JBoss Transactions 4.2

JBTS-PG-3/23/06

JTS Programmers Guide

JBTS-PG-3/23/06

&SS” The Professional
Open Source Company

F
fre-
-

Legal Notices
The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA.

Software Version

JBoss Transactions 4.2

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2006 JBoss Inc.

About This Guide 5
What This Guide Contains.........cc.cceeeereennnne 5
AUIENCE ..ottt 5
Prerequisites.ooovveveenienieniiiiceeeeeseeeee 5
Organizationceceeveereeneeneenieeenieeneeeee 5
Documentation Conventions...........c.ccceeeveennee 6
Additional Documentation.............cceecueerveennne 7
Contacting UsSoocueevieeneeneenieniceiceieeieee 7

An overview of transaction processing........... 9
What is a transaction?ccecceeveeneeneennenne 9
Commit protocol.........ccevveereerieriieiniesieeneene 9
Transactional proxXies........ccc.ceeeeeeveerceerveeennens 10
Nested transactionsceeceeeeereeneeneeennen. 10
The Object Transaction Service.................... 11

JBossTS basics 13
Basics of JBOSSTS.....cccooiiiiiiiiiiiiieeieeeen 13
Raw OTS ..ot 13
Enhanced OTS functionality..........c.cccocuenuee. 14
Advanced application programmer interface 14
JBossTS and the OTS specification 16
Thread Classcoeveeerieeriieiniierieeeieeeen 17
ORB portability iSSUES........ccevveereereeriennenne 17

An introduction to the OTS 18
Introduction..........ccecueevieeneenienienieeeceeeeen 18
What is the OTS?..cccooviiiiiiiiiiieeeee, 18
Application programming models 19
Interfaces.......coovveveiieiniieiieeeeeeeeen 21
The transaction factoryccccceeceeveerieennen. 21
OTS configuration file.........cccceveereeniinnncn. 22
Name ServiCe......ccooveevvveeriieinieenieeenieenneann 23
resolve_initial_references.........cc.cccocueeueennen. 23
ORB specific location mechanism................ 23
Overriding the default location mechanism..23
Transaction timeouts...........eevveervveerreeenneenn 23
Transaction CONtEXLScceevveerveereeneeneeennenn 24

Nested transactionseeeeeeeeeeeeeeivveieeneneees 27

Contents

Transaction propagation...........cceceeeeereerunene 28
EXamples......ccccoeeerienieniiniiiienecnecneceee 29
Transaction Controls........ccccoceeceerereenenneenne. 30
JBOSSTS SPecifics......cocuerveeneenieniinieeieenen, 30
The Terminator interface............ccccevveerueennne 31
JBOSSTS SPecifics......ccceeveeneeneeniiniinieenenn 31
The Coordinator interfacec..ccceevenneeee. 32
JBOSSTS SPecifics......cocvvvernreeneeneeniinieennees 34
Heuristicseevvveeniiiniieieeeeeetc e 34
CUITENE ..ttt 34
JBOSSTS SPecifics......ccceeveeneeneeniinieiieenenn 37
Statistics gatheringc..cceceeveeveevreeneenneenne 37
RESOUICE.....ooiiriiiiiieiiiccccccen 38
SubtransactionAwareResource 40
JBOSSTS SPecifiCs......cocververnueeneeniiniireeenees 43
The Synchronization interface 44
JBOSSTS SPecifics......cccueeveeneenieniinieiicenenn 45
Transactions and registered resources........... 46
TransactionalObject interfacec....... 50
JBOSSTS SPecifics......ccceeveeneeneeniiniinieenenn 51
INterpoSItioncccueevueerieniiniieeeeenee e 51
Asynchronously committing a transaction....52
The RecoveryCoordinator............ccoceeveennenee 52
Checked transaction behaviour 53
JBOSSTS SPecifics......cocververnrieneeniiniirieennees 55
Summary of JBossTS implementation
dECISIONS ...veenriiieieiereeie e 56
Constructing an OTS application.................. 57
Important notes for JBossTS........cc.ccceceeeneie. 57
Initialisationc..ceceveveeveenenceeneneeieneennen 57
Implicit context propagation and
INEETPOSTLION ...t 57
Writing applications using the raw OTS
INEETTACES ..ovonvieeniiieiiieeieeeiee e 57
Transaction context management.................. 58
A transaction originator: indirect and
IMPCIE.ceeiieiiiiienicececeecceeeen 58
Transaction originator: direct and explicit59
Implementing a transactional client.............. 59
Implementing a recoverable server 60
Transactional Objectcccceeveeneeneeriucnnenne 60

