
ArjunaCore 4.15.1

ArjunaCore Failure
Recovery Guide
Failure Recovery for TxCore and TXOJ

Mark Little

ArjunaCore Failure Recovery Guide

ArjunaCore 4.15.1 ArjunaCore Failure Recovery Guide
Failure Recovery for TxCore and TXOJ
Edition 0

Author Mark Little mlittle@redhat.com

Copyright © 2011 JBoss.org.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

The ArjunaCore Failure Recovery Guide contains information on how to use JBoss Transaction
Service to develop applications that use transaction technology to manage business processes.

mailto:mlittle@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings ... vii

2. We Need Feedback! .. vii

1. Introduction 1
1.1. Embedding the Recovery Manager ... 1

1.1.1. Additional Recovery Module Classes .. 1
1.2. Understanding Recovery Modules ... 1

1.2.1. The Recovery Manager ... 2
1.2.2. Configuring the Recovery Manager ... 2
1.2.3. Periodic Recovery ... 2
1.2.4. Expired entry removal .. 4

1.3. Writing a Recovery Module ... 5
1.3.1. A basic scenario .. 5
1.3.2. Another scenario ... 9

A. Revision History 11

iv

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

vii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the JBoss Issue Tracker: https://
jira.jboss.org/ against the product JBoss Transactions.

When submitting a bug report, be sure to mention the manual's identifier:
ArjunaCore_Failure_Recover_Guide

https://jira.jboss.org/
https://jira.jboss.org/

Preface

viii

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1.

1

Introduction
In this chapter we shall cover information on failure recovery that is specific to TxCore, TXOJ or using
JBossTS outside the scope of a supported application server.

1.1. Embedding the Recovery Manager
In some situations it may be required to embed the RecoveryManager in the same process as the
transaction service. In this case you can create an instance of the RecoveryManager through the
manager method on com.arjuna.ats.arjuna.recovery.RecoveryManager. A RecoveryManager can be
created in one of two modes, selected via the parameter to the manager method:

• i. INDIRECT_MANAGEMENT: the manager runs periodically but can also be instructed to run when
desired via the scan operation or through the RecoveryDriver class to be described below.

• ii. DIRECT_MANAGEMENT: the manager does not run periodically and must be driven directly via
the scan operation or RecoveryDriver.

Warning

By default, the recovery manager listens on the first available port on a given machine.
If you wish to control the port number that it uses, you can specify this using the
com.arjuna.ats.arjuna.recovery.recoveryPort attribute.

1.1.1. Additional Recovery Module Classes
JBossTS provides a set of recovery modules that are responsible to manage recovery according to the
nature of the participant and its position in a transactional tree. The provided classes over and above
the ones covered elsewhere (that all implements the RecoveryModule interface) are:

• com.arjuna.ats.internal.txoj.recovery.TORecoveryModule

Recovers Transactional Objects for Java.

1.2. Understanding Recovery Modules
The failure recovery subsystem of JBossTS will ensure that results of a transaction are applied
consistently to all resources affected by the transaction, even if any of the application processes
or the machine hosting them crash or lose network connectivity. In the case of machine (system)
crash or network failure, the recovery will not take place until the system or network are restored,
but the original application does not need to be restarted – recovery responsibility is delegated to
the Recovery Manager process (see below). Recovery after failure requires that information about
the transaction and the resources involved survives the failure and is accessible afterward: this
information is held in the ActionStore, which is part of the ObjectStore.

Chapter 1. Introduction

2

Warning

If the ObjectStore is destroyed or modified, recovery may not be possible.

Until the recovery procedures are complete, resources affected by a transaction that was in progress
at the time of the failure may be inaccessible. For database resources, this may be reported as tables
or rows held by “in-doubt transactions”. For TransactionalObjects for Java resources, an attempt to
activate the Transactional Object (as when trying to get a lock) will fail.

