
TX-FRG-10/19/06 i

JBoss Transactions 4.2.2

Failure Recovery Guide
TX-FRG-10/19/06

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions 4.2.2

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2006 JBoss Inc.

Contents
JBoss Transactions 4.2.2 i

Failure Recovery Guide i

.. i

.. i

What This Guide Contains 6

Audience .. 6

Prerequisites.. 6

Organization ... 6

Documentation Conventions 6

Additional Documentation................................ 7

Contacting Us.. 7

Chapter 1 ... 8

Crash Recovery Overview 8

Recovery Manager ... 9

Embedding the Recovery Manager 11
Managing recovery directly 11

Separate Recovery Manager 11
In process Recovery Manager........................ 11

Recovery Modules .. 12

JBossTS Recovery Module Classes 13
A Recovery Module for XA Resources 15
Writing a Recovery Module........................... 18
A basic scenario.. 18
Another scenario... 25

TransactionStatusConnectionManager 25

Expired Scanner Thread................................ 26

Application Process.. 26

TransactionStatusManager 27

Object Store... 27

Chapter 2 ... 28

Recovery Protocol in OTS - Overview.......... 28

RecoveryCoordinator in JBossTS 29

Understanding POA 29

The default RecoveryCoordinator in Orbix 31

How Does it work... 32

The default RecoveryCoordinator in JacOrb35

How Does it work... 35

About This Guide ... 6

Architecture of the Recovery Manager 8

iv TX-FRG-10/19/06

How JBossTS manages the OTS Recovery
Protocol .. 28

TX-FRG-10/19/06 5

6 TX-FRG-10/19/06

About This Guide

What This Guide Contains

The Failure Recovery Guide contains information on how to use JBoss Transactions 4.2.2.1

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
Transactions 4.2.2 installations.

Prerequisites

You should have installed JBoss Transactions 4.2.2

Organization

This guide contains the following chapters:

• Chapter 1, Architecture of the Recovery Manager: explains the internal
architecture of the Recovery Manager.

• Chapter 2, How JBossTS manages the OTS Recovery Protocol: explains how
JBossTS deals with particular features of Object Request Brokers to implement the
recovery defined by the OTS specification in a optimistic way.

Documentation Conventions

The following conventions are used in this guide:

About This Guide

TX-FRG-10/19/06 7

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.2.2
documentation set:

• JBoss Transactions 4.2.2 Release Notes: Provides late-breaking information about
JBoss Transactions 4.2.2.

• JBoss Transactions 4.2.2 Installation Guide: This guide provides instructions for
installing JBoss Transactions 4.2.2.

• JBoss Transactions 4.2.2 Users Guide: Provides guidance for writing applications.

Contacting Us

Questions or comments about JBoss Transactions 4.2.2 should be directed to our support
team.

TX-FRG-10/19/06 8

Chapter 1

Architecture of the
Recovery Manager

Crash Recovery Overview

The main architectural components within Crash Recovery are illustrated in the diagram
below:

Object Store

../Recovery/ TransactionStatusManager

../ StateManager/BasicAction/AtomicACtion

Recovery Manager deamon

(one per node)

TransactionStatus

ConnectionManager

TransactionStatus

Connector 1

TransactionStatus

Connector 2

TransactionStatus

Connector 3

Recovery

Module

Expired Scanner

Thread

Periodic Recovery Thread

1st

Pass
Backoff Period

2nd Pass

Recovery Period

Application Process(es)

Transaction 1

begin()

doWorkd ()

commit()

Transaction 2

begin()

doWorkd ()

commit()

Transaction 3

begin()

…

Listener

Thread

ArjunaTS

Local Transaction Tables

Transaction 1

Transaction 2

Transaction 3

Committing

Aborting

Preparing

TransactionStatusManager

Connection

Thread

AtomicActionStatusService

1

2 4

3

Crash Recovery

Architecture

1. Transaction Logs Written to Object Store

2. Recovery Manager scans Object Store for failed transactions

3. Transaction status checked in originator Application Process

4. Failed Transactions are activated in the TransactionCache

5. Failed transaction commit replayed synchronously

5

The Recovery Manager is a daemon process responsible for performing crash recovery. Only
one Recovery Manager runs per node. The Object Store provides persistent data storage for
transactions to log data. During normal transaction processing each transaction will log
persistent data needed for the commit phase to the Object Store. On successfully committing
a transaction this data is removed, however if the transaction fails then this data remains
within the Object Store.

Architecture of the Recovery Manager

TX-FRG-10/19/06 9

The Recovery Manager functions by:

• Periodically scanning the Object Store for transactions that may have failed. Failed
transactions are indicated by the presence of log data after a period of time that the
transaction would have normally been expected to finish.

• Checking with the application process which originated the transaction whether the
transaction is still in progress or not

• Recovering the transaction by re-activating the transaction and then replaying phase two
of the commit protocol.

The following sections describe the architectural components in more detail

Recovery Manager

On initialization the Recovery Manager first loads in configuration information via a
properties file. This configuration includes a number of recovery activators and recovery
modules, which are then dynamically loaded.

Since the version 3.0 of JBossTS, the Recovery Manager is not specifically tied to an Object
Request Broker or ORB. Hence, the OTS recovery protocol is not implicitly enabled. To
enable such protocol, we use the concept of recovery activator, defined with the interface
RecoveryActivator, which is used to instantiate a recovery class related to the underlying
communication protocol. For instance, when used with OTS, the RecoveryActivitor has the
responsibility to create a RecoveryCoordinator object able to respond to the
replay_completion operation.