Resource object.........coceeveeviiniiniinciiiceen. 60 Starting the Transaction Service tools........... 98
Reliable Servers........ccoovvveenieniinieniciieeen, 60 Using the Performance Toolcccccc.e.. 99
Example of a recoverable server................... 61 Using the IMX Browser........c.cccoceevveenuenne. 101
Example of a transactional object................. 62 Using Attributes and Operations................. 102
Failure modelsccccceeveenieniiniiniciieenen, 62 Using the Object Store Browser.................. 104
Transaction originator...........cceceeeeeveereeennen. 62 Object State Viewers (OSV)ccccoeveereeenen. 105
Transactional Server.......cc.ccceevvveervieerneeenneen. 63 RMIC EXtensions.........cceeceeevveerieeeneeenneenn 108
SUMMATY ...oveeiieiiiieneeieeeeeeeceee e 64 Command Line Usage......cc..ccoceeevercreeneenne. 108
ANT USAZE .eonvveeeeiieiieeieeniieeee e 108
JBossTS interfaces for extending the OTS...65
ORB specific configurationsceeeeeevnreees 109
Introducing.......ccoceevveeierieenienicniereeceee 65
Nested transactionsc..coceeceereereeceenveneene 66 Orbix 2000ccereeveenrieeeineereneeeereeeene 109
Extended resourcescoceeeeereneecvenneneennen 66
AtomicTransactionccecevvvveeeeeeeeeeinnns 68 Configuring JBossTS 111
Context propagation iSSUEScccceereerunnne 69
OPLIONS ettt 111
Example 71
IDL Definitions 112
Introduction.........coocveeerieeeiieeniienieeeeeeen 71
The basic eXampleoocovveviiniennnnns 71 Introduction.........cccecveerenenenenieieeeeeene 112
Resourcecccooovvveiiniiiiiiniiiic, 72 CosTransactionsidl ..o 112
Transactional implementation..................... 73 ArjunaOTS.idl ..o, 114
Server implementation.........c.ccceceereeneennnne 74
Client implementation..........cc.cceveereereennenne 75 References 116
Sequence diagram........c..ccecceeveeneeneenecnnenne 76
Interpretation of output.........cccceveerierieenen. 77
S 73 References.......ccooueveeeviinieniiiiiiiiccee 116
Failure recovery 80 Index 17
Introduction........cccceevereevienieeenineeieneneeneen 80
Configuring the failure recovery subsystem
for your ORB.....c.ccociiiiiiiiiiiiiiceceee 80
The Recovery Manager.........ccccceeeeveeneeenen. 81
Important NOte........ccevueeveeneenieniinieeieenee. 81
Configuring the Recovery Manager 81
XA TESOUICE TECOVETY ..oruveenveenreenieenieeeneeeneees 87
Recovery behaviour..........cccceeoeniininncnen. 93
Expired entry removalcc.ccecevceenienieennen. 94
Recovery Domains........ccccceeeeveenienicnicennen. 95

Transaction statuses and replay_completion 96

JTA and the JTS 97
Distributed JTAccooovieviirieiieeeeeeeen 97
Tools 98
Introduction........cocceevereevenirveeninieeneneeneen 98

iv JBossTS-PG-03/23/06

About This Guide

What This Guide Contains

The JTS Programmers Guide contains information on how to use JBoss Transactions 4.2.
This document provides a detailed look at the design and operation of. It describes the
architecture and the interaction of components and within this architecture.

Audience

Although this guide is specifically intended for service developers using JBoss Transactions
4.2, it will be useful to anyone who would like to gain an understanding of the transactions
and how they function.

Prerequisites

This guide assumes a basic familiarity with Java™ service development and object-oriented
programming. A fundamental level of understanding in the following areas will also be
useful:

e A general understanding of the APIs, components, and objects that are present in
Java applications.

e A general understanding of the Windows and UNIX operating systems.

