
JBossJTA 4.15.1

JBossJTA
Development Guide

Development reference guide for the
JBossJTA implementation of the JTA API

Mark Little

Jonathan Halliday

Andrew Dinn

Kevin Connor

JBossJTA Development Guide

JBossJTA 4.15.1 JBossJTA Development Guide
Development reference guide for the JBossJTA implementation of
the JTA API
Edition 0

Author Mark Little mlittle@redhat.com
Author Jonathan Halliday jhallida@redhat.com
Author Andrew Dinn adinn@redhat.com
Author Kevin Connor kconnor@redhat.com
Editor Misty Stanley-Jones misty@redhat.com

Copyright © 2011 JBoss, Inc..

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

Development reference guide for the ArjunaTA implementation of the JTA API

mailto:mlittle@redhat.com
mailto:jhallida@redhat.com
mailto:adinn@redhat.com
mailto:kconnor@redhat.com
mailto:misty@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Prerequisites ... v
2. Document Conventions ... v

2.1. Typographic Conventions .. v
2.2. Pull-quote Conventions .. vi
2.3. Notes and Warnings ... vii

3. We Need Feedback! .. vii

1. About This Guide 1
1.1. Audience ... 1
1.2. Prerequisites .. 1

2. JDBC and Transactions 3
2.1. Using the transactional JDBC driver .. 3

2.1.1. Managing transactions ... 3
2.1.2. Restrictions ... 3

2.2. Transactional drivers .. 3
2.2.1. Loading drivers .. 3

2.3. Connections ... 4
2.3.1. JDBC .. 4
2.3.2. XADataSources ... 4
2.3.3. Using the connection ... 6
2.3.4. Connection pooling .. 7
2.3.5. Reusing connections .. 7
2.3.6. Terminating the transaction .. 7
2.3.7. AutoCommit .. 7
2.3.8. Setting isolation levels ... 7

3. Examples 9
3.1. JDBC example ... 9
3.2. Failure recovery example with BasicXARecovery ... 11

4. Using JBossJTA in application servers 15
4.1. Configuration .. 15
4.2. Logging .. 15
4.3. The services .. 15
4.4. Ensuring transactional context is propagated to the server .. 15

A. Revision History 17

iv

v

Preface

1. Prerequisites
ArjunaTA works in conjunction with ArjunaCore. In addition to the documentation here, consult the
ArjunaCore documentation, which ships as part of ArjunaCore and is also available on the JBoss
Transaction Service website at http://www.jboss.org/jbosstm.

2. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

2.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

1 https://fedorahosted.org/liberation-fonts/

http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System��� Preferences��� Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box
and click Close to switch the primary mouse button from the left to the right (making
the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications��� Accessories
�� Character Map from the main menu bar. Next, choose Search��� Find…
from the Character Map menu bar, type the name of the character in the Search
field and click Next. The character you sought will be highlighted in the Character
Table. Double-click this highlighted character to place it in the Text to copy field and
then click the Copy button. Now switch back to your document and choose Edit��
Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Notes and Warnings

vii

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

2.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

Preface

viii

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product JBossJTA.

When submitting a bug report, be sure to mention the manual's identifier:
JBossJTA_Development_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

https://jira.jboss.org/
https://jira.jboss.org/

Chapter 1.

1

About This Guide
The Stand-alone JTA Programmers Guide contains information on how to use JBossJTA outside of an
application server.

1.1. Audience
This guide is most relevant to engineers who want to use JBossJTA in installations that are not
covered elsewhere. It is assumed that the reader is already familiar with the core JBossJTA
documentation set.

1.2. Prerequisites
This guide assumes a basic familiarity with Java service development and object-oriented
programming. A fundamental level of understanding in the following areas will also be useful:
• General understanding of the APIs, components, and objects that are present in Java applications.

• A general understanding of the Windows and UNIX operating systems.

2

Chapter 2.

3

JDBC and Transactions

2.1. Using the transactional JDBC driver
JBossJTA supports construction of both local and distributed transactional applications which access
databases using the JDBC APIs. JDBC supports two-phase commit of transactions, and is similar to
the XA X/Open standard. JBossTS provides JDBC support in package com.arjuna.ats.jdbc. A list of
the tested drivers is available from the JBossTS website.

