
ArjunaCore 4.15.1

ArjunaCore
Development Guide

TxCore and TXOJ Programmers Guide

Mark Little

Jonathan Halliday

Andrew Dinn

Kevin Connor

ArjunaCore Development Guide

ArjunaCore 4.15.1 ArjunaCore Development Guide
TxCore and TXOJ Programmers Guide
Edition 0

Author Mark Little mlittle@redhat.com
Author Jonathan Halliday jhallida@redhat.com
Author Andrew Dinn adinn@redhat.com
Author Kevin Connor kconnor@redhat.com
Editor Misty Stanley-Jones misty@redhat.com

Copyright © 2011 jboss.org.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

This guide is most relevant to engineers who are responsible for administering JBoss Transactions
installations. Although this guide is specifically intended for service developers, it will be useful to
anyone who would like to gain an understanding of transactions and how they function.

mailto:mlittle@redhat.com
mailto:jhallida@redhat.com
mailto:adinn@redhat.com
mailto:kconnor@redhat.com
mailto:misty@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings ... vii

2. We Need Feedback! .. vii

1. About This Guide 1
1.1. Audience ... 1
1.2. Prerequisites .. 1

2. Overview 3
2.1. TxCore .. 3
2.2. Saving object states ... 4
2.3. The object store ... 4
2.4. Recovery and persistence .. 5
2.5. The life cycle of a Transactional Object for Java .. 6
2.6. The concurrency controller .. 7
2.7. The transactional protocol engine .. 9
2.8. The class hierarchy .. 10

3. Using TxCore 13
3.1. State management ... 13

3.1.1. Object states ... 13
3.1.2. The object store .. 14
3.1.3. Selecting an object store implementation .. 15

3.2. Lock management and concurrency control ... 21
3.2.1. Selecting a lock store implementation ... 22
3.2.2. LockManager ... 23
3.2.3. Locking policy .. 24
3.2.4. Object constructor and destructor ... 25

4. Advanced transaction issues with TxCore 27
4.1. Last resource commit optimization (LRCO) .. 27
4.2. Nested transactions .. 27
4.3. Asynchronously committing a transaction ... 28
4.4. Independent top-level transactions .. 28
4.5. Transactions within save_state and restore_state methods 29
4.6. Garbage collecting objects .. 30
4.7. Transaction timeouts .. 30

4.7.1. Monitoring transaction timeouts .. 31

5. Hints and tips 33
5.1. General .. 33

5.1.1. Using transactions in constructors .. 33
5.1.2. save_state and restore_state methods .. 33

5.2. Direct use of StateManager .. 34

6. Constructing a Transactional Objects for Java application 37
6.1. Queue description .. 37
6.2. Constructors and destructors .. 38
6.3. Required methods .. 39

6.3.1. save_state, restore_state, and type ... 39
6.3.2. enqueue and dequeue methods ... 40
6.3.3. queueSize method ... 41
6.3.4. inspectValue and setValue methods .. 41

6.4. The client ... 42

ArjunaCore Development Guide

iv

6.5. Comments ... 43

A. Object store implementations 45
A.1. The ObjectStore ... 45

A.1.1. Persistent object stores ... 46

B. Class definitions 51

C. Revision History 55

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System��� Preferences��� Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

and click Close to switch the primary mouse button from the left to the right (making
the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications��� Accessories
�� Character Map from the main menu bar. Next, choose Search��� Find…
from the Character Map menu bar, type the name of the character in the Search
field and click Next. The character you sought will be highlighted in the Character
Table. Double-click this highlighted character to place it in the Text to copy field and
then click the Copy button. Now switch back to your document and choose Edit��
Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

vii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product Documentation.

When submitting a bug report, be sure to mention the manual's identifier:
ArjunaCore_Development_Guide

https://jira.jboss.org/
https://jira.jboss.org/

Preface

viii

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1.

1

About This Guide
The TxCore and TXOJ Programmers Guide contains information on how to use Documentation. This
document provides a detailed look at the design and operation of the TxCore transaction engine
and the Transactional Objects for Java toolkit. It describes the architecture and the interaction of
components within this architecture.

1.1. Audience
This guide is most relevant to engineers who want to use Documentation in installations that are not
covered elsewhere. It is assumed that the reader is already familiar with the core Documentation
documentation set.

1.2. Prerequisites
This guide assumes a basic familiarity with Java service development and object-oriented
programming. A fundamental level of understanding in the following areas will also be useful:

• General understanding of the APIs, components, and objects that are present in Java applications.

• A general understanding of the Windows and UNIX operating systems.

2

Chapter 2.

3

Overview
A transaction is a unit of work that encapsulates multiple database actions such that that either all the
encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

This chapter contains a description of the use of the TxCore transaction engine and the Transactional
Objects for Java (TXOJ) classes and facilities. The classes mentioned in this chapter are the key to
writing fault-tolerant applications using transactions. Thus, they are described and then applied in the
construction of a simple application. The classes to be described in this chapter can be found in the
com.arjuna.ats.txoj and com.arjuna.ats.arjuna packages.

Stand-Alone Transaction Manager

Although JBoss Transaction Service can be embedded in various containers, such as
JBoss Application Server, it remains a stand-alone transaction manager as well. There
are no dependencies between the core JBoss Transaction Service and any container
implementations.

2.1. TxCore
The Transaction Engine
In keeping with the object-oriented view, the mechanisms needed to construct reliable distributed
applications are presented to programmers in an object-oriented manner. Some mechanisms need to
be inherited, for example, concurrency control and state management. Other mechanisms, such as
object storage and transactions, are implemented as TxCore objects that are created and manipulated
like any other object.

Note

When the manual talks about using persistence and concurrency control facilities it assumes
that the Transactional Objects for Java (TXOJ) classes are being used. If this is not the case
then the programmer is responsible for all of these issues.

TxCore exploits object-oriented techniques to present programmers with a toolkit of Java classes
from which application classes can inherit to obtain desired properties, such as persistence and
concurrency control. These classes form a hierarchy, part of which is shown in Figure 2.1, “TxCore
Class Hierarchy” and which will be described later in this document.

Chapter 2. Overview

4

Figure 2.1. TxCore Class Hierarchy

Apart from specifying the scopes of transactions, and setting appropriate locks within objects, the
application programmer does not have any other responsibilities: TxCore and TXOJ guarantee that
transactional objects will be registered with, and be driven by, the appropriate transactions, and crash
recovery mechanisms are invoked automatically in the event of failures.

2.2. Saving object states
TxCore needs to be able to remember the state of an object for several purposes.

recovery
The state represents some past state of the object.

persistence
The state represents the final state of an object at application termination.

Since these requirements have common functionality they are all implemented using the same
mechanism: the classes InputObjectState and OutputObjectState. The classes maintain an
internal array into which instances of the standard types can be contiguously packed or unpacked
using appropriate pack or unpack operations. This buffer is automatically resized as required should
it have insufficient space. The instances are all stored in the buffer in a standard form called network
byte order, making them machine independent. Any other architecture-independent format, such as
XDR or ASN.1, can be implemented simply by replacing the operations with ones appropriate to the
encoding required.

2.3. The object store
Implementations of persistence can be affected by restrictions imposed by the Java SecurityManager.
Therefore, the object store provided with TxCore is implemented using the techniques of interface and
implementation. The current distribution includes implementations which write object states to the local
file system or database, and remote implementations, where the interface uses a client stub (proxy) to
remote services.

Recovery and persistence

5

Persistent objects are assigned unique identifiers, which are instances of the Uid class, when they
are created. These identifiers are used to identify them within the object store. States are read using
the read_committed operation and written by the write_committed and write_uncommitted
operations.

2.4. Recovery and persistence
At the root of the class hierarchy is the class StateManager. StateManager is responsible for
object activation and deactivation, as well as object recovery. Refer to Example 2.1, “Statemanager”
for the simplified signature of the class.

Example 2.1. Statemanager

 public abstract class StateManager
{
 public boolean activate ();
 public boolean deactivate (boolean commit);

 public Uid get_uid (); // object’s identifier.

 // methods to be provided by a derived class

 public boolean restore_state (InputObjectState os);
 public boolean save_state (OutputObjectState os);

 protected StateManager ();
 protected StateManager (Uid id);
};

Objects are assumed to be of three possible flavors.

Three Flavors of Objects
Recoverable

StateManager attempts to generate and maintain appropriate recovery information for the
object. Such objects have lifetimes that do not exceed the application program that creates them.

Recoverable and Persistent
The lifetime of the object is assumed to be greater than that of the creating or accessing
application, so that in addition to maintaining recovery information, StateManager attempts to
automatically load or unload any existing persistent state for the object by calling the activate or
deactivate operation at appropriate times.

Neither Recoverable nor Persistent
No recovery information is ever kept, nor is object activation or deactivation ever automatically
attempted.

If an object is recoverable or recoverable and persistent, then StateManager invokes the operations
save_state while performing deactivate, and restore_state while performing activate,)
at various points during the execution of the application. These operations must be implemented
by the programmer since StateManager cannot detect user-level state changes. This gives the
programmer the ability to decide which parts of an object’s state should be made persistent. For
example, for a spreadsheet it may not be necessary to save all entries if some values can simply
be recomputed. The save_state implementation for a class Example that has integer member
variables called A, B and C might be implemented as in Example 2.2, “save_state Implementation”.

Chapter 2. Overview

6

Example 2.2. save_state Implementation

public boolean save_state(OutputObjectState o)
{
 if (!super.save_state(o))
 return false;

 try
 {
 o.packInt(A);
 o.packInt(B);
 o.packInt(C));
}
catch (Exception e)
 {
 return false;
 }

return true;
}

Note

it is necessary for all save_state and restore_state methods to call
super.save_state and super.restore_state. This is to cater for improvements in the
crash recovery mechanisms.

2.5. The life cycle of a Transactional Object for Java
A persistent object not in use is assumed to be held in a passive state, with its state residing in an
object store and activated on demand. The fundamental life cycle of a persistent object in TXOJ is
shown in Figure 2.2, “Life cycle of a persistent Object in TXOJ”.

The concurrency controller

7

Figure 2.2. Life cycle of a persistent Object in TXOJ

Note

During its life time, a persistent object may be made active then passive many times.

2.6. The concurrency controller
The concurrency controller is implemented by the class LockManager, which provides sensible
default behavior while allowing the programmer to override it if deemed necessary by the particular
semantics of the class being programmed. As with StateManager and persistence, concurrency
control implementations are accessed through interfaces. As well as providing access to remote
services, the current implementations of concurrency control available to interfaces include:

Local disk/database implementation
Locks are made persistent by being written to the local file system or database.