All RecoveryActivator instances inherit the same interface. They are loaded via the following
recovery extension property:

<property

 name="com.arjuna.ats.arjuna.recovery.recoveryActivator_<number>"

 value="RecoveryClass" />

For instance the RecoveryActivator provided in the distribution of JTS/OTS, which shall not
be commented, is as follow:

<property

 name="com.arjuna.ats.arjuna.recovery.recoveryActivator_1"

 value="com.arjuna.ats.internal.jts.orbspecific.recovery.

RecoveryEnablement/>

When loaded all RecoveryActivator instances provide the method startRCservice invoked by
the Recovery Manager and used to create the appropriate Recovery Component able to
receive recovery requests according to a particular transaction protocol. For instance the
RecoveryCoordinator defined by the OTS protocol.

10 TX-FRG-10/19/06

Each recovery module is used to recover a different type of transaction/resource, however
each recovery module inherits the same basic behavior.

Recovery consists of two separate passes/phases separated by two timeout periods. The first
pass examines the object store for potentially failed transactions; the second pass performs
crash recovery on failed transactions. The timeout between the first and second pass is known
as the backoff period. The timeout between the end of the second pass and the start of the
first pass is the recovery period. The recovery period is larger than the backoff period.

The Recovery Manager invokes the first pass upon each recovery module, applies the
backoff period timeout, invokes the second pass upon each recovery module and finally
applies the recovery period timeout before restarting the first pass again.

The recovery modules are loaded via the following recovery extension property:

 com.arjuna.ats.arjuna.recovery.recoveryExtension<number>=<RecoveryClass>

The backoff period and recovery period are set using the following properties:

 com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod (default 10 secs)

 com.arjuna.ats.arjuna.recovery.periodicRecovery (default 120 secs)

The following java classes are used to implement the Recovery Manager:

• package com.arjuna.ats.arjuna.recovery :

RecoveryManager – The daemon process that starts up by instantiating an instance of the
RecoveryManagerImple class.

RecoveryEnvironment - Properties used by the recovery manager.

RecoveryConfiguration - Specifies the name of the Recovery Manager property file.
(ie RecoveryManager-properties.xml)

• package com.arjuna.ats.internal.ts.arjuna.recovery :

RecoveryManagerImple - Creates and starts instances of the RecActivatorLoader, the
PeriodicRecovery thread and the ExpiryEntryMonitor thread.

RecActivatorLoader - Dynamically loads in the RecoveryActivator specified in the
Recovery Manager property file. Each RecoveryActicator is specified as a recovery
extension in the properties file

PeriodicRecovery - Thread which loads each recovery module, then calls the first pass
method for each module, applies the backoff period timeout, calls the second pass
method for each module and applies the recovery period timeout.

Architecture of the Recovery Manager

TX-FRG-10/19/06 11

RecoveryClassLoader - Dynamically loads in the recovery modules specified in the
Recovery Manager property file. Each module is specified as a recovery extension in the
properties file (i.e., com.arjuna.ats.arjuna.recovery.recoveryExtension1=
com.arjuna.ats.internal.ts.arjuna.recovery.AtomicActionRecoveryModule).

Note: By default, the recovery manager listens on the first available port on a
given machine. If you wish to control the port number that it uses, you can
specify this using the com.arjuna.ats.arjuna.recovery.recoveryPort
attribute.

Embedding the Recovery Manager

In some situations it may be required to embed the RecoveryManager in the same process as
the transaction service. In this case you can create an instance of the RecoveryManager
through the manager method on
com.arjuna.ats.arjuna.recovery.RecoveryManager. A RecoveryManager can be
created in one of two modes, selected via the parameter to the manager method:

(i) INDIRECT_MANAGEMENT: the manager runs periodically but can also be
instructed to run when desired via the scan operation or through the RecoveryDriver
class to be described below.

(ii) DIRECT_MANAGEMENT: the manager does not run periodically and must be
driven directly via the scan operation or RecoveryDriver.

Managing recovery directly

As already mentioned, recovery typically happens at periodic intervals. If you require to
drive recovery directly, then there are two options, depending upon how the
RecoveryManager has been created.

Separate Recovery Manager

You can either use the com.arjuna.ats.arjuna.tools.RecoveryMonitor program to send a
message to the Recovery Manager instructing it to perform recovery, or you can create an
instance of the com.arjuna.ats.arjuna.recovery.RecoveryDriver class to do likewise. There are
two types of recovery scan available:

(i) ASYNC_SCAN: here a message is sent to the RecoveryManager to instruct it to
perform recovery, but the response returns before recovery has completed.

(ii) SYNC: here a message is sent to the RecoveryManager to instruct it to perform
recovery, and the response occurs only when recovery has completed.

In process Recovery Manager

You can invoke the scan operation on the RecoveryManager. This operation returns only
when recovery has completed. However, if you wish to have an asynchronous interaction
pattern, then the RecoveryScan interface is provided:

12 TX-FRG-10/19/06

public interface RecoveryScan

{

 public void completed ();

}

An instance of an object supporting this interface can be passed to the scan operation and its
completed method will be called when recovery finishes. The scan operation returns
immediately, however.

Recovery Modules

As stated before each recovery module is used to recover a different type of
transaction/resource, but each recovery module must implement the following
RecoveryModule interface, which defines two methods: periodicWorkFirstPass and
periodicWorkSecondPass invoked by the Recovery Manager.

public interface RecoveryModule

{

 /**

 * Called by the RecoveryManager at start up, and then

 * PERIODIC_RECOVERY_PERIOD seconds after the completion, for all
 * RecoveryModules of the second pass

 */

 public void periodicWorkFirstPass ();

 /**

 * Called by the RecoveryManager RECOVERY_BACKOFF_PERIOD seconds

 * after the completion of the first pass

 */

 public void periodicWorkSecondPass ();

}

Architecture of the Recovery Manager

TX-FRG-10/19/06 13

JBossTS Recovery Module Classes

JBossTS provides a set of recovery modules that are responsible to manage recovery
according to the nature of the participant and its position in a transactional tree. The provided
classes (that all implements the RecoveryModule interface) are:

• com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule

Recovers AtomicAction transactions.

