
JBoss Transaction Service 4.13.0

Transaction Bridging Guide

Txbridge-9/30/10

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.

Copyright

Copyright 2009, Red Hat Middleware LLC., and individual contributors as indicated by the @authors tag.
All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss Transaction Service 4.13.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

Contents

Table Of Contents

About This Guide.. 4

What This Guide Contains................................. 4
Audience.. 4
Prerequisites... 4
Organization... 4
Documentation Conventions.............................. 4
Additional Documentation................................. 5
Contacting Us..5

Introduction... 6

Contextual Overview... 6
Transaction Bridging...6

Transaction Bridge Architecture...................... 8

Overview.. 8
Shared Design Elements....................................8
Inbound Bridging... 9
Outbound Bridging..10
Crash Recovery.. 11

Using the Transaction Bridge............................12

Introduction.. 12
Deployment.. 12
Inbound Bridging... 12
Outbound Bridging..13
Demonstration Application.............................. 13
Inbound Bridge.. 14
Outbound Bridge.. 14
Loops and Diamonds.......................................14
Distributed JTA and the JTS 15
Logging.. 16

Known Limitations... 17

Design Notes.. 18

General Points.. 18
Crash Recovery Considerations....................... 19
Test framework.. 19

About This Guide

What This Guide Contains

The Transaction Bridging Guide contains information on how to use JBoss Transaction
Service 4.13.0. This guide provides information on how to integrate JTA (XA) and XTS
(WS-AT) transactions using the transaction bridge.

Audience

This guide is most relevant for application developers working in environments that integrate
traditional JEE transactions usage and transactional Web Services.

Prerequisites
JBossTS uses the Java programming language and this manual assumes that you are familiar
with programming in Java. In addition, a familiarity with the JTA and XTS components of
JBossTS is assumed. You should read the relevant Programmer's Guides before tackling this
document.

Organization

This guide contains the following chapters:

1. Introduction

2. Transaction Bridge Architecture

3. Using the Transaction Bridge

4. Known Limitations

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user

4

with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the
following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note: and

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transaction Service
4.13.0 documentation set:

• JBoss Transaction Service 4.13.0 Release Notes: Provides late-breaking information
about JBoss Transaction Service 4.13.0.

• JBoss Transaction Service 4.13.0 Installation Guide: This guide provides
instructions for installing JBoss Transaction Service 4.13.0.

• JBoss Transaction Service 4.13.0 Failure Recovery Guide: Provides guidance for
administering the system.

• JBoss Transaction Service 4.13.0 Transactions API Guide: Provides guidance for
administering the system.

• JBoss Transaction Service 4.13.0 Transaction Core Programmers Guide: Provides
guidance for administering the system.

• JBoss Transaction Service 4.13.0 JTS Programmers Guide: Provides guidance for
administering the system.

• JBoss Transaction Service 4.13.0 Administration Guide: Provides guidance for
administering the system.

• JBoss Transaction Service 4.13.0 Web Service Transactions Programmers Guide.
Provides guidance for using Web Services Transactions.

Contacting Us

Questions or comments about JBoss Transaction Service 4.13.0 should be directed to our
support team.

5

Chapter 1

Introduction

Contextual Overview

Transactions provide a structuring mechanism for business logic. Use of transactions allows
for grouping of data manipulations into constructs with certain properties. Traditional ACID
transactions provide for properties of Atomicity, Consistency, Isolation and Durability.

In JEE applications, transaction support is provided via the Java Transaction API (JTA). The
classes and interfaces in the javax.transaction and javax.transaction.xa packages provide a
means by which the programmer may manage transaction demarcation (begin, commit,
rollback) and, where necessary, interact with the transaction management system (e.g.
enlistResource). In many JEE applications, further abstractions are provided on top of the
JTA. For example, EJB3 @TransactionAttribute annotations may be used for transaction
boundary demarcation in preference to explicit calls to the JTA's UserTransaction interface.

In distributed applications, the JTA implementation may provide propagation of transaction
context and transaction control calls between containers (JVMs) using either a propriety
transport or JTS, the Java mapping of the CORBA OTS standard on an RMI/IIOP transport.
In JBossTS, both local and distributed (JTS) implementations of the JTA are available.

In Web Services applications, ACID transaction management and interoperable context
propagation is provided for by the WS-AT standard. JBossTS XTS provides an
implementation of both the 1.0 and 1.2 versions of this standard. Bridging is provided only on
the more recent version. At the time of writing the standard covers only the web services API
and protocol, not the Java API through which the protocol may be driven. Therefore, XTS
provides a custom Java API to users, with characteristics broadly similar to the JTA.

For applications that combine traditional JEE transaction management and Web Service
transaction management, it is often desirable to have some mechanism for linking these
transaction types, such that a single transaction may span business logic written for either
transaction type. Examples include exposing existing JEE transactional business logic (e.g.
EJBs) as transactional Web Services, or allowing JEE transactional components to utilize
transactional Web Services.

Transaction Bridging

We use the term Transaction Bridging to describe the process of linking the JEE and Web
Services transaction domains. The transaction bridge component (txbridge) of JBossTS
provides bi-directional linkage, such that either type of transaction may encompass business
logic designed for use with the other type.

The technique used by the bridge is a combination of interposition and protocol mapping.

6

Interposition is used in transaction systems to allow a tree of transaction coordinators to be
constructed, usually for performance reasons. Interposed coordinators function as transaction
managers for nodes below them in the tree, whilst appearing as resources (participants in WS-
AT terminology) to the node above them.