A purely local implementation
Locks are maintained within the memory of the virtual machine which created them. This
implementation has better performance than when writing locks to the local disk, but objects
cannot be shared between virtual machines. Importantly, it is a basic Java object with no
requirements which can be affected by the SecurityManager.

The primary programmer interface to the concurrency controller is via the setlock operation. By
default, the runtime system enforces strict two-phase locking following a multiple reader, single writer
policy on a per object basis. However, as shown in Figure 2.1, “TxCore Class Hierarchy”, by inheriting
from the Lock class, you can provide your own lock implementations with different lock conflict rules
to enable type specific concurrency control.

Lock acquisition is, of necessity, under programmer control, since just as StateManager cannot
determine if an operation modifies an object, LockManager cannot determine if an operation
requires a read or write lock. Lock release, however, is under control of the system and requires no

Chapter 2. Overview

8

further intervention by the programmer. This ensures that the two-phase property can be correctly
maintained.

public class LockResult
{
 public static final int GRANTED;
 public static final int REFUSED;
 public static final int RELEASED;
};

public class ConflictType
{
 public static final int CONFLICT;
 public static final int COMPATIBLE;
 public static final int PRESENT;
};

public abstract class LockManager extends StateManager
{
 public static final int defaultRetry;
 public static final int defaultTimeout;
 public static final int waitTotalTimeout;

 public final synchronized boolean releaselock (Uid lockUid);
 public final synchronized int setlock (Lock toSet);
 public final synchronized int setlock (Lock toSet, int retry);
 public final synchronized int setlock (Lock toSet, int retry, int sleepTime);
 public void print (PrintStream strm);
 public String type ();
 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);

 protected LockManager ();
 protected LockManager (int ot);
 protected LockManager (int ot, int objectModel);
 protected LockManager (Uid storeUid);
 protected LockManager (Uid storeUid, int ot);
 protected LockManager (Uid storeUid, int ot, int objectModel);

 protected void terminate ();
};

The LockManager class is primarily responsible for managing requests to set a lock on an object
or to release a lock as appropriate. However, since it is derived from StateManager, it can also
control when some of the inherited facilities are invoked. For example, LockManager assumes that
the setting of a write lock implies that the invoking operation must be about to modify the object. This
may in turn cause recovery information to be saved if the object is recoverable. In a similar fashion,
successful lock acquisition causes activate to be invoked.

Example 2.3, “Example Class” shows how to try to obtain a write lock on an object.

Example 2.3. Example Class

public class Example extends LockManager
{
 public boolean foobar ()
 {
 AtomicAction A = new AtomicAction;
 boolean result = false;

 A.begin();

 if (setlock(new Lock(LockMode.WRITE), 0) == Lock.GRANTED)

The transactional protocol engine

9

 {
 /*
 * Do some work, and TXOJ will
 * guarantee ACID properties.
 */

 // automatically aborts if fails

 if (A.commit() == AtomicAction.COMMITTED)
 {
 result = true;
 }
 }
 else
 A.rollback();

 return result;
 }
}

2.7. The transactional protocol engine
The transaction protocol engine is represented by the AtomicAction class, which uses
StateManager to record sufficient information for crash recovery mechanisms to complete the
transaction in the event of failures. It has methods for starting and terminating the transaction, and, for
those situations where programmers need to implement their own resources, methods for registering
them with the current transaction. Because TxCore supports sub-transactions, if a transaction is begun
within the scope of an already executing transaction it will automatically be nested.

You can use TxCore with multi-threaded applications. Each thread within an application can share a
transaction or execute within its own transaction. Therefore, all TxCore classes are also thread-safe.

Example 2.4. Relationships Between Activation, Termination, and Commitment

{
 . . .
 O1 objct1 = new objct1(Name-A);/* (i) bind to "old" persistent object A */
 O2 objct2 = new objct2(); /* create a "new" persistent object */
 OTS.current().begin(); /* (ii) start of atomic action */

 objct1.op(...); /* (iii) object activation and invocations */
 objct2.op(...);
 . . .
 OTS.current().commit(true); /* (iv) tx commits & objects deactivated */
} /* (v) */

Creation of bindings to persistent objects
This could involve the creation of stub objects and a call to remote objects. Here, we re-bind
to an existing persistent object identified by Name-A, and a new persistent object. A naming
system for remote objects maintains the mapping between object names and locations and is
described in a later chapter.

Start of the atomic transaction

Operation invocations
As a part of a given invocation, the object implementation is responsible to ensure that it is
locked in read or write mode, assuming no lock conflict, and initialized, if necessary, with the
latest committed state from the object store. The first time a lock is acquired on an object within
a transaction the object’s state is acquired, if possible, from the object store.

Chapter 2. Overview

10

Commit of the top-level action
This includes updating of the state of any modified objects in the object store.

Breaking of the previously created bindings

2.8. The class hierarchy
The principal classes which make up the class hierarchy of TxCore are depicted below.

• StateManager

• LockManager

• User-Defined Classes

• Lock

• User-Defined Classes

• AbstractRecord

• RecoveryRecord

• LockRecord

• RecordList

• Other management record types

• AtomicAction

• TopLevelTransaction

• Input/OutputObjectBuffer

• Input/OutputObjectState

• ObjectStore

Programmers of fault-tolerant applications will be primarily concerned with the classes LockManager,
Lock, and AtomicAction. Other classes important to a programmer are Uid and ObjectState.

Most TxCore classes are derived from the base class StateManager, which provides primitive
facilities necessary for managing persistent and recoverable objects. These facilities include support
for the activation and de-activation of objects, and state-based object recovery.

The class LockManager uses the facilities of StateManager and Lock to provide the concurrency
control required for implementing the serializability property of atomic actions. The concurrency control
consists of two-phase locking in the current implementation. The implementation of atomic action
facilities is supported by AtomicAction and TopLevelTransaction.

Consider a simple example. Assume that Example is a user-defined persistent class suitably derived
from the LockManager. An application containing an atomic transaction Trans accesses an object
called O of type Example, by invoking the operation op1, which involves state changes to O. The
serializability property requires that a write lock must be acquired on O before it is modified. Therefore,
the body of op1 should contain a call to the setlock operation of the concurrency controller.

The class hierarchy

11

Example 2.5. Simple Concurrency Control

public boolean op1 (...)
{
 if (setlock (new Lock(LockMode.WRITE) == LockResult.GRANTED)
 {
 // actual state change operations follow
 ...
 }
}

Procedure 2.1. Steps followed by the operation setlock
The operation setlock, provided by the LockManager class, performs the following functions in
Example 2.5, “Simple Concurrency Control”.

1. Check write lock compatibility with the currently held locks, and if allowed, continue.

2. Call the StateManager operation activate.activate will load, if not done already, the
latest persistent state of O from the object store, then call the StateManager operation
modified, which has the effect of creating an instance of either RecoveryRecord or
PersistenceRecord for O, depending upon whether O was persistent or not. The Lock is a
WRITE lock so the old state of the object must be retained prior to modification. The record is
then inserted into the RecordList of Trans.

3. Create and insert a LockRecord instance in the RecordList of Trans.

Now suppose that action Trans is aborted sometime after the lock has been acquired. Then the
rollback operation of AtomicAction will process the RecordList instance associated with
Trans by invoking an appropriate Abort operation on the various records. The implementation of this
operation by the LockRecord class will release the WRITE lock while that of RecoveryRecord or
PersistenceRecord will restore the prior state of O.

It is important to realize that all of the above work is automatically being performed by TxCore on
behalf of the application programmer. The programmer need only start the transaction and set an
appropriate lock; TxCore and TXOJ take care of participant registration, persistence, concurrency
control and recovery.

12

Chapter 3.

13

Using TxCore
This section describes TxCore and Transactional Objects for Java (TXOJ) in more detail, and
shows how to use TxCore to construct transactional applications.

3.1. State management

3.1.1. Object states
TxCore needs to be able to remember the state of an object for several purposes, including recovery
(the state represents some past state of the object), and for persistence (the state represents
the final state of an object at application termination). Since all of these requirements require
common functionality they are all implemented using the same mechanism - the classes Input/
OutputObjectState and Input/OutputBuffer.

Example 3.1. OutputBuffer and InputBuffer

public class OutputBuffer
{
 public OutputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* pack operations for standard Java types */

 public synchronized void packByte (byte b) throws IOException;
 public synchronized void packBytes (byte[] b) throws IOException;
 public synchronized void packBoolean (boolean b) throws IOException;
 public synchronized void packChar (char c) throws IOException;
 public synchronized void packShort (short s) throws IOException;
 public synchronized void packInt (int i) throws IOException;
 public synchronized void packLong (long l) throws IOException;
 public synchronized void packFloat (float f) throws IOException;
 public synchronized void packDouble (double d) throws IOException;
 public synchronized void packString (String s) throws IOException;
};

public class InputBuffer
{
 public InputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* unpack operations for standard Java types */

 public synchronized byte unpackByte () throws IOException;
 public synchronized byte[] unpackBytes () throws IOException;
 public synchronized boolean unpackBoolean () throws IOException;
 public synchronized char unpackChar () throws IOException;
 public synchronized short unpackShort () throws IOException;
 public synchronized int unpackInt () throws IOException;
 public synchronized long unpackLong () throws IOException;
 public synchronized float unpackFloat () throws IOException;
 public synchronized double unpackDouble () throws IOException;
 public synchronized String unpackString () throws IOException;

Chapter 3. Using TxCore

14

};

The InputBuffer and OutputBuffer classes maintain an internal array into which instances
of the standard Java types can be contiguously packed or unpacked, using the pack or unpack
operations. This buffer is automatically resized as required should it have insufficient space. The
instances are all stored in the buffer in a standard form called network byte order to make
them machine independent.

Example 3.2. OutputObjectState and InputObjectState

class OutputObjectState extends OutputBuffer
{
 public OutputObjectState (Uid newUid, String typeName);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
};

class InputObjectState extends InputBuffer
{
 public OutputObjectState (Uid newUid, String typeName, byte[] b);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
};

The InputObjectState and OutputObjectState classes provides all the functionality
of InputBuffer and OutputBuffer, through inheritance, and add two additional instance
variables that signify the Uid and type of the object for which the InputObjectStat or
OutputObjectState instance is a compressed image. These are used when accessing the object
store during storage and retrieval of the object state.

