
JBoss Transactions
4.16.5.Final

Transactions
Overview Guide

Mark Little

Transactions Overview Guide

JBoss Transactions 4.16.5.Final Transactions Overview Guide
Author Mark Little mlittle@redhat.com

Copyright © 2011 JBoss.org.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

The Transactions Overview Guide contains information on how to use JBoss Transactions to develop
applications that use transaction technology to manage business processes.

mailto:mlittle@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings ... vii

2. We Need Feedback! .. vii

1. About This Guide 1
1.1. Audience ... 1
1.2. Prerequisites .. 1

2. Transactions Overview 3
2.1. What is a transaction? .. 3
2.2. The Coordinator ... 4
2.3. The Transaction Context .. 4
2.4. Participants .. 5
2.5. Commit protocol ... 5
2.6. The Synchronization Protocol .. 6
2.7. Optimizations to the Protocol .. 7
2.8. Non-Atomic Transactions and Heuristic Outcomes ... 8
2.9. Interposition ... 9
2.10. A New Transaction Protocol .. 9

2.10.1. Addressing the Problems of Transactioning in Loosely Coupled Systems 10

A. Revision History 11

iv

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System��� Preferences��� Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

and click Close to switch the primary mouse button from the left to the right (making
the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications��� Accessories
�� Character Map from the main menu bar. Next, choose Search��� Find…
from the Character Map menu bar, type the name of the character in the Search
field and click Next. The character you sought will be highlighted in the Character
Table. Double-click this highlighted character to place it in the Text to copy field and
then click the Copy button. Now switch back to your document and choose Edit��
Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

vii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product JBoss Transactions.

When submitting a bug report, be sure to mention the manual's identifier:
Transactions_Overview_Guide

https://jira.jboss.org/
https://jira.jboss.org/

Preface

viii

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1.

1

About This Guide
The Transaction Fundamentals describes what transactions are, why ACID transactions are good in
most cases but extended transactions are necessary in other areas, and other useful information to
best use JBossTS.

1.1. Audience
This guide is most relevant for developers who want to understand the details behind transaction
systems.

1.2. Prerequisites
None.

2

Chapter 2.

3

Transactions Overview

2.1. What is a transaction?

Note

This chapter deals with the theory of transactional services. If you are familiar with these
principles, consider this chapter a reference.

Consider the following situation: a user wishes to purchase access to an on-line newspaper and
requires to pay for this access from an account maintained by an on-line bank. Once the newspaper
site has received the user’s credit from the bank, they will deliver an electronic token to the user
granting access to their site. Ideally the user would like the debiting of the account, and delivery of the
token to be “all or nothing” (atomic). However, hardware and software failures could prevent either
event from occurring, and leave the system in an indeterminate state.

• Atomic transactions (transactions) possess an “all-or-nothing” property, and are a well-known
technique for guaranteeing application consistency in the presence of failures. Transactions
possess the following ACID properties:

• Atomicity: The transaction completes successfully (commits) or if it fails (aborts) all of its effects are
undone (rolled back).

• Consistency: Transactions produce consistent results and preserve application specific invariants.

• Isolation: Intermediate states produced while a transaction is executing are not visible to others.
Furthermore transactions appear to execute serially, even if they are actually executed concurrently.

• Durability: The effects of a committed transaction are never lost (except by a catastrophic failure).

A transaction can be terminated in two ways: committed or aborted (rolled back). When a transaction
is committed, all changes made within it are made durable (forced on to stable storage, e.g., disk).
When a transaction is aborted, all of the changes are undone. Atomic actions can also be nested; the
effects of a nested action are provisional upon the commit/abort of the outermost (top-level) atomic
action.

Transactions have emerged as the dominant paradigm for coordinating interactions between parties
in a (distributed) system, and in particular to manage applications that require concurrent access
to shared data. A classic transaction is a unit of work that either completely succeeds, or fails with
all partially completed work being undone. When a transaction is committed, all changes made
by the associated requests are made durable, normally by committing the results of the work to a
database. If a transaction should fail and is rolled back, all changes made by the associated work are
undone. Transactions in distributed systems typically require the use of a transaction manager that is
responsible for coordinating all of the participants that are part of the transaction.

The main components involved in using and defining transactional applications are:
• A Transaction Service: The Transaction Service captures the model of the underlying transaction

protocol and coordinates parties affiliated with the transaction according to that model.