• com.arjuna.ats.internal.txoj.recovery.TORecoveryModule

Recovers Transactional Objects for Java.

• com.arjuna.ats.internal.jts.recovery.transactions.TransactionRecoveryModule

Recovers JTS Transactions. This is a generic class from which TopLevel and Server
transaction recovery modules inherit, respectively

• com.arjuna.ats.internal.jts.recovery.transactions.TopLevelTransactionRecoveryModule
• com.arjuna.ats.internal.jts.recovery.transactions.ServerTransactionRecoveryModule

To illustrate the behavior of a recovery module, the following pseudo code describes the
basic algorithm used for Atomic Action transactions and Transactional Objects for java.

AtomicAction pseudo code

First Pass:

< create a transaction vector for transaction Uids. >

< read in all transactions for a transaction type AtomicAction. >

while < there are transactions in the vector of transactions. >

do

 < add the transaction to the vector of transactions. >

end while.

Second Pass:

while < there are transactions in the transaction vector >

do

 if < the intention list for the transaction still exists >

 then

14 TX-FRG-10/19/06

 < create new transaction cached item >

 < obtain the status of the transaction >

 if < the transaction is not in progress >

 then

 < replay phase two of the commit protocol >

 endif.

 endif.

end while.

Transactional Object pseudo code

First Pass:

< Create a hash table for uncommitted transactional objects. >

< Read in all transactional objects within the object store. >

while < there are transactional objects >

do

 if < the transactional object has an Uncommited status in the object
store >

 then

 < add the transactional Object o the hash table for uncommitted
transactional objects>

 end if.

end while.

Second Pass:

while < there are transactions in the hash table for uncommitted
transactional objects >

do

 if < the transaction is still in the Uncommitted state >

 then

Architecture of the Recovery Manager

TX-FRG-10/19/06 15

 if < the transaction is not in the Transaction Cache >

 then

 < check the status of the transaction with the original
application process >

 if < the status is Rolled Back or the application process is
inactive >

 < rollback the transaction by removing the Uncommitted status
from the Object Store >

 endif.

 endif.

 endif.

end while.

A Recovery Module for XA Resources

To manage recovery, we have seen in the previous chapter that the Recovery Manager
triggers a recovery process by calling a set of recovery modules that implements the two
methods defined by the RecoveryModule interface.

To enable recovery of participants controlled via the XA interface, a specific recovery
module named XARecoveryModule is provided. The XARecoveryModule, defined in the
packages com.arjuna.ats.internal.jta.recovery.arjunacore and
com.arjuna.ats.internal.jta.recovery.jts, handles recovery of XA resources (databases etc.)
used in JTA.

Note: JBossTS supports two JTA implementations: a purely local version (no
distributed transactions) and a version layered on the JTS. Recovery for
the former is straightforward. In the following discussion we shall implicitly
consider on the JTS implementation.

Its behavior consists of two aspects: “transaction-initiated” and “resource-initiated” recovery.
Transaction-initiated recovery is possible where the particular transaction branch had
progressed far enough for a JTA Resource Record to be written in the ObjectStore, as
illustrated in Figure 2.

XAResource

Recovery
Manager

ObjectStore
JTA_Resource

XA Log
XID, …

DatabaseConnection

16 TX-FRG-10/19/06

Figure 2 – JTA/JDBC information stored in the ObjectStore

A JTA Resource record contains the information needed to link the transaction, as known to
the rest of JBossTS, to the database. Resource-initiated recovery is necessary for branches
where a failure occurred after the database had made a persistent record of the transaction,
but before the JTA ResourceRecord was persisted. Resource-initiated recovery is also
necessary for datasources for which it is not possible to hold information in the JTA
Resource record that allows the recreation in the RecoveryManager of the
XAConnection/XAResource that was used in the original application.

Note: When running XA recovery it is necessary to tell JBossTS which types of
Xid it can recover. Each Xid that JBossTS creates has a unique node
identifier encoded within it and JBossTS will only recover transactions and
states that match a specified node identifier. The node identifier to use
should be provided to JBossTS via a property that starts with the name
com.arjuna.ats.jta.xaRecoveryNode; multiple values may be
provided. A value of ‘*’ will force JBossTS to recover (and possibly
rollback) all transactions irrespective of their node identifier and should be
used with caution.

Transaction-initiated recovery is automatic. The XARecoveryModule finds the JTA
Resource Record that need recovery, then uses the normal recovery mechanisms to find the
status of the transaction it was involved in (i.e., it calls replay_completion on the
RecoveryCoordinator for the transaction branch), (re)creates the appropriate XAResource
and issues commit or rollback on it as appropriate. The XAResource creation will use the
same information, database name, username, password etc., as the original application.

Figure 3 - Transaction-Initiated Recovery and XA Recovery

Resource-initiated recovery has to be specifically configured, by supplying the Recovery
Manager with the appropriate information for it to interrogate all the databases
(XADataSources) that have been accessed by any JBossTS application. The access to each
XADataSource is handled by a class that implements the

Recovery
Manager

ObjectStore

XARecoveryModule
periodicWorkFirstPass

periodicWorkSecondtPass

Build the list of
Transactions “in-doubt”

Determine Transactions
Which may be recovered

3) Commit or Rollback
(according to status returned
by the recoveryCoordinator)

XAResource

2) Replay_completion
On Recovery_coordinator

1) Recreate
XAResource

XA Log
XID, …

Database

Architecture of the Recovery Manager

TX-FRG-10/19/06 17

com.arjuna.ats.jta.recovery.XAResourceRecovery interface, as illustrated in Figure 4.
Instances of classes that implements the XAResourceRecovery interface are dynamically
loaded, as controlled by properties with names beginning
“com.arjuna.ats.jta.recovery.XAResourceRecovery”.