Organization

This guide contains the following chapters:

e Chapter 1, An Overview of transaction processing: gives an brief overview of the
transaction processing.

e Chapter 2, JBossTS basics: presents JBossTS and describes its features in terms on
compliance to JTS/OTS specifications and enhancements it provides in regards to
the OTS specification.

¢ Chapter 3, An introduction to the OTS: describes OTS and the programming
models from the User point of view. The way JBossTS offers these programming
models and JBossTS enhancements are described.

JBossTS-PG-3/23/06 5

JBoss Transactions 4.2 JTS Programmers Guide

Chapter 4, Constructing an OTS application: describes how to build an OTS
application using JBossTS.

Chapter 5, JBossTS interfaces for extending the OTS: contains a description of
the use of JBossTS classes that provide extensions to the OTS interfaces.

Chapter 6, Example: illustrates a detailed client/server example.

Chapter 7, Failure Recovery: describes how to configure JBossTS to manage
Failure recovery.

Chapter 8, JTA and the JTS: describes how to configure JTA to be aware of JTS.

Chapter 9, Tools: explains how to start and use the tools framework and what tools
are available.

¢ Chapter 10, ORB specific configurations: describes how to configure specific

ORBs.

¢ Chapter 11, Configuring JBossTS: shows configurations features of JBossTS.

Documentation Conventions

The following conventions are used in this guide:

Convention

Italic

Bold
Code

Function | Function

()and|

Note:

Caution:

Description

In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced
by the user with an actual value.

Emphasizes items of particular importance.
Text that represents programming code.

A path to a function or dialog box within an interface. For example,
“Select File | Open.” indicates that you should select the Open
function from the File menu.

Parentheses enclose optional items in command syntax. The
vertical bar separates syntax items in a list of choices. For
example, any of the following three items can be entered in this
syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBossTS-PG-03/23/06

About This Guide

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transactions 4.2
documentation set:

® JBoss Transactions 4.2 Release Notes: Provides late-breaking information about
JBoss Transactions 4.2.

e JBoss Transactions 4.2 Installation Guide: This guide provides instructions for
installing JBoss Transactions 4.2.

e JBoss Transactions 4.2 Administration Guide: Provides guidance for writing
applications.

® JBoss Transactions 4.2 Quick Start Guide: Getting started quickly with the system.

® Arjuna Transactions API Programmer’s Guide: Provides guidance when using the
JTA for building transactional applications.

e TxCore Failure Recovery Guide: Describes the failure recovery aspects of JBossTS.

e TxCore Programmer’s Guide: Describes how to write transactional applications
using the non-distributed transaction engine at the heart of JBossTS.

Contacting Us

Questions or comments about JBoss Transactions 4.2 should be directed to our support team.
Send email to support@arijuna.com.

JBossTS-PG-3/23/06 7

Chapter 1

An overview of
transaction processing

What is a transaction?

Consider the following situation: a user wishes to purchase access to an on-line newspaper
and requires to pay for this access from an account maintained by an on-line bank. Once the
newspaper site has received the user’s credit from the bank, they will deliver an electronic
token to the user granting access to their site. Ideally the user would like the debiting of the
account, and delivery of the token to be “all or nothing” (atomic). However, hardware and
software failures could prevent either event from occurring, and leave the system in an
indeterminate state.

Atomic transactions (transactions) possess an “all-or-nothing” property, and are a well-known
technique for guaranteeing application consistency in the presence of failures. Transactions
possess the following ACID properties:

e Atomicity: The transaction completes successfully (commits) or if it fails (aborts) all
of its effects are undone (rolled back).

e (Consistency: Transactions produce consistent results and preserve application
specific invariants.

e [solation: Intermediate states produced while a transaction is executing are not
visible to others. Furthermore transactions appear to execute serially, even if they
are actually executed concurrently.

® Durability: The effects of a committed transaction are never lost (except by a
catastrophic failure).

A transaction can be terminated in two ways: committed or aborted (rolled back). When a
transaction is committed, all changes made within it are made durable (forced on to stable
storage, e.g., disk). When a transaction is aborted, all of the changes are undone. Atomic
actions can also be nested; the effects of a nested action are provisional upon the
commit/abort of the outermost (fop-level) atomic action.

