
JBoss Transactions 4.16

Development Guide
Development reference guide for the
JBoss Transactions suite of software

Mark Little

Jonathan Halliday

Andrew Dinn

Kevin Connor

Development Guide

JBoss Transactions 4.16 Development Guide
Development reference guide for the JBoss Transactions suite of
software
Edition 0

Author Mark Little mlittle@redhat.com
Author Jonathan Halliday jhallida@redhat.com
Author Andrew Dinn adinn@redhat.com
Author Kevin Connor kconnor@redhat.com
Editor Misty Stanley-Jones misty@redhat.com

Copyright © 2011 JBoss.org.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

Development reference guide for the JBoss Transactions suite of software

mailto:mlittle@redhat.com
mailto:jhallida@redhat.com
mailto:adinn@redhat.com
mailto:kconnor@redhat.com
mailto:misty@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings ... vii

2. We Need Feedback! .. vii

1. About This Guide 1
1.1. Audience ... 1
1.2. Prerequisites .. 1

2. Transactions 3
2.1. The Java Transaction API (JTA) ... 3
2.2. Introducing the API .. 4
2.3. UserTransaction ... 4
2.4. TransactionManager ... 4
2.5. Suspend and resuming a transaction .. 5
2.6. The Transaction interface ... 6
2.7. Resource enlistment ... 7
2.8. Transaction synchronization .. 7
2.9. Transaction equality ... 7
2.10. TransactionSynchronizationRegistry ... 8

3. The Resource Manager 9
3.1. The XAResource interface ... 9

3.1.1. Extended XAResource control .. 9
3.2. Opening a resource manager .. 11
3.3. Closing a resource manager ... 11
3.4. Thread of control .. 12
3.5. Transaction association .. 12
3.6. Externally controlled connections ... 12
3.7. Resource sharing ... 12
3.8. Local and global transactions .. 13
3.9. Transaction timeouts .. 13
3.10. Dynamic registration ... 14

4. General Transaction Issues 15
4.1. Advanced transaction issues with TxCore .. 15

4.1.1. Checking transactions .. 15
4.1.2. Gathering statistics .. 16
4.1.3. Asynchronously committing a transaction .. 17
4.1.4. Transaction Logs ... 17

5. Tools 19
5.1. ObjectStore command-line editors ... 19

5.1.1. LogEditor .. 19
5.1.2. LogBrowser ... 19

6. Configuration options 21
6.1. Loading a configuration .. 21
6.2. ArjunaCore Options .. 22
6.3. JBossJTA Configuration options .. 23
6.4. JBossJTS Options .. 23

A. Revision History 25

iv

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

vii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product JBoss Transactions.

When submitting a bug report, be sure to mention the manual's identifier: Development_Guide

https://jira.jboss.org/
https://jira.jboss.org/

Preface

viii

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1.

1

About This Guide
The Programmers Guide contains information on how to use JBoss Transactions. This document
provides a detailed look at the design and operation of JBoss Transactions. It describes the
architecture and the interaction of components within this architecture.

1.1. Audience
This guide is most relevant to engineers who are responsible for developing using JBoss
Transactions. Although this guide is specifically intended for service developers, it will be useful to
anyone who would like to gain an understanding of transactions and how they function.

1.2. Prerequisites
This guide assumes a basic familiarity with Java service development and object-oriented
programming. A fundamental level of understanding in the following areas will also be useful:
• General understanding of the APIs, components, and objects that are present in Java applications.

• A general understanding of the Windows and UNIX operating systems.

2

Chapter 2.

3

Transactions
A transaction is a unit of work that encapsulates multiple database actions such that that either all the
encapsulated actions fail or all succeed.

Transactions ensure data integrity when an application interacts with multiple datasources.

2.1. The Java Transaction API (JTA)
The interfaces specified by the many transaction standards tend to be too low-level for most
application programmers. Therefore, Sun Microsystems created the Java Transaction API (JTA),
which specifies higher-level interfaces to assist in the development of distributed transactional
applications.

Note, these interfaces are still low-level. You still need to implement state management and
concurrency for transactional applications. The interfaces are also optimized for applications which
require XA resource integration capabilities, rather than the more general resources which other
transactional APIs allow.

With reference to JTA 1.1 (http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html),
distributed transaction services typically involve a number of participants:

application server provides the infrastructure required to support
the application run-time environment which
includes transaction state management, such as
an EJB server.

transaction manager provides the services and management functions
required to support transaction demarcation,
transactional resource management,
synchronization, and transaction context
propagation.

resource manager Using a resource adapter , provides the
application with access to resources. The
resource manager participates in distributed
transactions by implementing a transaction
resource interface used by the transaction
manager to communicate transaction
association, transaction completion and
recovery.

A resource adapter is used by an application
server or client to connect to a Resource
Manager. JDBC drivers which are used to
connect to relational databases are examples of
Resource Adapters.

communication resource manager supports transaction context propagation and
access to the transaction service for incoming
and outgoing requests.

From the point of view of the transaction manager, the actual implementation of the transaction
services does not need to be exposed. You only need to define high-level interfaces to allow
transaction demarcation, resource enlistment, synchronization and recovery process to be driven
from the users of the transaction services. The JTA is a high-level application interface that allows a

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Chapter 2. Transactions

4

transactional application to demarcate transaction boundaries, and also contains a mapping of the X/
Open XA protocol.