3.1.2. The object store
The object store provided with TxCore deliberately has a fairly restricted interface so that it can be
implemented in a variety of ways. For example, object stores are implemented in shared memory, on
the Unix file system (in several different forms), and as a remotely accessible store. More complete
information about the object stores available in TxCore can be found in the Appendix.

Note

As with all TxCore classes, the default object stores are pure Java implementations. to access
the shared memory and other more complex object store implementations, you need to use
native methods.

All of the object stores hold and retrieve instances of the class InputObjectState or
OutputObjectState. These instances are named by the Uid and Type of the object that they
represent. States are read using the read_committed operation and written by the system using

Selecting an object store implementation

15

the write_uncommitted operation. Under normal operation new object states do not overwrite
old object states but are written to the store as shadow copies. These shadows replace the original
only when the commit_state operation is invoked. Normally all interaction with the object store is
performed by TxCore system components as appropriate thus the existence of any shadow versions
of objects in the store are hidden from the programmer.

Example 3.3. StateStatus

public StateStatus
{
 public static final int OS_COMMITTED;
 public static final int OS_UNCOMMITTED;
 public static final int OS_COMMITTED_HIDDEN;
 public static final int OS_UNCOMMITTED_HIDDEN;
 public static final int OS_UNKNOWN;
}

Example 3.4. ObjectStore

public abstract class ObjectStore
{
 /* The abstract interface */
 public abstract boolean commit_state (Uid u, String name)
 throws ObjectStoreException;
 public abstract InputObjectState read_committed (Uid u, String name)
 throws ObjectStoreException;
 public abstract boolean write_uncommitted (Uid u, String name,
 OutputObjectState os) throws
 ObjectStoreException;
 . . .
};

When a transactional object is committing, it must make certain state changes persistent, so it
can recover in the event of a failure and either continue to commit, or rollback. When using TXOJ,
TxCore will take care of this automatically. To guarantee ACID properties, these state changes must
be flushed to the persistence store implementation before the transaction can proceed to commit.
Otherwise, the application may assume that the transaction has committed when in fact the state
changes may still reside within an operating system cache, and may be lost by a subsequent machine
failure. By default, TxCore ensures that such state changes are flushed. However, doing so can
impose a significant performance penalty on the application.

To prevent transactional object state flushes, set the
ObjectStoreEnvironmentBean.objectStoreSync variable to OFF.

3.1.3. Selecting an object store implementation
TxCore comes with support for several different object store implementations. The Appendix describes
these implementations, how to select and configure a given implementation on a per-object basis
using the ObjectStoreEnvironmentBean.objectStoreType property variable, and indicates
how additional implementations can be provided.

3.1.3.1. StateManager
The TxCore class StateManager manages the state of an object and provides all of the basic
support mechanisms required by an object for state management purposes. StateManager is
responsible for creating and registering appropriate resources concerned with the persistence

Chapter 3. Using TxCore

16

and recovery of the transactional object. If a transaction is nested, then StateManager will also
propagate these resources between child transactions and their parents at commit time.

Objects are assumed to be of three possible flavors.

Three Flavors of Objects
Recoverable

StateManager attempts to generate and maintain appropriate recovery information for the
object. Such objects have lifetimes that do not exceed the application program that creates them.

Recoverable and Persistent
The lifetime of the object is assumed to be greater than that of the creating or accessing
application, so that in addition to maintaining recovery information, StateManager attempts to
automatically load or unload any existing persistent state for the object by calling the activate or
deactivate operation at appropriate times.

Neither Recoverable nor Persistent
No recovery information is ever kept, nor is object activation or deactivation ever automatically
attempted.

This object property is selected at object construction time and cannot be changed thereafter. Thus an
object cannot gain (or lose) recovery capabilities at some arbitrary point during its lifetime.

Example 3.5. Object Store Implementation Using StateManager

public class ObjectStatus
{
 public static final int PASSIVE;
 public static final int PASSIVE_NEW;
 public static final int ACTIVE;
 public static final int ACTIVE_NEW;
 public static final int UNKNOWN_STATUS;
};

public class ObjectType
{
 public static final int RECOVERABLE;
 public static final int ANDPERSISTENT;
 public static final int NEITHER;
};

public abstract class StateManager
{
 public synchronized boolean activate ();
 public synchronized boolean activate (String storeRoot);
 public synchronized boolean deactivate ();
 public synchronized boolean deactivate (String storeRoot, boolean commit);

 public synchronized void destroy ();

 public final Uid get_uid ();

 public boolean restore_state (InputObjectState, int ObjectType);
 public boolean save_state (OutputObjectState, int ObjectType);
 public String type ();
 . . .

 protected StateManager ();
 protected StateManager (int ObjectType, int objectModel);
 protected StateManager (Uid uid);
 protected StateManager (Uid uid, int objectModel);
 . . .

Selecting an object store implementation

17

 protected final void modified ();
 . . .
};

public class ObjectModel
{
 public static final int SINGLE;
 public static final int MULTIPLE;
};

If an object is recoverable or persistent, StateManager will invoke the operations save_state
(while performing deactivation), restore_state (while performing activation), and type at various
points during the execution of the application. These operations must be implemented by the
programmer since StateManager does not have access to a runtime description of the layout
of an arbitrary Java object in memory and thus cannot implement a default policy for converting
the in memory version of the object to its passive form. However, the capabilities provided by
InputObjectState and OutputObjectState make the writing of these routines fairly simple. For
example, the save_state implementation for a class Example that had member variables called A,
B, and C could simply be Example 3.6, “Example Implementation of Methods for StateManager”.

Example 3.6. Example Implementation of Methods for StateManager

public boolean save_state (OutputObjectState os, int ObjectType)
{
 if (!super.save_state(os, ObjectType))
 return false;

 try
 {
 os.packInt(A);
 os.packString(B);
 os.packFloat(C);

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}

In order to support crash recovery for persistent objects, all save_state and restore_state
methods of user objects must call super.save_state and super.restore_state.

Note

The type method is used to determine the location in the object store where the state of
instances of that class will be saved and ultimately restored. This location can actually be any
valid string. However, you should avoid using the hash character (#) as this is reserved for
special directories that TxCore requires.

Chapter 3. Using TxCore

18

The get_uid operation of StateManager provides read-only access to an object’s internal system
name for whatever purpose the programmer requires, such as registration of the name in a name
server. The value of the internal system name can only be set when an object is initially constructed,
either by the provision of an explicit parameter or by generating a new identifier when the object is
created.

The destroy method can be used to remove the object’s state from the object store. This is an
atomic operation, and therefore will only remove the state if the top-level transaction within which it
is invoked eventually commits. The programmer must obtain exclusive access to the object prior to
invoking this operation.

Since object recovery and persistence essentially have complimentary requirements (the only
difference being where state information is stored and for what purpose), StateManager effectively
combines the management of these two properties into a single mechanism. It uses instances of
the classes InputObjectState and OutputObjectState both for recovery and persistence
purposes. An additional argument passed to the save_state and restore_state operations
allows the programmer to determine the purpose for which any given invocation is being made. This
allows different information to be saved for recovery and persistence purposes.

3.1.3.2. Object models
TxCore supports two models for objects, which affect how an objects state and concurrency control
are implemented.

TxCore Object Models
Single

Only a single copy of the object exists within the application. This copy resides within a single
JVM, and all clients must address their invocations to this server. This model provides better
performance, but represents a single point of failure, and in a multi-threaded environment may not
protect the object from corruption if a single thread fails.

Figure 3.1. Single Object Model

Selecting an object store implementation

19

Multiple
Logically, a single instance of the object exists, but copies of it are distributed across different
JVMs. The performance of this model is worse than the SINGLE model, but it provides better
failure isolation.

Figure 3.2. Multiple Object Model

The default model is SINGLE. The programmer can override this on a per-object basis by using the
appropriate constructor.

3.1.3.3. Summary
In summary, the TxCore class StateManager manages the state of an object and provides all of the
basic support mechanisms required by an object for state management purposes. Some operations
must be defined by the class developer. These operations are: save_state, restore_state, and
type.

boolean save_state(OutputObjectState state, intObjectType)
Invoked whenever the state of an object might need to be saved for future use, primarily for
recovery or persistence purposes. The ObjectType parameter indicates the reason that
save_state was invoked by TxCore. This enables the programmer to save different pieces
of information into the OutputObjectState supplied as the first parameter depending upon
whether the state is needed for recovery or persistence purposes. For example, pointers to
other TxCore objects might be saved simply as pointers for recovery purposes but as Uids for
persistence purposes. As shown earlier, the OutputObjectState class provides convenient
operations to allow the saving of instances of all of the basic types in Java. In order to support

Chapter 3. Using TxCore

20

crash recovery for persistent objects it is necessary for all save_state methods to call
super.save_state.

save_state assumes that an object is internally consistent and that all variables saved have
valid values. It is the programmer's responsibility to ensure that this is the case.

boolean restore_state (InputObjectState state, int ObjectType)
Invoked whenever the state of an object needs to be restored to the one supplied. Once again
the second parameter allows different interpretations of the supplied state. In order to support
crash recovery for persistent objects it is necessary for all restore_state methods to call
super.restore_state.

String type ()
The TxCore persistence mechanism requires a means of determining the type of an object as
a string so that it can save or restore the state of the object into or from the object store. By
convention this information indicates the position of the class in the hierarchy. For example, /
StateManager/LockManager/Object.

The type method is used to determine the location in the object store where the state of
instances of that class will be saved and ultimately restored. This can actually be any valid string.
However, you should avoid using the hash character (#) as this is reserved for special directories
that TxCore requires.

3.1.3.4. Example
Consider the following basic Array class derived from the StateManager class. In this example, to
illustrate saving and restoring of an object’s state, the highestIndex variable is used to keep track
of the highest element of the array that has a non-zero value.