Commit protocol

A two-phase commit protocol is required to guarantee that all of the action participants either
commit or abort any changes made. Figure 1 illustrates the main aspects of the commit
protocol: during phase 1, the action coordinator, C, attempts to communicate with all of the
action participants, A and B, to determine whether they will commit or abort. An abort reply
from any participant acts as a veto, causing the entire action to abort. Based upon these (lack

JBossTS-PG-3/23/06 9

of) responses, the coordinator arrives at the decision of whether to commit or abort the action.
If the action will commit, the coordinator records this decision on stable storage, and the
protocol enters phase 2, where the coordinator forces the participants to carry out the
decision. The coordinator also informs the participants if the action aborts.

When each participant receives the coordinator’s phase 1 message, they record sufficient
information on stable storage to either commit or abort changes made during the action. After
returning the phase 1 response, each participant who returned a commit response must remain
blocked until it has received the coordinator’s phase 2 message. Until they receive this
message, these resources are unavailable for use by other actions. If the coordinator fails
before delivery of this message, these resources remain blocked. However, if crashed
machines eventually recover, crash recovery mechanisms can be employed to unblock the
protocol and terminate the action.

A Commit OA

Commit?

Commit? Commit
Yes

Phase 1 Phase 2

Figure 1: Two-phase commit protocol.

Transactional proxies

The action coordinator maintains a transaction context where resources taking part in the
action are required to be registered. Such a resource must obey the transaction commit
protocol guaranteeing ACID properties; typically this means that the resource will provide
specific operations which the action can invoke during the commit/abort protocol. However,
it may not be possible to make all resources transactional in this way, e.g., legacy code which
cannot be modified. To use these resources within an action it is often possible to provide
transactional proxies: the proxy is registered with, and manipulated by, the action as though
it were a transactional resource, and the proxy performs implementation specific work to
make the resource it represents transactional. This requires that the proxy participate within
the commit/abort protocol. Because the work of the proxy is performed as part of the action,
it is guaranteed to be completed or undone despite failures of the action coordinator or action
participants.

Nested transactions

Given a system that provides transactions for certain operations, it is sometimes necessary to
combine them to form another operation, which is also required to be a transaction. The
resulting transaction’s effects are a combination of the effects of the transactions from which

10 JBossTS-PG-03/23/06

An overview of transaction processing

it is composed. The transactions which are contained within the resulting transaction are said
to be nested (or subtransactions), and the resulting transaction is referred to as the enclosing
transaction. The enclosing transaction is sometimes referred to as the parent of a nested (or
child) transaction. A hierarchical transaction structure can thus result, with the root of the
hierarchy being referred to as the top-level transaction.

An important difference exists between nested and top-level transactions: the effect of a
nested transaction is provisional upon the commit/roll back of its enclosing transaction(s),
i.e., the effects will be recovered if the enclosing transaction aborts, even if the nested
transaction has committed.

Subtransactions are a useful mechanism for two reasons:

e fault-isolation: if subtransaction rolls back (e.g., because an object it was using fails)
then this does not require the enclosing transaction to rollback, thus undoing all of
the work performed so far.

® modularity: if there is already a transaction associated with a call when a new
transaction is begun, then the transaction will be nested within it. Therefore, a
programmer who knows that an object require transactions can use them within the
object: if the object’s methods are invoked without a client transaction, then the
object’s transactions will simply be top-level; otherwise, they will be nested within
the scope of the client’s transactions. Likewise, a client need not know that the
object is transactional, and can begin its own transaction.

The Object Transaction Service

The CORBA architecture, as defined by the OMG, is a standard derived by an industrial
consortium which promotes the construction of interoperable applications that are based upon
the concepts of distributed objects. The architecture principally contains the following
components:

® Object Request Broker (ORB), which enables objects to transparently make and
receive requests in a distributed, heterogeneous environment. This component is the
core of the OMG reference model.

e Object Services, a collection of services that support functions for using and
implementing objects. Such services are considered to be necessary for the
construction of any distributed application. Of particular relevance to this manual is
the Object Transaction Service (OTS).

¢ Common Facilities, are other useful services that applications may need, but which
are not considered to be fundamental such as desktop management and help
facilities.