Compatibility

the JTA support provided by JBoss Transactions is compliant with the 1.1 specification.

2.2. Introducing the API
The Java Transaction API consists of three elements:

• a high-level application transaction demarcation interface

• a high-level transaction manager interface intended for application server

• a standard Java mapping of the X/Open XA protocol intended for a transactional resource manager.

All of the JTA classes and interfaces exist within the javax.transaction package, and the corresponding
JBoss Transactions implementations within the com.arjuna.ats.jta package.

Each Xid created by JBoss Transactions needs a unique node identifier encoded within it,
because JBoss Transactions can only recover transactions and states that match a specified
node identifier. The node identifier to use should be provided to JBoss Transactions via the
CoreEnvironmentBean.nodeIdentifier property. This value must be unique across your JBoss
Transactions instances. The identifier is alphanumeric and limited to 10 bytes in length. If you do
not provide a value, then JBoss Transactions generates one and reports the value via the logging
infrastructure.

2.3. UserTransaction
The UserTransaction interface provides applications with the ability to control transaction
boundaries. It provides methods begin , commit , and rollback to operate on top-level
transactions.

Nested transactions are not supported, and method begin throws the exception
NotSupportedException if the calling thread is already associated with a transaction.
UserTransaction automatically associates newly created transactions with the invoking thread.

To obtain a UserTransaction , call the static method
com.arjuna.ats.jta.UserTransaction.userTransaction() .

Procedure 2.1. Selecting the local JTA Implementation
1. Set property JTAEnvironmentBean.jtaTMImplementation to

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple
.

2. Set property JTAEnvironmentBean.jtaUTImplementation to
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple .

2.4. TransactionManager
The TransactionManager interface allows the application server to control transaction boundaries
on behalf of the application being managed.

Suspend and resuming a transaction

5

To obtain a TransactionManager , invoke the static method
com.arjuna.ats.jta.TransactionManager.transactionManager .

The TransactionManager maintains the transaction context association with threads as part of
its internal data structure. A thread’s transaction context may be null or it may refer to a specific
global transaction. Multiple threads may be associated with the same global transaction. As noted in
Section 2.3, “UserTransaction” , nested transactions are not supported.

Each transaction context is encapsulated by a Transaction object, which can be used to perform
operations which are specific to the target transaction, regardless of the calling thread’s transaction
context.

Table 2.1. TransactionManager Methods

begin Starts a new top-level transaction and
associates the transaction context with the
calling thread. If the calling thread is already
associated with a transaction, exception
NotSupportedException is thrown.

getTransaction Returns the Transaction object representing the
transaction context which is currently associated
with the calling thread. You can use this object
to perform various operations on the target
transaction.

commit Completes the transaction currently associated
with the calling thread. After it returns, the
calling thread is associated with no transaction.
If commit is called when the thread is not
associated with any transaction context, an
exception is thrown. In some implementations,
the commit operation is restricted to the
transaction originator only. If the calling thread
is not allowed to commit the transaction, an
exception is thrown. JBoss Transactions does
not currently impose any restriction on the ability
of threads to terminate transactions.

rollback Rolls back the transaction associated with the
current thread. After the rollback method
completes, the thread is associated with no
transaction.

In a multi-threaded environment, multiple threads may be active within the same transaction. If
checked transaction semantics have been disabled, or the transaction times out, a transaction may
terminated by a thread other than the one that created it. In this case, the creator usually needs to be
notified. JBoss Transactions notifies the creator during operations commit or rollback by throwing
exception IllegalStateException .

2.5. Suspend and resuming a transaction
The JTA supports the concept of a thread temporarily suspending and resuming transactions in order
to perform non-transactional work. Call the suspend method to temporarily suspend the current
transaction that is associated with the calling thread. The thread then operates outside of the scope of
the transaction. If the thread is not associated with any transaction, a null object reference is returned.
Otherwise, a valid Transaction object is returned. Pass the Transaction object to the resume method
to reinstate the transaction context.

Chapter 2. Transactions

6

The resume method associates the specified transaction context with the calling thread. If the
transaction specified is not a valid transaction, , the thread is associated with no transaction. if
resume is invoked when the calling thread is already associated with another transaction, the
IllegalStateException exception is thrown.

Example 2.1. Using the suspend method

Transaction tobj = TransactionManager.suspend();
..
TransactionManager.resume(tobj);

Note

JBoss Transactions allows a suspended transaction to be resumed by a different thread. This
feature is not required by JTA, but is an important feature.

When a transaction is suspended, the application server must ensure that the resources in use by the
application are no longer registered with the suspended transaction. When a resource is de-listed this
triggers the Transaction Manager to inform the resource manager to disassociate the transaction from
the specified resource object. When the application’s transaction context is resumed, the application
server must ensure that the resources in use by the application are again enlisted with the transaction.
Enlisting a resource as a result of resuming a transaction triggers the Transaction Manager to inform
the resource manager to re-associate the resource object with the resumed transaction.

2.6. The Transaction interface
The Transaction interface allows you to perform operations on the transaction associated with
the target object. Every top-level transaction is associated with one Transaction object when the
transaction is created.

Uses of the Transaction object
• enlist the transactional resources in use by the application.