Recovery
Manager

ObjectStore

XARecoveryModule

per iod icWorkF i rstPass

per iodicWorkSecondtPass

Build the list of
Transactions “in-doubt”

Determine Transactions
Which may be recovered

Get XAResource

XAResource

XAResource.rol lback

If no corresponding
JTA_ResourceLog

in ObjectStore
On successive SecondPasses

XAResource.
recover

XA Log

XID, …

Database

XAConnectionRecovery

XiDs in-doubt
returned

XAResourceRecovery

Figure 4 – Resource-initiated recovery and XA Recovery

Note: In JBossTS 3.3 XAConnectionRecovery was deprecated in favor of
XAResourceRecovery. Although the old interface still exists at the
moment, users are encouraged to migrate to the new interface.

The XARecoveryModule will use the XAResourceRecovery implementation to get a
XAResource to the target datasource. On each invocation of periodicWorkSecondPass, the
recovery module will issue an XAResource.recover request – this will (as described in the
XA specification) return a list of the transaction identifiers (Xid’s) that are known to the
datasource and are in an indeterminate (in-doubt) state. The list of these in-doubt Xid’s
received on successive passes (i.e. periodicWorkSecondPass-es) is compared. Any Xid that
appears in both lists, and for which no JTA ResourceRecord was found by the intervening
transaction-initiated recovery is assumed to belong to a transaction that was involved in a
crash before any JTA ResourceRecord was written, and a rollback is issued for that
transaction on the XAResource.

This double-scan mechanism is used because it is possible the Xid was obtained from the
datasource just as the original application process was about to create the corresponding
JTA_ResourceRecord. The interval between the scans should allow time for the record to be
written unless the application crashes (and if it does, rollback is the right answer).

An XAResourceRecovery implementation class can be written to contain all the information
needed to perform recovery to some datasource. Alternatively, a single class can handle
multiple datasources. The constructor of the implementation class must have an empty
parameter list (because it is loaded dynamically), but the interface includes an initialise

18 TX-FRG-10/19/06

method which passes in further information as a string. The content of the string is taken
from the property value that provides the class name: everything after the first semi-colon is
passed as the value of the string. The use made of this string is determined by the
XAResourceRecovery implementation class.

For further details on the way to implement a class that implements the interface
XAResourceRecovery, read the JDBC chapter of the JTA Programming Guide. An
implementation class is provided that supports resource-initiated recovery for any
XADataSource. This class could be used as a template to build your own implementation
class.

Writing a Recovery Module

In order to recover from failure, we have seen that the Recovery Manager contacts recovery
modules by invoking periodically the methods periodicWorkFirstPass and
periodicWorkSecondPass. Each Recovery Module is then able to manage recovery according
the type of resources that need to be recovered. The JBoss Transaction product is shipped
with a set of recovery modules (TOReceveryModule, XARecoveryModule…), but it is
possible for a user to define its own recovery module that fit his application. The following
basic example illustrates the steps needed to build such recovery module

A basic scenario

This basic example does not aim to present a complete process to recover from failure, but
mainly to illustrate the way to implement a recovery module.

The application used here consists to create an atomic transaction, to register a participant
within the created transaction and finally to terminate it either by commit or abort. A set of
arguments are provided:

 to decide to commit or abort the transaction,
 to decide generating a crash during the commitment process.

The code of the main class that control the application is given below

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.AtomicAction;

import com.arjuna.ats.arjuna.coordinator.*;

public class TestRecoveryModule

{

 public static void main(String args[])

Architecture of the Recovery Manager

TX-FRG-10/19/06 19

 {

 try

 {

 AtomicAction tx = new AtomicAction();

 tx.begin(); // Top level begin

 // enlist the participant

 tx.add(SimpleRecord.create());

 System.out.println("About to complete the transaction ");

 for (int i = 0; i < args.length; i++)

 {

 if ((args[i].compareTo("-commit") == 0))

 _commit = true;

 if ((args[i].compareTo("-rollback") == 0))

 _commit = false;

 if ((args[i].compareTo("-crash") == 0))

 _crash = true;

 }

 if (_commit)

 tx.commit(); // Top level commit

 else

 tx.abort(); // Top level rollback

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

20 TX-FRG-10/19/06

 protected static boolean _commit = true;

 protected static boolean _crash = false;

}

The registered participant has the following behavior:

 During the prepare phase, it writes a simple message - “I’m prepared”- on the disk such
The message is written in a well known file

 During the commit phase, it writes another message - “I’m committed”- in the same file
used during prepare

 If it receives an abort message, it removes from the disk the file used for prepare if any.
 If a crash has been decided for the test, then it crashes during the commit phase – the

file remains with the message “I’m prepared”.

The main portion of the code illustrating such behavior is described hereafter.

