

 1

REST-Atomic Transactions 2

2.0 draft 4 3
 4

Version created 7 May 2010 5
 6

Editors 7
Mark Little (mlittle@redhat.com) 8

 9
 10

 11
 12

 13
 14

 15
 16

 17
 18

 19
 20

 21
 22

 23
 24

 25
 26

 27
 28

 29
 30

 31

 32
 33

 34
 35
 36

 37

38

Office 2004 Test Drive …, 24/12/09 13:25
Comment: Still to do:

Interposition.

2

Abstract 38

A common technique for fault-tolerance is through the use of atomic transactions, which have the 39
well know ACID properties, operating on persistent (long-lived) objects. Transactions ensure that 40
only consistent state changes take place despite concurrent access and failures. However, 41
traditional transactions depend upon tightly coupled protocols, and thus are often not well suited 42
to more loosely coupled Web based applications, although they are likely to be used in some of 43
the constituent technologies. It is more likely that traditional transactions are used in the minority 44
of cases in which the cooperating services can take advantage of them, while new mechanisms, 45
such as compensation, replay, and persisting business process state, more suited to the Web are 46
developed and used for the more typical case. 47
 48

Table of contents 49

1 Note on terminology 4 50
2 REST-Atomic Transaction 5 51

2.1 Relationship to HTTP 5 52
2.2 Header linking 5 53
2.3 The protocol 5 54

2.3.1 Two-phase commit 5 55
2.3.2 State transitions 6 56
2.3.3 Client and transaction interactions 7 57
2.3.4 Transaction context propagation 9 58
2.3.5 Coordinator and participant interactions 10 59
2.3.6 Recovery 12 60
2.3.7 Pre- and post- two-phase commit processing 13 61
2.3.8 Checked transactions 13 62
2.3.9 Statuses 14 63

3 References 15 64
 65

4

1 Note on terminology 66

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 67
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 68
interpreted as described in RFC2119 [1]. 69
Namespace URIs of the general form http://example.org and http://example.com represents some 70
application-dependent or context-dependent URI as defined in RFC 2396 [2]. 71
 72
 73

 5

2 REST-Atomic Transaction 74

Atomic transactions are a well-known technique for guaranteeing consistency in the presence of 75
failures [3]. The ACID properties of atomic transactions (Atomicity, Consistency, Isolation, and 76
Durability) ensure that even in complex business applications consistency of state is preserved, 77
despite concurrent accesses and failures. This is an extremely useful fault-tolerance technique, 78
especially when multiple, possibly remote, resources are involved. 79
 80
Examples of coordinated outcomes include the classic two-phase commit protocol, a three phase 81
commit protocol, open nested transaction protocol, asynchronous messaging protocol, or 82
business process automation protocol. Coordinators can be participants of other coordinators. 83
When a coordinator registers itself with another coordinator, it can represent a series of local 84
activities and map a neutral transaction protocol onto a platform-specific transaction protocol. 85

2.1 Relationship to HTTP 86

This specification defines how to perform Atomic transactions using REST principles. However, in 87
order to provide a concrete mapping to a specific implementation, HTTP has been chosen. 88
Mappings to other protocols, such as JMS, is possible but outside the scope of this specification. 89

2.2 Header linking 90

Relationships between resources will be defined using the Link Header specification [4]. 91

2.3 The protocol 92

The REST-Atomic Transactions model recognizes that HTTP is a good protocol for 93
interoperability as much as for the Internet. As such, interoperability of existing transaction 94
processing systems is an important consideration for this specification. Business-to-business 95
activities will typically involve back-end transaction processing systems either directly or indirectly 96
and being able to tie together these environments will be the key to the successful take-up of 97
Web Services transactions. 98
 99
Although traditional atomic transactions may not be suitable for all Web based applications, they 100
are most definitely suitable for some, and particularly high-value interactions such as those 101
involved in finance. As a result, the Atomic Transaction model has been designed with 102
interoperability in mind. Within this model it is assumed that all services (and associated 103
participants) provide ACID semantics and that any use of atomic transactions occurs in 104
environments and situations where this is appropriate: in a trusted domain, over short durations. 105
 106
Note, this specification only defines how to accomplish atomic outcomes between participations 107
within the scope of the same transaction. It is assumed that if all ACID properties are required 108
then C, I and D are provided in some way outside this scope of this specification. This means that 109
some applications MAY use the REST-Atomic Transaction purely to achieve atomicity. 110