The CORBA architecture is structured to allow both its implementation in, and the integration
of, a wide variety of object systems. In particular, applications are independent of the location
of an object and the language in which an object is implemented, unless the interface the
object supports explicitly reveals such details. As defined in the OMG CORBA Services
documentation, object services are a collection of services (interfaces and objects) that
support the basic functions for using and implementing objects. Such services are necessary

JBossTS-PG-3/23/06 11

in the construction of any distributed application and are always independent of an
application domain. The document specifies several core services including naming, event
management, persistence, concurrency control and transactions.

The OTS specification allows transactions to be nested. However, an implementation need
not provide this functionality. Appropriate exceptions are raised if an attempt is made to use
nested transactions in this case. JBossTS is a fully compliant version of the OTS version 1.1
draft 5, and support nested transactions.

The transaction service provides interfaces that allow multiple, distributed objects to co-
operate in a transaction such that all objects commit or abort their changes together. However,
the OTS does not require all objects to have transactional behaviour. Instead objects can
choose not to support transactional operations at all, or to support it for some requests but not
others. Transaction information may be propagated between client and server explicitly, or
implicitly, giving the programmer finer-grained control over an objects transactionality.
Objects supporting (partial) transactional behaviour must have interfaces derived from the
TransactionalObject interface.

The Transaction Service specification also distinguishes between recoverable objects and
transactional objects. Recoverable objects are those that contain the actual state that may be
changed by a transaction and must therefore be informed when the transaction commits or
aborts to ensure the consistency of the state changes. This is achieved be registering
appropriate objects that support the Resource interface (or the derived
SubtransactionAwareResource interface) with the current transaction. Recoverable
objects are also by definition transactional objects.

In contrast, a simple transactional object need not necessarily be a recoverable object if its
state is actually implemented using other recoverable objects. A simple transactional object
need not take part in the commit protocol used to determine the outcome of the transaction
since it does not maintain any state itself, having delegated that responsibility to other
recoverable objects which will take part in the commit process.

The OTS is simply a protocol engine that guarantees that transactional behaviour is obeyed
but does not directly support all of the transaction properties given above. As such it requires
other co-operating services that implement the required functionality, including:

e Persistence/Recovery Service. Required to support the atomicity and durability
properties.

e Concurrency Control Service. Required to support the isolation properties.

The application programmer is responsible for using appropriate services to ensure that
transactional objects have the necessary ACID properties.

12 JBossTS-PG-03/23/06

JBossTS basics

Chapter 2

JBossTS basics

Basics of JBossTS

JBossTS is based upon the original Arjuna system developed at the University of Newcastle
between 1986 and 1995. Arjuna predates the OTS specification and includes many features
not found in the OTS. JBossTS is a superset of the OTS: applications written using the
standard OTS interfaces will be portable across OTS implementations.

In terms of the OTS specification, JBossTS provides:
e full draft 5 compliance, with support for Synchronization objects and
PropagationContexts.
e support for subtransactions.
* implicit context propagation where support from the ORB is available.

e support for multi-threaded applications.

e fully distributed transaction managers, i.e., there is no central transaction manager,
and the creator of a top-level transaction is responsible for its termination. Separate
transaction manager support is also available, however.

® transaction interposition.

e X/Open compliance, including checked transactions. This checking can optionally
be disabled. Note: checked transactions are disabled by default, i.e., any thread can
terminate a transaction.

e JDBC 1.0 and 2.0 support.
e Full JTA 1.0.1 support.

There are effectively three different levels at which a programmer can approach using
JBossTS. These will be briefly described in the following sections, and in more detail in
subsequent chapters.

Note: because of differences in ORB implementations, JBossTS has been
written with a separate ORB Portability library which hides these
differences; many of the examples used throughout this manual have also
been written using this library, and it is therefore recommended that the
ORB Portability Manual is read first.

Raw OTS

The OTS is actually only a protocol engine for driving registered resources through a two-
phase commit protocol. Application programmers are responsible for building and registering

JBossTS-PG-3/23/06 13

the Resource objects which take care of persistence and concurrency control to ensure
ACID properties for transactional application objects. The programmer must ensure that
Resources are registered at appropriate times, and that a given Resource is only registered
within a single transaction. Therefore, programming at the raw OTS level is extremely basic:
the programmer is responsible for many things, including managing persistence and
concurrency control on behalf of every transactional object.