• register for transaction synchronization call backs.

• commit or rollback the transaction.

• obtain the status of the transaction.

The commit and rollback methods allow the target object to be committed or rolled back. The
calling thread does not need to have the same transaction associated with the thread. If the calling
thread is not allowed to commit the transaction, the transaction manager throws an exception. At
present JBoss Transactions does not impose restrictions on threads terminating transactions.

The JTA standard does not provide a means to obtain the transaction identifier. However, JBoss
Transactions provides several ways to view the transaction identifier. Call method toString to
print full information about the transaction, including the identifier. Alternatively you can cast the
javax.transaction.Transaction instance to a com.arjuna.ats.jta.transaction.Transaction , then call either
method get_uid , which returns an ArjunaCore Uid representation, or getTxId , which returns an
Xid for the global identifier, i.e., no branch qualifier.

Resource enlistment

7

2.7. Resource enlistment
Typically, an application server manages transactional resources, such as database connections, in
conjunction with some resource adapter and optionally with connection pooling optimization. For an
external transaction manager to coordinate transactional work performed by the resource managers,
the application server must enlist and de-list the resources used in the transaction. These resources,
called participants , are enlisted with the transaction so that they can be informed when the transaction
terminates, by being driven through the two-phase commit protocol.

As stated previously, the JTA is much more closely integrated with the XA concept of resources than
the arbitrary objects. For each resource the application is using, the application server invokes the
enlistResource method with an XAResource object which identifies the resource in use.

The enlistment request causes the transaction manager to inform the resource manager to start
associating the transaction with the work performed through the corresponding resource. The
transaction manager passes the appropriate flag in its XAResource.start method call to the
resource manager.

The delistResource method disassociates the specified resource from the transaction context in
the target object. The application server invokes the method with the two parameters: the XAResource
object that represents the resource, and a flag to indicate whether the operation is due to the
transaction being suspended (TMSUSPEND), a portion of the work has failed (TMFAIL), or a normal
resource release by the application (TMSUCCESS).

The de-list request causes the transaction manager to inform the resource manager to end the
association of the transaction with the target XAResource . The flag value allows the application server
to indicate whether it intends to come back to the same resource whereby the resource states must
be kept intact. The transaction manager passes the appropriate flag value in its XAResource.end
method call to the underlying resource manager.

2.8. Transaction synchronization
Transaction synchronization allows the application server to be notified before and after the
transaction completes. For each transaction started, the application server may optionally register a
Synchronization call-back object to be invoked by the transaction manager, which will be one of the
following:

beforeCompletion Called before the start of the two-phase
transaction complete process. This call
is executed in the same transaction
context of the caller who initiates the
TransactionManager.commit or the call
is executed with no transaction context if
Transaction.commit is used.

afterCompletion Called after the transaction completes. The
status of the transaction is supplied in the
parameter. This method is executed without a
transaction context.

2.9. Transaction equality
The transaction manager implements the Transaction object’s equals method to allow comparison
between the target object and another Transaction object. The equals method returns true if the
target object and the parameter object both refer to the same global transaction.

Chapter 2. Transactions

8

Example 2.2. Method equals

Transaction txObj = TransactionManager.getTransaction();
Transaction someOtherTxObj = ..
..

boolean isSame = txObj.equals(someOtherTxObj);

2.10. TransactionSynchronizationRegistry
The javax.transaction.TransactionSynchronizationRegistry interface, added to the
JTA API in version 1.1, provides for registering Synchronizations with special ordering behavior, and
for storing key-value pairs in a per-transaction Map. Full details are available from the JTA 1.1 API
specification and javadoc. Here we focus on implementation specific behavior.

Example 2.3. Accessing the TransactionSynchronizationRegistry in standalone environments

javax.transaction.TransactionSynchronizationRegistry tsr = new
 com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionSynchronizationRegistryImple();

This is a stateless object and hence is cheap to instantiate.

Accessing the TransactionSynchronizationRegistry via JNDI
In application server environments, the standard JNDI name binding is java:comp/
TransactionSynchronizationRegistry .

Ordering of interposed Synchronizations is relative to other local Synchronizations only. In cases
where the transaction is distributed over multiple JVMs, global ordering is not guaranteed.

The per-transaction data storage provided by the TransactionSynchronizationRegistry
methods getResource and putResource are non-persistent and thus not available in
Transactions during crash recovery. When running integrated with an application server or other
container, this storage may be used for system purposes. To avoid collisions, use an application-
specific prefix on map keys, such as put(“myapp_”+key, value) . The behavior of the Map on
Thread s that have status NO_TRANSACTION or where the transaction they are associated with has
been rolled back by another Thread , such as in the case of a timeout, is undefined. A Transaction
can be associated with multiple Thread s. For such cases the Map is synchronized to provide thread
safety.

Chapter 3.

9

The Resource Manager

3.1. The XAResource interface
Some transaction specifications and systems define a generic resource which can be used
to register arbitrary resources with a transaction, the JTA is much more XA-specific. Interface
javax.transaction.xa.XAResource is a Java mapping of the XA interface. The XAResource
interface defines the contract between a ResourceManager and a TransactionManager in
a distributed transaction processing environment. A resource adapter for a ResourceManager
implements the XAResource interface to support association of a top-level transaction to a resource
such as a relational database.