Only use the transactional JDBC support provided in package com.arjuna.ats.jdbc when you are using
JBossTS outside of an application server, such as JBoss Application Server, or another container.
Otherwise, use the JDBC support provided by your application server or container.

2.1.1. Managing transactions
JBossJTA needs the ability to associate work performed on a JDBC connection with a specific
transaction. Therefore, applications need to use a combination of implicit transaction propagation and
indirect transaction management. For each JDBC connection, JBossJTA must be able to determine
the invoking thread's current transaction context.

2.1.2. Restrictions
Nested transactions are not supported by JDBC. If you try to use a JDBC connection within a
subtransaction, JBossJTA throws a suitable exception and no work is allowed on that connection.
However, if you need nested transactions, and are comfortable with straying from the JDBC standard,
you can set property com.arjuna.ats.jta.supportSubtransactions property to YES.

2.2. Transactional drivers
The approach JBossJTA takes for incorporating JDBC connections within transactions is to provide
transactional JDBC drivers as conduits for all interactions. These drivers intercept all invocations
and ensure that they are registered with, and driven by, appropriate transactions. The driver
com.arjuna.ats.jdbc.TransactionalDriver handles all JDBC drivers, implementing the
java.sql.Driver interface. If the database is not transactional, ACID properties cannot be
guaranteed.

2.2.1. Loading drivers

Example 2.1. Instantiating and using the driver within an application

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();

Example 2.2. Registering the drivers with the JDBC driver manager using the Java system
properties

Properties p = System.getProperties();

switch (dbType)
{
case MYSQL:
 p.put("jdbc.drivers", "com.mysql.jdbc.Driver");
 break;

Chapter 2. JDBC and Transactions

4

case PGSQL:
 p.put("jdbc.drivers", "org.postgresql.Driver");
 break;
}

System.setProperties(p);

The jdbc.drivers property contains a colon-separated list of driver class names, which the JDBC
driver manager loads when it is initialized. After the driver is loaded, you can use it to make a
connection with a database.

Example 2.3. Using the Class.forName method
Calling Class.forName() automatically registers the driver with the JDBC driver manager. It is
also possible to explicitly create an instance of the JDBC driver.

sun.jdbc.odbc.JdbcOdbcDriver drv = new sun.jdbc.odbc.JdbcOdbcDriver();

DriverManager.registerDriver(drv);

2.3. Connections
Because JBossJTA provides JDBC connectivity via its own JDBC driver, application code can support
transactions with relatively small code changes. Typically, the application programmer only needs to
start and terminate transactions.

2.3.1. JDBC
The JBossJTA driver accepts the following properties, all located in class
com.arjuna.ats.jdbc.TransactionalDriver.

username the database username

password the database password

createDb creates the database automatically if set to
true. Not all JDBC implementations support
this.

dynamicClass specifies a class to instantiate to connect to the
database, instead of using JNDI.

2.3.2. XADataSources
JDBC connections are created from appropriate DataSources. Connections which participate in
distributed transactions are obtained from XADataSources. When using a JDBC driver, JBossJTA
uses the appropriate DataSource whenever a connection to the database is made. It then obtains
XAResources and registers them with the transaction via the JTA interfaces. The transaction service
uses these XAResources when the transaction terminates in order to drive the database to either
commit or roll back the changes made via the JDBC connection.

JBossJTA JDBC support can obtain XADataSources through the Java Naming and Directory Interface
(JNDI) or dynamic class instantiation.

2.3.2.1. Java naming and directory interface (JNDI)
A JDBC driver can use arbitrary DataSources without having to know specific details about their
implementations, by using JNDI. A specific DataSource or XADataSource can be created and

XADataSources

5

registered with an appropriate JNDI implementation, and the application, or JDBC driver, can later
bind to and use it. Since JNDI only allows the application to see the DataSource or XADataSource
as an instance of the interface (e.g., javax.sql.XADataSource) rather than as an instance of the
implementation class (e.g., com.mydb.myXADataSource), the application is not tied at build-time to
only use a specific implementation.

For the TransactionalDriver class to use a JNDI-registered XADataSource, you need to create the
XADataSource instance and store it in an appropriate JNDI implementation. Details of how to do this
can be found in the JDBC tutorial available at the Java web site.