2.3.1 Two-phase commit 111

The ACID transaction model uses a traditional two-phase commit protocol [3] with the following 112
optimizations: 113

• Presumed rollback: the transaction coordinator need not record information about the 114
participants in stable storage until it decides to commit, i.e., until after the prepare phase 115
has completed successfully. A definitive answer that a transaction does not exist can be 116
used to infer that it rolled back. 117

6

• One-phase: if the coordinator discovers that only a single participant is registered then it 118
SHOULD omit the prepare phase. 119

• Read-only: a participant that is responsible for a service that did not modify any 120
transactional data during the course of the transaction can indicate to the coordinator 121
during prepare that it is a read-only participant and the coordinator SHOULD omit it from 122
the second phase of the commit protocol. 123

 124
Participants that have successfully passed the prepare phase are allowed to make autonomous 125
decisions as to whether they commit or rollback. A participant that makes such an autonomous 126
choice must record its decision in case it is eventually contacted to complete the original 127
transaction. If the coordinator eventually informs the participant of the fate of the transaction and 128
it is the same as the autonomous choice the participant made, then there is obviously no 129
problem: the participant simply got there before the coordinator did. However, if the decision is 130
contrary, then a non-atomic outcome has happened: a heuristic outcome, with a corresponding 131
heuristic decision. 132
 133
The possible heuristic outcomes are: 134

• Heuristic rollback: the commit operation failed because some or all of the participants 135
unilaterally rolled back the transaction. 136

• Heuristic commit: an attempted rollback operation failed because all of the participants 137
unilaterally committed. This may happen if, for example, the coordinator was able to 138
successfully prepare the transaction but then decided to roll it back (e.g., it could not 139
update its log) but in the meanwhile the participants decided to commit. 140

• Heuristic mixed: some updates were committed while others were rolled back. 141
• Heuristic hazard: the disposition of some of the updates is unknown. For those which are 142

known, they have either all been committed or all rolled back. 143

2.3.2 State transitions 144

A transaction (coordinator and two-phase participant) goes through the state transitions shown: 145

 7

Active

RollingBack RolledBack

OnePhaseCo

mmit

Preparing Prepared Committing Committed

 146
There is a new media type to represent the status of a coordinator and its participants: 147
application/txstatus, which supports a return type based on the scheme maintained at www.rest-148
star.org/… For example: 149

tx-status=TransactionActive 150

2.3.3 Client and transaction interactions 151

The transaction coordinator is represented by a URI. In the rest of this specification we shall 152
assume it is http://www.fabrikam.com/transaciton-manager, but it could be any URI and its role 153
need not be explicitly apparent within the structure of the URI. 154

2.3.3.1 Creating a transaction 155

Performing a POST on /transaction-manager with content as shown below will start a new 156
transaction with a default timeout. A successful invocation will return 201 and the Location header 157
MUST contain the URI of the newly created transaction resource, which we will refer to as 158
transaction-coordinator in the rest of this specification. Two related URLs MUST also be returned, 159
one for the terminator of the transaction to use (typically referred to as the client) and one used 160
for registering durable participation in the transaction (typically referred to as the server). 161
Although uniform URL structures are used in the examples, these linked URLs can be of arbitrary 162
format. 163
 164
POST /transaction-manager HTTP/1.1 165
From: foo@bar.com 166
Content-Type: application/x-www-form-urlencoded 167
Content-Length: 32 168
 169
The corresponding response would be: 170
 171
HTTP 1.1 201 Created 172
Location: /transaction-coordinator/1234 173
Link: /transaction-coordinator/1234/terminator; 174
rel=”terminator” 175
Link: /transaction-coordinator/1234/participant; 176