The XAResource interface can be supported by any transactional resource adapter designed to
be used in an environment where transactions are controlled by an external transaction manager,
such a database management system. An application may access data through multiple database
connections. Each database connection is associated with an XAResource object that serves as
a proxy object to the underlying ResourceManager instance. The transaction manager obtains an
XAResource for each ResourceManager participating in a top-level transaction. The start method
associates the transaction with the resource, and the end method disassociates the transaction from
the resource.

The ResourceManager associates the transaction with all work performed on its data between
invocation of start and end methods. At transaction commit time, these transactional
ResourceManagers are informed by the transaction manager to prepare, commit, or roll back the
transaction according to the two-phase commit protocol.

For better Java integration, the XAResource differs from the standard XA interface in the following
ways:

• The resource adapter implicitly initializes the ResourceManager when the resource (the
connection) is acquired. There is no equivalent to the xa_open method of the interface XA.

• Rmid is not passed as an argument. Each Rmid is represented by a separate XAResource object.

• Asynchronous operations are not supported, because Java supports multi-threaded processing and
most databases do not support asynchronous operations.

• Error return values caused by the transaction manager’s improper handling of the XAResource
object are mapped to Java exceptions via the XAException class.

• The DTP concept of Thread of Control maps to all Java threads that are given access to the
XAResource and Connection objects. For example, it is legal for two different threads to perform
the start and end operations on the same XAResource object.

3.1.1. Extended XAResource control
By default, whenever an XAResource object is registered with a JTA-compliant transaction service,
there is no way to manipulate the order in which it is invoked during the two-phase commit protocol,
with respect to other XAResource objects. JBoss Transactions, however, provides support for
controlling the order via the two interfaces com.arjuna.ats.jta.resources.StartXAResource
and com.arjuna.ats.jta.resources.EndXAResource. By inheriting your XAResource
instance from either of these interfaces, you control whether an instance of your class is invoked first
or last, respectively.

Chapter 3. The Resource Manager

10

Note

Only one instance of each interface type may be registered with a specific transaction.

The ArjunaCore Development Guide discusses the Last Resource Commit optimization (LRCO),
whereby a single resource that is only one-phase aware, and does not support the prepare phase,
can be enlisted with a transaction that is manipulating two-phase aware participants. This optimization
is also supported within the JBoss Transactions.

In order to use the LRCO, your XAResource implementation must extend the
com.arjuna.ats.jta.resources.LastResourceCommitOptimisation marker interface. A
marker interface is an interface which provides no methods. When enlisting the resource via method
Transaction.enlistResource, JBoss Transactions ensures that only a single instance of this
type of participant is used within each transaction. Your resource is driven last in the commit protocol,
and no invocation of method prepare occurs.

By default an attempt to enlist more than one instance of a LastResourceCommitOptimisation class
will fail and false will be returned from Transaction.enlistResource. This behavior can be overridden
by setting the com.arjuna.ats.jta.allowMultipleLastResources to true. However, before doing so you
should read the section on enlisting multiple one-phase aware resources.

Important

You need to disable interposition support to use the LCRO in a distributed environment. You
can still use implicit context propagation.

3.1.1.1. Enlisting multiple one-phase-aware resources
One-phase commit is used to process a single one-phase aware resource, which does not conform to
the two-phase commit protocol. You can still achieve an atomic outcome across resources, by using
the LRCO, as explained earlier.

Multiple one-phase-aware resources may be enlisted in the same transaction. One example is when
a legacy database runs within the same transaction as a legacy JMS implementation. In such a
situation, you cannot achieve atomicity of transaction outcome across multiple resources, because
none of them enter the prepare state. They commit or roll back immediately when instructed by
the transaction coordinator, without knowledge of other resource states and without a way to undo
if subsequent resources make a different choice. This can result in data corruption or heuristic
outcomes.

You can approach these situations in two different ways:

• Wrap the resources in compensating transactions. See the XTS Transactions Development Guide
for details.

• Migrate the legacy implementations to two-phase aware equivalents.

Opening a resource manager

11

If neither of these options is viable, JBoss Transactions support enlisting multiple one-phase
aware resources within the same transaction, using LRCO, which is discussed in the ArjunaCore
Development Guide in detail.

Warning

Even when this support is enabled, JBoss Transactions issues a warning when it detects
that the option has been enabled: You have chosen to enable multiple last
resources in the transaction manager. This is transactionally unsafe
and should not be relied upon. Another warning is issued when multiple one-phase
aware resources are enlisted within a transaction: This is transactionally unsafe
and should not be relied on.

To override the above-mentioned warning at runtime, set the
CoreEnvironmentBean.disableMultipleLastResourcesWarning property to true.
You will see a warning that you have done this when JBoss Transactions starts up and see
the warning about enlisting multiple one-phase resources only the first time it happens, but
after that no further warnings will be output. You should obviously only consider changing the
default value of this property (false) with caution.

3.2. Opening a resource manager
The X/Open XA interface requires the transaction manager to initialize a resource manager, using
method xa_open, before invoking any other of the interface's methods. JTA requires initialization of a
resource manager to be embedded within the resource adapter that represents the resource manager.
The transaction manager does not need to know how to initialize a resource manager. It only informs
the resource manager about when to start and end work associated with a transaction and when to
complete the transaction. The resource adapter opens the resource manager when the connection to
the resource manager is established.