Example 2.4. Storing a datasource in a JNDI implementation

XADataSource ds = MyXADataSource();
Hashtable env = new Hashtable();
String initialCtx = PropertyManager.getProperty("Context.INITIAL_CONTEXT_FACTORY");

env.put(Context.INITIAL_CONTEXT_FACTORY, initialCtx);

initialContext ctx = new InitialContext(env);

ctx.bind("jdbc/foo", ds);

The Context.INITIAL_CONTEXT_FACTORY property is the JNDI way of specifying the type of JNDI
implementation to use.

The application must pass an appropriate connection URL to the JDBC driver:

 Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");
dbProps.setProperty(TransactionalDriver.password, "password");

// the driver uses its own JNDI context info, remember to set it up:
jdbcPropertyManager.propertyManager.setProperty(
 "Context.INITIAL_CONTEXT_FACTORY",
 initialCtx);
jdbcPropertyManager.propertyManager.setProperty(
 "Context.PROVIDER_URL", myUrl);

TransactionalDriver arjunaJDBCDriver = new TransactionalDriver();
Connection connection = arjunaJDBCDriver.connect("jdbc:arjuna:jdbc/foo", dbProps);

The JNDI URL must be pre-pended with jdbc:arjuna: in order for the TransactionalDriver to
recognize that the DataSource must participate within transactions and be driven accordingly.

2.3.2.2. Dynamic class instantiation
If a JNDI implementation is not available. you can specify an implementation of the DynamicClass
interface, which is used to get the XADataSource object. This is not recommended, but provides a
fallback for environments where use of JNDI is not feasible.

Use the property TransactionalDriver.dynamicClass to specify the implementation to use.
An example is PropertyFileDynamicClass, a DynamicClass implementation that reads the
XADataSource implementation class name and configuration properties from a file, then instantiates
and configures it.

Chapter 2. JDBC and Transactions

6

Deprecated class

The oracle_8_1_6 dynamic class is deprecated and should not be used.

Example 2.5. Instantiating a dynamic class
The application code must specify which dynamic class the TransactionalDriver should instantiate
when setting up the connection:

Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");
dbProps.setProperty(TransactionalDriver.password, "password");
dbProps.setProperty(TransactionalDriver.dynamicClass,
 "com.arjuna.ats.internal.jdbc.drivers.PropertyFileDynamicClass");

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();
Connection connection = arjunaJDBC2Driver.connect("jdbc:arjuna:/path/to/property/file",
 dbProperties);

2.3.3. Using the connection
Once the connection is established, all operations on the connection are monitored by JBossJTA.
you do not need to use the transactional connection within transactions. If a transaction is not present
when the connection is used, then operations are performed directly on the database.

Important

JDBC does not support subtransactions.

You can use transaction timeouts to automatically terminate transactions if a connection is not
terminated within an appropriate period.

You can use JBossJTA connections within multiple transactions simultaneously. An example would
be different threads, with different notions of the current transaction. JBossJTA does connection
pooling for each transaction within the JDBC connection. Although multiple threads may use the same
instance of the JDBC connection, internally there may be a separate connection for each transaction.
With the exception of method close, all operations performed on the connection at the application
level are only performed on this transaction-specific connection.

JBossJTA automatically registers the JDBC driver connection with the transaction via an appropriate
resource. When the transaction terminates, this resource either commits or rolls back any changes
made to the underlying database via appropriate calls on the JDBC driver.

Once created, the driver and any connection can be used in the same way as any other JDBC driver
or connection.

Connection pooling

7

Example 2.6. Creating and using a connection

Statement stmt = conn.createStatement();

try
 {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
 }
catch (SQLException e)
 {
 // table already exists
 }

stmt.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

ResultSet res1 = stmt.executeQuery("SELECT * FROM test_table");

2.3.4. Connection pooling
For each user name and password, JBossJTA maintains a single instance of each connection for
as long as that connection is in use. Subsequent requests for the same connection get a reference
to the original connection, rather than a new instance. You can try to close the connection, but the
connection will only actually be closed when all users (including transactions) have either finished with
the connection, or issued close calls.