Chapter 2. Transactions Overview

4

• A Transaction API: Provides an interface for transaction demarcation and the registration of
participants.

• A Participant: The entity that cooperates with the transaction service on behalf of its associated
business logic.

• The Context: Captures the necessary details of the transaction such that participants can enlist
within its scope.

2.2. The Coordinator
Associated with every transaction is a coordinator, which is responsible for governing the outcome of
the transaction. The coordinator may be implemented as a separate service or may be co-located with
the user for improved performance. Each coordinator is created by the transaction manager service,
which is in effect a factory for those coordinators.

A coordinator communicates with enrolled participants to inform them of the desired termination
requirements, i.e., whether they should accept (e.g., confirm) or reject (e.g., cancel) the work done
within the scope of the given transaction. For example, whether to purchase the (provisionally
reserved) flight tickets for the user or to release them. An application/client may wish to terminate a
transaction in a number of different ways (e.g., confirm or cancel). However, although the coordinator
will attempt to terminate in a manner consistent with that desired by the client, it is ultimately the
interactions between the coordinator and the participants that will determine the actual final outcome.

A transaction manager is typically responsible for managing coordinators for many transactions. The
initiator of the transaction (e.g., the client) communicates with a transaction manager and asks it to
start a new transaction and associate a coordinator with the transaction. Once created, the context
can be propagated to Web services in order for them to associate their work with the transaction.

2.3. The Transaction Context
In order for a transaction to span a number of services, certain information has to be shared between
those services in order to propagate information about the transaction. This information is known
as the Context. The context is often automatically propagated and processed by transaction-aware
components of an application:

Contents of a Context
Transaction Identifier

Guarantees global uniqueness for an individual transaction.

Transaction Coordinator Location
The endpoint address participants contact to enroll.

Participants

5

Figure 2.1. Context Flow

2.4. Participants
The coordinator cannot know the details of how every transactional service is implemented; in
fact it is not necessary for it to do so in order to negotiate a transactional outcome. It treats each
service taking part in a transaction as a participant and communicates with it according to some
predefined participant coordination models appropriate to the type of transaction. When a service
begins performing work within the scope of a transaction it enrolls itself with the coordinator as a
participant, specifying the participant model it wishes to follow. So, the term participant merely refers a
transactional service enrolled in a specific transaction using a specific participant model.

2.5. Commit protocol
A two-phase commit protocol is required to guarantee that all of the action participants either commit
or abort any changes made. See Figure 2.2, “Two-Phase Commit Overview” which illustrates the main
aspects of the commit protocol: during phase 1, the action coordinator, C, attempts to communicate
with all of the action participants, A and B, to determine whether they will commit or abort. An abort
reply from any participant acts as a veto, causing the entire action to abort. Based upon these (lack
of) responses, the coordinator arrives at the decision of whether to commit or abort the action. If the
action will commit, the coordinator records this decision on stable storage, and the protocol enters
phase 2, where the coordinator forces the participants to carry out the decision. The coordinator also
informs the participants if the action aborts.

When each participant receives the coordinator’s phase 1 message, they record sufficient information
on stable storage to either commit or abort changes made during the action. After returning the
phase 1 response, each participant who returned a commit response must remain blocked until it
has received the coordinator’s phase 2 message. Until they receive this message, these resources
are unavailable for use by other actions. If the coordinator fails before delivery of this message,
these resources remain blocked. However, if crashed machines eventually recover, crash recovery
mechanisms can be employed to unblock the protocol and terminate the action.

Chapter 2. Transactions Overview

6

Figure 2.2. Two-Phase Commit Overview

Note

During two-phase commit transactions, coordinators and resources keep track of activity in
non-volatile data stores so that they can recover in the case of a failure.

2.6. The Synchronization Protocol
Besides the two-phase commit protocol, traditional transaction processing systems employ an
additional protocol, often referred to as the synchronization protocol. With the original ACID properties,
Durability is important when state changes need to be available despite failures. Applications
interact with a persistence store of some kind, such as a database, and this interaction can impose a
significant overhead, because disk access is much slower to access than main computer memory.

One solution to the problem disk access time is to cache the state in main memory and only operate
on the cache for the duration of a transaction. Unfortunately, this solution needs a way to flush
the state back to the persistent store before the transaction terminates, or risk losing the full ACID
properties. This is what the synchronization protocol does, with Synchronization Participants.