3.3. Closing a resource manager
The resource adapter closes a resource manager as a result of destroying the transactional resource.
A transaction resource at the resource adapter level is comprised of two separate objects:

• An XAResource object that allows the transaction manager to start and end the transaction
association with the resource in use and to coordinate transaction completion process.

• A connection object that allows the application to perform operations on the underlying resource,
such as JDBC operations on an RDBMS.

Once opened, the resource manager is kept open until the resource is released explicitly. When the
application invokes the connection’s close method, the resource adapter invalidates the connection
object reference that was held by the application and notifies the application server about the close.
The transaction manager invokes the XAResource.end method to disassociate the transaction from
that connection.

The close notification triggers the application server to perform any necessary cleanup work and to
mark the physical XA connection as free for reuse, if connection pooling is in place.

Chapter 3. The Resource Manager

12

3.4. Thread of control
The X/Open XA interface specifies that the transaction-association-related xa calls must be invoked
from the same thread context. This thread-of-control requirement does not apply to the object-oriented
component-based application run-time environment, in which application threads are dispatched
dynamically as methods are invoked.. Different threads may use the same connection resource
to access the resource manager if the connection spans multiple method invocation. Depending
on the implementation of the application server, different threads may be involved with the same
XAResource object. The resource context and the transaction context operate independent of thread
context. This creates the possibility of different threads invoking the start and end methods.

If the application server allows multiple threads to use a single XAResource object and the associated
connection to the resource manager, the application server must ensure that only one transaction
context is associated with the resource at any point of time. Thus the XAResource interface requires
the resource managers to support the two-phase commit protocol from any thread context.

3.5. Transaction association
A transaction is associated with a transactional resource via the start method and disassociated
from the resource via the end method. The resource adapter internally maintains an association
between the resource connection object and the XAResource object. At any given time, a connection
is associated with zero or one transaction. JTA does not support nestedtransactions, so attempting to
invoke the start method on a thread that is already associated with a transaction is an error.

The transaction manager can Interleave multiple transaction contexts using the same resource, as
long as methods start and end are invoked properly for each transaction context switch. Each time
the resource is used with a different transaction, the method end must be invoked for the previous
transaction that was associated with the resource, and method start must be invoked for the current
transaction context.

3.6. Externally controlled connections
For a transactional application whose transaction states are managed by an application server,
its resources must also be managed by the application server so that transaction association is
performed properly. If an application is associated with a transaction, the application must not perform
transactional work through the connection without having the connection’s resource object already
associated with the global transaction. The application server must ensure that the XAResource
object in use is associated with the transaction, by invoking the Transaction.enlistResource
method.

If a server-side transactional application retains its database connection across multiple client
requests, the application server must ensure that before dispatching a client request to the application
thread, the resource is enlisted with the application’s current transaction context. This implies that the
application server manages the connection resource usage status across multiple method invocations.

3.7. Resource sharing
When the same transactional resource is used to interleave multiple transactions, the application
server must ensure that only one transaction is enlisted with the resource at any given time. To initiate
the transaction commit process, the transaction manager is allowed to use any of the resource objects
connected to the same resource manager instance. The resource object used for the two-phase
commit protocol does not need to have been involved with the transaction being completed.

Local and global transactions

13

The resource adapter must be able to handle multiple threads invoking the XAResource methods
concurrently for transaction commit processing. This is illustrated in Example 3.1, “Resource sharing
example”.

Example 3.1. Resource sharing example

XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection

..
xares.end(xid1); // disassociate xid1 to the connection
..
xares.start(xid2); // associate xid2 to the connection
..
// While the connection is associated with xid2,
// the TM starts the commit process for xid1
status = xares.prepare(xid1);
..
xares.commit(xid1, false);

A transactional resource r1. Global transaction xid1 is started and ended with r1. Then a different
global transaction xid2 is associated with r1. Meanwhile, the transaction manager may start the
two phase commit process for xid1 using r1 or any other transactional resource connected to the
same resource manager. The resource adapter needs to allow the commit process to be executed
while the resource is currently associated with a different global transaction.

3.8. Local and global transactions
The resource adapter must support the usage of both local and global transactions within the same
transactional connection. Local transactions are started and coordinated by the resource manager
internally. The XAResource interface is not used for local transactions. When using the same
connection to perform both local and global transactions, the following rules apply:

• The local transaction must be committed or rolled back before a global transaction is started in the
connection.

• The global transaction must be disassociated from the connection before any local transaction is
started.

3.9. Transaction timeouts
You can associate timeout values with transactions in order to control their lifetimes. If the timeout
value elapses before a transaction terminates, by committing or rolling back, the transaction system
rolls it back. The XAResource interface supports a setTransactionTimeout operation, which
allows the timeout associated with the current transaction to be propagated to the resource manager
and if supported, overrides any default timeout associated with the resource manager. Overriding
the timeout can be useful when long-running transactions may have lifetimes that would exceed
the default, and using the default timeout would cause the resource manager to roll back before the
transaction terminates, and cause the transaction to roll back as well.