8

rel=”durable participant” 177
 178
Performing a HEAD on /transaction-coordinator/1234 MUST return the same link information. 179
 180
HEAD /transaction-coordinator/1234 HTTP/1.1 181
From: foo@bar.com 182
 183
HTTP/1.1 200 OK 184
Link: /transaction-coordinator/1234/terminator; 185
rel=”terminator” 186
Link: /transaction-coordinator/1234/participant; 187
rel=”durable participant” 188
 189
Performing a POST on transaction-manager as shown below will start a new transaction with the 190
specified timeout in milliseconds. 191
 192
POST /transaction-manager HTTP/1.1 193
From: foo@bar.com 194
Content-Type: application/x-www-form-urlencoded 195
Content-Length: -- 196
 197
timeout=1000 198
 199
If the transaction is terminated because of a timeout, the resources representing the created 200
transaction are deleted. All further invocations on the transaction-coordinator or any of its related 201
URIs MAY return 410 if the implementation records information about transactions that have 202
rolled back, (not necessary for presumed rollback semantics) but at a minimum MUST return 401. 203
The invoker can assume this was a rollback. 204
 205
Performing a GET on that /transaction-manager returns a list of all transaction coordinator URIs 206
know to the coordinator (active and in recovery). 207

2.3.3.2 Obtaining the transaction status 208

Performing a GET on /transaction-coordinator/1234 returns the current status of the transaction, 209
as described later. 210
 211
GET /transaction-coordinator/1234 HTTP/1.1 212
Accept: application/txstatus+xml 213
 214
With an example response: 215
 216
HTTP/1.1 200 OK 217
Content-Length: -- 218
Content-Type: application/txstatus 219
 220
tx-status=TransactionActive 221
 222
Performing a DELETE on any of the /transaction-coordinator URIs will return a 403. 223

 9

2.3.3.3 Terminating a transaction 224

The client can PUT one of the following to /transaction-coordinator/1234/terminator in order to 225
control the outcome of the transaction; anything else MUST return a 400. Performing a PUT as 226
shown below will trigger the commit of the transaction. Upon termination, the resource and all 227
associated resources are implicitly deleted. For any subsequent invocation then an 228
implementation MAY return 410 if the implementation records information about transactions that 229
have rolled back, (not necessary for presumed rollback semantics) but at a minimum MUST 230
return 401. The invoker can assume this was a rollback. In order for an interested party to know 231
for sure the outcome of a transaction then it MUST be registered as a participant with the 232
transaction coordinator. 233
 234
PUT /transaction-coordinator/1234/terminator HTTP/1.1 235
From: foo@bar.com 236
Content-Type: application/txstatus 237
Content-Length: -- 238
 239
tx-status=TransactionCommit 240
 241
If the transaction no longer exists then an implementation MAY return 410 if the implementation 242
records information about transactions that have rolled back, (not necessary for presumed 243
rollback semantics) but at a minimum MUST return 401. 244
 245
The state of the transaction MUST be Active for this operation to succeed. If the transaction is in 246
an invalid state for the operation then the implementation MUST 403. Otherwise the 247
implementation MAY return 200 or 202. In the latter case the Location header SHOULD contain a 248
URI upon which a GET may be performed to obtain the transaction outcome. It is implementation 249
dependent as to how long this URI will remain valid. Once removed by an implementation then 250
410 MUST be returned. 251
 252
The transaction may be told to rollback with the following PUT request: 253
 254
PUT /transaction-coordinator/1234/terminator HTTP/1.1 255
From: foo@bar.com 256
Content-Type: application/txstatus 257
Content-Length: -- 258
 259
tx-status=TransactionRollback 260

2.3.4 Transaction context propagation 261

When making an invocation on a resource that needs to participate in a transaction, the server 262
URI (e.g., /transaction-coordinator/1234) needs to be transmitted to the resource. How this 263
happens is outside the scope of this specification. It may occur as additional payload on the initial 264
request, or it may be that the client sends the context out-of-band to the resource. 265
 266
Note, a server SHOULD only use the transaction coordinator URIs it is given directly and not 267
attempt to infer any others. For example, an implementation MAY decide to give the server 268
access to only the root transaction coordinator URI and the participant URI, preventing it from 269
terminating the transaction directly. 270