Note: that the location of the file given in variable filename can be changed

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.coordinator.*;

import java.io.File;

public class SimpleRecord extends AbstractRecord {

 public String filename = "c:/tmp/RecordState";

 public SimpleRecord() {

 System.out.println("Creating new resource");

 }

 public static AbstractRecord create()

 {

 return new SimpleRecord() ;

 }

Architecture of the Recovery Manager

TX-FRG-10/19/06 21

 public int topLevelAbort()

 {

 try {

 File fd = new File(filename);

 if (fd.exists()){

 if (fd.delete())

 System.out.println("File Deleted");

 }

 }

 catch(Exception ex){…}

 return TwoPhaseOutcome.FINISH_OK;

 }

 public int topLevelCommit()

 {

 if (TestRecoveryModule._crash)

 System.exit(0);

 try {

 java.io.FileOutputStream file = new

 java.io.FileOutputStream(filename);

 java.io.PrintStream pfile = new java.io.PrintStream(file);

 pfile.println("I'm Committed");

 file.close();

 }

 catch (java.io.IOException ex) {...}

 return TwoPhaseOutcome.FINISH_OK ;

 }

22 TX-FRG-10/19/06

 public int topLevelPrepare()

 {

 try {

 java.io.FileOutputStream file = new

 java.io.FileOutputStream(filename);

 java.io.PrintStream pfile = new java.io.PrintStream(file);

 pfile.println("I'm prepared");

 file.close();

 }

 catch (java.io.IOException ex) {...}

 return TwoPhaseOutcome.PREPARE_OK ;

 }

 …

}

The role of the Recovery Module in such application consists to read the content of the file
used to store the status of the participant, to determine that status and print a message
indicating if a recovery action is needed or not.

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.recovery.RecoveryModule;

public class SimpleRecoveryModule implements RecoveryModule

{

 public String filename = "c:/tmp/RecordState";

 public SimpleRecoveryModule ()

 {

 System.out.println("The SimpleRecoveryModule is loaded");

Architecture of the Recovery Manager

TX-FRG-10/19/06 23

 };

 public void periodicWorkFirstPass ()

 {

 try

 {

 java.io.FileInputStream file = new

 java.io.FileInputStream(filename);

 java.io.InputStreamReader input = new

 java.io.InputStreamReader(file);

 java.io.BufferedReader reader = new java.io.BufferedReader(input);

 String stringState = reader.readLine();

 if (stringState.compareTo("I'm prepared") == 0)

 System.out.println("The transaction is in the prepared state");

 file.close();

 }

 catch (java.io.IOException ex)

 { System.out.println("Nothing found on the Disk"); }

 }

 public void periodicWorkSecondPass ()

 {

 try

 {

 java.io.FileInputStream file = new

 java.io.FileInputStream(filename);

 java.io.InputStreamReader input = new

24 TX-FRG-10/19/06

 java.io.InputStreamReader(file);

 java.io.BufferedReader reader = new java.io.BufferedReader(input);

 String stringState = reader.readLine();

 if (stringState.compareTo("I'm prepared") == 0)

 {

 System.out.println("The record is still in the prepared state –

 Recovery is needed");

 }

 else if (stringState.compareTo("I'm Committed") == 0)

 {

 System.out.println("The transaction has completed and committed");

 }

 file.close();

 }

 catch (java.io.IOException ex)

 { System.out.println("Nothing found on the Disk - Either there was

 no transaction or it as been rolled back"); }

 }

}

The recovery module should now be deployed in order to be called by the Recovery
Manager. To do so, we just need to add an entry in the RecoveryManager-properties.xml by
adding a new property as follow:

 <property

 name="com.arjuna.ats.arjuna.recovery.recoveryExtension<i>"

 value="com.arjuna.demo.recoverymodule.SimpleRecoveryModule"/>

Where <i> represent the new occurrence number that follows the last that already exists in
the file. Once started, the Recovery Manager will automatically load the added Recovery
module.

Architecture of the Recovery Manager

TX-FRG-10/19/06 25

Note: The source of the code can be retrieved under the trailmap directory of
the JBossTS installation.

Another scenario

As mentioned, the basic application presented above does not present the complete process to
recover from failure, but it was just presented to describe how the build a recovery module.
In case of the OTS protocol, let’s consider how a recovery module that manages recovery of
OTS resources can be configured.

To manage recovery in case of failure, the OTS specification has defined a recovery protocol.
Transaction’s participants in a doubt status could use the RecoveryCoordinator to determine
the status of the transaction. According to that transaction status, those participants can take
appropriate decision either by roll backing or committing. Asking the RecoveryCoordinator
object to determine the status consists to invoke the replay_completion operation on the
RecoveryCoordinator.

For each OTS Resource in a doubt status, it is well known which RecoveyCoordinator to
invoke to determine the status of the transaction in which the Resource is involved – It’s the
RecoveryCoordinator returned during the Resource registration process. Retrieving such
RecoveryCoordinator per resource means that it has been stored in addition to other
information describing the resource.

A recovery module dedicated to recover OTS Resources could have the following behavior.
When requested by the recovery Manager on the first pass it retrieves from the disk the list of
resources that are in the doubt status. During the second pass, if the resources that were
retrieved in the first pass still remain in the disk then they are considered as candidates for
recovery. Therefore, the Recovery Module retrieves for each candidate its associated
RecoveryCoordinator and invokes the replay_completion operation that the status of the
transaction. According to the returned status, an appropriate action would be taken (for
instance, rollback the resource is the status is aborted or inactive).

TransactionStatusConnectionManager

The TransactionStatusConnectionManager object is used by the recovery modules to retrieve
the status of transactions and acts like a proxy for TransactionStatusManager objects. It
maintains a table of TransactionStatusConnector obects each of which connects to a
TransactionStatusManager object in an Application Process.

The transactions status is retrieved using the getTransactionStatus methods which take a
transaction Uid and if available a transaction type as parameters. The process Uid field in the
transactions Uid parameter is used to lookup the target TransactionStatusManagerItem
host/port pair in the Object Store. The host/port pair are used to make a TCP connection to
the target TransactionStatusManager object by a TransactionStatusConnector object. The
TransactionStatusConnector passes the transaction Uid/transaction type to the
TransactionStatusManager in order to retrieve the transactions status.