2.3.5. Reusing connections
Some JDBC drivers allow the reuse of a connection for multiple different transactions once a given
transaction completes. Unfortunately this is not a common feature, and other drivers require a new
connection to be obtained for each new transaction. By default, the JBossJTA transactional driver
always obtains a new connection for each new transaction. However, if an existing connection is
available and is currently unused, JBossJTA can reuse this connection. To turn on this feature, add
option reuseconnection=true to the JDBC URL. For instance, jdbc:arjuna:sequelink://
host:port;databaseName=foo;reuseconnection=true

2.3.6. Terminating the transaction
When a transaction with an associated JDBC connection terminates, because of the application or
because a transaction timeout expires, JBossJTA uses the JDBC driver to drive the database to either
commit or roll back any changes made to it. This happens transparently to the application.

2.3.7. AutoCommit
If property AutoCommit of the interface java.sql.Connection is set to true for JDBC, the
execution of every SQL statement is a separate top-level transaction, and it is not possible to group
multiple statements to be managed within a single OTS transaction. Therefore, JBossJTA disables
AutoCommit on JDBC connections before they can be used. If AutoCommit is later set to true by
the application, JBossJTA throws the java.sql.SQLException.

2.3.8. Setting isolation levels
When you use the JBossJTA JDBC driver, you may need to set the underlying transaction
isolation level on the XA connection. By default, this is set to TRANSACTION_SERIALIZABLE,
but another value may be more appropriate for your application. To change it, set the property

Chapter 2. JDBC and Transactions

8

com.arjuna.ats.jdbc.isolationLevel to the appropriate isolation level in string form. Example
values are TRANSACTION_READ_COMMITTED or TRANSACTION_REPEATABLE_READ.

Note

Currently, this property applies to all XA connections created in the JVM.

Chapter 3.

9

Examples

3.1. JDBC example

Example 3.1. JDBC example
This simplified example assumes that you are using the transactional JDBC driver provided with
JBossTS. For details about how to configure and use this driver see the previous Chapter.

public class JDBCTest
{
 public static void main (String[] args)
 {
 /*
 */

 Connection conn = null;
 Connection conn2 = null;
 Statement stmt = null; // non-tx statement
 Statement stmtx = null; // will be a tx-statement
 Properties dbProperties = new Properties();

 try
 {
 System.out.println("\nCreating connection to database: "+url);

 /*
 * Create conn and conn2 so that they are bound to the JBossTS
 * transactional JDBC driver. The details of how to do this will
 * depend on your environment, the database you wish to use and
 * whether or not you want to use the Direct or JNDI approach. See
 * the appropriate chapter in the JTA Programmers Guide.
 */

 stmt = conn.createStatement(); // non-tx statement

 try
 {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e)
 {
 // assume not in database.
 }

 try
 {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b
 INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b
 INTEGER)");
 }
 catch (Exception e)
 {
 }

 try
 {
 System.out.println("Starting top-level transaction.");

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();

Chapter 3. Examples

10

 stmtx = conn.createStatement(); // will be a tx-statement

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");
 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES
 (3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");
 System.out.println("\nInspecting table 2.");

 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.print("\nNow attempting to rollback changes.");
 com.arjuna.ats.jta.UserTransaction.userTransaction().rollback();

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();
 stmtx = conn.createStatement();
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");
 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();
 res2 = stmtx.executeQuery("SELECT * FROM test_table2");
 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 com.arjuna.ats.jta.UserTransaction.userTransaction().commit(true);
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 System.exit(0);
 }
 }
 catch (Exception sysEx)
 {
 sysEx.printStackTrace();
 System.exit(0);

Failure recovery example with BasicXARecovery

11

 }
 }

3.2. Failure recovery example with BasicXARecovery
This class implements the XAResourceRecovery interface for XAResources. The parameter
supplied in setParameters can contain arbitrary information necessary to initialize the class once
created. In this example, it contains the name of the property file in which the database connection
information is specified, as well as the number of connections that this file contains information on.
Each item is separated by a semicolon.

This is only a small example of the sorts of things an XAResourceRecovery implementer could do.
This implementation uses a property file that is assumed to contain sufficient information to recreate
connections used during the normal run of an application so that recovery can be performed on them.
Typically, user-names and passwords should never be presented in raw text on a production system.

Example 3.2. Database parameter format for the properties file

 DB_x_DatabaseURL=
 DB_x_DatabaseUser=
 DB_x_DatabasePassword=
 DB_x_DatabaseDynamicClass=

x is the number of the connection information.