10

2.3.5 Coordinator and participant interactions 271

Once a resource has the transaction URI, it can register participation in the transaction. The 272
participant is free to use whatever URI structure it desires for uniquely identifying itself; in the rest 273
of this specification we shall assume it is /participant-resource. 274

2.3.5.1 Enlisting a two-phase aware participant 275

A participant is registered with /transaction-coordinator using POST on the participant Link URI 276
obtained when the transaction was created originally: 277
 278
POST /transaction-coordinator/1234/participant HTTP/1.1 279
From: foo@bar.com 280
Content-Type: application/x-www-form-urlencoded 281
Content-Length: -- 282
 283
participant=/participant-resource/+ 284
terminator=/participant-resource/terminator 285
 286
Performing a HEAD on a registered participant URI MUST return the terminator reference, as 287
shown below: 288
 289
HEAD /participant-resource HTTP/1.1 290
From: foo@bar.com 291
 292
HTTP/1.1 200 OK 293
Link: /participant-resource/terminator; 294
rel=”terminator” 295
 296
If the transaction is not Active then the implementation MUST return 403. If the implementation 297
has seen this participant URI before then it MUST return 400. Otherwise the operation is 298
considered a success and the implementation MUST return 201 and MAY use the Location 299
header to give a participant specific URI that the participant MAY use later during prepare or for 300
recovery purposes. The lifetime of this URI is the same as /transaction-coordinator. In the rest of 301
this specification we shall refer to this URI as /participant-recovery (not to be confused with the 302
/participant-resource URI) although the actual format is implementation dependant. 303
 304
HTTP/1.1 201 Created 305
Location: /participant-recovery/1234 306
 307
Note, in a subsequent draft we shall discuss how a participant can also register alternative 308
terminator resources for the various operations used during the commit protocol. In this draft we 309
assume that a uniform approach is used for all participants. 310

2.3.5.2 Enlisting a two-phase unaware participant 311

In order for a participant to be enlisted with a transaction it MUST be transaction aware in order 312
that it can fulfill the requirements placed on it to ensure data consistency in the presence of 313
failures or concurrent access. However, it is not necessary that a participant be modified such 314
that it has a terminator resource as outlined previously: it simply needs a way to tell the 315
coordinator which resource(s) with which to communicate when driving the two-phase protocol. 316
This type of participant will be referred to as Two-Phase Unaware, though strictly speaking such 317
a participant or service does need to understand the protocol as mentioned earlier. 318

 11

 319
During enlistment a service MUST provide URIs for prepare, commit, rollback and OPTIONAL 320
commit-one-phase: 321
 322
POST /transaction-coordinator/1234/participant HTTP/1.1 323
From: foo@bar.com 324
Content-Type: application/x-www-form-urlencoded 325
Content-Length: -- 326
 327
participant=/participant-resource+ 328
prepare=/participant-resource/prepare+ 329
commit=/participant-resource/commit+ 330
rollback=/participant-resource/rollback 331
 332
Performing a HEAD on a registered participant URI MUST return these references, as shown 333
below: 334
 335
HEAD /participant-resource HTTP/1.1 336
From: foo@bar.com 337
 338
HTTP/1.1 200 OK 339
Link: /participant-resource/prepare; rel=”prepare” 340
Link: /participant-resource/commit; rel=”commit” 341
Link: /participant-resource/rollback; rel=”rollback” 342
 343
A service that registers a participant MUST therefore either define a terminator relationship for the 344
participant or the relationships/resources needed for the two-phase commit protocol. 345

2.3.5.3 Obtaining the status of a participant 346

Performing a GET on the /participant-resource URL MUST return the current status of the 347
participant in the same way as for the /transaction-coordinator URI discussed earlier. Determining 348
the status of a participant whose URI has been removed is similar to that discussed for 349
/transaction-coordinator. 350

2.3.5.4 Terminating a participant 351

The coordinator drives the participant through the two-phase commit protocol by sending a PUT 352
request to the participant terminator URI provided during enlistment, with Prepare, Commit, 353
Rollback or CommitOnePhase as the message content, i.e., requesting the state of the resource 354
to be changed accordingly: 355
 356
PUT /participant-resource HTTP/1.1 357
From: foo@bar.com 358
Content-Type: application/txstatus 359
Content-Length: -- 360
 361
tx-status=TransactionPrepare 362
 363
If the operation is successful then the implementation MUST return 200. A subsequent GET on 364
the URI will return the current status of the participant as described previously. It is not always 365

