
JBTA-PG-10/19/06 i

JBoss Transactions API 4.2.2

Programmers Guide
JBTA-PG-10/19/06

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions API 4.2.2

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2006 JBoss Inc.

Contents
About This Guide ... 5

What This Guide Contains............................... 5
Audience ... 5
Prerequisites.. 5
Organization.. 5
Documentation Conventions 6
Additional Documentation............................... 6
Contacting Us ... 7

An introduction to the JTA 9

The Java Transaction API 9

Transactions.. 11

The API ... 11
UserTransaction.. 11
TransactionManager....................................... 11
Suspending and resuming a transaction 12
The Transaction interface 13
Resource enlistment 14
Transaction synchronization 14
Transaction equality 15

The Resource Manager 16

The XAResource interface............................. 16
Extended XAResource control 17
Opening a Resource Manager........................ 17
Closing a Resource Manager 18
Threads of control .. 18
Transaction association 18
Externally controlled connections 19
Resource sharing .. 19
Local and global transactions 20
Transaction timeouts 20
Dynamic Registration..................................... 21

Transaction recovery 22

Failure recovery.. 22
Recovering non-JBossJTA XAConnections. 23

JDBC and transactions.................................... 25

Using the transactional JDBC driver............. 25
Managing transactions.................................... 25
Restrictions ... 25
Transactional drivers 26
Loading drivers ... 26
Connections... 27
Making the connection 27
JDBC 2.0 ... 27
XADataSources .. 27
Java Naming and Directory Interface

(JNDI).. 27
Dynamic class instantiation 28
Using the connection 29
Connection pooling .. 30
Reusing connections....................................... 30
Terminating the transaction 30
AutoCommit ... 31
Setting isolation levels 31

Examples.. 32

JDBC example .. 32
Failure recovery example............................... 34

Configuring JBossJTA 42

Configuration options..................................... 42

Using JBossJTA in application servers......... 43

JBOSS Application Server............................. 43
Configuration .. 43
The services .. 44
Ensuring Transactional Context is

Propagated to the Server 44

Index ... 45

ATA-PG-10/19/06 5

About This Guide

What This Guide Contains

This document describes how to use the Arjuna Technologies JTA and JDBC
implementations, referred to within this document as JBoss Transactions API 4.2.2
(JBossJTA).

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
Transactions API 4.2.2 installations.

Prerequisites

Knowledge of JTA and JDBC.

Organization

This guide contains the following chapters:

• Chapter 1, An introduction to the JTA: An introduction to JTA by describing the
concept of the high level interface to manage transactions.

• Chapter 2, Transactions: contains an overview of the interfaces defined by JTA
demarcate and manage transactions from the user view and from the application
server view.

• Chapter 3, The Resource Manager: gives an overview of the way to manage
Resource Managers compliant to the X/Open XA protocol.

• Chapter 4, Transaction Recovery: This chapter, gives an overview of the behavior
applied to recovery XA resource managers, and describes information needed by
JBossJTA to manage the recovery.

• Chapter 5, JDBC and transaction: This chapter, describes how JBossJTA
supports transactional applications that access databases using JDBC.

• Chapter 6, Example: illustrates how to build transactional applications with
JBossJTA- accessing a database with JDBC and managing recovery.

JBoss Transactions API 4.2.2Programmers Guide

6 JBTA-PG-10/19/06

• Chapter 7, Configuring JBossJTA: describes how to configure JBossJTA
features.

• Chapter 8, Using JBossJTA in the application servers: describes how to use and
configure JBossJTA when embedded in an application server, particularly JBoss.

Documentation Conventions

The following conventions are used in this guide:

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced
by the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The
vertical bar separates syntax items in a list of choices. For
example, any of the following three items can be entered in this
syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions API
4.2.2 documentation set:

• JBoss Transactions API 4.2.2 Release Notes: Provides late-breaking information
about JBoss Transactions API 4.2.2.

• JBoss Transactions API 4.2.2 Installation Guide: This guide provides instructions
for installing JBoss Transactions API 4.2.2.

• JBoss Transactions API 4.2.2 Administrators Guide: Provides guidance for
administering the system.

About This Guide

JBTA-PG-10/19/06 7

Contacting Us

Questions or comments about JBoss Transactions API 4.2.2should be directed to our support
team.

ATA-PG-10/19/06 9

Chapter 1

An introduction to the
JTA

The Java Transaction API

The interfaces specified by the many transaction standards are typically too low-level for
most application programmers. Therefore, Sun Microsystems has specified higher-level
interfaces to assist in the development of distributed transactional applications. Note, these
interfaces are still low-level, and require, for example, the programmer to be concerned with
state management and concurrency for transactional application. In addition, they are geared
more for applications which require XA resource integration capabilities, rather than the more
general resources which the other APIs allow.

With reference to [JTA99], distributed transaction services typically involve a number of
participants:

• application server: which provides the infrastructure required to support the
application run-time environment which includes transaction state management,
e.g., an EJB server.

• transaction manager: provides the services and management functions required to
support transaction demarcation, transactional resource management,
synchronisation and transaction context propagation.

• resource manager: (through a resource adapter1) provides the application with
access to resources. The resource manager participates in distributed transactions by
implementing a transaction resource interface used by the transaction manager to
communicate transaction association, transaction completion and recovery.

• a communication resource manager (CRM): supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests.

From the transaction manager’s perspective, the actual implementation of the transaction
services does not need to be exposed; only high-level interfaces need to be defined to allow
transaction demarcation, resource enlistment, synchronization and recovery process to be
driven from the users of the transaction services. The JTA is a high-level application interface

1 A Resource Adapter is used by an application server or client to connect to a Resource
Manager. JDBC drivers which are used to connect to relational databases are examples of
Resource Adapters.

10 JBTA-PG-10/19/06

that allows a transactional application to demarcate transaction boundaries, and contains also
contains a mapping of the X/Open XA protocol.

Note: the JTA support provided by JBossJTA is compliant with the 1.0.1
specification.

Transactions

JBTA-PG-10/19/06 11

Chapter 2

Transactions
The API

The Java Transaction API consists of three elements: a high-level application transaction
demarcation interface, a high-level transaction manager interface intended for application
server, and a standard Java mapping of the X/Open XA protocol intended for transactional
resource manager. All of the JTA classes and interfaces occur within the
javax.transaction package, and the corresponding JBossJTA implementations within the
com.arjuna.ats.jta package.

Caution: Each Xid that JBossTS creates must have a unique node identifier
encoded within it and JBossTS will only recover transactions and states
that match a specified node identifier. The node identifier to use should
be provided to JBossTS via the
com.arjuna.ats.arjuna.xa.nodeIdentifier property. You must
make sure this value is unique across your JBossTS instances. If you do
not provide a value, then JBossTS will fabricate one and report the value
via the logging infrastructure.