26 TX-FRG-10/19/06

Expired Scanner Thread

When the Recovery Manager initialises an expiry scanner thread ExpiryEntryMonitor is
created which is used to remove long dead items from the ObjectStore. A number of scanner
modules are dynamically loaded which remove long dead items for a particular type.

Scanner modules are loaded at initialisation and are specified as properties beginning with

 com.arjuna.ats.arjuna.recovery.expiryScanner<Scanner Name>=<Scanner Class>

All the scanner modules are called periodically to scan for dead items by the
ExpiryEntryMonitor thread. This period is set with the property:

 com.arjuna.ats.arjuna.recovery.expiryScanInterval

All scanners inherit the same behaviour from the java interface ExpiryScanner as illustrated
in diagram below:

A scan method is provided by this interface and implemented by all scanner modules, this is
the method that gets called by the scanner thread.

The ExpiredTransactionStatusManagerScanner removes long dead
TransactionStatusManagerItems from the Object Store. These items will remain in the Object
Store for a period of time before they are deleted. This time is set by the property:

 com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime
 (default 12 hours)

Application Process

This represents the user transactional program. A Local transaction (hash) table, maintained
within the running application process keeps trace of the current status of all transactions
created by that application process, The Recovery Manager needs access to the transaction
tables so that it can determine whether a transaction is still in progress, if so then recovery
does not happen.

Architecture of the Recovery Manager

TX-FRG-10/19/06 27

The transaction tables are accessed via the TransactionStatusManager object. On application
program initialisation the host/port pair that represents the TransactionStatusManager is
written to the Object Store in ‘../Recovery/TransactionStatusManager’ part of the Object
Store file hierarchy and identified by the process Uid of the application process.

The Recovery Manager uses the TransactionStatusConnectionManager object to retrieve the
status of a transaction and a TransactionStatusConnector object is used to make a TCP
connection to the TransactionStatusManager.

TransactionStatusManager

This object acts as an interface for the Recovery Manager to obtain the status of transactions
from running HPTS application processes. One TransactionStatusManager is created per
application process by the class com.arjuna.ats.arjuna.coordinator.InitAction. Currently a tcp
connection is used for communication between the RecoveryManager and
TransactionStatusManager. Any free port is used by the TransactionStatusManager by
default, however the port can be fixed with the property:

 com.arjuna.ats.arjuna.recovery.transactionStatusManagerPort

On creation the TransactionStatusManager obtains a port which it stores with the host in the
Object Store as a TransactionStatusManagerItem. A Listener thread is started which waits for
a connection request from a TransactionStatusConnector. When a connection is established a
Connection thread is created which runs a Service (AtomicActionStatusService) which
accepts a transaction Uid and a transaction type (if available) from a
TransactionStatusConnector, the transaction status is obtained from the local thransaction
table and returned back to the TransactionStatusConnector

Object Store

All objects are stored in a file path which is equivalent to their class inheritance. Thus
AtomicAction transactions are stored in file path
../StateManager/BasicAction/AtomicAction.

All objects are identified by a unique identifier Uid. One of the values of which is a process
id in which the object was created. The Recovery Manager uses the process id to locate
transaction status manager items when contacting the originator application process for the
transaction status.

28 TX-FRG-10/19/06

Chapter 2

How JBossTS manages
the OTS Recovery

Protocol
Recovery Protocol in OTS - Overview

To manage recovery in case of failure, the OTS specification has defined a recovery protocol.
Transaction’s participants in a doubt status could use the RecoveryCoordinator to determine
the status of the transaction. According to that transaction status, those participants can take
appropriate decision either by roll backing or committing.

A reference to a RecoveryCoordinator is returned as a result of successfully calling
register_resource on the transaction Coordinator. This object, which is implicitly
associated with a single Resource, can be used to drive the Resource through recovery
procedures in the event of a failure occurring during the transaction.

Resource

RecoveryCoordinator

1

1

replay_completion(Resource):Status

prepare():Vote

commit()

rollback()

Figure 5: Resource and RecoveryCoordinator relationship.

How JBossTS manages the OTS Recovery Protocol

TX-FRG-10/19/06 29

RecoveryCoordinator in JBossTS

On each resource registration a RecoveryCoordinator Object is expected to be created and
returned to the application that invoked the register_resource operation. Behind each
CORBA object there should be an object implementation or Servant object, in POA terms,
which performs operations made on a RecoveryCoordinator object. Rather than to create a
RecoveryCoordinator object with its associated servant on each register_resource, JBossTS
enhances performance by avoiding the creation of servants but it relies on a default
RecoveryCoordinator object with it’s associated default servant to manage all
replay_completion invocations.

In the next sections we first give an overview of the Portable Object Adapter architecture,
then we describe how this architecture is used to provide RecoveryCoordinator creation with
optimization as explained above.

Understanding POA

Basically, the Portable Object Adapter, or POA is an object that intercepts a client request
and identifies the object that satisfies the client request. The Object is then invoked and the
response is returned to the client.

Figure 6 - Overview of the POA

The object that performs the client request is referred as a servant, which provides the
implementation of the CORBA object requested by the client. A servant provides the
implementation for one or more CORBA object references. To retreive a servant, each POA
maintains an Active Object Map that maps all objects that have been activated in the POA to
a servant. For each incoming request, the POA looks up the object reference in the Active
Object Map and tries to find the responsible servant. If none is found, the request is either
delegated to a default servant, or a servant manager is invoked to activate or locate an
appropriate servant. In addition to the name space for the objects, which are identified by

Servant

POA

POA

Root POA

Active Object Map

ObjectID

ObjectID

ObjectID

Servant

Servant

Servant Manager

Servant Manager

Client request

Server

30 TX-FRG-10/19/06

Object Ids, a POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.