12

necessary to enquire as to the status of the participant once the operation has been successful. 366
 367
If the operation fails then the implementation MUST return 409. It is implementation dependant as 368
to whether the /participant-resource or related URIs remain valid, i.e., an implementation MAY 369
delete the resource as a result of a failure. Depending upon the point in the two-phase commit 370
protocol where such a failure occurs the transaction MUST be rolled back. If the participant is not 371
in the correct state for the requested operation, e.g., Prepare when it has been already been 372
prepared, then the implementation MUST return 409. 373
 374
If the transaction coordinator receives any response other than 200 for Prepare then the 375
transaction MUST rollback. 376
 377
Note, read-only MAY be modeled as a DELETE request from the participant to the coordinator 378
using the URI returned during registration in the Location header, as mentioned previously, i.e., 379
/participant-recovery. If GET is used to obtain the status of the participant after a 200 response is 380
received to the original PUT for Prepare then the implementation MUST return 410 if the 381
participant was read-only. 382
 383
The usual rules of heuristic decisions apply here (i.e., the participant cannot forget the choice until 384
it is told to by the coordinator). 385
 386
Performing a PUT on /participant-resource/terminator with Forget will cause the participant to 387
forget any heuristic decision it made on behalf of the transaction. If the operation succeeds then 388
200 MUST be returned and the implementation MAY delete the resource. Any other response 389
means the coordinator MUST retry. 390

2.3.6 Recovery 391

In general it is assumed that failed actors in this protocol, i.e., coordinator or participants, will 392
recover on the same URI as they had prior to the failure. If that is not possible them these 393
endpoints SHOULD return a 301 status code or some other way of indicating that the participant 394
has moved elsewhere. 395
 396
However, sometimes it is possible that a participant may crash and recover on a different URI, 397
e.g., the original machine is unavailable, or that for expediency it is necessary to move recovery 398
to a different machine. In that case it may be that transaction coordinator is unable to complete 399
the transaction, even during recovery. As a result this protocol defines a way for a recovering 400
server to update the information maintained by the coordinator on behalf of these participants. 401
 402
If the implementation uses the /participant-recovery URI described previously then a GET on 403
/participant-recovery will return the original participant URI supplied when the participant was 404
registered. 405
 406
Performing a PUT on /participant-recovery will overwrite the old participant URI with the new one 407
supplied. This will also trigger off a recovery attempt on the associated transaction using the new 408
participant URI. 409
 410
PUT /participant-recovery/1234 HTTP/1.1 411
From: foo@bar.com 412
Content-Type: application/x-www-form-urlencoded 413
Content-Length: -- 414
 415
new-address=URI 416

 13

2.3.7 Pre- and post- two-phase commit processing 417

Most modern transaction processing systems allow the creation of participants that do not take 418
part in the two-phase commit protocol, but are informed before it begins and after it has 419
completed. They are called Synchronizations, and are typically employed to flush volatile 420
(cached) state, which may be being used to improve performance of an application, to a 421
recoverable object or database prior to the transaction committing. 422
 423
This additional protocol is accomplished in this specification by supporting an additional two-424
phase commit protocol that enclosed the protocol we have already discussed. This will be termed 425
the Volatile Two Phase Commit protocol, as the participants involved in it are not required to be 426
durable for the purposes of data consistency, whereas the other protocol will be termed the 427
Durable Two Phase Commit protocol. The coordinator MUST not record any durable information 428
on behalf of Volatile participants. 429
 430
In this case the Volatile prepare phase executes prior to the Durable prepare: only if this prepare 431
succeeds will the Durable protocol be executed. If the Durable protocol completes then this MAY 432
be communicated to the Volatile participants through the commit or rollback phases. However, 433
because the coordinator does not maintain any information about these participants and the 434
Durable protocol has completed, this SHOULD be a best-effort approach only, i.e., such 435
participants SHOULD NOT assume they will be informed about the transaction outcome. If that is 436
a necessity then they should register with the Durable protocol instead. 437
 438
The Volatile protocol is identical to the Durable protocol described already. The only differences 439
are as discussed below: 440
 441