UserTransaction

The UserTransaction interface provides applications with the ability to control
transaction boundaries. It has methods for beginning, committing, and rolling back top-level
transactions: nested transactions are not supported, and begin throws the
NotSupportedException when the calling thread is already associated with a transaction.
UserTransaction automatically associates newly created transactions with the invoking
thread.

Note: In JBossJTA, UserTransactions can be obtained from the static
com.arjuna.ats.jta.UserTransaction.userTransaction() method.

In order to select the local JTA implementation it is necessary to perform the following steps:

1. make sure the property com.arjuna.ats.jta.jtaTMImplementation is set to
com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple.

2. make sure the property com.arjuna.ats.jta.jtaUTImplementation is set to
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple.

TransactionManager

The TransactionManager interface allows the application server to control transaction
boundaries on behalf of the application being managed.

12 JBTA-PG-10/19/06

Note: In JBossJTA, transaction manager implementations can be obtained from
the static
com.arjuna.ats.jta.TransactionManager.transactionManag
er method.

The Transaction Manager maintains the transaction context association with threads as part of
its internal data structure. A thread’s transaction context is either null or it refers to a specific
global transaction. Multiple threads may be associated with the same global transaction. As
noted above, nested transactions are not supported.

Each transaction context is encapsulated by a Transaction object, which can be used to
perform operations which are specific to the target transaction, regardless of the calling
thread’s transaction context.

The begin method of TransactionManager starts a new top-level transaction and
associates the transaction context with the calling thread. If the calling thread is already
associated with a transaction then it throws the NotSupportedException.

The getTransaction method returns the Transaction object that represents the
transaction context currently associated with the calling thread. This object can be used to
perform various operations on the target transaction, described later.

The commit method is used to complete the transaction currently associated with the calling
thread. After it returns, the calling thread is associated with no transaction. If commit is
called when the thread is not associated with any transaction context, the TM throws an
exception. In some implementation, the commit operation is restricted to the transaction
originator only. If the calling thread is not allowed to commit the transaction, the TM throws
an exception. JBossJTA does not currently impose any restriction on the ability of threads to
terminate transactions.

The rollback method is used to rollback the transaction associated with the current thread.
After the rollback method completes, the thread is associated with no transaction.

Note: In a multi-threaded environment it is possible that multiple threads are
active within the same transaction. If checked transaction semantics have
been disabled, or the transaction times out, then it is possible for a
transaction to be terminated by a thread other than the one that created it.
In this case, it is often important that this information is communicated to
the creator. JBossTS does this during commit or rollback by throwing
IllegalStateException.

Suspending and resuming a transaction

The JTA supports the concept of a thread temporarily suspending and resuming transactions
to enable it to perform non-transactional work. The suspend method is called to
temporarily suspend the current transaction that is associated with the calling thread, i.e., so
that the thread is no longer operating within its scope. If the thread is not associated with any
transaction, a null object reference is returned; otherwise, a valid Transaction object is

Transactions

JBTA-PG-10/19/06 13

returned. The Transaction object can later be passed to the resume method to reinstate
the transaction context.

The resume method associates the specified transaction context with the calling thread. If
the transaction specified is a valid transaction, the transaction context is associated with the
calling thread; otherwise, the thread is associated with no transaction.

Note: if resume is invoked when the calling thread is already associated with
another transaction, the Transaction Manager throws the
IllegalStateException exception.

Transaction tobj = TransactionManager.suspend();

..

TransactionManager.resume(tobj);

Note: some transaction manager implementations allow a suspended
transaction to be resumed by a different thread. This feature is not
required by JTA, but JBossJTA does support this.

When a transaction is suspended the application server must ensure that the resources in use
by the application are no longer registered with the suspended transaction. When a resource is
de-listed this triggers the Transaction Manager to inform the resource manager to disassociate
the transaction from the specified resource object. When the application’s transaction context
is resumed, the application server must ensure that the resources in use by the application are
again enlisted with the transaction. Enlisting a resource as a result of resuming a transaction
triggers the Transaction Manager to inform the resource manager to re-associate the resource
object with the resumed transaction.

The Transaction interface

The Transaction interface allows operations to be performed on the transaction associated
with the target object. Every top-level transaction is associated with one Transaction
object when the transaction is created. The Transaction object can be used to:

• enlist the transactional resources in use by the application.

• register for transaction synchronization call backs.

• commit or rollback the transaction.

• obtain the status of the transaction.

The commit and rollback methods allow the target object to be committed or rolled
back. The calling thread is not required to have the same transaction associated with the
thread. If the calling thread is not allowed to commit the transaction, the transaction manager
throws an exception. At present JBossJTA does not impose restrictions on threads terminating
transactions.

14 JBTA-PG-10/19/06

Resource enlistment

Transactional resources such as database connections are typically managed by the
application server in conjunction with some resource adapter and optionally with connection
pooling optimization. In order for an external transaction manager to co-ordinate
transactional work performed by the resource managers, the application server must enlist
and de-list the resources used in the transaction. These resources (participants) are enlisted
with the transaction so that they can be informed when the transaction terminates, e.g., are
driven through the two-phase commit protocol.

As stated previously, the JTA is much more closely integrated with the XA concept of
resources than the arbitrary objects. For each resource in-use by the application, the
application server invokes the enlistResource method with an XAResource object
which identifies the resource in use. See Chapter 4 for details on how the implementation of
the XAResource can affect recovery in the event of a failure.

The enlistment request results in the transaction manager informing the resource manager to
start associating the transaction with the work performed through the corresponding resource.
The transaction manager is responsible for passing the appropriate flag in its
XAResource.start method call to the resource manager.

The delistResource method is used to disassociate the specified resource from the
transaction context in the target object. The application server invokes the method with the
two parameters: the XAResource object that represents the resource, and a flag to indicate
whether the operation is due to the transaction being suspended (TMSUSPEND), a portion of
the work has failed (TMFAIL), or a normal resource release by the application (TMSUCCESS).

The de-list request results in the transaction manager informing the resource manager to end
the association of the transaction with the target XAResource. The flag value allows the
application server to indicate whether it intends to come back to the same resource whereby
the resource states must be kept intact. The transaction manager passes the appropriate flag
value in its XAResource.end method call to the underlying resource manager.

Transaction synchronization

Transaction synchronization allows the application server to be notified before and after the
transaction completes. For each transaction started, the application server may optionally
register a Synchronization call back object to be invoked by the transaction manager:

• The beforeCompletion method is called prior to the start of the two-phase
transaction complete process. This call is executed in the same transaction context
of the caller who initiates the TransactionManager.commit or the call is
executed with no transaction context if Transaction.commit is used.