If You do not explicitly set a timeout value for a transaction, or you use a value of 0, an
implementation-specific default value may be used. In JBoss Transactions, property value
CoordinatorEnvironmentBean.defaultTimeout represents this implementation-specific
default, in seconds. The default value is 60 seconds. A value of 0 disables default transaction
timeouts.

Chapter 3. The Resource Manager

14

Unfortunately, imposing the same timeout as the transaction on a resource manager is not
always appropriate. One example is that your business rules may require you to have control
over the lifetimes on resource managers without allowing that control to be passed to some
external entity. JBoss Transactions supports an all-or-nothing approach to whether or not method
setTransactionTimeout is called on XAResource instances.

If the JTAEnvironmentBean.xaTransactionTimeoutEnabled property is set to true, which is
the default, it is called on all instances. Otherwise, use the setXATransactionTimeoutEnabled
method of com.arjuna.ats.jta.common.Configuration.

3.10. Dynamic registration
Dynamic registration is not supported in XAResource. There are two reasons this makes sense.

• In the Java component-based application server environment, connections to the resource manager
are acquired dynamically when the application explicitly requests a connection. These resources are
enlisted with the transaction manager on an as-needed basis.

• If a resource manager needs to dynamically register its work to the global transaction, you can
implement this at the resource adapter level via a private interface between the resource adapter
and the underlying resource manager.

Chapter 4.

15

General Transaction Issues

4.1. Advanced transaction issues with TxCore
Atomic actions (transactions) can be used by both application programmers and class developers.
Thus entire operations (or parts of operations) can be made atomic as required by the semantics of
a particular operation. This chapter will describe some of the more subtle issues involved with using
transactions in general and TxCore in particular.

4.1.1. Checking transactions
In a multi-threaded application, multiple threads may be associated with a transaction during its
lifetime, sharing the context. In addition, it is possible that if one thread terminates a transaction, other
threads may still be active within it. In a distributed environment, it can be difficult to guarantee that all
threads have finished with a transaction when it is terminated. By default, TxCore will issue a warning
if a thread terminates a transaction when other threads are still active within it. However, it will allow
the transaction termination to continue.

Other solutions to this problem are possible. One example would be to block the
thread which is terminating the transaction until all other threads have disassociated
themselves from the transaction context. Therefore, TxCore provides the
com.arjuna.ats.arjuna.coordinator.CheckedAction class, which allows the thread
or transaction termination policy to be overridden. Each transaction has an instance of this class
associated with it, and application programmers can provide their own implementations on a per
transaction basis.

Example 4.1. Class CheckedAction

public class CheckedAction
{
 public synchronized void check (boolean isCommit, Uid actUid,
 BasicList list);
};

When a thread attempts to terminate the transaction and there are active threads within it, the system
will invoke the check method on the transaction’s CheckedAction object. The parameters to the
check method are:

isCommit
Indicates whether the transaction is in the process of committing or rolling back.

actUid
The transaction identifier.

list
A list of all of the threads currently marked as active within this transaction.

When check returns, the transaction termination will continue. Obviously the state of the transaction
at this point may be different from that when check was called, e.g., the transaction may subsequently
have been committed.

A CheckedAction instance is created for each transaction. As mentioned above, the default
implementation simply issues warnings in the presence of multiple threads active on the transaction

Chapter 4. General Transaction Issues

16

when it is terminated. However, a different instance can be provided to each transaction in one of the
following ways:

• Use the setCheckedAction method on the BasicAction instance.

• Define an implementation of the CheckedActionFactory interface, which has a single method
getCheckedAction (final Uid txId , final String actionType) that returns a CheckedAction
. The factory class name can then be provided to the Transaction Service at runtime by setting the
CoordinatorEnvironmentBean.checkedActionFactory property.

4.1.2. Gathering statistics
By default, the Transaction Service does not maintain any history information about transactions.
However, by setting the CoordinatorEnvironmentBean.enableStatistics property variable to
YES , the transaction service will maintain information about the number of transactions created, and
their outcomes. This information can be obtained during the execution of a transactional application
via the com.arjuna.ats.arjuna.coordinator.TxStats class.

Example 4.2. Class TxStats

public class TxStats
{
 /**
 * @return the number of transactions (top-level and nested) created so far.
 */

 public static int numberOfTransactions();

 /**
 * @return the number of nested (sub) transactions created so far.
 *

 public static int numberOfNestedTransactions();

 /**
 * @return the number of transactions which have terminated with heuristic
 * outcomes.
 */

 public static int numberOfHeuristics();
 /**
 * @return the number of committed transactions.
 */

 public static int numberOfCommittedTransactions();

 /**
 * @return the total number of transactions which have rolled back.
 */

 public static int numberOfAbortedTransactions();

 /**
 * @return total number of inflight (active) transactions.
 */

 public static int numberOfInflightTransactions ();

 /**
 * @return total number of transactions rolled back due to timeout.
 */

 public static int numberOfTimedOutTransactions ();

Asynchronously committing a transaction

17

 /**
 * @return the number of transactions rolled back by the application.
 */

 public static int numberOfApplicationRollbacks ();

 /**
 * @return number of transactions rolled back by participants.
 */

 public static int numberOfResourceRollbacks ();

 /**
 * Print the current information.
 */

 public static void printStatus(java.io.PrintWriter pw);
}

The class ActionManager gives further information about specific active transactions through the
classes getTimeAdded , which returns the time (in milliseconds) when the transaction was created,
and inflightTransactions , which returns the list of currently active transactions.

