
JBossJTA 4.15.1

JBossJTA
Administration Guide

Administration of the JBossJTA toolkit, which implements
the JTA API in the JBossJTA Transaction Service

Mark Little

Jonathan Halliday

Andrew Dinn

Kevin Connor

JBossJTA Administration Guide

JBossJTA 4.15.1 JBossJTA Administration Guide
Administration of the JBossJTA toolkit, which implements the
JTA API in the JBossJTA Transaction Service
Edition 1

Author Mark Little mlittle@redhat.com
Author Jonathan Halliday jhallida@redhat.com
Author Andrew Dinn adinn@redhat.com
Author Kevin Connor kconnor@redhat.com
Editor Misty Stanley-Jones misty@redhat.com

Copyright © 2011 JBoss.org.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

mailto:mlittle@redhat.com
mailto:jhallida@redhat.com
mailto:adinn@redhat.com
mailto:kconnor@redhat.com
mailto:misty@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Prerequisites ... v
2. Document Conventions ... v

2.1. Typographic Conventions .. v
2.2. Pull-quote Conventions .. vi
2.3. Notes and Warnings ... vii

3. We Need Feedback! .. vii

1. Introduction 1

2. Starting and Stopping the Transaction Manager 3

3. ObjectStore Management 5

4. JBossJTA Runtime Information 7

5. Failure Recovery Administration 9
5.1. The Recovery Manager .. 9
5.2. Configuring the Recovery Manager ... 9
5.3. Output ... 9
5.4. Periodic Recovery .. 10
5.5. Expired Entry Removal ... 11

6. Errors and Exceptions 13

7. Selecting the JTA implementation 15

A. Revision History 17

iv

v

Preface

1. Prerequisites
JBossJTA works in conjunction with JBossJTA. In addition to the documentation here, consult the
JBossJTA documentation, which ships as part of JBossJTA and is also available on the JBoss
Transaction Service website at http://www.jboss.org/jbosstm.

2. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

2.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

1 https://fedorahosted.org/liberation-fonts/

http://www.jboss.org/jbosstm
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System��� Preferences��� Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box
and click Close to switch the primary mouse button from the left to the right (making
the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications��� Accessories
�� Character Map from the main menu bar. Next, choose Search��� Find…
from the Character Map menu bar, type the name of the character in the Search
field and click Next. The character you sought will be highlighted in the Character
Table. Double-click this highlighted character to place it in the Text to copy field and
then click the Copy button. Now switch back to your document and choose Edit��
Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Notes and Warnings

vii

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

2.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!

Preface

viii

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product JBossJTA.

When submitting a bug report, be sure to mention the manual's identifier:
JBossJTA_Administration_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

https://jira.jboss.org/
https://jira.jboss.org/

Chapter 1.

1

Introduction
Apart from ensuring that the run-time system is executing normally, there is little continuous
administration needed for the JBossJTA software. Refer to Important Points for Administrators for
some specific concerns.

Important Points for Administrators
• The present implementation of the JBossJTA system provides no security or protection for data.

The objects stored in the JBossJTA object store are (typically) owned by the user who ran the
application that created them. The Object Store and Object Manager facilities make no attempt to
enforce even the limited form of protection that Unix/Windows provides. There is no checking of
user or group IDs on access to objects for either reading or writing.

• Persistent objects created in the Object Store never go away unless the StateManager.destroy
method is invoked on the object or some application program explicitly deletes them. This means
that the Object Store gradually accumulates garbage (especially during application development
and testing phases). At present we have no automated garbage collection facility. Further, we have
not addressed the problem of dangling references. That is, a persistent object, A, may have stored
a Uid for another persistent object, B, in its passive representation on disk. There is nothing to
prevent an application from deleting B even though A still contains a reference to it. When A is next
activated and attempts to access B, a run-time error will occur.

• There is presently no support for version control of objects or database reconfiguration in the event
of class structure changes. This is a complex research area that we have not addressed. At present,
if you change the definition of a class of persistent objects, you are entirely responsible for ensuring
that existing instances of the object in the Object Store are converted to the new representation. The
JBossJTA software can neither detect nor correct references to old object state by new operation
versions or vice versa.

• Object store management is critically important to the transaction service.

2

Chapter 2.

3

Starting and Stopping the Transaction
Manager
By default the transaction manager starts up in an active state such that new transactions
can be created immediately. If you wish to have more control over this it is possible to set the
CoordinatorEnvironmentBean.startDisabled configuration option to YES and in which
case no transactions can be created until the transaction manager is enabled via a call to method
TxControl.enable).