• The afterCompletion method is called after the transaction has completed. The
status of the transaction is supplied in the parameter. This method is executed
without a transaction context.

Transactions

JBTA-PG-10/19/06 15

Transaction equality

The transaction manager implements the Transaction object’s equals method to allow
comparison between the target object and another Transaction object. The equals
method should return true if the target object and the parameter object both refer to the same
global transaction.

Transaction txObj = TransactionManager.getTransaction();

Transaction someOtherTxObj = ..

..

boolean isSame = txObj.equals(someOtherTxObj);

16 JBTA-PG-10/19/06

Chapter 3

The Resource Manager
The XAResource interface

Whereas some transaction specifications and systems define a generic resource which can be
used to register arbitrary resources with a transaction, the JTA is much more XA specific.
The javax.transaction.xa.XAResource interface is a Java mapping of the XA
interface. The XAResource interface defines the contract between a Resource Manager and
a Transaction Manager in a distributed transaction processing environment. A resource
adapter for a resource manager implements the XAResource interface to support association
of a top-level transaction to a resource such as a relational database.

The XAResource interface can be supported by any transactional resource adapter that is
intended to be used in an environment where transactions are controlled by an external
transaction manager, e.g., a database management system. An application may access data
through multiple database connections. Each database connection is associated with an
XAResource object that serves as a proxy object to the underlying resource manager
instance. The transaction manager obtains an XAResource for each resource manager
participating in a top-level transaction. It uses the start method to associate the transaction
with the resource, and it uses the end method to disassociate the transaction from the
resource.

The resource manager is responsible for associating the transaction with all work performed
on its data between the start and end invocations. At transaction commit time, these
transactional resource managers are informed by the transaction manager to prepare, commit,
or rollback the transaction according to the two-phase commit protocol.

In order to be better integrated with Java, the XAResource differs from the standard XA
interface in the following ways:

• The resource manager initialization is done implicitly by the resource adapter when
the resource (connection) is acquired. There is no xa_open equivalent.

• Rmid is not passed as an argument. Each Rmid is represented by a separate
XAResource object.

• Asynchronous operations are not supported because Java supports multi-threaded
processing and most databases do not support asynchronous operations.

• Error return values that are caused by the transaction manager’s improper handling
of the XAResource object are mapped to Java exceptions via the XAException
class.

• The DTP concept of “Thread of Control” maps to all Java threads that are given
access to the XAResource and Connection objects. For example, it is legal for

The Resource Manager

JBTA-PG-10/19/06 17

two different threads to perform the start and end operations on the same
XAResource object.

Extended XAResource control

By default, whenever an XAResource object is registered with a JTA compliant transaction
service, you have no control over the order in which it will be invoked during the two-phase
commit protocol, with respect to other XAResource objects. In JBossTS, however, there is
support for controlling the order via the two interfaces
com.arjuna.ats.jta.resources.StartXAResource and
com.arjuna.ats.jta.resources.EndXAResource. By inheriting your XAResource
instance from either of these interfaces, you control whether an instance of your class will be
invoked first or last, respectively.

Note: Only one instance of each interface type may be registered with a specific
transaction.

In the TxCore manual we discussed the Last Resource Commit optimization (LRCO),
whereby a single resource that is only one-phase aware (does not support prepare), can be
enlisted with a transaction that is manipulating two-phase aware participants. This
optimization is also supported within the JTA aspect of JBossTS.

In order to use the LRCO, your XAResource implementation must extend the
com.arjuna.ats.jta.resources.LastResourceCommitOptimisation marker
interface (it provides no methods). When enlisting the resource via
Transaction.enlistResource, JBossTS will ensure that only a single instance of this
type of participant is used within each transaction. Your resource will be driven last in the
commit protocol: no invocation of prepare will occur.

Note: An attempt to enlist more than one instance of a
LastResourceCommitOptimisation class will fail and false will be returned
from Transaction.enlistResource.

In order to utilize the LRCO in a distributed environment, it is necessary to disable
interposition support. It is still possible to use implicit context propagation.

Opening a Resource Manager

The X/Open XA interface requires that the transaction manager initialize a resource manager
(xa_open) prior to any other xa_ calls. JTA requires initialization of a resource manager to
be embedded within the resource adapter that represents the resource manager. The
transaction manager does not need to know how to initialize a resource manager; it is only
responsible for informing the resource manager about when to start and end work associated
with a transaction and when to complete the transaction. The resource adapter is responsible
for opening (initializing) the resource manager when the connection to the resource manager
is established.

18 JBTA-PG-10/19/06

Closing a Resource Manager

A resource manager is closed by the resource adapter as a result of destroying the
transactional resource. A transaction resource at the resource adapter level is comprised of
two separate objects:

• An XAResource object that allows the transaction manager to start and end the
transaction association with the resource in use and to coordinate transaction
completion process.

• A connection object that allows the application to perform operations on the
underlying resource (for example, JDBC operations on an RDBMS).

Once opened, the resource manager is kept open until the resource is released (closed)
explicitly. When the application invokes the connection’s close method, the resource
adapter invalidates the connection object reference that was held by the application and
notifies the application server about the close. The transaction manager should invoke the
XAResource.end method to disassociate the transaction from that connection.

The close notification allows the application server to perform any necessary cleanup work
and to mark the physical XA connection as free for reuse, if connection pooling is in place.

Threads of control

The X/Open XA interface specifies that the transaction association related xa calls must be
invoked from the same thread context. This thread-of-control requirement is not applicable to
the object-oriented component-based application run-time environment, in which application
threads are dispatched dynamically at method invocation time. Different threads may be
using the same connection resource to access the resource manager if the connection spans
multiple method invocation. Depending on the implementation of the application server,
different threads may be involved with the same XAResource object. The resource context
and the transaction context may be operated independent of thread context. This means that it
is possible for different threads to be invoking the start and end methods.

If the application server allows multiple threads to use a single XAResource object and the
associated connection to the resource manager, it is the responsibility of the application
server to ensure that there is only one transaction context associated with the resource at any
point of time. Thus the XAResource interface requires that the resource managers be able to
support the two-phase commit protocol from any thread context.

Transaction association

Transactions are associated with a transactional resource via the start method, and
disassociated from the resource via the end method. The resource adapter is responsible for
internally maintaining an association between the resource connection object and the
XAResource object. At any given time, a connection is associated with a single transaction,
or it is not associated with any transaction at all. Because JTA does not support nested

The Resource Manager

JBTA-PG-10/19/06 19

transactions it is an error for the start method to be invoked on a connection that is
currently associated with a different transaction.

Interleaving multiple transaction contexts using the same resource may be done by the
transaction manager as long as start and end are invoked properly for each transaction
context switch. Each time the resource is used with a different transaction, the method end
must be invoked for the previous transaction that was associated with the resource, and
start must be invoked for the current transaction context.