Some error-handling code is missing from this example, to make it more readable.

Example 3.3. Failure recovery example with BasicXARecovery

/*
 * Some XAResourceRecovery implementations will do their startup work here,
 * and then do little or nothing in setDetails. Since this one needs to know
 * dynamic class name, the constructor does nothing.
 */

public BasicXARecovery () throws SQLException
{
 numberOfConnections = 1;
 connectionIndex = 0;
 props = null;
}

/**
 * The recovery module will have chopped off this class name already. The
 * parameter should specify a property file from which the url, user name,
 * password, etc. can be read.
 *
 * @message com.arjuna.ats.internal.jdbc.recovery.initexp An exception
 * occurred during initialisation.
 */

public boolean initialise (String parameter) throws SQLException
{
 if (parameter == null)
 return true;

 int breakPosition = parameter.indexOf(BREAKCHARACTER);
 String fileName = parameter;

Chapter 3. Examples

12

 if (breakPosition != -1)
 {
 fileName = parameter.substring(0, breakPosition - 1);

 try
 {
 numberOfConnections = Integer.parseInt(parameter
 .substring(breakPosition + 1));
 }
 catch (NumberFormatException e)
 {
 return false;
 }
 }

 try
 {
 String uri = com.arjuna.common.util.FileLocator
 .locateFile(fileName);
 jdbcPropertyManager.propertyManager.load(XMLFilePlugin.class
 .getName(), uri);

 props = jdbcPropertyManager.propertyManager.getProperties();
 }
 catch (Exception e)
 {
 return false;
 }

 return true;
}

/**
 * @message com.arjuna.ats.internal.jdbc.recovery.xarec {0} could not find
 * information for connection!
 */

public synchronized XAResource getXAResource () throws SQLException
{
 JDBC2RecoveryConnection conn = null;

 if (hasMoreResources())
 {
 connectionIndex++;

 conn = getStandardConnection();

 if (conn == null) conn = getJNDIConnection();
 }

 return conn.recoveryConnection().getConnection().getXAResource();
}

public synchronized boolean hasMoreResources ()
{
 if (connectionIndex == numberOfConnections)
 return false;
 else
 return true;
}

private final JDBC2RecoveryConnection getStandardConnection ()
 throws SQLException
{
 String number = new String("" + connectionIndex);
 String url = new String(dbTag + number + urlTag);
 String password = new String(dbTag + number + passwordTag);

Failure recovery example with BasicXARecovery

13

 String user = new String(dbTag + number + userTag);
 String dynamicClass = new String(dbTag + number + dynamicClassTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);
 String thePassword = props.getProperty(password);

 if (theUser != null)
 {
 dbProperties.put(TransactionalDriver.userName, theUser);
 dbProperties.put(TransactionalDriver.password, thePassword);

 String dc = props.getProperty(dynamicClass);

 if (dc != null)
 dbProperties.put(TransactionalDriver.dynamicClass, dc);

 return new JDBC2RecoveryConnection(url, dbProperties);
 }
 else
 return null;
}

private final JDBC2RecoveryConnection getJNDIConnection ()
 throws SQLException
{
 String number = new String("" + connectionIndex);
 String url = new String(dbTag + jndiTag + number + urlTag);
 String password = new String(dbTag + jndiTag + number + passwordTag);
 String user = new String(dbTag + jndiTag + number + userTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);
 String thePassword = props.getProperty(password);

 if (theUser != null)
 {
 dbProperties.put(TransactionalDriver.userName, theUser);
 dbProperties.put(TransactionalDriver.password, thePassword);

 return new JDBC2RecoveryConnection(url, dbProperties);
 }
 else
 return null;
}

private int numberOfConnections;
private int connectionIndex;
private Properties props;
private static final String dbTag = "DB_";
private static final String urlTag = "_DatabaseURL";
private static final String passwordTag = "_DatabasePassword";
private static final String userTag = "_DatabaseUser";
private static final String dynamicClassTag = "_DatabaseDynamicClass";
private static final String jndiTag = "JNDI_";