1.2.1. The Recovery Manager
The failure recovery subsystem of JBossTS requires that the stand-alone Recovery Manager
process be running for each ObjectStore (typically one for each node on the network that
is running JBossTS applications). The RecoveryManager file is located in the package
com.arjuna.ats.arjuna.recovery.RecoveryManager. To start the Recovery Manager issue the following
command:

java com.arjuna.ats.arjuna.recovery.RecoveryManager

If the -test flag is used with the Recovery Manager then it will display a “Ready” message when
initialised, i.e.,

java com.arjuna.ats.arjuna.recovery.RecoveryManager -test

1.2.2. Configuring the Recovery Manager
The RecoveryManager reads the properties defined in the arjuna.properties file and then also
reads the property file RecoveryManager.properties, from the same directory as it found the arjuna
properties file. An entry for a property in the RecoveryManager properties file will override an entry for
the same property in the main TransactionService properties file. Most of the entries are specific to the
Recovery Manager.

A default version of RecoveryManager.properties is supplied with the distribution – this can be used
without modification, except possibly the debug tracing fields (see below, Output). The rest of this
section discusses the issues relevant in setting the properties to other values (in the order of their
appearance in the default version of the file).

1.2.3. Periodic Recovery
The RecoveryManager scans the ObjectStore and other locations of information, looking for
transactions and resources that require, or may require recovery. The scans and recovery
processing are performed by recovery modules, (instances of classes that implement the
com.arjuna.ats.arjuna.recovery.RecoveryModule interface), each with responsibility for a particular
category of transaction or resource. The set of recovery modules used are dynamically loaded, using
properties found in the RecoveryManager property file.

The interface has two methods: periodicWorkFirstPass and periodicWorkSecondPass. At an interval
(defined by property com.arjuna.ats.arjuna.recovery.periodicRecoveryPeriod), the RecoveryManager

Periodic Recovery

3

will call the first pass method on each property, then wait for a brief period (defined by property
com.arjuna.ats.arjuna.recovery.recoveryBackoffPeriod), then call the second pass of each module.
Typically, in the first pass, the module scans (e.g. the relevant part of the ObjectStore) to find
transactions or resources that are in-doubt (i.e. are part way through the commitment process). On the
second pass, if any of the same items are still in-doubt, it is possible the original application process
has crashed and the item is a candidate for recovery.

An attempt, by the RecoveryManager, to recover a transaction that is still progressing in the original
process(es) is likely to break the consistency. Accordingly, the recovery modules use a mechanism
(implemented in the com.arjuna.ats.arjuna.recovery.TransactionStatusManager package) to check to
see if the original process is still alive, and if the transaction is still in progress. The RecoveryManager
only proceeds with recovery if the original process has gone, or, if still alive, the transaction is
completed. (If a server process or machine crashes, but the transaction-initiating process survives,
the transaction will complete, usually generating a warning. Recovery of such a transaction is the
RecoveryManager’s responsibility).

It is clearly important to set the interval periods appropriately. The total iteration time will be the sum
of the periodicRecoveryPeriod, recoveryBackoffPeriod and the length of time it takes to scan the
stores and to attempt recovery of any in-doubt transactions found, for all the recovery modules. The
recovery attempt time may include connection timeouts while trying to communicate with processes or
machines that have crashed or are inaccessible (which is why there are mechanisms in the recovery
system to avoid trying to recover the same transaction for ever). The total iteration time will affect
how long a resource will remain inaccessible after a failure – periodicRecoveryPeriod should be set
accordingly (default is 120 seconds). The recoveryBackoffPeriod can be comparatively short (default
is 10 seconds) – its purpose is mainly to reduce the number of transactions that are candidates for
recovery and which thus require a “call to the original process to see if they are still in progress

Note

In previous versions of JBossTS there was no contact mechanism, and the backoff period had
to be long enough to avoid catching transactions in flight at all. From 3.0, there is no such risk.