Externally controlled connections

For transactional application whose transaction states are managed by an application server,
its resources must also be managed by the application server so that transaction association is
performed properly. If an application is associated with a transaction, it is an error for the
application to perform transactional work through the connection without having the
connection’s resource object already associated with the global transaction. The application
server must ensure that the XAResource object in use is associated with the transaction.
This is done by invoking the Transaction.enlistResource method.

If a server side transactional application retains its database connection across multiple client
requests, the application server must ensure that before dispatching a client request to the
application thread, the resource is enlisted with the application’s current transaction context.
This implies that the application server manages the connection resource usage status across
multiple method invocations.

Resource sharing

When the same transactional resource is used to interleave multiple transactions, it is the
responsibility of the application server to ensure that only one transaction is enlisted with the
resource at any given time. To initiate the transaction commit process, the transaction
manager is allowed to use any of the resource objects connected to the same resource
manager instance. The resource object used for the two-phase commit protocol does not need
to have been involved with the transaction being completed.

The resource adapter must be able to handle multiple threads invoking the XAResource
methods concurrently for transaction commit processing. For example, with reference to the
code below, suppose we have a transactional resource r1. Global transaction xid1 was
started and ended with r1. Then a different global transaction xid2 is associated with r1. In
the meanwhile, the transaction manager may start the two phase commit process for xid1
using r1 or any other transactional resource connected to the same resource manager. The
resource adapter needs to allow the commit process to be executed while the resource is
currently associated with a different global transaction.

XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection

..

xares.end(xid1); // disassociate xid1 to the connection

20 JBTA-PG-10/19/06

..

xares.start(xid2); // associate xid2 to the connection

..

// While the connection is associated with xid2,

// the TM starts the commit process for xid1

status = xares.prepare(xid1);

..

xares.commit(xid1, false);

Local and global transactions

The resource adapter must support the usage of both local and global transactions within the
same transactional connection. Local transactions are transactions that are started and
coordinated by the resource manager internally. The XAResource interface is not used for
local transactions. When using the same connection to perform both local and global
transactions, the following rules apply:

• The local transaction must be committed (or rolled back) before starting a global
transaction in the connection.

• The global transaction must be disassociated from the connection before any local
transaction is started.

Transaction timeouts

Timeout values can be associated with transactions in order to control their lifetime. If a
transaction has not terminated (committed or rolled back) before the timeout value elapses,
the transaction system will automatically roll it back. The XAResource interface supports a
operation, which allows the timeout associated with the current transaction to be propagated
to the resource manager and if supported, will override any default timeout associated with
the resource manager. This can be useful when long running transactions may have lifetimes
that would exceed the default and in which case, if the timeout were not altered, the resource
manager would rollback before the transaction terminated and subsequently cause the
transaction to roll back as well.

If no timeout value is explicitly set for a transaction, or a value of 0 is specified, then an
implementation specific default value may be used. In the case of JBossTS, how this default
value is set depends upon which JTA implementation you are using.

• Local JTA: use the
com.arjuna.ats.arjuna.coordinator.defaultTimeout property value
and give a timeout in seconds. The default value is 60 seconds.

The Resource Manager

JBTA-PG-10/19/06 21

• JTS: use the com.arjuna.ats.jts.defaultTimeout property value and give a
timeout in seconds. The default value is 0, i.e., transactions do not timeout.

Unfortunately there are situations where imposing the same timeout as the transaction on a
resource manager may not be appropriate. For example, if the system administrator wishes to
have control over the lifetimes on resource managers and does not want to (or cannot) allow
that control to be passed to some external entity. At present JBossTS supports an all-or-
nothing approach to whether or not setTransactionTimeout is called on XAResource
instances.

If the com.arjuna.ats.jta.xaTransactionTimeoutEnabled property is set to true
(the default) then it will be called on all instances. Alternatively, the
setXATransactionTimeoutEnabled method of
com.arjuna.ats.jta.common.Configuration can be used.

Dynamic Registration

Dynamic registration is not supported in XAResource because of the following reasons:

• In the Java component-based application server environment, connections to the
resource manager are acquired dynamically when the application explicitly requests
a connection. These resources are enlisted with the transaction manager on a needed
basis.

• If a resource manager requires a way to dynamically register its work to the global
transaction, the implementation can be done at the resource adapter level via a
private interface between the resource adapter and the underlying resource manager.

22 JBTA-PG-10/19/06

Chapter 4

Transaction recovery
Failure recovery

During recovery, the Transaction Manager needs to be able to communicate to all resource
managers that are in use by the applications in the system. For each resource manager, the
Transaction Manager uses the XAResource.recover method to retrieve the list of
transactions that are currently in a prepared or heuristically completed state. Typically, the
system administrator configures all transactional resource factories that are used by the
applications deployed on the system. An example of such a resource factory is the JDBC
XADataSource object, which is a factory for the JDBC XAConnection objects.

Because XAResource objects are not persistent across system failures, the Transaction
Manager needs to have some way to acquire the XAResource objects that represent the
resource managers which might have participated in the transactions prior to the system
failure. For example, a Transaction Manager might, through the use of JNDI lookup
mechanism, acquire a connection from each of the transactional resource factories, and then
obtain the corresponding XAResource object for each connection. The Transaction Manager
then invokes the XAResource.recover method to ask each resource manager to return the
transactions that are currently in a prepared or heuristically completed state.

Note: When running XA recovery it is necessary to tell JBossTS which types of
Xid it can recover. Each Xid that JBossTS creates has a unique node
identifier encoded within it and JBossTS will only recover transactions
and states that match a specified node identifier. The node identifier to
use should be provided to JBossTS via a property that starts with the
name com.arjuna.ats.jta.xaRecoveryNode; multiple values may
be provided. A value of ‘*’ will force JBossTS to recover (and possibly
rollback) all transactions irrespective of their node identifier and should be
used with caution.

If using the JBossJTA JDBC 2.0 driver, then JBossJTA will take care of all XAResource
crash recovery automatically. Otherwise one of the following recovery mechanisms will be
used:

• If the XAResource is serializable, then the serialized form will be saved during
transaction commitment, and used during recovery. It is assumed that the recreated
XAResource is valid and can be used to drive recovery on the associated database.

• The com.arjuna.ats.jta.recovery.XAResourceRecovery,
com.arjuna.ats.jta.recovery.XARecoveryResourceManager and
com.arjuna.ats.jta.recovery.XARecoveryResource interfaces are used.
These are documented in the JDBC chapters on failure recovery.

Transaction recovery

JBTA-PG-10/19/06 23

Note: In JBossTS 3.3 the interface XAConnectionRecovery was deprecated in
favor of XAResourceRecovery. Users are encouraged to move to his new
interface.