Enhanced OTS functionality

The OTS implementation of nested transactions is extremely limited, and can lead to the
generation of heuristic-like results: a subtransaction coordinator discovers part way through
committing that some resources cannot commit; however, it cannot tell the committed
resources to abort. JBossTS allows nested transactions to execute a full two-phase commit
protocol, thus removing the possibility that some resources will have been committed
whereas others will have been rolled back.

When resources are registered with a transaction the programmer has no control over the
order in which these resources will be invoked during the commit/abort protocol, or whether
previously registered resources should be replaced with newly registered resources, for
example, then resources registered with a subtransaction are merged with its parent. JBossTS
provides an additional Resource subtype which gives programmers this control.

Advanced application programmer interface

The OTS does not provide any Resource implementations. These must be provided by the
application programmer or the OTS implementer. The interfaces defined within the OTS
specification are too low-level for most application programmers. Therefore, JBossTS comes
with Transactional Objects for Java, which makes use of the raw Common Object Services
interfaces but provides a higher-level API for building transactional applications and
frameworks. This API automates much of the activities concerned with participating in an
OTS transaction, allowing the programmer to concentrate on application development, rather
than transaction management.

The architecture of the system is shown in Figure 2. The API interacts with the concurrency
control and persistence services, and automatically registers appropriate resources for
transactional objects. These resources may also use the persistence and concurrency services.

14 JBossTS-PG-03/23/06

JBossTS basics

Trans. Appl Trans. Application
Framework T

Figure 2: JBossTS structure.

JBossTS exploits object-oriented techniques to present programmers with a toolkit of Java
classes from which application classes can inherit to obtain desired properties, such as
persistence and concurrency control. These classes form a hierarchy, part of which is shown
below.

Figure 3: JBossTS class hierarchy.

Apart from specifying the scopes of transactions, and setting appropriate locks within objects,
the application programmer does not have any other responsibilities: JBossTS guarantees that
transactional objects will be registered with, and be driven by, the appropriate transactions,
and crash recovery mechanisms are invoked automatically in the event of failures. Using
these interfaces, programmers need not worry about either creating or registering Resource
objects and calling persistence and concurrency control services. JBossTS guarantees that
appropriate resources will be registered with, and driven by, the transaction. If a transaction is
nested, resources will also be automatically propagated to the transaction’s parent upon
commit.

JBossTS-PG-3/23/06 15

The design and implementation goal of JBossTS was to provide a programming system for
constructing fault-tolerant distributed applications. In meeting this goal, three system
properties were considered highly important:

® [ntegration of Mechanisms: A fault-tolerant distributed system requires a variety of
system functions for naming, locating and invoking operations upon objects and also
for concurrency control, error detection and recovery from failures. These
mechanisms must be integrated such that their use by a programmer is easy and

natural.

e Flexibility: These mechanisms must be flexible, permitting application specific
enhancements, such as type-specific concurrency and recovery control, to be easily

produced from existing defaults.

® Portability: 1t should be possible to run JBossTS on any ORB.

The system is implemented in Java and extensively uses the type-inheritance facilities
provided by the language to provide user-defined objects with characteristics such as

persistence and recoverability.

JBossTS and the OTS specification

The OTS specification is written to allow its implementation in a flexible manner, in order to
cope with different application requirements for transactions. JBossTS supports all optional
parts of the OTS specification. In addition, if the specification allows functionality to be
implemented in a variety of different ways, JBossTS supports these possible implementations.
This section will briefly describe the default behaviour which JBossTS provides for certain
options. More information can be obtained from relevant sections in the manual.

OTS specification

If the transaction service chooses to restrict the
availability of the transaction context, then it should
raise the Unavailable exception.

An implementation of the transaction service need
not initialise the transaction context for every
request.

An implementation of the transaction service may
restrict the ability for the Coordinator, Terminator
and Control objects to be transmitted or used in
other execution environments to enable it to
guarantee transaction integrity.

The transaction service may restrict the termination
of a transaction to the client that started it.

A TransactionFactory is located using the
FactoryFinder interface of the life-cycle service.

A transaction service implementation may use the
Event Service to report heuristic decisions.