Two recovery modules (implementations of the com.arjuna.ats.arjuna.recovery.RecoveryModule
interface) are supplied with JBossTS, supporting various aspects of transaction recovery including
JDBC recovery. It is possible for advanced users to create their own recovery modules and register
them with the Recovery Manager. The recovery modules are registered with the RecoveryManager
using RecoveryEnvironmentBean.recoveryExtensions. These will be invoked on each pass of the
periodic recovery in the sort-order of the property names – it is thus possible to predict the ordering
(but note that a failure in an application process might occur while a periodic recovery pass is in
progress). The default Recovery Extension settings are:

Example 1.1. Recovery Environment Bean XML

<entry key="RecoveryEnvironmentBean.recoveryExtensions">
 com.arjuna.ats.internal.arjuna.recovery.AtomicActionRecoveryModule
 com.arjuna.ats.internal.txoj.recovery.TORecoveryModule
</entry>

Chapter 1. Introduction

4

1.2.4. Expired entry removal
The operation of the recovery subsystem will cause some entries to be made in the ObjectStore that
will not be removed in normal progress. The RecoveryManager has a facility for scanning for these
and removing items that are very old. Scans and removals are performed by implementations of the
com.arjuna.ats.arjuna.recovery.ExpiryScanner interface. Implementations of this interface are loaded
by giving the class names as the value of a property RecoveryEnvironmentBean.expiryScanners.
The RecoveryManager calls the scan() method on each loaded Expiry Scanner implementation at
an interval determined by the property RecoveryEnvironmentBean.expiryScanInterval”. This value is
given in hours – default is 12. An expiryScanInterval value of zero will suppress any expiry scanning. If
the value as supplied is positive, the first scan is performed when RecoveryManager starts; if the value
is negative, the first scan is delayed until after the first interval (using the absolute value)

The kinds of item that are scanned for expiry are:

TransactionStatusManager items: one of these is created by every application process that uses
JBossTS – they contain the information that allows the RecoveryManager to determine if the process
that initiated the transaction is still alive, and what the transaction status is. The expiry time for these
is set by the property com.arjuna.ats.arjuna.recovery.transactionStatusManagerExpiryTime (in hours
– default is 12, zero means never expire). The expiry time should be greater than the lifetime of any
single JBossTS-using process.

The Expiry Scanner properties for these are:

Example 1.2. Recovery Environment Bean XML

<entry key="RecoveryEnvironmentBean.expiryScanners">
 com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner
</entry>

To illustrate the behavior of a recovery module, the following pseudo code describes the basic
algorithm used for Atomic Action transactions and Transactional Objects for java.

Example 1.3. AtomicAction pseudo code

First Pass:
< create a transaction vector for transaction Uids. >
< read in all transactions for a transaction type AtomicAction. >
while < there are transactions in the vector of transactions. >
do
 < add the transaction to the vector of transactions. >
end while.

Second Pass:
while < there are transactions in the transaction vector >
do
 if < the intention list for the transaction still exists >
 then
 < create new transaction cached item >
 < obtain the status of the transaction >

 if < the transaction is not in progress >
 then
 < replay phase two of the commit protocol >
 endif.
 endif.
end while.

Writing a Recovery Module

5

Example 1.4. Transactional Object pseudo code

First Pass:
< Create a hash table for uncommitted transactional objects. >
< Read in all transactional objects within the object store. >
while < there are transactional objects >
do
 if < the transactional object has an Uncommited status in the object store >
 then
 < add the transactional Object o the hash table for uncommitted transactional
 objects>
 end if.
end while.

Second Pass:
while < there are transactions in the hash table for uncommitted transactional objects >
do
 if < the transaction is still in the Uncommitted state >
 then
 if < the transaction is not in the Transaction Cache >
 then
 < check the status of the transaction with the original application process >
 if < the status is Rolled Back or the application process is inactive >
 < rollback the transaction by removing the Uncommitted status from the Object
 Store >
 endif.
 endif.
 endif.
end while.

1.3. Writing a Recovery Module
In order to recover from failure, we have seen that the Recovery Manager contacts recovery
modules by invoking periodically the methods periodicWorkFirstPass and periodicWorkSecondPass.
Each Recovery Module is then able to manage recovery according the type of resources that
need to be recovered. The JBoss Transaction product is shipped with a set of recovery modules
(TOReceveryModule, XARecoveryModule…), but it is possible for a user to define its own recovery
module that fit his application. The following basic example illustrates the steps needed to build such
recovery module

1.3.1. A basic scenario
This basic example does not aim to present a complete process to recover from failure, but mainly to
illustrate the way to implement a recovery module.