Recovering non-JBossJTA XAConnections

When recovering from failures, JBossJTA requires the ability to reconnect to databases that
were in use prior to the failures in order to resolve any outstanding transactions. Most
connection information will be saved by the transaction service during its normal execution,
and can be used during recovery to recreate the connection. However, it is possible that not
all such information will have been saved prior to a failure (for example, a failure occurs
before such information can be saved, but after the database connection is used). In order to
recreate those connections it is necessary to provide implementations of the following
JBossJTA interface com.arjuna.ats.jta.recovery.XAResourceRecovery, one for
each database that may be used by an application.

Note: if using the transactional JDBC 2.0 driver provided with JBossJTA, then
no additional work is necessary in order to ensure that recovery occurs.

To inform the recovery system about each of the XAResourceRecovery instances, it is
necessary to specify their class names through property variables. Any property variable
found in the properties file, or registered at runtime, which starts with the name
com.arjuna.ats.jta.recovery.XAResourceRecovery will be assumed to represent one of these
instances, and its value should be the class name. For example:

com.arjuna.ats.jta.recovery.XAResourceRecoveryOracle=com.foo.barRecovery

Additional information that will be passed to the instance when it is created may be specified
after a semicolon:

com.arjuna.ats.jta.recovery.XAResourceRecoveryOracle=com.foo.barRecovery;my
Data=hello

Any errors will be reported during recovery.

public interface XAResourceRecovery
{
 public XAResource getXAResource () throws SQLException;

 public boolean initialise (String p);

 public boolean hasMoreResources ();
};

Each method should return the following information:

• initialise: once the instance has been created, any additional information which
occurred on the property value (anything found after the first semi-colon) will be
passed to the object. The object can then use this information in an implementation
specific manner to initialise itself, for example.

24 JBTA-PG-10/19/06

• hasMoreResources: each XAResourceRecovery implementation may provide
multiple XAResource instances. Before any call to getXAResource is made,
hasMoreResources is called to determine whether there are any further
connections to be obtained. If this returns false, getXAResource will not be called
and the instance will not be used further.

• getXAResource: returns an instance of the XAResource object. How this is created
(and how the parameters to its constructors are obtained) is up to the
XAResourceRecovery implementation. The parameters to the constructors of this
class should be similar to those used when creating the initial driver or data source,
and should obviously be sufficient to create new XAResources that can be used to
drive recovery.

JDBC and transactions

JBTA-PG-10/19/06 25

Chapter 5

JDBC and transactions
Using the transactional JDBC driver

JBossJTA supports the construction of both local and distributed transactional applications
which access databases using the JDBC 2.0 APIs. JDBC 2.0 supports two-phase commit of
transactions, and is similar to the XA X/Open standard. The JDBC 2.0 support is found in the
com.arjuna.ats.jdbc package.

The JDBC 2.0 support has been tested with the following drivers and databases:

• Oracle 8.1.6/8.1.7, 9i and 10g thin driver.

• MS SQL Server 2000 native driver.

In the past we have qualified against:

• Merant’s Sequelink 5.1 with Oracle 8.1.6

• Cloudscape 3.6 with Cloudscape’s own database.

However, these drivers and databases are no longer part of our supported platforms. They
may continue to work with JBossTS, but we cannot make that guarantee.

Managing transactions

JBossJTA must be able to associate work performed on a JDBC connection with a specific
transaction. Therefore, implicit transaction propagation and/or indirect transaction
management must be used by applications, i.e., for each JDBC connection it must be possible
for JBossJTA to determine the invoking thread’s current transaction context.

Restrictions

The following restrictions are imposed by limitations in the JDBC specifications and by
JBossJTA to ensure that transactional interactions with JDBC databases can be correctly
managed:

Nested transactions are not supported by JDBC 2.0. If an attempt is made to use a JDBC
connection within a subtransaction, JBossJTA will throw a suitable exception and no work
will be allowed on that connection. However, if you wish to have nested transactions, then
you can set the com.arjuna.ats.jta.supportSubtransactions property to YES.

26 JBTA-PG-10/19/06

Transactional drivers

The JBossJTA approach to incorporating JDBC connections within transactions is to provide
transactional JDBC drivers through which all interactions occur. These drivers intercept all
invocations and ensure that they are registered with, and driven by, appropriate transactions.
There is a single type of transactional driver through which any JDBC driver can be driven;
obviously if the database is not transactional then ACID properties cannot be guaranteed.
This driver is com.arjuna.ats.jdbc.TransactionalDriver, which implements the
java.sql.Driver interface.

Loading drivers

The driver may be directly instantiated and used within an application. For example:

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();

They can be registered with the JDBC driver manager (java.sql.DriverManager) by
adding them to the Java system properties. The jdbc.drivers property contains a list of
driver class names, separated by colons, that are loaded by the JDBC driver manager when it
is initialized.

/*
 * Register the driver via the system properties variable
 * "jdbc.drivers"
 */

Properties p = System.getProperties();

switch (dbType)
{
case MYSQL:
 p.put("jdbc.drivers", "org.gjt.mm.mysql.Driver");
 break;
case CLOUDSCAPE:
 p.put("jdbc.drivers", "COM.cloudscape.core.JDBCDriver");
 break;
}

System.setProperties(p);

Alternatively, the Class.forName() method may be used to load the driver or drivers:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Calling Class.forName() will automatically register the driver with the JDBC driver
manager. It is also possible to explicitly create an instance of the JDBC driver:

sun.jdbc.odbc.JdbcOdbcDriver drv = new sun.jdbc.odbc.JdbcOdbcDriver();

DriverManager.registerDriver(drv);

When you have loaded a driver, it is available for making a connection with a DBMS.

JDBC and transactions

JBTA-PG-10/19/06 27

Connections

In this section we shall discuss the notion of transactional JDBC connections, how they are
managed within JBossJTA and the implications on using them within an application.

Making the connection

Because JDBC connectivity in JBossJTA works by simply providing a new JDBC driver,
application code can remain relatively the same to that when not using transactions.
Typically, the application programmer need only start and terminate transactions.

JDBC 2.0

Before describing the JDBC 2.0 support it is necessary to mention that the following
properties can be set and passed to the JBossJTA driver (they are all located in the
com.arjuna.ats.jdbc.TransactionalDriver class):

• userName: the user name to use when attempting to connect to the database.

• password: the password to use when attempting to connect to the database.

• createDb: if set to true, the driver will attempt to create the database when it
connects. This may not be supported by all JDBC 2.0 implementations.

• dynamicClass: this specifies a class to instantiate to connect to the database, rather
than using JNDI.

XADataSources

JDBC 2.0 connections are created from appropriate DataSources. Those connections which
must participate within distributed transactions are obtained from XADataSources.
Therefore, when using a JDBC 2.0 driver, JBossJTA will use the appropriate DataSource
whenever a connection to the database is made. It will then obtain XAResources and register
them with the transaction via the JTA interfaces. It is these XAResources which the
transaction service will use when the transaction terminates in order to drive the database to
either commit or rollback the changes made via the JDBC connection.