Synchronizations are informed that a transaction is about to commit. At that point, they can
flush cached state, which might be used to improve performance of an application, to a durable
representation prior to the transaction committing. The synchronizations are then informed about when
the transaction completes and its completion state.

Procedure 2.1. The "Four Phase Protocol" Created By Synchronizations
Synchronizations essentially turn the two-phase commit protocol into a four-phase protocol:

1. Step 1
Before the transaction starts the two-phase commit, all registered Synchronizations are informed.
Any failure at this point will cause the transaction to roll back.

Optimizations to the Protocol

7

2. Steps 2 and 3
The coordinator then conducts the normal two-phase commit protocol.

3. Step 4
Once the transaction has terminated, all registered Synchronizations are informed. However,
this is a courtesy invocation because any failures at this stage are ignored: the transaction has
terminated so there’s nothing to affect.

The synchronization protocol does not have the same failure requirements as the traditional two-
phase commit protocol. For example, Synchronization participants do not need the ability to recover
in the event of failures, because any failure before the two-phase commit protocol completes cause
the transaction to roll back, and failures after it completes have no effect on the data which the
Synchronization participants are responsible for.

2.7. Optimizations to the Protocol
There are several variants to the standard two-phase commit protocol that are worth knowing about,
because they can have an impact on performance and failure recovery. Table 2.1, “Variants to the
Two-Phase Commit Protocol” gives more information about each one.

Table 2.1. Variants to the Two-Phase Commit Protocol

Variant Description

Presumed Abort If a transaction is going to roll back, the
coordinator may record this information locally
and tell all enlisted participants. Failure to
contact a participant has no effect on the
transaction outcome. The coordinator is
informing participants only as a courtesy.
Once all participants have been contacted,
the information about the transaction can be
removed. If a subsequent request for the status
of the transaction occurs, no information will be
available and the requester can assume that the
transaction has aborted. This optimization has
the benefit that no information about participants
need be made persistent until the transaction
has progressed to the end of the prepare
phase and decided to commit, since any failure
prior to this point is assumed to be an abort of
the transaction.

One-Phase If only a single participant is involved in the
transaction, the coordinator does not need to
drive it through the prepare phase. Thus, the
participant is told to commit, and the coordinator
does not need to record information about the
decision, since the outcome of the transaction is
the responsibility of the participant.

Read-Only When a participant is asked to prepare, it can
indicate to the coordinator that no information
or data that it controls has been modified during
the transaction. Such a participant does not
need to be informed about the outcome of the
transaction since the fate of the participant has

Chapter 2. Transactions Overview

8

Variant Description
no affect on the transaction. Therefore, a read-
only participant can be omitted from the second
phase of the commit protocol.

2.8. Non-Atomic Transactions and Heuristic Outcomes
In order to guarantee atomicity, the two-phase commit protocol is blocking. As a result of failures,
participants may remain blocked for an indefinite period of time, even if failure recovery mechanisms
exist. Some applications and participants cannot tolerate this blocking.

To break this blocking nature, participants that are past the prepare phase are allowed to make
autonomous decisions about whether to commit or rollback. Such a participant must record its
decision, so that it can complete the original transaction if it eventually gets a request to do so. If the
coordinator eventually informs the participant of the transaction outcome, and it is the same as the
choice the participant made, no conflict exists. If the decisions of the participant and coordinator are
different, the situation is referred to as a non-atomic outcome, and more specifically as a heuristic
outcome.

Resolving and reporting heuristic outcomes to the application is usually the domain of complex,
manually driven system administration tools, because attempting an automatic resolution requires
semantic information about the nature of participants involved in the transactions.

Precisely when a participant makes a heuristic decision depends on the specific implementation.
Likewise, the choice the participant makes about whether to commit or to roll back depends upon the
implementation, and possibly the application and the environment in which it finds itself. The possible
heuristic outcomes are discussed in Table 2.2, “Heuristic Outcomes”.

Table 2.2. Heuristic Outcomes

Outcome Description

Heuristic Rollback The commit operation failed because some or
all of the participants unilaterally rolled back the
transaction.

Heuristic Commit An attempted rollback operation failed because
all of the participants unilaterally committed.
One situation where this might happen is if the
coordinator is able to successfully prepare
the transaction, but then decides to roll it back
because its transaction log could not be updated.
While the coordinator is making its decision, the
participants decides to commit.

