15

object models ... 23

Asynchronous commit 36

Asynchronous prepare 36

AtomicTransaction.................................... 14

Checked transactions 33

CheckedAction class 33

Concurrency control policy....................... 30

Configurable options................................. 61

Core Classes

Buffer ... 71

Lock ... 31

LockManager ... 29

ObjectState................................. 19, 70, 71

ObjectStore .. 20

StateManager... 21

Crash recovery

save_state and restore_state. 12, 22, 25, 41

Creating objects .. 31

Destroying objects 31

Identifying objects 10

InputBuffer.. 18

overview .. 18

InputObjectState 19

overview .. 19

Lifecycle of a persistent object 12

Lock store

further information 27

implementations..................................... 13

overview .. 27

selecting ... 28

LockManager 13, 28

Lock Conflicts 30

locking policy .. 30

releaselock ... 30

setlock.. 28, 30

Examples .. 30

Nested top-level transactions 36

Nested transactions 35

Object identity..................................... 10, 23

Object serialisation.................................... 41

Object state representation........................ 10

Object storage ... 10

Object store

further information 20

overview .. 20

selecting ... 21

Object store types

default implementation 65

HashedStore... 66

ShadowingStore..................................... 65

ShadowNoFileLockStore....................... 66

Object types .. 21

OutputBuffer ... 18

overview .. 18

OutputObjectState..................................... 19

overview .. 19

Persistent object lifecycle 12

Persistent state... 10

issues.. 41
Property variables

ASYNC_COMMIT 36

ASYNC_PREPARE 36

ENABLE_STATISTICS 34

HASHED_DIRECTORIES 66

JDBC2_USER_DB_ACCESS............... 67

LOCKSTORE_DIR 28

LOCKSTORE_TYPE.............................. 28

OBJECTSTORE_SYNC 20

OBJECTSTORE_TYPE.................. 21, 63

OTS_TX_REAPER_MODE 39

OTS_TX_REAPER_TIMEOUT 39

releaselock... 30

restore_state 22, 25, 41

Example ... 27

super.restore_state 12, 22, 25, 41

JBoss Transactions 4.2.3Transaction Core Programmers Guide

74 TX-PG-04/04/07

save_state 11, 22, 25, 41

example.. 11, 26

super.save_state 12, 22, 25, 41

saving and restoring object states 18

setlock ... 16, 28

State Management

deleting persistent objects...................... 38

StateManager 11, 21

destroy ... 23

direct use.. 42

restore_state .. 25

save_state... 25

terminate .. 32

type... 26

Subtransactions ... 35

Threading

optimisations.. 36

Transaction context propagation............... 54

Transactional Objects for Java.................... 9

class hierarchy ... 9

configuration.. 61

example.. 14, 37

Transactions

changing default timeout value.............. 39

independent top level transactions......... 36

nested top-level transactions.................. 36

nested transactions................................. 35

object constructors 40

timeouts ... 38

Use within save_state and restore_state 37

type .. 26

Example ... 27

Type specific concurrency control............ 13

Uid... 10