There are two ways in which the JBossJTA JDBC 2.0 support can obtain XADataSources.
These will be explained in the following sections. Note, for simplicity we shall assume that
the JDBC 2.0 driver is instantiated directly by the application.

Java Naming and Directory Interface (JNDI)

In order to allow a JDBC driver to use arbitrary DataSources without having to know
specific details about their implementations, DataSources are typically obtained from
JNDI. A specific (XA)DataSource can be created and registered with an appropriate JNDI
implementation, and the application (or JDBC driver) can later bind to and use it. Since JNDI
only allows the application to see the (XA)DataSource as an instance of the interface (e.g.,
javax.sql.XADataSource) rather than as an instance of the implementation class (e.g.,

28 JBTA-PG-10/19/06

com.mydb.myXADataSource), the application is not tied at build time to only use a specific
(XA)DataSource implementation.

To get the TransactionalDriver class to use a JNDI registered XADataSource it is first
necessary to create the XADataSource instance and store it in an appropriate JNDI
implementation. Details of how to do this can be found in the JDBC 2.0 tutorial available at
JavaSoft. An example is show below:

XADataSource ds = MyXADataSource();
Hashtable env = new Hashtable();
String initialCtx =
PropertyManager.getProperty("Context.INITIAL_CONTEXT_FACTORY");

env.put(Context.INITIAL_CONTEXT_FACTORY, initialCtx);

initialContext ctx = new InitialContext(env);

ctx.bind("jdbc/foo", ds);

Where the Context.INITIAL_CONTEXT_FACTORY property is the JNDI way of specifying
the type of JNDI implementation to use.

Then the application must pass an appropriate connection URL to the JDBC 2.0 driver:

Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");
dbProps.setProperty(TransactionalDriver.password, "password");

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();
Connection connection = arjunaJDBC2Driver.connect("jdbc:arjuna:jdbc/foo",
dbProps);

The JNDI URL must be pre-pended with jdbc:arjuna: in order for the ArjunaJDBC2Driver
to recognise that the DataSource must participate within transactions and be driven
accordingly.

Dynamic class instantiation

Many JDBC 2.0 implementations provide proprietary implementations of XADataSources
that provide non-standard extensions to the specification. In order to allow the application to
remain isolated from the actual JDBC 2.0 implementation it is using and yet continue to be
able to use these extensions, JBossJTA hides the details of these proprietary implementations
using dynamic class instantiation. In addition, the use of JNDI is not required when using this
mechanism because the actual implementation of the XADataSource will be directly
instantiated, albeit in a manner which will not tie an application or driver to a specific
implementation. JBossJTA therefore has several classes which are for specific JDBC 2.0
implementations, and these can be selected at runtime by the application setting the
dynamicClass property appropriately:

JDBC and transactions

JBTA-PG-10/19/06 29

Database Type Property Name
Cloudscape 3.6 com.arjuna.ats.internal.jdbc.drivers.clo

udscape_3_6
Sequelink 5.1 com.arjuna.ats.internal.jdbc.drivers.seq

uelink_5_1
Oracle 8.1.6 com.arjuna.ats.internal.jdbc.drivers.ora

cle_8_1_6

Table 1: Dynamic Class property values for specific databases.

Note: As mentioned earlier, JBossTS no longer supports Cloudscape or
Sequelink as part of the qualified drivers. Furthermore, we recommend
using JNDI to obtain JDBC classes rather than the direct method
described here.

The application code must specify which dynamic class the TransactionalDriver should
instantiate when setting up the connection:

Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");
dbProps.setProperty(TransactionalDriver.password, "password");
dbProps.setProperty(TransactionalDriver.dynamicClass,

"com.arjuna.ats.internal.jdbc.drivers.sequelink_5_0");

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();
Connection connection =
arjunaJDBC2Driver.connect("jdbc:arjuna:sequelink://host:port;databaseName=f
oo", dbProperties);

Using the connection

Once the connection has been established (for example, using the
java.sql.DriverManager.getConnection method), all operations on the connection
will be monitored by JBossJTA. Note, it is not necessary to use the transactional connection
within transactions. If a transaction is not present when the connection is used, then
operations will be performed directly on the database.

Note: JDBC does not support subtransactions.

Transaction timeouts can be used to automatically terminate transactions should the
connection not be terminated within an appropriate period.

JBossJTA connections can be used within multiple different transactions simultaneously, i.e.,
different threads, with different notions of the current transaction, may use the same JDBC
connection. JBossJTA does connection pooling for each transaction within the JDBC
connection. So, although multiple threads may use the same instance of the JDBC
connection, internally this may be using a different connection instance per transaction. With
the exception of close, all operations performed on the connection at the application level will
only be performed on this transaction-specific connection.

30 JBTA-PG-10/19/06

JBossJTA will automatically register the JDBC driver connection with the transaction via an
appropriate resource . When the transaction terminates, this resource will be responsible for
either committing or rolling back any changes made to the underlying database via
appropriate calls on the JDBC driver.

Once created, the driver and any connection can be used in the same way as any other JDBC
driver or connection.

Statement stmt = conn.createStatement();

try
{
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
}
catch (SQLException e)
{
 // table already exists
}

stmt.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

ResultSet res1 = stmt.executeQuery("SELECT * FROM test_table");

Connection pooling

For each user name and password, JBossJTA will maintain a single instance of each
connection for as long as that connection is in use. Subsequent requests for the same
connection will get a reference to the originally created connection, rather than a new
instance. Attempts to close the connection are allowed, but the connection will only actually
be closed when all users (including transactions) have either finished with the connection, or
issued close calls.

Reusing connections

Some JDBC drivers allow the reuse of a connection for multiple different transactions once a
given transaction has completed. Unfortunately this is not a common feature, and other
drivers require a new connection to be obtained for each new transaction. By default, the
JBossJTA transactional driver will always obtain a new connection for each new transaction.
However, if an existing connection is available and is currently unused, it is possible to make
JBossJTA reuse this connection. In order to do this, the reuseconnection=true option
must be specified on the JDBC URL. For example:

jdbc:arjuna:sequelink://host:port;databaseName=foo;reuseconnection=true

Terminating the transaction

Whenever a transaction terminates (either explicitly by the application programmer, or
implicitly when any associated transaction timeout expires) that has a JDBC connection
registered with it, JBossJTA will drive the database (via the JDBC driver) to either commit or
roll back any changes made to it. This happens transparently to the application.