Example 3.7. Array Class

public class Array extends StateManager
{
 public Array ();
 public Array (Uid objUid);
 public void finalize (super.terminate(); };

 /* Class specific operations. */

 public boolean set (int index, int value);
 public int get (int index);

 /* State management specific operations. */

 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);
 public String type ();

 public static final int ARRAY_SIZE = 10;

 private int[] elements = new int[ARRAY_SIZE];
 private int highestIndex;
};
The save_state, restore_state and type operations can be defined as follows:
 /* Ignore ObjectType parameter for simplicity */

 public boolean save_state (OutputObjectState os, int ObjectType)
 {
 if (!super.save_state(os, ObjectType))
 return false;

Lock management and concurrency control

21

 try
 {
 packInt(highestIndex);

 /*
 * Traverse array state that we wish to save. Only save active elements
 */

 for (int i = 0; i <= highestIndex; i++)
 os.packInt(elements[i]);

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
 }
public boolean restore_state (InputObjectState os, int ObjectType)
{
 if (!super.restore_state(os, ObjectType))
 return false;

 try
 {
 int i = 0;

 highestIndex = os.unpackInt();

 while (i < ARRAY_SIZE)
 {
 if (i <= highestIndex)
 elements[i] = os.unpackInt();
 else
 elements[i] = 0;
 i++;
 }

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}
public String type ()
{
 return "/StateManager/Array";
}

3.2. Lock management and concurrency control
Concurrency control information within TxCore is maintained by locks. Locks which are required
to be shared between objects in different processes may be held within a lock store, similar to the
object store facility presented previously. The lock store provided with TxCore deliberately has a fairly
restricted interface so that it can be implemented in a variety of ways. For example, lock stores are
implemented in shared memory, on the Unix file system (in several different forms), and as a remotely
accessible store. More information about the object stores available in TxCore can be found in the
Appendix.

Chapter 3. Using TxCore

22

Note

As with all TxCore classes, the default lock stores are pure Java implementations. To access
the shared memory and other more complex lock store implementations it is necessary to use
native methods.

Example 3.8. LockStore

public class LockStore
{
 public abstract InputObjectState read_state (Uid u, String tName)
 throws LockStoreException;

 public abstract boolean remove_state (Uid u, String tname);
 public abstract boolean write_committed (Uid u, String tName,
 OutputObjectState state);
};

3.2.1. Selecting a lock store implementation
TxCore comes with support for several different object store implementations. If the object model
being used is SINGLE, then no lock store is required for maintaining locks, since the information
about the object is not exported from it. However, if the MULTIPLE model is used, then different
run-time environments (processes, Java virtual machines) may need to share concurrency control
information. The implementation type of the lock store to use can be specified for all objects within a
given execution environment using the TxojEnvironmentBean.lockStoreType property variable.
Currently this can have one of the following values:

BasicLockStore
This is an in-memory implementation which does not, by default, allow sharing of stored
information between execution environments. The application programmer is responsible for
sharing the store information.

BasicPersistentLockStore
This is the default implementation, and stores locking information within the local file system.
Therefore execution environments that share the same file store can share concurrency control
information. The root of the file system into which locking information is written is the LockStore
directory within the TxCore installation directory. You can override this at runtime by setting the
TxojEnvironmentBean.lockStoreDir property variable accordingly, or placing the location
within the CLASSPATH.

java -D TxojEnvironmentBean.lockStoreDir=/var/tmp/LockStore myprogram

java –classpath $CLASSPATH;/var/tmp/LockStore myprogram

If neither of these approaches is taken, then the default location will be at the same level as the
etc directory of the installation.

LockManager

23

3.2.2. LockManager
The concurrency controller is implemented by the class LockManager, which provides sensible
default behavior, while allowing the programmer to override it if deemed necessary by the particular
semantics of the class being programmed. The primary programmer interface to the concurrency
controller is via the setlock operation. By default, the TxCore runtime system enforces strict two-
phase locking following a multiple reader, single writer policy on a per object basis. Lock acquisition
is under programmer control, since just as StateManager cannot determine if an operation modifies
an object, LockManager cannot determine if an operation requires a read or write lock. Lock
release, however, is normally under control of the system and requires no further intervention by the
programmer. This ensures that the two-phase property can be correctly maintained.

The LockManager class is primarily responsible for managing requests to set a lock on an object
or to release a lock as appropriate. However, since it is derived from StateManager, it can also
control when some of the inherited facilities are invoked. For example, if a request to set a write lock is
granted, then LockManager invokes modified directly assuming that the setting of a write lock implies
that the invoking operation must be about to modify the object. This may in turn cause recovery
information to be saved if the object is recoverable. In a similar fashion, successful lock acquisition
causes activate to be invoked.

Therefore, LockManager is directly responsible for activating and deactivating persistent objects,
as well as registering Resources for managing concurrency control. By driving the StateManager
class, it is also responsible for registering Resources for persistent or recoverable state manipulation
and object recovery. The application programmer simply sets appropriate locks, starts and ends
transactions, and extends the save_state and restore_state methods of StateManager.

Example 3.9. LockResult

 public class LockResult
{
 public static final int GRANTED;
 public static final int REFUSED;
 public static final int RELEASED;
};

public class ConflictType
{
 public static final int CONFLICT;
 public static final int COMPATIBLE;
 public static final int PRESENT;
};

public abstract class LockManager extends StateManager
{
 public static final int defaultTimeout;
 public static final int defaultRetry;
 public static final int waitTotalTimeout;

 public synchronized int setlock (Lock l);
 public synchronized int setlock (Lock l, int retry);
 public synchronized int setlock (Lock l, int retry, int sleepTime);
 public synchronized boolean releaselock (Uid uid);

 /* abstract methods inherited from StateManager */

 public boolean restore_state (InputObjectState os, int ObjectType);
 public boolean save_state (OutputObjectState os, int ObjectType);
 public String type ();

 protected LockManager ();
 protected LockManager (int ObjectType, int objectModel);

Chapter 3. Using TxCore

24

 protected LockManager (Uid storeUid);
 protected LockManager (Uid storeUid, int ObjectType, int objectModel);
 . . .
};

The setlock operation must be parametrized with the type of lock required (READ or WRITE), and
the number of retries to acquire the lock before giving up. If a lock conflict occurs, one of the following
scenarios will take place:

• If the retry value is equal to LockManager.waitTotalTimeout, then the thread which called
setlock will be blocked until the lock is released, or the total timeout specified has elapsed, and in
which REFUSED will be returned.

• If the lock cannot be obtained initially then LockManager will try for the specified number of retries,
waiting for the specified timeout value between each failed attempt. The default is 100 attempts,
each attempt being separated by a 0.25 seconds delay. The time between retries is specified in
micro-seconds.

• If a lock conflict occurs the current implementation simply times out lock requests, thereby
preventing deadlocks, rather than providing a full deadlock detection scheme. If the requested lock
is obtained, the setlock operation will return the value GRANTED, otherwise the value REFUSED
is returned. It is the responsibility of the programmer to ensure that the remainder of the code for an
operation is only executed if a lock request is granted. Below are examples of the use of the setlock
operation.

Example 3.10. setlock Method Usage

 res = setlock(new Lock(WRITE), 10); // Will attempt to set a
 // write lock 11 times (10
 // retries) on the object
 // before giving up.
res = setlock(new Lock(READ), 0); // Will attempt to set a read
 // lock 1 time (no retries) on
 // the object before giving up.
res = setlock(new Lock(WRITE); // Will attempt to set a write
 // lock 101 times (default of
 // 100 retries) on the object
 // before giving up.

The concurrency control mechanism is integrated into the atomic action mechanism, thus ensuring
that as locks are granted on an object appropriate information is registered with the currently
running atomic action to ensure that the locks are released at the correct time. This frees the
programmer from the burden of explicitly freeing any acquired locks if they were acquired within
atomic actions. However, if locks are acquired on an object outside of the scope of an atomic action,
it is the programmer's responsibility to release the locks when required, using the corresponding
releaselock operation.

3.2.3. Locking policy
Unlike many other systems, locks in TxCore are not special system types. Instead they are simply
instances of other TxCore objects (the class Lock which is also derived from StateManager so that
locks may be made persistent if required and can also be named in a simple fashion). Furthermore,
LockManager deliberately has no knowledge of the semantics of the actual policy by which lock
requests are granted. Such information is maintained by the actual Lock class instances which
provide operations (the conflictsWith operation) by which LockManager can determine if two

Object constructor and destructor

25

locks conflict or not. This separation is important in that it allows the programmer to derive new lock
types from the basic Lock class and by providing appropriate definitions of the conflict operations
enhanced levels of concurrency may be possible.

Example 3.11. LockMode Class

public class LockMode
{
 public static final int READ;
 public static final int WRITE;
};

public class LockStatus
{
 public static final int LOCKFREE;
 public static final int LOCKHELD;
 public static final int LOCKRETAINED;
};

public class Lock extends StateManager
{
 public Lock (int lockMode);

 public boolean conflictsWith (Lock otherLock);
 public boolean modifiesObject ();

 public boolean restore_state (InputObjectState os, int ObjectType);
 public boolean save_state (OutputObjectState os, int ObjectType);
 public String type ();
 . . .
};

The Lock class provides a modifiesObject operation which LockManager uses to determine if
granting this locking request requires a call on modified. This operation is provided so that locking
modes other than simple read and write can be supported. The supplied Lock class supports the
traditional multiple reader/single writer policy.

3.2.4. Object constructor and destructor
Recall that TxCore objects can be recoverable, recoverable and persistent, or neither. Additionally
each object possesses a unique internal name. These attributes can only be set when that object is
constructed. Thus LockManager provides two protected constructors for use by derived classes,
each of which fulfills a distinct purpose

Protected Constructors Provided by LockManager
LockManager ()

This constructor allows the creation of new objects, having no prior state.

LockManager (int ObjectType, int objectModel)
As above, this constructor allows the creation of new objects having no prior state. exist. The
ObjectType parameter determines whether an object is simply recoverable (indicated by
RECOVERABLE), recoverable and persistent (indicated by ANDPERSISTENT), or neither (indicated
by NEITHER). If an object is marked as being persistent then the state of the object will be stored
in one of the object stores. The shared parameter only has meaning if it is RECOVERABLE. If
the object model is SINGLE (the default behavior) then the recoverable state of the object is
maintained within the object itself, and has no external representation). Otherwise an in-memory
(volatile) object store is used to store the state of the object between atomic actions.

Chapter 3. Using TxCore

26

Constructors for new persistent objects should make use of atomic actions within themselves. This
will ensure that the state of the object is automatically written to the object store either when the
action in the constructor commits or, if an enclosing action exists, when the appropriate top-level
action commits. Later examples in this chapter illustrate this point further.

LockManager(Uid objUid)
This constructor allows access to an existing persistent object, whose internal name is given by
the objUid parameter. Objects constructed using this operation will normally have their prior state
(identified by objUid) loaded from an object store automatically by the system.