Each POA has a set of policies that define its characteristics. When creating a new POA, the
default set of policies can be used or different values can be assigned that suit the application
requirements. The POA specification defines

• Thread policy – Specifies the threading model to be used by the POA. Possible values
are:

 ORB_CTRL_MODEL – (default) The POA is responsible for assigning requests to
threads.

 SINGLE_THREAD_MODEL – the POA processes requests sequentially
• Lifespan policy - specifies the lifespan of the objects implemented in the POA. The

lifespan policy can have the following values:
 TRANSIENT (Default) Objects implemented in the POA cannot outlive the

process in which they are first created. Once the POA is deactivated, an
OBJECT_NOT_EXIST exception occurs when attempting to use any object
references generated by the POA.

 PERSISTENT Objects implemented in the POA can outlive the process in which
they are first created.

• Object ID Uniqueness policy - allows a single servant to be shared by many abstract
objects. The Object ID Uniqueness policy can have the following values:

 UNIQUE_ID (Default) Activated servants support only one Object ID.
 MULTIPLE_ID Activated servants can have one or more Object IDs. The Object

ID must be determined within the method being invoked at run time.
• ID Assignment policy - specifies whether object IDs are generated by server applications

or by the POA. The ID Assignment policy can have the following values:
 USER_ID is for persistent objects, and
 SYSTEM_ID is for transient objects

• Servant Retention policy - specifies whether the POA retains active servants in the Active
Object Map. The Servant Retention policy can have the following values:

 RETAIN (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on
POA.

 NON_RETAIN The POA does not retain active servants in the Active Object Map.
NON_RETAIN is typically used with ServantLocators.

• Request Processing policy - specifies how requests are processed by the POA.
 USE_ACTIVE_OBJECT_MAP (Default) If the Object ID is not listed in the

Active Object Map, an OBJECT_NOT _EXIST exception is returned. The
POA must also use the RETAIN policy with this value.

 USE_DEFAULT_SERVANT If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set, the request is dispatched
to the default servant. If no default servant has been registered, an
OBJ_ADAPTER exception is returned. The POA must also use the
MULTIPLE_ID policy with this value.

 USE_SERVANT_MANAGER If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set, the servant manager is
used to obtain a servant.

How JBossTS manages the OTS Recovery Protocol

TX-FRG-10/19/06 31

• Implicit Activation policy - specifies whether the POA supports implicit activation of
servants. The Implicit Activation policy can have the following values:

 IMPLICIT_ACTIVATION The POA supports implicit activation of servants.
Servants can be activated by converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() or by invoking _this()on
the servant. The POA must also use the SYSTEM_ID and RETAIN policies with
this value.

 NO_IMPLICIT_ACTIVATION (Default) The POA does not support implicit
activation of servants.

It appears that to redirect replay_completion invocations to a default servant we need to
create a POA with the Request Processing policy assigned with the value set to
USE_DEFAULT_SERVANT. However to reach that default Servant we should first
reach the POA that forward the request to the default servant. Indeed, the ORB uses
a set of information to retrieve a POA; these information are contained in the object
reference used by the client. Among these information there are the IP address and
the port number where resides the server and also the POA name. To perform
replay_completion invocations, the solution adopted by JBossTS is to provide one
Servant, per machine, and located in the RecoveryManager process, a separate
process from client or server applications. The next section explains how the
indirection to a default Servant located on a separate process is provided for ORBIX
and for JacORB.

The default RecoveryCoordinator in Orbix

Within Orbix, objects are located by the Location Deamon. To avoid the overhead of using
the location daemon, Orbix provides a mechanism named “Direct Persistence” allowing
generating persistent object references. This mechanism is in fact a proprietary policy named,
DIRECT_PERSISTENCE. A POA with policies of PERSISTENT and DIRECT_PERSISTENCE
generates IORs that contain a well-known address for the server process. A POA that uses
direct persistence must also tell each transport mechanism such as IIOP where in the
configuration file it can find the well-known address that it should use. This is done by
creating a WellKnownAddressingPolicy object and setting its value to the configuration
scope that contains the well-known address.

To specify the address used by the WellKnownAddressingPolicy object, JBossTS uses
the Orbix mechanism that allows specifying an ORB/POA names. The following
configuration modifications are necessary to define the well-know address of the
RecoveryCoordinator performing replay_completion invocation. Note that this configuration
is also necessary to support transaction context propagation and interposition. A new orb
name domain called arjuna should be created within the main Orbix 2000 domain being used
by the application. It requires the following format:

arjuna
{
 portable_interceptor
 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop",
 "portable_interceptor"];

 ots_recovery_coordinator
 {

32 TX-FRG-10/19/06

 recovery_coordinator:iiop:addr_list = [“<name>:<port>”];
 };

 ots_transaction
 {
 transaction:iiop:addr_list = [“+<name>:<port>”];
 };

 ots_context
 {
 binding:client_binding_list = ["OTS_Context",
"OTS_Context+GIOP+SIOP", "GIOP+SIOP", "OTS_Context+GIOP+IIOP",
"GIOP+IIOP"];
 binding:server_binding_list = ["OTS_Context", ""];
 };

 ots_interposition
 {
 binding:client_binding_list = ["OTS_Interposition",
"OTS_Interposition+GIOP+SIOP", "GIOP+SIOP", "OTS_Interposition+GIOP+IIOP",
"GIOP+IIOP"];
 binding:server_binding_list = ["OTS_Interposition", ""];
 };
 };
};

The <name> field should be substituted by the name of the machine on which JBossTS is
being run. The <port> field should be an unused port on which the JBossTS recovery
manager may listen for recovery requests.