JDBC and transactions

JBTA-PG-10/19/06 31

AutoCommit

If AutoCommit of the java.sql.Connection is set to true for JDBC 1.0 then the
execution of every SQL statement is a separate top-level transaction, and grouping multiple
statements to be managed within a single OTS transaction is not possible. Therefore,
JBossJTA will disable AutoCommit on JDBC 1.0 connections before they can be used. If
auto commit is subsequently set to true by the application, JBossJTA will raise the
java.sql.SQLException.

Setting isolation levels

When using the JBossJTA JDBC driver, it may be necessary to set the underlying transaction
isolation level on the XA connection. By default, this is set to
TRANSACTION_SERIALIZABLE, but you may want to set this to something more appropriate
for your application. In order to do this, set the com.arjuna.ats.jdbc.isolationLevel
property to the appropriate isolation level in string form, e.g.,
TRANSACTION_READ_COMMITTED, or TRANSACTION_REPEATABLE_READ.

Note: At present this property applies to all XA connections created in the JVM.

32 JBTA-PG-10/19/06

Chapter 6

Examples
JDBC example

The following code illustrates many of the points described above (note that for simplicity,
much error checking code has been remove). This example assumes that you are using the
transactional JDBC driver provided with JBossTS. For details about how to configure and use
this driver see the previous Chapter.

public class JDBCTest
{
public static void main (String[] args)
{
 /*
 */

 Connection conn = null;
 Connection conn2 = null;
 Statement stmt = null; // non-tx statement
 Statement stmtx = null; // will be a tx-statement
 Properties dbProperties = new Properties();

 try
 {
 System.out.println("\nCreating connection to database: "+url);

 /*
 * Create conn and conn2 so that they are bound to the JBossTS
 * transactional JDBC driver. The details of how to do this will
 * depend on your environment, the database you wish to use and
 * whether or not you want to use the Direct or JNDI approach. See
 * the appropriate chapter in the JTA Programmers Guide.
 */

 stmt = conn.createStatement(); // non-tx statement

 try
 {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e)
 {
 // assume not in database.
 }

 try
 {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b
INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b
INTEGER)");
 }
 catch (Exception e)

Examples

JBTA-PG-10/19/06 33

 {
 }

 try
 {
 System.out.println("Starting top-level transaction.");

com.arjuna.ats.jta.UserTransaction.transactionManager().begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES
(1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES
(3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.print("\nNow attempting to rollback changes.");

com.arjuna.ats.jta.UserTransaction.transactionManager().rollback();

com.arjuna.ats.jta.UserTransaction.transactionManager().begin();

 stmtx = conn.createStatement();
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));

34 JBTA-PG-10/19/06

 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

com.arjuna.ats.jta.UserTransaction.transactionManager().commit(true);
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 System.exit(0);
 }
 }
 catch (Exception sysEx)
 {
 sysEx.printStackTrace();
 System.exit(0);
 }
}

Failure recovery example

This class implements the XAResourceRecovery interface for XAResources. The parameter
supplied in setParameters can contain arbitrary information necessary to initialize the class
once created. In this instance it contains the name of the property file in which the db
connection information is specified, as well as the number of connections that this file
contains information on (separated by ;).

Caution: This is only an *example* of the sorts of things an XAResourceRecovery
implementer could do. This implementation uses a property file which is
assumed to contain sufficient information to recreate connections used
during the normal run of an application so that we can perform recovery
on them. It is not recommended that information such as user name and
password appear in such a raw text format as it opens up a potential
security hole.

 The db parameters specified in the property file are assumed to be in the format:

• DB_x_DatabaseURL=

• DB_x_DatabaseUser=

• DB_x_DatabasePassword=

• DB_x_DatabaseDynamicClass=

Examples

JBTA-PG-10/19/06 35

where x is the number of the connection information.

public class BasicXARecovery implements XAResourceRecovery

{

 /*

 * Some XAResourceRecovery implementations will do their startup work

 * here, and then do little or nothing in setDetails. Since this one
needs

 * to know dynamic class name, the constructor does nothing.

 */

 public BasicXARecovery () throws SQLException

 {

 numberOfConnections = 1;

 connectionIndex = 0;

 props = null;

 }

 /**

 * The recovery module will have chopped off this class name already.

 * The parameter should specify a property file from which the url,

 * user name, password, etc. can be read.

 *

 */

 public boolean initialise (String parameter) throws SQLException

 {

 int breakPosition = parameter.indexOf(BREAKCHARACTER);

36 JBTA-PG-10/19/06

 String fileName = parameter;

 if (breakPosition != -1)

 {

 fileName = parameter.substring(0, breakPosition -1);

 try

 {

 numberOfConnections =
Integer.parseInt(parameter.substring(breakPosition +1));

 }

 catch (NumberFormatException e)

 {

 return false;

 }

 }

 jdbcPropertyManager.propertyManager.addPropertiesFile(fileName);

 try

 {

 jdbcPropertyManager.propertyManager.loadProperties(true);

 props = jdbcPropertyManager.propertyManager.getProperties();

 }

 catch (Exception e)

 {

 return false;

Examples

JBTA-PG-10/19/06 37

 }

 return true;

 }

 public synchronized XAResources getXAResource () throws SQLException

 {

 JDBC2RecoveryConnection conn = null;

 if (hasMoreConnections())

 {

 connectionIndex++;

 conn = getStandardConnection();

 if (conn == null)

 conn = getJNDIConnection();

 if (conn == null)

 {

 }

 }

 return conn.recoveryConnection().getConnection().getXAResource();

 }

 public synchronized boolean hasMoreResources ()

38 JBTA-PG-10/19/06

 {

 if (connectionIndex == numberOfConnections)

 return false;

 else

 return true;

 }

 private final JDBC2RecoveryConnection getStandardConnection () throws
SQLException

 {

 String number = new String(""+connectionIndex);

 String url = new String(dbTag+number+urlTag);

 String password = new String(dbTag+number+passwordTag);

 String user = new String(dbTag+number+userTag);

 String dynamicClass = new String(dbTag+number+dynamicClassTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(TransactionalDriver.userName, theUser);

 dbProperties.put(TransactionalDriver.password, thePassword);

 String dc = props.getProperty(dynamicClass);

Examples

JBTA-PG-10/19/06 39

 if (dc != null)

 dbProperties.put(TransactionalDriver.dynamicClass, dc);

 return new JDBC2RecoveryConnection(url, dbProperties);

 }

 else

 return null;

 }

 private final JDBC2RecoveryConnection getJNDIConnection () throws
SQLException

 {

 String number = new String(""+connectionIndex);

 String url = new String(dbTag+jndiTag+number+urlTag);

 String password = new String(dbTag+jndiTag+number+passwordTag);

 String user = new String(dbTag+jndiTag+number+userTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);

 String thePassword = props.getProperty(password);

 if (theUser != null)