LockManager(Uid objUid, int objectModel)
As above, this constructor allows access to an existing persistent object, whose internal name is
given by the objUid parameter. Objects constructed using this operation will normally have their
prior state (identified by objUid) loaded from an object store automatically by the system. If the
object model is SINGLE (the default behavior), then the object will not be reactivated at the start of
each top-level transaction.

The destructor of a programmer-defined class must invoke the inherited operation terminate
to inform the state management mechanism that the object is about to be destroyed. Otherwise,
unpredictable results may occur.

Chapter 4.

27

Advanced transaction issues with
TxCore
Atomic actions (transactions) can be used by both application programmers and class developers.
Thus entire operations (or parts of operations) can be made atomic as required by the semantics of
a particular operation. This chapter will describe some of the more subtle issues involved with using
transactions in general and TxCore in particular.

4.1. Last resource commit optimization (LRCO)
In some cases it may be necessary to enlist participants that are not two-phase commit aware into
a two-phase commit transaction. If there is only a single resource then there is no need for two-
phase commit. However, if there are multiple resources in the transaction, the Last Resource Commit
optimization (LRCO) comes into play. It is possible for a single resource that is one-phase aware (i.e.,
can only commit or roll back, with no prepare), to be enlisted in a transaction with two-phase commit
aware resources. The coordinator treats the one-phase aware resource slightly differently, in that it
executes the prepare phase on all other resource first, and if it then intends to commit the transaction
it passes control to the one-phase aware resource. If it commits, then the coordinator logs the decision
to commit and attempts to commit the other resources as well.

In order to utilize the LRCO, your participant must implement the
com.arjuna.ats.arjuna.coordinator.OnePhase interface and be
registered with the transaction through the BasicAction.add operation. Since this
operation expects instances of AbstractRecord, you must create an instance of
com.arjuna.ats.arjuna.LastResourceRecord and give your participant as the constructor
parameter.

Example 4.1. Class com.arjuna.ats.arjuna.LastResourceRecord

try
 {
 boolean success = false;
 AtomicAction A = new AtomicAction();
 OnePhase opRes = new OnePhase(); // used OnePhase interface

 System.err.println("Starting top-level action.");

 A.begin();
 A.add(new LastResourceRecord(opRes));
 A.add(new ShutdownRecord(ShutdownRecord.FAIL_IN_PREPARE));

 A.commit();
 }

4.2. Nested transactions
There are no special constructs for nesting of transactions. If an action is begun while another
action is running then it is automatically nested. This allows for a modular structure to applications,
whereby objects can be implemented using atomic actions within their operations without the
application programmer having to worry about the applications which use them, and whether or
not the applications will use atomic actions as well. Thus, in some applications actions may be top-
level, whereas in others they may be nested. Objects written in this way can then be shared between
application programmers, and TxCore will guarantee their consistency.

Chapter 4. Advanced transaction issues with TxCore

28

If a nested action is aborted, all of its work will be undone, although strict two-phase locking means
that any locks it may have obtained will be retained until the top-level action commits or aborts. If a
nested action commits then the work it has performed will only be committed by the system if the top-
level action commits. If the top-level action aborts then all of the work will be undone.

The committing or aborting of a nested action does not automatically affect the outcome of the action
within which it is nested. This is application dependent, and allows a programmer to structure atomic
actions to contain faults, undo work, etc.

4.3. Asynchronously committing a transaction
By default, the Transaction Service executes the commit protocol of a top-level transaction in a
synchronous manner. All registered resources will be told to prepare in order by a single thread, and
then they will be told to commit or rollback. This has several possible disadvantages:

• In the case of many registered resources, the prepare operating can logically be invoked in
parallel on each resource. The disadvantage is that if an “early” resource in the list of registered
resource forces a rollback during prepare, possibly many prepare operations will have been made
needlessly.

• In the case where heuristic reporting is not required by the application, the second phase of the
commit protocol can be done asynchronously, since its success or failure is not important.

Therefore, JBoss Transaction Service provides runtime options to enable possible threading
optimizations. By setting the CoordinatorEnvironmentBean.asyncPrepare environment
variable to YES, during the prepare phase a separate thread will be created for each registered
participant within the transaction. By setting CoordinatorEnvironmentBean.asyncCommit to
YES, a separate thread will be created to complete the second phase of the transaction if knowledge
about heuristics outcomes is not required.

4.4. Independent top-level transactions
In addition to normal top-level and nested atomic actions, TxCore also supports independent top-level
actions, which can be used to relax strict serializability in a controlled manner. An independent top-
level action can be executed from anywhere within another atomic action and behaves exactly like a
normal top-level action. Its results are made permanent when it commits and will not be undone if any
of the actions within which it was originally nested abort.

Figure 4.1. Independent Top-Level Action

Top-level actions can be used within an application by declaring and using instances of the class
TopLevelTransaction. They are used in exactly the same way as other transactions.

Transactions within save_state and restore_state methods

29

4.5. Transactions within save_state and restore_state
methods
Exercise caution when writing the save_state and restore_state operations to ensure that no
atomic actions are started, either explicitly in the operation or implicitly through use of some other
operation. This restriction arises due to the fact that TxCore may invoke restore_state as part of
its commit processing resulting in the attempt to execute an atomic action during the commit or abort
phase of another action. This might violate the atomicity properties of the action being committed or
aborted and is thus discouraged.

Example 4.2.
If we consider the Example 3.7, “Array Class” given previously, the set and get operations could
be implemented as shown below.

This is a simplification of the code, ignoring error conditions and exceptions.

public boolean set (int index, int value)
{
 boolean result = false;
 AtomicAction A = new AtomicAction();

 A.begin();

 // We need to set a WRITE lock as we want to modify the state.

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 elements[index] = value;
 if ((value > 0) &&(index > highestIndex
 highestIndex = index;
 A.commit(true);
 result = true;
 }
 else
 A.rollback();

 return result;
}

public int get (int index) // assume -1 means error
{
 AtomicAction A = new AtomicAction();

 A.begin();

 // We only need a READ lock as the state is unchanged.

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 {
 A.commit(true);

 return elements[index];
 }
 else
 A.rollback();

 return -1;
}

Chapter 4. Advanced transaction issues with TxCore

30

4.6. Garbage collecting objects
Java objects are deleted when the garbage collector determines that they are no longer required.
Deleting an object that is currently under the control of a transaction must be approached with caution
since if the object is being manipulated within a transaction its fate is effectively determined by
the transaction. Therefore, regardless of the references to a transactional object maintained by an
application, TxCore will always retain its own references to ensure that the object is not garbage
collected until after any transaction has terminated.

4.7. Transaction timeouts
By default, transactions live until they are terminated by the application that created them or a failure
occurs. However, it is possible to set a timeout (in seconds) on a per-transaction basis such that if the
transaction has not terminated before the timeout expires it will be automatically rolled back.

In TxCore, the timeout value is provided as a parameter to the AtomicAction constructor. If a
value of AtomicAction.NO_TIMEOUT is provided (the default) then the transaction will not be
automatically timed out. Any other positive value is assumed to be the timeout for the transaction
(in seconds). A value of zero is taken to be a global default timeout, which can be provided by the
property CoordinatorEnvironmentBean.defaultTimeout, which has a default value of 60
seconds.

Note

Default timeout values for other JBoss Transaction Service components, such as JTS, may be
different and you should consult the relevant documentation to be sure.

When a top-level transaction is created with a non-zero timeout, it is subject to being rolled back
if it has not completed within the specified number of seconds. JBoss Transaction Service uses a
separate reaper thread which monitors all locally created transactions, and forces them to roll back if
their timeouts elapse. If the transaction cannot be rolled back at that point, the reaper will force it into a
rollback-only state so that it will eventually be rolled back.

By default this thread is dynamically scheduled to awake according to the timeout values
for any transactions created, ensuring the most timely termination of transactions.
It may alternatively be configured to awake at a fixed interval, which can reduce
overhead at the cost of less accurate rollback timing. For periodic operation, change the
CoordinatorEnvironmentBean.txReaperMode property from its default value of
DYNAMIC to PERIODIC and set the interval between runs, in milliseconds, using the property
CoordinatorEnvironmentBean.txReaperTimeout. The default interval in PERIODIC mode is
120000 milliseconds.

Monitoring transaction timeouts

31

Warning

In earlier versions the PERIODIC mode was known as NORMAL and was the default behavior.
The use of the configuration value NORMAL is deprecated and PERIODIC should be used
instead if the old scheduling behavior is still required.

If a value of 0 is specified for the timeout of a top-level transaction, or no timeout is specified,
then JBoss Transaction Service will not impose any timeout on the transaction, and the
transaction will be allowed to run indefinitely. This default timeout can be overridden by setting the
CoordinatorEnvironmentBean.defaultTimeout property variable when using to the required
timeout value in seconds, when using ArjunaCore, ArjunaJTA or ArjunaJTS.

Note

As of JBoss Transaction Service 4.5, transaction timeouts have been unified across all
transaction components and are controlled by ArjunaCore.

4.7.1. Monitoring transaction timeouts
If you want to be informed when a transaction is rolled back or forced into a
rollback-only mode by the reaper, you can create a class that inherits from class
com.arjuna.ats.arjuna.coordinator.listener.ReaperMonitor and overrides the
rolledBack and markedRollbackOnly methods. When registered with the reaper via the
TransactionReaper.addListener method, the reaper will invoke one of these methods
depending upon how it tries to terminate the transaction.

Note

The reaper will not inform you if the transaction is terminated (committed or rolled back)
outside of its control, such as by the application.

32

Chapter 5.

33

Hints and tips

5.1. General

5.1.1. Using transactions in constructors
Examples throughout this manual use transactions in the implementation of constructors for new
persistent objects. This is deliberate because it guarantees correct propagation of the state of the
object to the object store. The state of a modified persistent object is only written to the object store
when the top-level transaction commits. Thus, if the constructor transaction is top-level and it commits,
the newly-created object is written to the store and becomes available immediately. If, however, the
constructor transaction commits but is nested because another transaction that was started prior to
object creation is running, the state is written only if all of the parent transactions commit.

On the other hand, if the constructor does not use transactions, inconsistencies in the system can
arise. For example, if no transaction is active when the object is created, its state is not saved to the
store until the next time the object is modified under the control of some transaction.