/*
 * Example:
 *
 * DB2_DatabaseURL=jdbc\:arjuna\:sequelink\://qa02\:20001
 * DB2_DatabaseUser=tester2 DB2_DatabasePassword=tester
 * DB2_DatabaseDynamicClass=com.arjuna.ats.internal.jdbc.drivers.sequelink_5_1
 *
 * DB_JNDI_DatabaseURL=jdbc\:arjuna\:jndi DB_JNDI_DatabaseUser=tester1
 * DB_JNDI_DatabasePassword=tester DB_JNDI_DatabaseName=empay

Chapter 3. Examples

14

 * DB_JNDI_Host=qa02 DB_JNDI_Port=20000
 */
private static final char BREAKCHARACTER = ';'; // delimiter for parameters

You can use the class
com.arjuna.ats.internal.jdbc.recovery.JDBC2RecoveryConnection to create a new
connection to the database using the same parameters used to create the initial connection.

Chapter 4.

15

Using JBossJTA in application servers
JBoss Application Server is discussed here. Refer to the documentation for your application server for
differences.

4.1. Configuration
When JBossJTA runs embedded in JBoss Application Server, the transaction system is configured
primarily through the transaction-jboss-beans.xml deployment descriptor, which overrides
properties read from the default properties file embedded in the .jar file.

Table 4.1. Common configuration attributes

CoordinatorEnvironmentBean.defaultTimeout The default transaction timeout to be used for
new transactions. Specified as an integer in
seconds.

CoordinatorEnvironmentBean.enableStatistics This determines whether or not the transaction
service should gather statistical information.
This information can then be viewed using
the TransactionStatistics MBean. Specified
as a Boolean. The default is to not gather this
information.

See the transaction-jboss-beans.xml file and the JBoss Application Server administration and
configuration guide for further information.

4.2. Logging
To make JBossTS logging semantically consistent with JBoss Application Server, the
TransactionManagerService modifies the level of some log messages, by overriding the value of
the LoggingEnvironmentBean.loggingFactory property in the jbossts-properties.xml
file. Therefore, the value of this property has no effect on the logging behavior when running
embedded in JBoss Application Server. By forcing use of the log4j_releveler logger, the
TransactionManagerService changes the level of all INFO level messages in the transaction
code to DEBUG. Therefore, these messages do not appear in log files if the filter level is INFO. All other
log messages behave as normal.

4.3. The services
The TransactionManager bean provides transaction management services to other components
in JBoss Application Server. There are two different version of this bean and they requires different
configuration. Take care to select the transaction-jboss-beans.xml suitable for your needs
(local JTA or JTS).

4.4. Ensuring transactional context is propagated to the
server
You can coordinate transactions from a coordinator which is not located within the JBoss server , such
as when using transactions created by an external OTS server. To ensure the transaction context is
propagated via JRMP invocations to the server, the transaction propagation context factory needs to
be explicitly set for the JRMP invoker proxy. This is done as follows:

Chapter 4. Using JBossJTA in application servers

16

JRMPInvokerProxy.setTPCFactory(new
 com.arjuna.ats.internal.jbossatx.jts.PropagationContextManager());

17

Appendix A. Revision History
Revision 0 Thu Oct 28 2010 Misty Stanley-Jones misty@redhat.com

Initial conversion of book into Docbook

Revision 1 Thu Apr 14 2011 Tom Jenkinson
tom.jenkinson@redhat.com

Moved some content to the main development guide

mailto:misty@redhat.com
mailto:tom.jenkinson@redhat.com

18

	JBossJTA Development Guide
	Table of Contents
	Preface
	1. Prerequisites
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. JDBC and Transactions
	2.1. Using the transactional JDBC driver
	2.1.1. Managing transactions
	2.1.2. Restrictions

	2.2. Transactional drivers
	2.2.1. Loading drivers

	2.3. Connections
	2.3.1. JDBC
	2.3.2. XADataSources
	2.3.2.1. Java naming and directory interface (JNDI)
	2.3.2.2. Dynamic class instantiation

	2.3.3. Using the connection
	2.3.4. Connection pooling
	2.3.5. Reusing connections
	2.3.6. Terminating the transaction
	2.3.7. AutoCommit
	2.3.8. Setting isolation levels

	Chapter 3. Examples
	3.1. JDBC example
	3.2. Failure recovery example with BasicXARecovery

	Chapter 4. Using JBossJTA in application servers
	4.1. Configuration
	4.2. Logging
	4.3. The services
	4.4. Ensuring transactional context is propagated to the server

	Appendix A. Revision History