The application used here consists to create an atomic transaction, to register a participant within
the created transaction and finally to terminate it either by commit or abort. A set of arguments are
provided:

• to decide to commit or abort the transaction,

• to decide generating a crash during the commitment process.

The code of the main class that control the application is given below

Example 1.5. TestRecoveryModule.java

package com.arjuna.demo.recoverymodule;

Chapter 1. Introduction

6

import com.arjuna.ats.arjuna.AtomicAction;
import com.arjuna.ats.arjuna.coordinator.*;

public class TestRecoveryModule {
 public static void main(String args[]) {
 try {
 AtomicAction tx = new AtomicAction();
 tx.begin(); // Top level begin

 // enlist the participant
 tx.add(SimpleRecord.create());

 System.out.println("About to complete the transaction ");
 for (int i = 0; i < args.length; i++) {
 if ((args[i].compareTo("-commit") == 0))
 _commit = true;
 if ((args[i].compareTo("-rollback") == 0))
 _commit = false;
 if ((args[i].compareTo("-crash") == 0))
 _crash = true;
 }
 if (_commit)
 tx.commit(); // Top level commit
 else
 tx.abort(); // Top level rollback
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 protected static boolean _commit = true;
 protected static boolean _crash = false;
}

The registered participant has the following behavior:

• During the prepare phase, it writes a simple message - “I’m prepared”- on the disk such The
message is written in a well known file

• During the commit phase, it writes another message - “I’m committed”- in the same file used during
prepare

• If it receives an abort message, it removes from the disk the file used for prepare if any.

• If a crash has been decided for the test, then it crashes during the commit phase – the file remains
with the message “I’m prepared”.

The main portion of the code illustrating such behavior is described hereafter.

Warning

that the location of the file given in variable filename can be changed

A basic scenario

7

Example 1.6. SimpleRecord.java

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.coordinator.*;
import java.io.File;

public class SimpleRecord extends AbstractRecord {
 public String filename = "c:/tmp/RecordState";

 public SimpleRecord() {
 System.out.println("Creating new resource");
 }

 public static AbstractRecord create() {
 return new SimpleRecord();
 }

 public int topLevelAbort() {
 try {
 File fd = new File(filename);
 if (fd.exists()) {
 if (fd.delete())
 System.out.println("File Deleted");
 }
 } catch (Exception ex) {
 // …
 }
 return TwoPhaseOutcome.FINISH_OK;
 }

 public int topLevelCommit() {
 if (TestRecoveryModule._crash)
 System.exit(0);
 try {
 java.io.FileOutputStream file = new java.io.FileOutputStream(
 filename);
 java.io.PrintStream pfile = new java.io.PrintStream(
 file);
 pfile.println("I'm Committed");
 file.close();
 } catch (java.io.IOException ex) {
 // ...
 }
 return TwoPhaseOutcome.FINISH_OK;
 }

 public int topLevelPrepare() {
 try {
 java.io.FileOutputStream file = new java.io.FileOutputStream(
 filename);
 java.io.PrintStream pfile = new java.io.PrintStream(
 file);
 pfile.println("I'm prepared");
 file.close();
 } catch (java.io.IOException ex) {
 // ...
 }
 return TwoPhaseOutcome.PREPARE_OK;
 }
 // …
}

Chapter 1. Introduction

8

The role of the Recovery Module in such application consists to read the content of the file used to
store the status of the participant, to determine that status and print a message indicating if a recovery
action is needed or not.