 {

 dbProperties.put(TransactionalDriver.userName, theUser);

 dbProperties.put(TransactionalDriver.password, thePassword);

 return new JDBC2RecoveryConnection(url, dbProperties);

40 JBTA-PG-10/19/06

 }

 else

 return null;

 }

 private int numberOfConnections;

 private int connectionIndex;

 private Properties props;

 private static final String dbTag = "DB_";

 private static final String urlTag = "_DatabaseURL";

 private static final String passwordTag = "_DatabasePassword";

 private static final String userTag = "_DatabaseUser";

 private static final String dynamicClassTag = "_DatabaseDynamicClass";

 private static final String jndiTag = "JNDI_";

 /*

 * Example:

 *

 * DB2_DatabaseURL=jdbc\:arjuna\:sequelink\://qa02\:20001

 * DB2_DatabaseUser=tester2

 * DB2_DatabasePassword=tester

 *
DB2_DatabaseDynamicClass=com.arjuna.ats.internal.jdbc.drivers.sequelink_5_1

 *

 * DB_JNDI_DatabaseURL=jdbc\:arjuna\:jndi

 * DB_JNDI_DatabaseUser=tester1

 * DB_JNDI_DatabasePassword=tester

Examples

JBTA-PG-10/19/06 41

 * DB_JNDI_DatabaseName=empay

 * DB_JNDI_Host=qa02

 * DB_JNDI_Port=20000

 */

 private static final char BREAKCHARACTER = ';'; // delimiter for
parameters

}

The class com.arjuna.ats.internal.jdbc.recovery.JDBC2RecoveryConnection
may be used to create a new connection to the database using the same parameters that were
used to create the initial connection.

42 JBTA-PG-10/19/06

Chapter 7

Configuring JBossJTA
Configuration options

The following table shows the configuration features, with default values shown in italics.
For more detailed information, the relevant section numbers are provided.

Configuration Name Possible Values Relevant Section
com.arjuna.ats.jta.supportSubtransacti
ons

YES/NO Chapter 5

com.arjuna.ats.jta.jtaTMImplementatio
n

com.arjuna.ats.internal.jta.tran
saction.arjunacore.Transaction
ManagerImple/com.arjuna.ats.i
nternal.jta.transaction.jts.Trans
actionManagerImple

Chapter 2

com.arjuna.ats.jta.jtaUTImplementatio
n

com.arjuna.ats.internal.jta.tran
saction.arjunacore.UserTransa
ctionImple/com.arjuna.ats.inter
nal.jta.transaction.jts.UserTran
sactionImple

Chapter 1, Chapter 2

com.arjuna.ats.jta.xaBackoffPeriod
com.arjuna.ats.jdbc.isolationLevel Any supported JDBC isolation

level.
Chapter 5

com.arjuna.ats.jta.xaTransactionTimet
ouEnabled

true/false Chapter 3

Table 2: JBossJTA configuration options.

Using JBossJTA in application servers

JBTA-PG-10/19/06 43

Chapter 8

Using JBossJTA in
application servers

JBOSS Application Server

Configuration

Service Configuration

The JBoss Transaction Service is configured primarily via the XML files stored in the etc
directory, but when run as a JBOSS service there are a number of configurable attributes
available. They are as follows:

TransactionTimeout – The default transaction timeout to be used for new transactions.
Specified as an integer in seconds.

StatisticsEnabled – This determines whether or not the transaction service should gather
statistical information. This information can then be viewed using the PerformanceStatistics
MBean. Specified as a Boolean. The default is to not gather this information.

PropagateFullContext – This determines whether a full transactional context is propagated by
context importer/exporter. If set to false only the current transaction context is propagated. If
set to true the full transaction context (including parent transactions) is propagated.

These attributes are specified as MBean attributes in the jboss-service.xml file
located in the server/all/conf directory, e.g.

 <mbean code="com.arjuna.ats.jbossatx.jts.TransactionManagerService"

 name="jboss:service=TransactionManager">

 <attribute name="TransactionTimeout">300</attribute>

 <attribute name="StatisticsEnabled">true</attribute>

 </mbean>

44 JBTA-PG-10/19/06

The transaction service is configurable also via the standard JBoss Transaction Service
property files. These are located in the JBossTS install location under the etc sub-directory.
These files can be edited manually or through JMX. Each property file is exposed via an
object with the name com.arjuna.ts.properties and an attribute of module
where module is equal to the name of the module to be configured, e.g.
com.arjuna.ts.properties:module=arjuna.

The services

There is currently one service offered by the JBOSS integration. In this section we shall
discuss what this service does.

TransactionManagerService

The transaction manager service’s main purpose is to ensure the recovery manager is started.
It also binds the JBossTS JTA transaction manager to java:/TransactionManager
name with the JNDI provider. This service depends upon the existence of the CORBA ORB
Service and it must be using JacORB as the underlying ORB implementation.

There are two instances of this service:

• distributed: this uses the JTS enabled transaction manager implementation and
hence supports distributed transactions and recovery. To configure this use the
com.arjuna.ats.jbossatx.jts.TransactionManagerService class. This
is the default configuration.

• local: this uses the purely local JTA implementation. To configure this use the
com.arjuna.ats.jbossatx.jta.TransactionManagerService class.

Ensuring Transactional Context is Propagated to the Server

It is possible to coordinate transactions from a coordinator which is not located within the
JBoss server (e.g. using transactions created by an external OTS server). To ensure the
transaction context is propagated via JRMP invocations to the server, the transaction
propagation context factory needs to be explicitly set for the JRMP invoker proxy. This is
done as follows:

JRMPInvokerProxy.setTPCFactory(new
com.arjuna.ats.internal.jbossatx.jts.PropagationContextManager());

Index

JBTA-PG-10/19/06 45

Index
AutoCommit, 31
Configurable options, 42
DataSource, 27
Dynamic class instantiation, 28
Enlisting resources, 14
Example, 32
Failure recovery, 23
JBoss Transactions compliance, 10
JBoss Transactions restrictions, 25
JDBC 2.0, 25

properties, 27
JDBC2 Recovery, 23
JNDI string extension, 28
Loading drivers, 26
Making connections, 27
Obtaining TransactionManager, 11
Obtaining UserTransaction, 11
Package, 11
Property variables

XAConnectionRecovery, 23

Relationship to JTA, 27
Supported JDBC drivers, 25
Thread restrictions, 12

suspending and resuming transactions, 13
terminating transactions, 13

Transaction synchronization, 14
Transactional drivers, 26
Transactional Objects for Java

configuration, 42
TransactionManager, 11
Transactions

global default timeout value, 20
timeout values, 20

UserTransaction, 11
Using connections, 30
XAConnectionRecovery, 22, 23
XADataSource, 27
XAResource, 16, 27

failure recovery, 22
setTransactionTimeout, 20