4.1.3. Asynchronously committing a transaction
By default, the Transaction Service executes the commit protocol of a top-level transaction in a
synchronous manner. All registered resources will be told to prepare in order by a single thread, and
then they will be told to commit or rollback. This has several possible disadvantages:

• In the case of many registered resources, the prepare operating can logically be invoked in
parallel on each resource. The disadvantage is that if an “early” resource in the list of registered
resource forces a rollback during prepare , possibly many prepare operations will have been made
needlessly.

• In the case where heuristic reporting is not required by the application, the second phase of the
commit protocol can be done asynchronously, since its success or failure is not important.

Therefore, JBoss Transactions provides runtime options to enable possible threading optimizations.
By setting the CoordinatorEnvironmentBean.asyncPrepare environment variable to YES ,
during the prepare phase a separate thread will be created for each registered participant within
the transaction. By setting CoordinatorEnvironmentBean.asyncCommit to YES , a separate
thread will be created to complete the second phase of the transaction if knowledge about heuristics
outcomes is not required.

4.1.4. Transaction Logs
JBoss Transactions supports a number of different transaction log implementations. They are outlined
below.

4.1.4.1. The ActionStore
This is the original version of the transaction log as provided in prior releases. It is simple but slow.
Each transaction has an instance of its own log and they are all written to the same location in the file
system

Chapter 4. General Transaction Issues

18

4.1.4.2. The HashedActionStore
This implementation is based on the ActionStore but the individual logs are striped across a number
of sub-directories to improve performance. Check the Configuration Options table for how to configure
the HashedActionStore.

4.1.4.3. LogStore
This implementation is based on a traditional transaction log. All transaction states within the same
process (VM instance) are written to the same log (file), which is an append-only entity. When
transaction data would normally be deleted, e.g., at the end of the transaction, a delete record is
added to the log instead. Therefore, the log just keeps growing. Periodically a thread runs to prune the
log of entries that have been deleted.

A log is initially given a maximum capacity beyond which it cannot grow. Once this is reached the
system will create a new log for transactions that could not be accommodated in the original log. The
new log and the old log are pruned as usual. During the normal execution of the transaction system
there may be an arbitrary number of log instances. These should be garbage collected by the system
(or the recovery sub-system) eventually.

Check the Configuration Options table for how to configure the LogStore.

Chapter 5.

19

Tools
This chapter explains how to start and use the tools framework and what tools are available.

Note

For this version of JBoss Transactions the GUI based tools are mainly documented in the file
<INSTALL_ROOT>/INSTALL

5.1. ObjectStore command-line editors
There are currently two command-line editors for manipulating the ObjectStore. These tools are used
to manipulate the lists of heuristic participants maintained by a transaction log. They allow a heuristic
participant to be moved from that list back to the list of prepared participants so that transaction
recovery may attempt to resolve them automatically.

5.1.1. LogEditor
Started by executing com.arjuna.ats.arjuna.tools.log.LogBrowser, this tool supports the
following options that can be provided on the command-line.

Table 5.1. LogEditor Options

Option Description

-tx id Specifies the transaction log to work on.

-type name The transaction type to work on.

-dump Print out the contents of the log identified by the other options.

-forget index Move the specified target from the heuristic list to the prepared
list.

-help Print out the list of commands and options.

5.1.2. LogBrowser
The LogBrowser, invoked by calling com.arjuna.ats.arjuna.tools.log.LogBrowser, is
similar to the LogEditor, but allows multiple log instances to be manipulated. It presents a shell-like
interface, with the following options:

Table 5.2. LogBrowserOptions

Option Description

ls [type] List the logs for the specified type. If no type is specified, the
editor must already be attached to the transaction type.

select [type] Browse a specific transaction type. If already attached to a
transaction type, you are detached from that type first.

attach log Attach the console to the specified transaction log. If you are
attached to another log, the command will fail.

detach Detach the console from the current log.

Chapter 5. Tools

20

Option Description

forget pid Move the specified heuristic participant back to the prepared
list. The console must be attached.

delete pid Delete the specified heuristic participant. The console must be
attached.

types List the supported transaction types.

quit Exit the console tool.

help Print out the supported commands.

Chapter 6.

21

Configuration options

6.1. Loading a configuration
Each module of the system contains a modulepropertyManager class., which provides
static getter methods for one or more nameEnvironmentBean classes. An example is
com.arjuna.ats.arjuna.commmon.arjPropertyManager. These environment beans are
standard JavaBean containing properties for each configuration option in the system. Typical usage is
of the form:

int defaultTimeout =
 arjPropertyManager.getCoordinatorEnvironmentBean().getDefaultTimeout();

These beans are singletons, instantiated upon first access, using the following algorithm.

Procedure 6.1. Algorithm for environment bean instantiation
1. The properties are loaded and populated from a properties file named and located as follows:

a. If the properties file name property is set, its value is used as the file name.

b. If not, the default file name is used.

2. The file thus named is searched for by, in order

1. absolute path

2. user.dir

3. user.home

4. java.home

5. directories contained on the classpath

6. a default file embedded in the product .jar file.