Example 1.7. SimpleRecoveryModule.java

package com.arjuna.demo.recoverymodule;

import com.arjuna.ats.arjuna.recovery.RecoveryModule;

public class SimpleRecoveryModule implements RecoveryModule {
 public String filename = "c:/tmp/RecordState";

 public SimpleRecoveryModule() {
 System.out
 .println("The SimpleRecoveryModule is loaded");
 }

 public void periodicWorkFirstPass() {
 try {
 java.io.FileInputStream file = new java.io.FileInputStream(
 filename);
 java.io.InputStreamReader input = new java.io.InputStreamReader(
 file);
 java.io.BufferedReader reader = new java.io.BufferedReader(
 input);
 String stringState = reader.readLine();
 if (stringState.compareTo("I'm prepared") == 0)
 System.out
 .println("The transaction is in the prepared state");
 file.close();
 } catch (java.io.IOException ex) {
 System.out.println("Nothing found on the Disk");
 }
 }

 public void periodicWorkSecondPass() {
 try {
 java.io.FileInputStream file = new java.io.FileInputStream(
 filename);
 java.io.InputStreamReader input = new java.io.InputStreamReader(
 file);
 java.io.BufferedReader reader = new java.io.BufferedReader(
 input);
 String stringState = reader.readLine();
 if (stringState.compareTo("I'm prepared") == 0) {
 System.out
 .println("The record is still in the prepared state");
 System.out.println("– Recovery is needed");
 } else if (stringState
 .compareTo("I'm Committed") == 0) {
 System.out
 .println("The transaction has completed and committed");
 }
 file.close();
 } catch (java.io.IOException ex) {
 System.out.println("Nothing found on the Disk");
 System.out
 .println("Either there was no transaction");
 System.out.println("or it as been rolled back");
 }
 }
}

Another scenario

9

The recovery module should now be deployed in order to be called by the Recovery Manager. To do
so, we just need to add an entry in the the config file for the extension:

Example 1.8. Recovery Environment Bean Recovery Extensions XML

<entry key="RecoveryEnvironmentBean.recoveryExtenstions">
 com.arjuna.demo.recoverymodule.SimpleRecoveryModule
</entry>

Once started, the Recovery Manager will automatically load the listed Recovery modules.

Note

The source of the code can be retrieved under the trailmap directory of the JBossTS
installation.

1.3.2. Another scenario
As mentioned, the basic application presented above does not present the complete process to
recover from failure, but it was just presented to describe how the build a recovery module. In case of
the OTS protocol, let’s consider how a recovery module that manages recovery of OTS resources can
be configured.

To manage recovery in case of failure, the OTS specification has defined a recovery protocol.
Transaction’s participants in a doubt status could use the RecoveryCoordinator to determine the
status of the transaction. According to that transaction status, those participants can take appropriate
decision either by roll backing or committing. Asking the RecoveryCoordinator object to determine the
status consists to invoke the replay_completion operation on the RecoveryCoordinator.

For each OTS Resource in a doubt status, it is well known which RecoveyCoordinator to
invoke to determine the status of the transaction in which the Resource is involved – It’s the
RecoveryCoordinator returned during the Resource registration process. Retrieving such
RecoveryCoordinator per resource means that it has been stored in addition to other information
describing the resource.

A recovery module dedicated to recover OTS Resources could have the following behavior. When
requested by the recovery Manager on the first pass it retrieves from the disk the list of resources
that are in the doubt status. During the second pass, if the resources that were retrieved in the first
pass still remain in the disk then they are considered as candidates for recovery. Therefore, the
Recovery Module retrieves for each candidate its associated RecoveryCoordinator and invokes
the replay_completion operation that the status of the transaction. According to the returned status,
an appropriate action would be taken (for instance, rollback the resource is the status is aborted or
inactive).

10

11

Appendix A. Revision History
Revision 1 Tue Apr 13 2010 Tom Jenkinson

tom.jenkinson@redhat.com

Initial creation of book by publican

mailto:tom.jenkinson@redhat.com

12

	ArjunaCore Failure Recovery Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Embedding the Recovery Manager
	1.1.1. Additional Recovery Module Classes

	1.2. Understanding Recovery Modules
	1.2.1. The Recovery Manager
	1.2.2. Configuring the Recovery Manager
	1.2.3. Periodic Recovery
	1.2.4. Expired entry removal

	1.3. Writing a Recovery Module
	1.3.1. A basic scenario
	1.3.2. Another scenario

	Appendix A. Revision History