It is possible to stop the creation of new transactions at any time by calling method
TxControl.disable. Transactions that are currently executing will not be affected. By default
recovery will be allowed to continue and the transaction system will still be available to manage
recovery requests from other instances in a distributed environment. (See the Failure Recovery
Guide for further details). However, if you wish to disable recovery as well as remove any resources it
maintains, then you can pass true to method TxControl.disable; the default is to use false.

If you wish to shut the system down completely then it may also be necessary to terminate the
background transaction reaper (see the Programmers Guide for information about what the
reaper does.) In order to do this you may want to first prevent the creation of new transactions
(if you are not creating transactions with timeouts then this step is not necessary) using method
TxControl.disable. Then you should call method TransactionReaper.terminate. This
method takes a Boolean parameter: if true then the method will wait for the normal timeout periods
associated with any transactions to expire before terminating the transactions; if false then
transactions will be forced to terminate (rollback or have their outcome set such that they can only
ever rollback) immediately.

Note

if you intent to restart the recovery manager later after having terminated it then you MUST use
the TransactionReapear.terminate method with asynchronous behavior set to false.

4

Chapter 3.

5

ObjectStore Management
Within the transaction service installation, the object store is updated regularly whenever transactions
are created, or when Transactional Objects for Java is used. In a failure-free environment, the only
object states which should reside within the object store are those representing objects created with
the Transactional Objects for Java API.

However, if failures occur, transaction logs may remain in the object store until crash recovery facilities
have resolved the transactions they represent. As such it is very important that the contents of the
object store are not deleted without due care and attention, as this will make it impossible to resolve
in doubt transactions. In addition, if multiple users share the same object store it is important that
they realize this and do not simply delete the contents of the object store assuming it is an exclusive
resource.

6

Chapter 4.

7

JBossJTA Runtime Information
Compile-time configuration information is available via class
com.arjuna.common.util.ConfigurationInfo. Runtime configuration is embodied in the
various <name>EnvironmentBean classes, see the configuration section of the user guide. These
beans have corresponding MBean interfaces and may be linked to JMX for remote inspection of the
configuration if desired.

8

Chapter 5.

9

Failure Recovery Administration
The failure recovery subsystem of JBossJTA will ensure that results of a transaction are applied
consistently to all resources affected by the transaction, even if any of the application processes or
the machine hosting them crash or lose network connectivity. In the case of machine (system) crash
or network failure, the recovery will not take place until the system or network are restored, but the
original application does not need to be restarted. Recovery responsibility is delegated to Section 5.1,
“The Recovery Manager”. Recovery after failure requires that information about the transaction and
the resources involved survives the failure and is accessible afterward: this information is held in the
ActionStore, which is part of the ObjectStore.

Warning

If the ObjectStore is destroyed or modified, recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction that was in progress
at the time of the failure may be inaccessible. For database resources, this may be reported as tables
or rows held by “in-doubt transactions”. For TransactionalObjects for Java resources, an attempt to
activate the Transactional Object (as when trying to get a lock) will fail.

5.1. The Recovery Manager
The failure recovery subsystem of JBossJTA requires that the stand-alone Recovery Manager
process be running for each ObjectStore (typically one for each node on the network that is running
JBossJTA applications). The RecoveryManager file is located in the arjunacore JAR file within the
package com.arjuna.ats.arjuna.recovery.RecoveryManager. To start the Recovery Manager issue the
following command:

 java com.arjuna.ats.arjuna.recovery.RecoveryManager

If the -test flag is used with the Recovery Manager then it will display a Ready message when
initialized, i.e.,

 java com.arjuna.ats.arjuna.recovery.RecoveryManager -test

5.2. Configuring the Recovery Manager
The RecoveryManager reads the properties defined in the jbossts-properties.xml file.

A default version of jbossts-properties.xml is supplied with the distribution. This can be used
without modification, except possibly the debug tracing fields, as shown in Section 5.3, “Output”.

5.3. Output
It is likely that installations will want to have some form of output from the RecoveryManager, to
provide a record of what recovery activity has taken place. RecoveryManager uses the logging

Chapter 5. Failure Recovery Administration

10

mechanism provided by jboss logging, which provides a high level interface that hides differences
that exist between existing logging APIs such Jakarta log4j or JDK logging API.