An implementation of the transaction service does
not need to support nested transactions.
Synchronization objects are required to be called
whenever the transaction commits.

16

JBossTS default implementation
JBossTS does not restrict the availability of the
transaction context

JBossTS only initialised the transaction context if
the interface supported by the target object is
derived from the TransactionalObject interface.
JBossTS does not impose restrictions on the
propagation of these objects.

JBossTS allows the termination of a transaction by
any client that uses the Terminator interface. In
addition, JBossTS does not impose restrictions
when clients use the Current interface.

JBossTS provides multiple ways in which the
TransactionFactory can be located.

JBossTS does not use the Event Service to report
heuristic decisions.

JBossTS supports nested transactions. To override
this, see Section Chapter 0.

JBossTS allows Synchronizations to be called
however the transaction terminates.

JBossTS-PG-03/23/06

JBossTS basics

A transaction service implementation need not JBossTS supports various types of interposition.
support interposition.

Table 2: JBossTS defaults.

Thread class

JBossTS is fully multi-threaded and supports the OTS notion of allowing multiple threads to
be active within a transaction, and for a thread to execute multiple transactions (although a
thread can only be active within a single transaction at a time). By default, if a thread is
created within the scope of a transaction (i.e., the creating thread has a transaction context
associated with it), the new thread will not be associated with the transaction. If the thread is
to be associated with the transaction then use the resume method of either the
AtomicTransaction class or Current.

However, if it is required that newly created threads automatically inherit the transaction
context of their parent, then they should be derived from the 0TS_Thread class:

public class OTS_Thread extends Thread
{

public void terminate ();
public void run ();

protected OTS_Thread ();
}i

The programmer must call the run method of 0TS_Thread at the start of the run method of
the application thread class. Likewise, it is necessary to call terminate prior to exiting the
body of the application thread’s run method:

public void run ()

{

super.run() ;
// do my work

super.terminate();

ORB portability issues

Although the CORBA specification is a standard, it is written in such a way that there are
several different ways in which an ORB can be implemented. As such, writing portable client
and server code can be difficult. Because JBossTS has been ported to most of the widely
available ORBs we believe that we have encountered many of the incompatibilities which can
exist between them. As such, in order to make JBossTS portable between ORBs we have
developed a series of ORB Portability classes and macros. If an application is written using
these classes then it should be more portable between different ORBs. These classes are
described in the separate ORB Portability Manual.

JBossTS-PG-3/23/06 17

Chapter 3

An introduction to the
OTS

Introduction

Basic JBossTS programming involves using the OTS interfaces provided in the
CosTransactions module, specified in CosTransactions.idl. This chapter is based on the
OTS Specification'. We shall only consider those aspects of the OTS which are relevant to an
application programmer wishing to use JBossTS, rather than an OTS implementer. Where
relevant, each section will describe JBossTS implementation decisions and runtime choices
available to the application programmer. These choices are also summarised at the end of this
chapter. In subsequent chapters we shall illustrate how these interfaces can be used to
construct transactional applications.

What is the OTS?

The raw CosTransactions interfaces can be found in the org.omg.CosTransactions
package. The JBossTS implementations of these interfaces are located in the
com.arjuna.CosTransactions package and its sub packages.

Note: In the following discussion it will be shown how many run-time decisions
of JBossTS can be overridden using Java properties specified at run-time.
The property names are mentioned in the

com.arjuna.ats.jts.common.Environment class. Section Error!
Reference source not found. described how these property variables
can either be assigned each time the application is executed, or can be
placed in a special property file which JBossTS reads at runtime.

The fundamental architecture of the OTS is captured in Figure 4. Aspects of this architecture
will be described in the rest of the chapter.

' Available from http://www.omg.org.

18 JBossTS-PG-03/23/06

An introduction to the OTS

Transaction originator

!

Current

Transaction
Context

sent with request

TransactionFactory
Control
Terminator

SubtransactionAwareResource

— »| recoverable server

A |
Current

Control

Coordinator

Resource RecoveryCoordinator

| l

Transaction
Context

associated with thread

Transaction Service

Transaction
Context

associated with thread

Figure 4: OTS Architecture.