Because of the way in which Orbix works with persistent POAs, if you want crash recovery
support for your applications you must use one of the Arjuna ORB names provided (context
or interposition) when running your clients and services. When using transaction context
propagation only, the –ORBname arjuna.portable_interceptor.ots_context
parameter should be passed to the client and server. When using context propagation and
interposition, the –ORBname.arjuna.portable_interceptor.ots_interposition
parameter should be used. For example:

java mytest –ORBname arjuna.portable_interceptor.ots_context

How Does it work

When the Recovery Manager is launched it seeks in the configuration the RecoveryActivator
that need be loaded. Once done it invokes the startRCservice method of each loaded
instances. As seen in in the previous chapter (Recovery Manager) the class to load that
implements the RecoveryActivator interface is the class RecoveryEnablement. This generic
class, located in the package com.arjuna.ats.internal.jts.orbspecific.recovery, hides the nature
of the ORB being used by the application. The following figure illustrates the behavior of the
RecoveryActivator that leads to the creation of the default servant that performs all
replay_invocations requests.

How JBossTS manages the OTS Recovery Protocol

TX-FRG-10/19/06 33

Figure 7 – The Recovery Manager and the creation of the default servant for
RecoveryCoordinator

Note: Note: We remind that there is one recovery Manager Process per
machine, then one default servant per machine. Performing all
replay_completion invocations means those made on a same machine.

When started, the application, using JBossTS in library mode, is launched a child POA is
created with the same policies as those defined within the Recovery Manager. This child
POA is used to create object references, for RecoveryCoordinator CORBA objects, that need
to be returned on register_resource invocations, as illustrated in figure below. The Object
reference created has an Object ID that contains the transaction ID in progress and the
Process Identifier of the application.

Note: Note: if the Transaction Service is used in the stand-alone mode, the
behavior to create object reference to RecoveryCoordinator objects is
exactly the same; the process ID used in the Object ID is the Transaction
Service process ID

34 TX-FRG-10/19/06

Figure 8 – Resource registration and returned RecoveryCoordinator Object reference

Having the object reference of the RecoveryCoordinator, an application can use it to
determine the status of the transaction for which that object reference is created. When a
RecoveryCoordinator, according to POA policies assigned to the POA included in the object
reference, the request is forward straightforward to the default servant defined in the
Recovery Manager, as described in figure 9.

Figure 9 – replay_completion invocation forwarded to the default RecoveryCoordinator

The flow described in the figure can be depicted as follow:

How JBossTS manages the OTS Recovery Protocol

TX-FRG-10/19/06 35

1. The participant invokes the replay_completion operation on RecoveryCoordinator object
using the object reference returned by the Transaction Server.

2. The request is forwarded to the Recovery Manager process since the Well-known-
address policy is used to retrieve.

3. The child POA responsible to locate the servant is retrieved.
4. After looking to the Active Object Map, the child POA invokes the default servant to

perform the request. Note that the Object ID conveyed by the object reference is not
retrieved in the AOP.

5. The servant extracts from the request the Object ID that contains the Transaction ID and
the process ID of the Transaction Server process. To determine if the process still alive,
the TransactionStatusConnectionManager functionalities are used.

6. According to the presence or not of the Transaction Server process and eventually the
returned status, the servant returns the status of the transaction asked by the participant.

The default RecoveryCoordinator in JacOrb

JacORB does not define additional policies to redirect any request on a RecoveryCoordinator
object to a default servant located in the Recovery Manager process. However it provides a
set of APIs that allows building object references with specific IP address, port number and
POA name in order to reach the appropriate default servant.

How Does it work

When the Recovery Manager is launched it seeks in the configuration the RecoveryActivator
that need be loaded. Once done it invokes the startRCservice method of each loaded
instances. As seen in in the previous chapter (Recovery Manager) the class to load that
implements the RecoveryActivator interface is the class RecoveryEnablement. This generic
class, located in the package com.arjuna.ats.internal.jts.orbspecific.recovery, hides the nature
of the ORB being used by the application (JacORB). The following figure illustrates the
behavior of the RecoveryActivator that leads to the creation of the default servant that
performs replay_completion invocations requests.

In addition to the creation of the default servant, an object reference to a
RecoveryCoordinator object is created and stored in the ObjectStore. As we will see this
object reference will be used to obtain its IP address, port number and POA name and assign
them to any RecoveryCoordinator object reference created on register_resource.

36 TX-FRG-10/19/06

Figure 10 – Default RecoveryCoordinator created in the RecoveryManager

When an application registers a resource with a transaction, a RecoveryCoordinator object
reference is expected to be returned. To build that object reference, the Transaction Service
uses the RecoveryCoordinator object reference created within the Recovery Manager as a
template. The new object reference contains practically the same information to retrieve the
default servant (IP address, port number, POA name, etc.), but the Object ID is changed;
now, it contains the Transaction ID of the transaction in progress and also the Process ID of
the process that is creating the new RecoveryCoordinator object reference, as illustrated in
Figure 11.

Figure 11 - Resource registration and returned RecoveryCoordinator Object reference build
from a reference stored in the ObjectStore.

Since a RecoveryCoordintaor object reference returned to an application contains all
information to retrieve the POA then the default servant located in the Recovery Manager, all
replay_completion invocation, per machine, are forwarded to the same default
RecoveryCoordinator that is able to retreive the Object ID from the incoming request to
extract the transaction identifier and the process identifier needed to determine the status of
the requested transaction.