• It is an OPTIONAL protocol. An implementation that supports the protocol MUST show this 442
when the transaction is created through a Link relationship: it returns an additional Linked 443
resource whose relationship is defined as “volatile participant”. Services MUST use this 444
URI when registering volatile participants. 445

• There is no recovery associated with the Volatile protocol. Therefore the /participant-446
recovery URI SHOULD NOT be used by an implementation. 447

• There can be no heuristic outcomes associated with the Volatile protocol. 448
• An implementation MAY allow registration in the Volatile protocol after the transaction has 449

been asked to terminate as long as the Durable protocol has not started. 450
• There is no one-phase commit optimization for the Volatile protocol. 451

 452

2.3.8 Checked transactions 453

Checked transactions have a number of integrity constraints including: 454
• Ensuring that only the transaction originator can commit the transaction. 455
• Ensuring that a transaction will not commit until all transactional invocations involved in the 456

transaction have completed. 457
 458
Some implementations will enforce checked behavior for the transactions they support, to provide 459
an extra level of transaction integrity. The purpose of the checks is to ensure that all transactional 460
requests made by the application have completed their processing before the transaction is 461
committed. A checked Transaction Service guarantees that commit will not succeed unless all 462
invocations involved in the transaction have completed. Rolling back the transaction does not 463
require such as check, since all outstanding transactional activities will eventually rollback if they 464
are not told to commit 465
 466
There are many possible implementations of checked transactions. One provides equivalent 467
function to that provided by the request/response inter-process communication models defined by 468
X/Open. It describes the transaction integrity guarantees provided by many existing transaction 469

14

systems. In X/Open, completion of the processing of a request means that the service has 470
completed execution of its invocation and replied to the request. The level of transaction integrity 471
provided by a Transaction Service implementing the X/Open model of checking provides 472
equivalent function to that provided by the XATMI and TxRPC interfaces defined by X/Open for 473
transactional applications. 474

2.3.9 Statuses 475

Participants SHOULD return the following statuses by performing a GET on the appropriate 476
/transaction-coordinator or participant URI: 477

• TransactionRollbackOnly: the status of the endpoint is that it will roll back eventually. 478
• TransactionRollingBack: the endpoint is in the process of rolling back. 479
• TransactionRolledBack: the endpoint has rolled back. 480
• TransactionCommitting: the endpoint is in the process of committing. This does not mean 481

that the final outcome will be Committed. 482
• TransactionCommitted: the endpoint has committed. 483
• TransactionHeuristicRollback: all of the participants rolled back when they were asked to 484

commit. 485
• TransactionHeuristicCommit: all of the participants committed when they were asked to 486

rollback. 487
• TransactionHeuristicHazard: some of the participants rolled back, some committed and the 488

outcome of others is indeterminate. 489
• TransactionHeuristicMixed: some of the participants rolled back whereas the remainder 490

committed. 491
• TransactionPreparing: the endpoint is preparing. 492
• TransactionPrepared: the endpoint has prepared. 493
• TransactionActive: the transaction is active, i.e., has not begun to terminate. 494

 495
The following status values are sent by the endpoints such as the coordinator to participants in 496
order to drive them through the two-phase commit state machine: 497

• TransactionPrepare: the participant should attempt to prepare on behalf of the transaction. 498
• TransactionCommit: the recipient should attempt to commit. If the recipient is a participant 499

and there has been no prepare instruction then this is a one-phase commit. 500
• TransactionRollback: the recipient should attempt to rollback. 501

 15

3 References 502

[1] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard 503
University, March 1997. 504
[2] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, 505
L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 506
[3] J. N. Gray, “The transaction concept: virtues and limitations”, Proceedings of the 7th VLDB 507
Conference, September 1981, pp. 144-154. 508
[4] M. Nottingham, “HTTP Header Linking”, http://www.mnot.net/drafts/draft-nottingham-http-link-509
header-07.txt, June 2006. 510