Example 5.1. Nested Transactions In Constructors

AtomicAction A = new AtomicAction();
Object obj1;
Object obj2;

obj1 = new Object(); // create new object
obj2 = new Object("old"); // existing object

A.begin(0);
obj2.remember(obj1.get_uid()); // obj2 now contains reference to obj1
A.commit(true); // obj2 saved but obj1 is not

The two objects are created outside of the control of the top-level action A. obj1 is a new object.
obj2 is an old existing object. When the remember operation of obj2 is invoked, the object will be
activated and the Uid of obj1 remembered. Since this action commits, the persistent state of obj2
may now contain the Uid of obj1. However, the state of obj1 itself has not been saved since it has
not been manipulated under the control of any action. In fact, unless it is modified under the control
of an action later in the application, it will never be saved. If, however, the constructor had used an
atomic action, the state of obj1 would have automatically been saved at the time it was constructed
and this inconsistency could not arise.

5.1.2. save_state and restore_state methods
TxCore may invoke the user-defined save_state operation of an object at any time during the
lifetime of an object, including during the execution of the body of the object’s constructor. This is
particularly a possibility if it uses atomic actions. It is important, therefore, that all of the variables
saved by save_state are correctly initialized. Exercise caution when writing the save_state
and restore_state operations, to ensure that no transactions are started, either explicitly in
the operation, or implicitly through use of some other operation. The reason for this restriction
is that TxCore may invoke restore_state as part of its commit processing. This would result
in the attempt to execute an atomic transaction during the commit or abort phase of another
transaction. This might violate the atomicity properties of the transaction being committed or
aborted, and is thus discouraged. In order to support crash recovery for persistent objects, all

Chapter 5. Hints and tips

34

save_state and restore_state methods of user objects must call super.save_state and
super.restore_state.

5.1.2.1. Packing objects
All of the basic types of Java (int, long, etc.) can be saved and restored from an InputObjectState
or OutputObjectState instance by using the pack and unpack routines provided by
InputObjectState and OutputObjectState. However packing and unpacking objects should
be handled differently. This is because packing objects brings in the additional problems of aliasing.
Aliasing happens when two different object references may point at the same item. For example:

Example 5.2. Aliasing

public class Test
{
 public Test (String s);
 ...
 private String s1;
 private String s2;
};

public Test (String s)
{
 s1 = s;
 s2 = s;
}

Here, both s1 and s2 point at the same string. A naive implementation of save_state might copy the
string twice. From a save_state perspective this is simply inefficient. However, restore_state
would unpack the two strings into different areas of memory, destroying the original aliasing
information. The current version of TxCore packs and unpacks separate object references.

5.2. Direct use of StateManager
The examples throughout this manual derive user classes from LockManager. These are two
important reasons for this.

1. Firstly, and most importantly, the serializability constraints of atomic actions require it.

2. It reduces the need for programmer intervention.

However, if you only require access to TxCore's persistence and recovery mechanisms, direct
derivation of a user class from StateManager is possible.

Classes derived directly from StateManager must make use of its state management mechanisms
explicitly. These interactions are normally undertaken by LockManager. From a programmer's point
of view this amounts to making appropriate use of the operations activate, deactivate, and
modified, since StateManager's constructors are effectively identical to those of LockManager.

Example 5.3. activate

boolean activate ()
boolean activate (String storeRoot)

Activate loads an object from the object store. The object’s UID must already have been set
via the constructor and the object must exist in the store. If the object is successfully read then

Direct use of StateManager

35

restore_state is called to build the object in memory. Activate is idempotent so that once an object
has been activated further calls are ignored. The parameter represents the root name of the object
store to search for the object. A value of null means use the default store.

Example 5.4. deactivate

boolean deactivate ()
boolean deactivate (String storeRoot)

The inverse of activate. First calls save_state to build the compacted image of the object which is
then saved in the object store. Objects are only saved if they have been modified since they were
activated. The parameter represents the root name of the object store into which the object should
be saved. A value of null means use the default store.

Example 5.5. modified

void modified ()

Must be called prior to modifying the object in memory. If it is not called, the object will not be saved
in the object store by deactivate.

36

Chapter 6.

37

Constructing a Transactional Objects
for Java application
Development Phases of a TxCore Application
1. First, develop new classes with characteristics like persistence, recoverability, and concurrency

control.

2. Then develop the applications that make use of the new classes of objects.

Although these two phases may be performed in parallel and by a single person, this guide refers to
the first step as the job of the class developer, and the second as the job of the applications developer.
The class developer defines appropriate save_state and restore_state operations for the class,
sets appropriate locks in operations, and invokes the appropriate TxCore class constructors. The
applications developer defines the general structure of the application, particularly with regard to the
use of atomic actions.

This chapter outlines a simple application, a simple FIFO Queue class for integer values. The Queue
is implemented with a doubly linked list structure, and is implemented as a single object. This example
is used throughout the rest of this manual to illustrate the various mechanisms provided by TxCore.
Although this is an unrealistic example application, it illustrates all of the TxCore modifications without
requiring in depth knowledge of the application code.

Note

The application is assumed not to be distributed. To allow for distribution, context information
must be propagated either implicitly or explicitly.

6.1. Queue description
The queue is a traditional FIFO queue, where elements are added to the front and removed from
the back. The operations provided by the queue class allow the values to be placed on to the queue
(enqueue) and to be removed from it (dequeue), and values of elements in the queue can also
be changed or inspected. In this example implementation, an array represents the queue. A limit of
QUEUE_SIZE elements has been imposed for this example.

Example 6.1. Java interface definition of class queue

public class TransactionalQueue extends LockManager
{
 public TransactionalQueue (Uid uid);
 public TransactionalQueue ();
 public void finalize ();

 public void enqueue (int v) throws OverFlow, UnderFlow,
 QueueError, Conflict;
 public int dequeue () throws OverFlow, UnderFlow,
 QueueError, Conflict;

 public int queueSize ();
 public int inspectValue (int i) throws OverFlow,

Chapter 6. Constructing a Transactional Objects for Java application

38

 UnderFlow, QueueError, Conflict;
 public void setValue (int i, int v) throws OverFlow,
 UnderFlow, QueueError, Conflict;

 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);
 public String type ();

 public static final int QUEUE_SIZE = 40; // maximum size of the queue

 private int[QUEUE_SIZE] elements;
 private int numberOfElements;
};

6.2. Constructors and destructors
Using an existing persistent object requires the use of a special constructor that takes the Uid of the
persistent object, as shown in Example 6.2, “Class TransactionalQueue”.

Example 6.2. Class TransactionalQueue

 public TransactionalQueue (Uid u)
{
 super(u);

 numberOfElements = 0;
}
The constructor that creates a new persistent object is similar:
 public TransactionalQueue ()
{
 super(ObjectType.ANDPERSISTENT);

 numberOfElements = 0;

 try
 {
 AtomicAction A = new AtomicAction();

 A.begin(0); // Try to start atomic action

 // Try to set lock

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 A.commit(true); // Commit
 }
 else // Lock refused so abort the atomic action
 A.rollback();
 }
 catch (Exception e)
 {
 System.err.println(“Object construction error: “+e);
 System.exit(1);
 }
}

The use of an atomic action within the constructor for a new object follows the guidelines outlined
earlier and ensures that the object’s state will be written to the object store when the appropriate top
level atomic action commits (which will either be the action A or some enclosing action active when the
TransactionalQueue was constructed). The use of atomic actions in a constructor is simple: an action
must first be declared and its begin operation invoked; the operation must then set an appropriate lock

Required methods

39

on the object (in this case a WRITE lock must be acquired), then the main body of the constructor is
executed. If this is successful the atomic action can be committed, otherwise it is aborted.

The destructor of the queue class is only required to call the terminate operation of LockManager.

public void finalize ()
{
 super.terminate();
}

6.3. Required methods

6.3.1. save_state, restore_state, and type

Example 6.3. Method save_state

public boolean save_state (OutputObjectState os, int ObjectType)
{
 if (!super.save_state(os, ObjectType))
 return false;

 try
 {
 os.packInt(numberOfElements);

 if (numberOfElements > 0)
 {
 for (int i = 0; i < numberOfElements; i++)
 os.packInt(elements[i]);
 }

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}

Example 6.4. Method restore_state

public boolean restore_state (InputObjectState os, int ObjectType)
{
 if (!super.restore_state(os, ObjectType))
 return false;

 try
 {
 numberOfElements = os.unpackInt();

 if (numberOfElements > 0)
 {
 for (int i = 0; i < numberOfElements; i++)
 elements[i] = os.unpackInt();
 }

 return true;
 }

Chapter 6. Constructing a Transactional Objects for Java application

40

 catch (IOException e)
 {
 return false;
 }
}

Example 6.5. Method type
Because the Queue class is derived from the LockManager class, the operation type should be:

public String type ()
{
 return "/StateManager/LockManager/TransactionalQueue";
}

6.3.2. enqueue and dequeue methods
If the operations of the queue class are to be coded as atomic actions, then the enqueue operation
might have the structure given below. The dequeue operation is similarly structured, but is not
implemented here.

Example 6.6. Method enqueue

public void enqueue (int v) throws OverFlow, UnderFlow, QueueError
{
 AtomicAction A = new AtomicAction();
 boolean res = false;

 try
 {
 A.begin(0);

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 if (numberOfElements < QUEUE_SIZE)
 {
 elements[numberOfElements] = v;
 numberOfElements++;
 res = true;
 }
 else
 {
 A.rollback();
 throw new UnderFlow();
 }
 }

 if (res)
 A.commit(true);
 else
 {
 A.rollback();
 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }
}

queueSize method

41

6.3.3. queueSize method

Example 6.7. Method queueSize

public int queueSize () throws QueueError, Conflict
{
 AtomicAction A = new AtomicAction();
 int size = -1;

 try
 {
 A.begin(0);

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 size = numberOfElements;

 if (size != -1)
 A.commit(true);
 else
 {
 A.rollback();

 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }

 return size;
}

6.3.4. inspectValue and setValue methods

Note

The setValue method is not implemented here, but is similar in structure to Example 6.8,
“Method inspectValue”.