Application programming models

A client application program may use direct or indirect context management to manage a
transaction. With indirect context management, an application uses the pseudo object called
Current, provided by the Transaction Service?, to associate the transaction context with the
application thread of control. In direct context management, an application manipulates the
Control object and the other objects associated with the transaction.

An object may require transactions to be either explicitly or implicitly propagated to its

operations.

® Explicit propagation means that an application propagates a transaction context by
passing objects defined by the Transaction Service as explicit parameters. This

should typically be the PropagationContext structure.

e [mplicit propagation means that requests are implicitly associated with the client’s

transaction; they share the client’s transaction context. It is transmitted implicitly to

the objects, without direct client intervention. Implicit propagation depends on

indirect context management, since it propagates the transaction context associated
with the Current pseudo object. An object that supports implicit propagation would

not typically expect to receive any Transaction Service object as an explicit

parameter.

2 With the release of draft 4 of the specification, Current should now be provided by the Orb.

JBossTS-PG-3/23/06

19

A client may use one or both forms of context management, and may communicate with
objects that use either method of transaction propagation. (Details of how to enable implicit
propagation were described in Section Chapter 0 and Section 0). This results in four ways in
which client applications may communicate with transactional objects:

e Direct Context Management/Explicit Propagation: the client application directly
accesses the Control object, and the other objects which describe the state of the
transaction. To propagate the transaction to an object, the client must include the
appropriate Transaction Service object as an explicit parameter of an operation;
typically this should be the PropagationContext structure.

¢ Indirect Context Management/Implicit Propagation: the client application uses
operations on the Current pseudo object to create and control its transactions. When
it issues requests on transactional objects, the transaction context associated with the
current thread is implicitly propagated to the object.

¢ Indirect Context Management/Explicit Propagation: for an implicit model
application to use explicit propagation, it can get access to the Control using the
get_control operation on the Current pseudo object. It can then use a Transaction
Service object as an explicit parameter to a transactional object; for efficiency
reasons this should be the PropagationContext structure, obtained by calling
get_txcontext on the appropriate Coordinator reference. This is explicit propagation.

¢ Direct Context Management/Implicit Propagation: a client that accesses the
Transaction Service objects directly can use the resume pseudo object operation to
set the implicit transaction context associated with its thread. This allows the client
to invoke operations of an object that requires implicit propagation of the transaction
context.

The main difference between direct and indirect context management is the effect on the
invoking thread’s transaction context. If using indirect (i.e., invoking operations through the
Current pseudo object), then the thread’s transaction context will be modified automatically
by the OTS, e.g., if begin is called then the thread’s notion of the current transaction will be
modified to the newly created transaction; when that is terminated, the transaction previously
associated with the thread (if any) will be restored as the thread’s context (assuming
subtransactions are supported by the OTS implementation). However, if using direct
management, no changes to the threads transaction context are performed by the OTS: the
application programmer assumes responsibility for this.

20 JBossTS-PG-03/23/06

An introduction to the OTS

Interfaces
Function Used by Direct context management Indirect® context
management
Create a Transaction Factory::create begin, set_timeout
transaction originator Control::get_terminator
Control::get_coordinator

Terminate a Transaction Terminator: :commit commit rollback
transaction originator— Terminator::rollback

implicit

All—explicit
Rollback a Server Terminator::rollback_only rollback_only
transaction
Control Server Declaration of method parameter TransactionalObje
propagation of ct interface
transaction to a
server
Control by client All Request parameters get_control

of transaction
propagation to a
server

suspend
resume

Become a Recoverable Coordinator::register_reso Not applicable

participant in a Server urce

transaction

Miscellaneous All Coordinator: :get_status get_status
Coordinator::get_transacti get_transaction_n
on_name ame
Coordinator::is_same_trans Not applicable
action Not applicable
Coordinator: :hash_transact
ion

Table 3: Use of Transaction Service functionality.

| Note: For clarity, subtransaction operations are not shown.

The transaction factory

The TransactionFactory interface is provided to allow the transaction originator to begin
a top-level transaction. (Subtransactions must be created using the begin method of
Current, or the create_subtransaction method of the parent’s Coordinator.)
Operations on the factory and Coordinator to create new transactions are direct context
management, and as such will not modify the calling thread’s transaction context.

The create operation creates a new top