The configuration of jboss logging depends on the underlying logging framework that is used, which
is determined by the availability and ordering of alternatives on the classpath. Please consult the jboss
logging documentation for details. Each log message has an associated log Level, that gives the
importance and urgency of a log message. The set of possible Log Levels, in order of least severity,
and highest verbosity, is:

1. TRACE

2. DEBUG

3. INFO

4. WARN

5. ERROR

6. FATAL

Messages describing the start and the periodical behavior made by the RecoveryManager are output
using the INFO level. If other debug tracing is wanted, the finer debug or trace levels should be set
appropriately.

Setting the normal recovery messages to the INFO level allows the RecoveryManager to produce a
moderate level of reporting. If nothing is going on, it just reports the entry into each module for each
periodic pass. To disable INFO messages produced by the Recovery Manager, the logging level could
be set to the higher level of ERROR, which means that the RecoveryManager will only produce ERROR,
WARNING, or FATAL messages.

5.4. Periodic Recovery
The RecoveryManager scans the ObjectStore and other locations of information, looking for
transactions and resources that require, or may require recovery. The scans and recovery processing
are performed by recovery modules. These recovery modules are instances of classes that implement
the com.arjuna.ats.arjuna.recovery.RecoveryModule interface. Each module has
responsibility for a particular category of transaction or resource. The set of recovery modules used is
dynamically loaded, using properties found in the RecoveryManager property file.

The interface has two methods: periodicWorkFirstPass and periodicWorkSecondPass.
At an interval defined by property com.arjuna.ats.arjuna.recovery.periodicRecoveryPeriod, the
RecoveryManager calls the first pass method on each property, then waits for a brief period, defined
by property com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod. Next, it calls the second pass of
each module. Typically, in the first pass, the module scans the relevant part of the ObjectStore to find
transactions or resources that are in-doubt. An in-doubt transaction may be part of the way through the
commitment process, for instance. On the second pass, if any of the same items are still in-doubt, the
original application process may have crashed, and the item is a candidate for recovery.

An attempt by the RecoveryManager to recover a transaction that is still progressing in the original
process is likely to break the consistency. Accordingly, the recovery modules use a mechanism,
implemented in the com.arjuna.ats.arjuna.recovery.TransactionStatusManager package, to check to
see if the original process is still alive, and if the transaction is still in progress. The RecoveryManager
only proceeds with recovery if the original process has gone, or, if still alive, the transaction is
completed. If a server process or machine crashes, but the transaction-initiating process survives,
the transaction completes, usually generating a warning. Recovery of such a transaction is the
responsibility of the RecoveryManager.

Expired Entry Removal

11

It is clearly important to set the interval periods appropriately. The total iteration time will be the sum
of the periodicRecoveryPeriod and recoveryBackoffPeriod properties, and the length of time it takes
to scan the stores and to attempt recovery of any in-doubt transactions found, for all the recovery
modules. The recovery attempt time may include connection timeouts while trying to communicate
with processes or machines that have crashed or are inaccessible. There are mechanisms in the
recovery system to avoid trying to recover the same transaction indefinitely. The total iteration time
affects how long a resource will remain inaccessible after a failure. – periodicRecoveryPeriod should
be set accordingly. Its default is 120 seconds. The recoveryBackoffPeriod can be comparatively short,
and defaults to 10 seconds. –Its purpose is mainly to reduce the number of transactions that are
candidates for recovery and which thus require a call to the original process to see if they are still in
progress.

Note

In previous versions of JBossJTA, there was no contact mechanism, and the back-off period
needed to be long enough to avoid catching transactions in flight at all. From 3.0, there is no
such risk.

Two recovery modules, implementations of the
com.arjuna.ats.arjuna.recovery.RecoveryModule interface, are supplied with JBossJTA.
These modules support various aspects of transaction recovery, including JDBC recovery. It is
possible for advanced users to create their own recovery modules and register them with the
Recovery Manager. The recovery modules are registered with the RecoveryManager using
RecoveryEnvironmentBean.recoveryModuleClassNames. These will be invoked on each
pass of the periodic recovery in the sort-order of the property names – it is thus possible to predict
the ordering, but a failure in an application process might occur while a periodic recovery pass is in
progress. The default Recovery Extension settings are:

<entry key="RecoveryEnvironmentBean.recoveryModuleClassNames">
 com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule
 com.arjuna.ats.internal.txoj.recovery.TORecoveryModule
 com.arjuna.ats.internal.jta.recovery.arjunacore.XARecoveryModule
</entry>