Example 6.8. Method inspectValue

public int inspectValue (int index) throws UnderFlow,
 OverFlow, Conflict, QueueError
{
 AtomicAction A = new AtomicAction();
 boolean res = false;
 int val = -1;

 try
 {
 A.begin();

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 {
 if (index < 0)

Chapter 6. Constructing a Transactional Objects for Java application

42

 {
 A.rollback();
 throw new UnderFlow();
 }
 else
 {
 // array is 0 - numberOfElements -1

 if (index > numberOfElements -1)
 {
 A.rollback();
 throw new OverFlow();
 }
 else
 {
 val = elements[index];
 res = true;
 }
 }
 }

 if (res)
 A.commit(true);
 else
 {
 A.rollback();
 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }

 return val;
}

6.4. The client
Rather than show all of the code for the client, this example concentrates on a representative portion.
Before invoking operations on the object, the client must first bind to the object. In the local case this
simply requires the client to create an instance of the object.

Example 6.9. Binding to the Object

 public static void main (String[] args)
{
 TransactionalQueue myQueue = new TransactionalQueue();
 Before invoking one of the queue’s operations, the client starts a transaction. The
 queueSize operation is shown below:
 AtomicAction A = new AtomicAction();
 int size = 0;

 try
 {
 A.begin(0);

 try
 {
 size = queue.queueSize();
 }
 catch (Exception e)
 {
 }

Comments

43

 if (size >= 0)
 {
 A.commit(true);

 System.out.println(“Size of queue: “+size);
 }
 else
 A.rollback();
 }
 catch (Exception e)
 {
 System.err.println(“Caught unexpected exception!”);
 }
}

6.5. Comments
Since the queue object is persistent, the state of the object survives any failures of the node on which
it is located. The state of the object that survives is the state produced by the last top-level committed
atomic action performed on the object. If an application intends to perform two enqueue operations
atomically, for example, you can nest the enqueue operations in another enclosing atomic action. In
addition, concurrent operations on such a persistent object are serialized, preventing inconsistencies
in the state of the object.

However, since the elements of the queue objects are not individually concurrency controlled, certain
combinations of concurrent operation invocations are executed serially, even though logically they
could be executed concurrently. An example of this is modifying the states of two different elements in
the queue. The platform Development Guide addresses some of these issues.

44

45

Appendix A. Object store
implementations

A.1. The ObjectStore
This appendix examines the various TxCore object store implementations and gives guidelines for
creating other implementations and plugging into an application.

This release of JBoss Transaction Service contains several different implementations of a basic
object store. Each serves a particular purpose and is generally optimized for that purpose. Each
of the implementations is derived from the ObjectStore interface, which defines the minimum
operations which must be provided for an object store implementation to be used by the Transaction
Service. You can override the default object store implementation at runtime by setting the
com.arjuna.ats.arjuna.objectstore.objectStoreType property variable to one of the
types described below.

Example A.1. Class StateStatus

/*
 * This is the base class from which all object store types are derived.
 * Note that because object store instances are stateless, to improve
 * efficiency we try to only create one instance of each type per process.
 * Therefore, the create and destroy methods are used instead of new
 * and delete. If an object store is accessed via create it *must* be
 * deleted using destroy. Of course it is still possible to make use of
 * new and delete directly and to create instances on the stack.
 */

public class StateStatus
{
 public static final int OS_ORIGINAL;
 public static final int OS_SHADOW;
 public static final int OS_UNCOMMITTED;
 public static final int OS_UNCOMMITTED_HIDDEN;
 public static final int OS_UNKNOWN;
}

public class StateType
{
 public static final int OS_COMMITTED;
 public static final int OS_COMMITTED_HIDDEN;
 public static final int OS_HIDDEN;
 public static final int OS_INVISIBLE;
}

public abstract class ObjectStore implements BaseStore, ParticipantStore,
 RecoveryStore, TxLog
{
 public ObjectStore (String osRoot);
 public synchronized boolean allObjUids (String s, InputObjectState buff)
 throws ObjectStoreException;
 public synchronized boolean allObjUids (String s, InputObjectState buff,
 int m) throws ObjectStoreException;

 public synchronized boolean allTypes (InputObjectState buff)
 throws ObjectStoreException;
 public synchronized int currentState(Uid u, String tn)
 throws ObjectStoreException;

Appendix A. Object store implementations

46

 public synchronized boolean commit_state (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean hide_state (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean reveal_state (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized InputObjectState read_committed (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized InputObjectState read_uncommitted (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean remove_committed (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean remove_uncommitted (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean write_committed (Uid u, String tn,
 OutputObjectState buff)
 throws ObjectStoreException;
 public synchronized boolean write_uncommitted (Uid u, String tn,
 OutputObjectState buff)
 throws ObjectStoreException;
 public static void printState (PrintStream strm, int res);
};

JBoss Transaction Service programmers do not usually need to interact with any of the object
store implementations directly, apart from possibly creating them in the first place. Even this is
not necessary if the default store type is used, since JBoss Transaction Service creates stores as
necessary. All stores manipulate instances of the class ObjectState. These instances are named
using a type (via the object's type() operation) and a Uid.

For atomic actions purposes, object states in the store can be principally in two distinct states:
OS_COMMITTED or OS_UNCOMMITTED. An object state starts in the OS_COMMITTED state, but
when it is modified under the control of an atomic action, a new second object state may be written
that is in the OS_UNCOMMITTED state. If the action commits, this second object state replaces the
original and becomes OS_COMMITTED. If the action aborts, this second object state is discarded. All
of the implementations provided with this release handle these state transitions by making use of
shadow copies of object states. However, any other implementation that maintains this abstraction is
permissible.

Object states may become hidden, and thus inaccessible, under the control of the crash recovery
system.

You can browse the contents of a store through the allTypes and allObjUids operations.
allTypes returns an InputObjectState containing all of the type names of all objects in a store,
terminated by a null name. allObjUids returns an InputObjectState containing all of the Uids of
all objects of a given type, terminated by the special Uid.nullUid().

A.1.1. Persistent object stores
This section briefly describes the characteristics and optimizations of each of the supplied
implementations of the persistent object store. Persistent object states are mapped onto the structure
of the file system supported by the host operating system.

A.1.1.1. Common functionality
In addition to the features mentioned earlier, all of the supplied persistent object stores obey the
following rules:

• Each object state is stored in its own file, which is named using the Uid of the object.

Persistent object stores

47

• The type of an object, as given by the type() operation, determines the directory into which the
object is placed.

• All of the stores have a common root directory that is determined when JBoss Transaction Service
is configured. This directory name is automatically prepended to any store-specific root information.

• All stores also have the notion of a localized root directory that is automatically prepended to the
type of the object to determine the ultimate directory name. The localized root name is specified
when the store is created. The default name is defaultStore.

<ObjectStore root Directory from configure> <filename>/JBossTS/ObjectStore/</filename>
 <ObjectStore Type1> <filename>FragmentedStore/</filename>
 <Default root> <filename>defaultStore/</filename>
 <StateManager> <filename>StateManager</filename>
 <LockManager> <filename>LockManager/</filename>
 <User Types>
 <Localised root 2> <filename>myStore/</filename>
 <StateManager> <filename>StateManager/</filename>

 <ObjectStore Type2> <filename>ActionStore/</filename>
 <Default root> <filename>defaultStore/</filename>

A.1.1.2. The shadowing store
The shadowing store s the original version of the object store, which was provided in prior releases. It
is implemented by the class ShadowingStore. It is simple but slow. It uses pairs of files to represent
objects. One file is the shadow version and the other is the committed version. Files are opened,
locked, operated upon, unlocked, and closed on every interaction with the object store. This causes a
lot of I/O overhead.

If you are overriding the object store implementation, the type of this object store is
ShadowingStore.

A.1.1.3. No file-level locking
Since transactional objects are concurrency-controlled through LockManager, you do not need
to impose additional locking at the file level. The basic ShadowingStore implementation handles
file-level locking. Therefore, the default object store implementation for JBoss Transaction Service,
ShadowNoFileLockStore, relies upon user-level locking. This enables it to provide better
performance than the ShadowingStore implementation.

If you are overriding the object store implementation, the type of this object store is
ShadowNoFileLockStore.

A.1.1.4. The hashed store
The HashedStore has the same structure for object states as the ShadowingStore, but has an
alternate directory structure that is better suited to storing large numbers of objects of the same type.
Using this store, objects are scattered among a set of directories by applying a hashing function to the
object's Uid. By default, 255 sub-directories are used. However, you can override this by setting the
ObjectStoreEnvironmentBean.hashedDirectories environment variable accordingly.

If you are overriding the object store implementation, the type of this object store is HashedStore.

A.1.1.5. The JDBC store
The JDBCStore uses a JDBC database to save persistent object states. When used in conjunction
with the Transactional Objects for Java API, nested transaction support is available. In the current

Appendix A. Object store implementations

48

implementation, all object states are stored as Binary Large Objects (BLOBs) within the same table.
The limitation on object state size imposed by using BLOBs is 64k. If you try to store an object
state which exceeds this limit, an error is generated and the state is not stored. The transaction is
subsequently forced to roll back.

When using the JDBC object store, the application must provide an implementation of the
JDBCAccess interface, located in the com.arjuna.ats.arjuna.objectstore package:

Example A.2. Interface JDBCAccess

 public interface JDBCAccess
{
 public Connection getConnection () throws SQLException;
 public void putConnection (Connection conn) throws SQLException;
 public void initialise (Object[] objName);
}

The implementation of this class is responsible for providing the Connection which the JDBC
ObjectStore uses to save and restore object states:

getConnection
Returns the Connection to use. This method is called whenever a connection is required, and
the implementation should use whatever policy is necessary for determining what connection to
return. This method need not return the same Connection instance more than once.

putConnection
Returns one of the Connections acquired from getConnection. Connections are returned if
any errors occur when using them.

initialise
Used to pass additional arbitrary information to the implementation.

The JDBC object store initially requests the number of Connections defined in the
ObjectStoreEnvironmentBean.jdbcPoolSizeInitial property and will use no more than
defined in the ObjectStoreEnvironmentBean.jdbcPoolSizeMaximum property.

The implementation of the JDBCAccess interface to use should be set in the
ObjectStoreEnvironmentBean.jdbcUserDbAccessClassName property variable.

If overriding the object store implementation, the type of this object store is JDBCStore.

A JDBC object store can be used for managing the transaction log. In this case, the transaction log
implementation should be set to JDBCActionStore and the JDBCAccess implementation must
be provided via the ObjectStoreEnvironmentBean.jdbcTxDbAccessClassName property
variable. In this case, the default table name is JBossTSTxTable.

You can use the same JDBCAccess implementation for both the user object store and the transaction
log.