Heuristic Mixed Some participants commit ed, while others were
rolled back.

Heuristic Hazard The disposition of some of the updates is
unknown. For those which are known, they have
either all been committed or all rolled back.

Heuristic decisions should be used with care and only in exceptional circumstances, since the decision
may possibly differ from that determined by the transaction service. This type of difference can lead
to a loss of integrity in the system. Try to avoid needing to perform resolution of heuristics, either by
working with services and participants that do not cause heuristics, or by using a transaction service
that provides assistance in the resolution process.

Interposition

9

2.9. Interposition
Interposition is a scoping mechanism which allows coordination of a transaction to be delegated
across a hierarchy of coordinators. See Figure 2.3, “Interpositions” for a graphical representation of
this concept.

Figure 2.3. Interpositions

Interposition is particularly useful for Web Services transactions, as a way of limiting the amount
of network traffic required for coordination. For example, if communications between the top-level
coordinator and a web service are slow because of network traffic or distance, the web service might
benefit from executing in a subordinate transaction which employs a local coordinator service. In
Figure 2.3, “Interpositions”,to prepare, the top-level coordinator only needs to send one prepare
message to the subordinate coordinator, and receive one prepared or aborted reply. The
subordinate coordinator forwards a prepare locally to each participant and combines the results to
decide whether to send a single prepared or aborted reply.

2.10. A New Transaction Protocol
Many component technologies offer mechanisms for coordinating ACID transactions based on two-
phase commit semantics. Some of these are CORBA/OTS, JTS/JTA, and MTS/MSDTC. ACID
transactions are not suitable for all Web Services transactions, as explained in Reasons ACID is Not
Suitable for Web Services.

Reasons ACID is Not Suitable for Web Services
• Classic ACID transactions assume that an organization that develops and deploys applications

owns the entire infrastructure for the applications. This infrastructure has traditionally taken the form
of an Intranet. Ownership implies that transactions operate in a trusted and predictable manner. To
assure ACIDity, potentially long-lived locks can be kept on underlying data structures during two-
phase commit. Resources can be used for any period of time and released when the transaction is
complete.

Chapter 2. Transactions Overview

10

In Web Services, these assumptions are no longer valid. One obvious reason is that the owners of
data exposed through a Web service refuse to allow their data to be locked for extended periods,
since allowing such locks invites denial-of-service attacks.

• All application infrastructures are generally owned by a single party. Systems using classical
ACID transactions normally assume that participants in a transaction will obey the directives of the
transaction manager and only infrequently make unilateral decisions which harm other participants
in a transaction.

Web Services participating in a transaction can effectively decide to resign from the transaction
at any time, and the consumer of the service generally has little in the way of quality of service
guarantees to prevent this.

2.10.1. Addressing the Problems of Transactioning in Loosely
Coupled Systems
Though extended transaction models which relax the ACID properties have been proposed over
the years, standards such as OASIS WS-TX provide a new transaction protocol to implement these
concepts for the Web services architecture. The are designed to accommodate four underlying
requirements inherent in any loosely coupled architecture like Web services:.

Requirements of Web Services
• Ability to handle multiple successful outcomes to a transaction, and to involve operations whose

effects may not be isolated or durable.

• Coordination of autonomous parties whose relationships are governed by contracts, rather than the
dictates of a central design authority.

• Discontinuous service, where parties are expected to suffer outages during their lifetimes, and
coordinated work must be able to survive such outages.

• Interoperation using XML over multiple communication protocols. XTS uses SOAP encoding carried
over HTTP.

11

Appendix A. Revision History
Revision 1 Tue Apr 12 2010 Tom Jenkinson

tom.jenkinson@redhat.com

Initial creation of book by publican

mailto:tom.jenkinson@redhat.com

12

	Transactions Overview Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Transactions Overview
	2.1. What is a transaction?
	2.2. The Coordinator
	2.3. The Transaction Context
	2.4. Participants
	2.5. Commit protocol
	2.6. The Synchronization Protocol
	2.7. Optimizations to the Protocol
	2.8. Non-Atomic Transactions and Heuristic Outcomes
	2.9. Interposition
	2.10. A New Transaction Protocol
	2.10.1. Addressing the Problems of Transactioning in Loosely Coupled Systems

	Appendix A. Revision History