5.5. Expired Entry Removal
The operation of the recovery subsystem cause some entries to be made in the ObjectStore
that are not removed in normal progress. The RecoveryManager has a facility for scanning
for these and removing items that are very old. Scans and removals are performed by
implementations of the com.arjuna.ats.arjuna.recovery.ExpiryScanner interface.
These implementations are loaded by giving the class names as the value of a property
RecoveryEnvironmentBean.expiryScannerClassNames. The RecoveryManager calls the scan()
method on each loaded Expiry Scanner implementation at an interval determined by the property
RecoveryEnvironmentBean.expiryScanInterval. This value is given in hours, and defaults to 12hours.
An expiryScanInterval value of zero suppresses any expiry scanning. If the value supplied is positive,
the first scan is performed when RecoveryManager starts. If the value is negative, the first scan is
delayed until after the first interval, using the absolute value.

The kinds of item that are scanned for expiry are:

Chapter 5. Failure Recovery Administration

12

TransactionStatusManager items
One TransactionStatusManager item is created by every application process that uses
JBossJTA. It contains the information that allows the RecoveryManager to determine if the
process that initiated the transaction is still alive, and its status. The expiry time for these items
is set by the property com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime,
expressed in hours. The default is 12, and 0 (zero) means never to expire.The expiry time should
be greater than the lifetime of any single processes using JBossJTA.

The Expiry Scanner properties for these are:

 <entry key="RecoveryEnvironmentBean.expiryScannerClassNames">
 com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner
</entry>

Chapter 6.

13

Errors and Exceptions
This section covers the types and causes of errors and exceptions which may be thrown or reported
during a transactional application.

Errors and Exceptions
NO_MEMORY

The application has run out of memory, and has thrown an OutOfMemoryError exception.
JBossJTA has attempted to do some cleanup, by running the garbage collector, before re-
throwing the exception. This is probably a transient problem and retrying the invocation should
succeed.

com.arjuna.ats.arjuna.exceptions.FatalError
An error has occurred, and the error is of such severity that that the transaction system must shut
down. Prior to this error being thrown the transaction service ensures that all running transactions
have rolled back. If an application catches this error, it should tidy up and exit. If further work is
attempted, application consistency may be violated.

com.arjuna.ats.arjuna.exceptions.ObjectStoreError
An error occurred while the transaction service attempted to use the object store. Further forward
progress is not possible.

Object store warnings about access problems on states may occur during the normal execution of
crash recovery. This is the result of multiple concurrent attempts to perform recovery on the same
transaction. It can be safely ignored.

14

Chapter 7.

15

Selecting the JTA implementation
Two variants of the JTA implementation are accessible through the same interface. These are:

Purely local JTA Only non-distributed JTA transactions are
executed. This is the only version available with
the JBossJTA distribution.

Remote, CORBA-based JTA Executes distributed JTA transactions. This
functionality is provided by the JTS distribution
and requires a supported CORBA ORB. Consult
the JTS Installation and Administration Guide for
more information.

Both of these implementations are fully compatible with the transactional JDBC driver.

Procedure 7.1. Selecting the local JTA implementation
1. Set the property JTAEnvironmentBean.jtaTMImplementation to value

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple
.

2. Set the property JTAEnvironmentBean.jtaUTImplementation to value
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple .

Note

These settings are the default values for the properties, so nothing needs to be changed to use
the local implementation.

16

17

Appendix A. Revision History
Revision 0 Wed Sep 1 2010 Misty Stanley-Jones misty@redhat.com

Conversion to Docbook

Revision 1 Wed Apr 13 2011 Tom Jenkinson
tom.jenkinson@redhat.com

Separation of installation and administration information

mailto:misty@redhat.com
mailto:tom.jenkinson@redhat.com

18

	JBossJTA Administration Guide
	Table of Contents
	Preface
	1. Prerequisites
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Chapter 1. Introduction
	Chapter 2. Starting and Stopping the Transaction Manager
	Chapter 3. ObjectStore Management
	Chapter 4. JBossJTA Runtime Information
	Chapter 5. Failure Recovery Administration
	5.1. The Recovery Manager
	5.2. Configuring the Recovery Manager
	5.3. Output
	5.4. Periodic Recovery
	5.5. Expired Entry Removal

	Chapter 6. Errors and Exceptions
	Chapter 7. Selecting the JTA implementation
	Appendix A. Revision History