3. The file is treated as being of standard java.util.Properties xml format and loaded
accordingly. The entry names are of the form EnvironmentBeanClass.propertyName:<entry
key="CoordinatorEnvironmentBean.commitOnePhase">YES</entry>. Valid values for
Boolean properties are case-insensitive, and may be one of:

• NO

• YES

• FALSE

• TRUE

• OFF

• ON

In the case of properties that take multiple values, they are white-space-delimited.

Chapter 6. Configuration options

22

Example 6.1. Example Environment Bean

<entry key="RecoveryEnvironmentBean.recoveryModuleClassNames">
 com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule
 com.arjuna.ats.internal.txoj.recovery.TORecoveryModule
</entry>

4. After the file is loaded, it is cached and is not re-read until the JVM is restarted. Changes to the
properties file require a restart in order to take effect.

5. After the properties are loaded, the EnvironmentBean is then inspected and, for each field, if the
properties contains a matching key in the search order as follows, the setter method for that
field is invoked with the value from the properties, or the system properties if different.

• Fully.Qualified.NameEnvironmentBean.propertyName

• NameEnvironmentBean.propertyName (this is the preferred form used in the properties file)

• the old com.arjuna... properties key (deprecated, for backwards compatibility only).

6. The bean is then returned to the caller, which may further override values by calling setter
methods.

The implementation reads most bean properties only once, as the consuming component or class
is instantiated. This usually happens the first time a transaction is run. As a result, calling setter
methods to change the value of bean properties while the system is running typically has no effect,
unless it is done prior to any use of the transaction system. Altered bean properties are not persisted
back to the properties file.

You can configure the system using a bean wiring system such as JBoss Microcontainer or Spring.
Take care when instantiating beans, to obtain the singleton via the static getter (factory) method on the
module property manager. Using a new bean instantiated with the default constructor is ineffective,
since it is not possible to pass this configured bean back to the property management system.

6.2. ArjunaCore Options
The canonical reference for configuration options is the Javadoc of the various EnvironmentBean
classes, For ArjunaCore these are:

• com.arjuna.common.internal.util.logging.LoggingEnvironmentBean.java

• com.arjuna.common.internal.util.logging.basic.BasicLogEnvironmentBean.java

• com.arjuna.ats.txoj.common.TxojEnvironmentBean.java

• com.arjuna.ats.arjuna.common.CoordinatorEnvironmentBean.java

• com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.java

• com.arjuna.ats.arjuna.common.RecoveryEnvironmentBean.java

• com.arjuna.ats.arjuna.common.CoreEnvironmentBean.java

JBossJTA Configuration options

23

6.3. JBossJTA Configuration options
The canonical reference for configuration options is the javadoc of the various EnvironmentBean
classes. For JBossJTA, these classes are the ones provided by ArjunaCore, as well as:

• com.arjuna.ats.jdbc.common.JDBCEnvironmentBean.java

• com.arjuna.ats.jta.common.JTAEnvironmentBean.java

6.4. JBossJTS Options
The canonical reference for configuration options is the javadoc of the various EnvironmentBean
classes, For ArjunaJTS these are the ones provided by ArjunaCore, as well as:

• com.arjuna.orbportability.common.OrbPortabilityEnvironmentBean.java

• com.arjuna.ats.jts.common.JTSEnvironmentBean.java

24

25

Appendix A. Revision History
Revision 1 Thu Oct 28 2010 Misty Stanley-Jones misty@redhat.com

Initial conversion of book into Docbook

Revision 2 Thu Apr 14 2011 Tom Jenkinson
tom.jenkinson@redhat.com

Taken from JBossJTA development guide and selected others

mailto:misty@redhat.com
mailto:tom.jenkinson@redhat.com

26

	Development Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. About This Guide
	1.1. Audience
	1.2. Prerequisites

	Chapter 2. Transactions
	2.1. The Java Transaction API (JTA)
	2.2. Introducing the API
	2.3. UserTransaction
	2.4. TransactionManager
	2.5. Suspend and resuming a transaction
	2.6. The Transaction interface
	2.7. Resource enlistment
	2.8. Transaction synchronization
	2.9. Transaction equality
	2.10. TransactionSynchronizationRegistry

	Chapter 3. The Resource Manager
	3.1. The XAResource interface
	3.1.1. Extended XAResource control
	3.1.1.1. Enlisting multiple one-phase-aware resources

	3.2. Opening a resource manager
	3.3. Closing a resource manager
	3.4. Thread of control
	3.5. Transaction association
	3.6. Externally controlled connections
	3.7. Resource sharing
	3.8. Local and global transactions
	3.9. Transaction timeouts
	3.10. Dynamic registration

	Chapter 4. General Transaction Issues
	4.1. Advanced transaction issues with TxCore
	4.1.1. Checking transactions
	4.1.2. Gathering statistics
	4.1.3. Asynchronously committing a transaction
	4.1.4. Transaction Logs
	4.1.4.1. The ActionStore
	4.1.4.2. The HashedActionStore
	4.1.4.3. LogStore

	Chapter 5. Tools
	5.1. ObjectStore command-line editors
	5.1.1. LogEditor
	5.1.2. LogBrowser

	Chapter 6. Configuration options
	6.1. Loading a configuration
	6.2. ArjunaCore Options
	6.3. JBossJTA Configuration options
	6.4. JBossJTS Options

	Appendix A. Revision History