A.1.1.6. The cached store
This object store uses the hashed object store, but does not read or write states to the persistent
backing store immediately. It maintains the states in a volatile memory cache and either flushes the
cache periodically or when it is full. The failure semantics associated with this object store are different
from the normal persistent object stores, because a failure could result in states in the cache being
lost.

Persistent object stores

49

If overriding the object store implementation, the type of this object store is CacheStore.

Configuration Properties
ObjectStoreEnvironmentBean.cacheStoreHash

sets the number of internal stores to hash the states over. The default value is 128.

ObjectStoreEnvironmentBean.cacheStoreSize
the maximum size the cache can reach before a flush is triggered. The default is 10240 bytes.

ObjectStoreEnvironmentBean.cacheStoreRemovedItems
the maximum number of removed items that the cache can contain before a flush is triggered. By
default, calls to remove a state that is in the cache will simply remove the state from the cache, but
leave a blank entry (rather than remove the entry immediately, which would affect the performance
of the cache). When triggered, these entries are removed from the cache. The default value is
twice the size of the hash.

ObjectStoreEnvironmentBean.cacheStoreWorkItems
the maximum number of items that are allowed to build up in the cache before it is flushed. The
default value is 100. ObjectStoreEnvironmentBean.cacheStoreScanPeriod sets the time
in milliseconds for periodically flushing the cache. The default is 120 seconds.

ObjectStoreEnvironmentBean.cacheStoreSync
determines whether flushes of the cache are sync-ed to disk. The default is OFF. To enable, set to
ON.

A.1.1.7. LogStore
This implementation is based on a traditional transaction log. All transaction states within the same
process (VM instance) are written to the same log (file), which is an append-only entity. When
transaction data would normally be deleted, at the end of the transaction, a delete record is added
to the log instead. Therefore, the log just keeps growing. Periodically a thread runs to prune the log of
entries that have been deleted.

A log is initially given a maximum capacity beyond which it cannot grow. After it reaches this size, the
system creates a new log for transactions that could not be accommodated in the original log. The
new log and the old log are pruned as usual. During the normal execution of the transaction system,
there may be an arbitrary number of log instances. These should be garbage collected by the system,
(or the recovery sub-system, eventually.

Check the Configuration Options table for how to configure the LogStore.

50

51

Appendix B. Class definitions
This appendix contains an overview of those classes that the application programmer will typically use.
The aim of this appendix is to provide a quick reference guide to these classes for use when writing
applications in TxCore. For clarity only the public and protected interfaces of the classes will be given.

Example B.1. Class LockManager

public class LockResult
{
 public static final int GRANTED;
 public static final int REFUSED;
 public static final int RELEASED;
};

public class ConflictType
{
 public static final int CONFLICT;
 public static final int COMPATIBLE;
 public static final int PRESENT;
};

public abstract class LockManager extends StateManager
{
 public static final int defaultRetry;
 public static final int defaultTimeout;
 public static final int waitTotalTimeout;

 public final synchronized boolean releaselock (Uid lockUid);
 public final synchronized int setlock (Lock toSet);
 public final synchronized int setlock (Lock toSet, int retry);
 public final synchronized int setlock (Lock toSet, int retry, int sleepTime);
 public void print (PrintStream strm);
 public String type ();
 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);

 protected LockManager ();
 protected LockManager (int ot);
 protected LockManager (int ot, int objectModel);
 protected LockManager (Uid storeUid);
 protected LockManager (Uid storeUid, int ot);
 protected LockManager (Uid storeUid, int ot, int objectModel);

 protected void terminate ();
};

Example B.2. Class StateManager

public class ObjectStatus
{
 public static final int PASSIVE;
 public static final int PASSIVE_NEW;
 public static final int ACTIVE;
 public static final int ACTIVE_NEW;
};

public class ObjectType
{
 public static final int RECOVERABLE;
 public static final int ANDPERSISTENT;
 public static final int NEITHER;

Appendix B. Class definitions

52

};

public abstract class StateManager
{
 public boolean restore_state (InputObjectState os, int ot);
 public boolean save_state (OutputObjectState os, int ot);
 public String type ();

 public synchronized boolean activate ();
 public synchronized boolean activate (String rootName);
 public synchronized boolean deactivate ();
 public synchronized boolean deactivate (String rootName);
 public synchronized boolean deactivate (String rootName, boolean commit);

 public synchronized int status ();
 public final Uid get_uid ();
 public void destroy ();
 public void print (PrintStream strm);

 protected void terminate ();

 protected StateManager ();
 protected StateManager (int ot);
 protected StateManager (int ot, int objectModel);
 protected StateManager (Uid objUid);
 protected StateManager (Uid objUid, int ot);
 protected StateManager (Uid objUid, int ot, int objectModel);
 protected synchronized final void modified ();
};

Example B.3. Classes OutputObjectState and InputObjectState

class OutputObjectState extends OutputBuffer
{
 public OutputObjectState (Uid newUid, String typeName);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
};
class InputObjectState extends ObjectState
{
 public OutputObjectState (Uid newUid, String typeName, byte[] b);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
};

Example B.4. Classes OutputBuffer and InputBuffer

public class OutputBuffer
{
 public OutputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* pack operations for standard Java types */

53

 public synchronized void packByte (byte b) throws IOException;
 public synchronized void packBytes (byte[] b) throws IOException;
 public synchronized void packBoolean (boolean b) throws IOException;
 public synchronized void packChar (char c) throws IOException;
 public synchronized void packShort (short s) throws IOException;
 public synchronized void packInt (int i) throws IOException;
 public synchronized void packLong (long l) throws IOException;
 public synchronized void packFloat (float f) throws IOException;
 public synchronized void packDouble (double d) throws IOException;
 public synchronized void packString (String s) throws IOException;
};
public class InputBuffer
{
 public InputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* unpack operations for standard Java types */

 public synchronized byte unpackByte () throws IOException;
 public synchronized byte[] unpackBytes () throws IOException;
 public synchronized boolean unpackBoolean () throws IOException;
 public synchronized char unpackChar () throws IOException;
 public synchronized short unpackShort () throws IOException;
 public synchronized int unpackInt () throws IOException;
 public synchronized long unpackLong () throws IOException;
 public synchronized float unpackFloat () throws IOException;
 public synchronized double unpackDouble () throws IOException;
 public synchronized String unpackString () throws IOException;
};

Example B.5. Class Uid

public class Uid implements Cloneable
{
 public Uid ();
 public Uid (Uid copyFrom);
 public Uid (String uidString);
 public Uid (String uidString, boolean errorsOk);
 public synchronized void pack (OutputBuffer packInto) throws IOException;
 public synchronized void unpack (InputBuffer unpackFrom) throws IOException;

 public void print (PrintStream strm);
 public String toString ();
 public Object clone () throws CloneNotSupportedException;
 public synchronized void copy (Uid toCopy) throws UidException;
 public boolean equals (Uid u);
 public boolean notEquals (Uid u);
 public boolean lessThan (Uid u);
 public boolean greaterThan (Uid u);

 public synchronized final boolean valid ();
 public static synchronized Uid nullUid ();
};

Example B.6. Class AtomicAction

public class AtomicAction
{
 public AtomicAction ();

Appendix B. Class definitions

54

 public void begin () throws SystemException, SubtransactionsUnavailable,
 NoTransaction;
 public void commit (boolean report_heuristics) throws SystemException,
 NoTransaction, HeuristicMixed,

 HeuristicHazard,TransactionRolledBack;
 public void rollback () throws SystemException, NoTransaction;
 public Control control () throws SystemException, NoTransaction;
 public Status get_status () throws SystemException;
 /* Allow action commit to be supressed */
 public void rollbackOnly () throws SystemException, NoTransaction;

 public void registerResource (Resource r) throws SystemException, Inactive;
 public void registerSubtransactionAwareResource (SubtransactionAwareResource sr)
 throws SystemException, NotSubtransaction;
 public void registerSynchronization (Synchronization s) throws SystemException,
 Inactive;
};

55

Appendix C. Revision History
Revision 0 Fri Sep 24 2010 Misty Stanley-Jones misty@redhat.com

Convert existing documentation to Publican.
Update to 4.13.

Revision 0 Thu Apr 14 2011 Tom Jenkinson
tom.jenkinson@redhat.com

Moved some content to main developer's guide

mailto:misty@redhat.com
mailto:tom.jenkinson@redhat.com

56

	ArjunaCore Development Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Overview
	2.1. TxCore
	2.2. Saving object states
	2.3. The object store
	2.4. Recovery and persistence
	2.5. The life cycle of a Transactional Object for Java
	2.6. The concurrency controller
	2.7. The transactional protocol engine
	2.8. The class hierarchy

	Chapter 3. Using TxCore
	3.1. State management
	3.1.1. Object states
	3.1.2. The object store
	3.1.3. Selecting an object store implementation
	3.1.3.1. StateManager
	3.1.3.2. Object models
	3.1.3.3. Summary
	3.1.3.4. Example

	3.2. Lock management and concurrency control
	3.2.1. Selecting a lock store implementation
	3.2.2. LockManager
	3.2.3. Locking policy
	3.2.4. Object constructor and destructor

	Chapter 4. Advanced transaction issues with TxCore
	4.1. Last resource commit optimization (LRCO)
	4.2. Nested transactions
	4.3. Asynchronously committing a transaction
	4.4. Independent top-level transactions
	4.5. Transactions within save_state and restore_state methods
	4.6. Garbage collecting objects
	4.7. Transaction timeouts
	4.7.1. Monitoring transaction timeouts

	Chapter 5. Hints and tips
	5.1. General
	5.1.1. Using transactions in constructors
	5.1.2. save_state and restore_state methods
	5.1.2.1. Packing objects

	5.2. Direct use of StateManager

	Chapter 6. Constructing a Transactional Objects for Java application
	6.1. Queue description
	6.2. Constructors and destructors
	6.3. Required methods
	6.3.1. save_state, restore_state, and type
	6.3.2. enqueue and dequeue methods
	6.3.3. queueSize method
	6.3.4. inspectValue and setValue methods

	6.4. The client
	6.5. Comments

	Appendix A. Object store implementations
	A.1. The ObjectStore
	A.1.1. Persistent object stores
	A.1.1.1. Common functionality
	A.1.1.2. The shadowing store
	A.1.1.3. No file-level locking
	A.1.1.4. The hashed store
	A.1.1.5. The JDBC store
	A.1.1.6. The cached store
	A.1.1.7. LogStore

	Appendix B. Class definitions
	Appendix C. Revision History