Within a single transaction domain, interposition may be used to allow remote nodes to
minimize the number of network calls necessary at transaction termination. The top level
node is known as the root coordinator, whilst interposed coordinators are termed subordinate.
This name indicates that they are not autonomously responsible for determining the
transaction outcome, but rather are driven by their parent coordinator. Therefore, whilst a top
level coordinator exposes only the commit and rollback methods for transaction termination
and handles the 2PC internally, the subordinates additionally expose the prepare method to
their parent, behaving much like resources during the termination protocol.

RDBMS RDBMS RDBMS

Machine 1

Queue

Machine 2

Root
coordinator

Subordinate
coordinator

Network invocations
for TX coordination

Client App

Network invocations
for TX Control

Figure 1: Transaction interposition in a distributed JTA environment

In the transaction bridge, an interposed coordinator is registered into the existing transaction
and performs the additional task of protocol mapping. That is, it appears to its parent
coordinator to be a resource of its native transaction type, whilst appearing to its children to
be a coordinator of their native transaction type, even though these transaction types differ.

TODO: diagram here

The interposed coordinator is responsible for performing mapping between the transaction
protocols. There is a strong correspondence between the API and protocol used by the JTA
and WS-AT transaction types, which is unsurprising given their common heritage and shared
problem domain. However, method signatures, exception types and such do differ. The bridge
provides a abstraction layer to mask these distinctions as far as possible.

The net result of this is that existing business logic perceives its expected transaction
environment, even though the transaction in which it is executing may be subordinate to one
of a different type. No changes are necessary to existing transactional applications to allow
them to operate in the scope of foreign transactions. This facilitates reuse of existing business
logic components in new environments and increases the possibilities for new architectures
and interoperability.

7

Chapter 2

Transaction Bridge
Architecture

Overview

The transaction bridge resides in the package org.jboss.jbossts.txbridge and its subpackages..
It consists of two distinct sets of classes, one for bridging in each direction.

The process of inflowing a WS-AT transaction context on a Web Service call into the
container and converting it to a local JTA transaction context such that existing transactional
JEE code (e.g. EJBs) may be called within its scope, is termed Inbound Transaction
Bridging. When using inbound bridging, a parent WS-AT transaction coordinator has a
subordinate JTA coordinator interposed into it via the transaction bridge.

The process of outflowing a WS-AT transaction context on a call to a transactional Web
Service from a business logic method operating in a JEE transaction scope, is termed
Outbound Transaction Bridging. When using outbound bridging, a parent JTA transaction
coordinator has a subordinate WS-AT coordinator interposed into it via the transaction
bridge.

For the purpose of understanding this naming convention, it is simplest to view the JTA as
being local to the container in which it operates, whilst the Web Service protocol provides for
transaction context propagation between servers. This is an accurate representation of the
situation that exists where the local JTA version of JBossTS is being used alongside JBossTS
XTS in an application server. However, it is an oversimplification of the situation where the
JTS option is used. We will return to this case later.

TODO: diagram

Shared Design Elements

The design of the inbound and outbound bridges is conceptually very similar. Each provides
the following:

A BridgeManager, essentially a factory singleton, providing a means of managing
Bridge and resource/participant instances. The chief role of the BridgeManager is to ensure
a distinct mapping of a parent transaction context to a single Bridge and resource/participant
instance.

A Bridge, which provides Thread to transaction context association and
disassociation functions for the subordinate transaction. The Bridge is usually called from the
Handler, but may optionally be driven directly.

8

A Handler, which is registered into the JAX-WS processing pipeline to provide
minimally invasive management of Thread to transaction context bindings via the Bridge, an
appropriate instance of which it obtains from the BridgeManager. Whilst the bridge provides
handlers only for JAX-WS, it's possible to use these as a model for the implementation of
JAX-RPC versions if desired.

A VolatileParticipant and DurableParticipant (in the case of the InboundBridge)
or Synchronization and XAResource (in the case of the OutboundBridge) which are enlisted
into the parent transaction and wrap the Subordinate transaction coordinator, providing
mapping of the transaction termination protocol operations.

A RecoveryManager, which is responsible for automatically restoring the state of
crashed transactions and allowing them to complete correctly.

Inbound Bridging

The process flow when using the inbound bridge is as follows:

A remote client starts a WS-AT transaction and invokes a transactional Web Service in the
scope of that transaction. The inbound WS invocation therefore has SOAP headers containing
the WS-AT transaction context. The coordinator used for this transaction is the root
coordinator. It may be remote from either or both of the client and the service it is invoking.
The client needs access to a WS-AT implementation, but not a JTA or the transaction bridge
deployed.

The call arrives at a web service container, which must have JBossTS JTA or JTS, XTS and
the transaction bridge deployed. The JAX-WS handler chain for the web service should have
both the XTS WS-AT transaction header processor and the inbound bridge handler registered,
such that they are invoked in that order.

The transaction header processor takes the WS-AT transaction context from XML, creates a
corresponding WS-AT TxContext and associates it to the Thread. The bridge handler calls the
InboundBridgeManager to obtain an InboundBridge instance corresponding to the TxContext.

As the BridgeManager is seeing the TxContext for the first time, it creates a new Bridge
instance. It also creates a new Bridge VolatileParticipant and DurableParticipant and registers
them with the WS-AT transaction coordinator. These Participants wrap a subordinate JTA
transaction.

The bridge header processor starts the bridge, which associates the JTA subordinate
transaction context to the Thread. At this point the Thread has transaction contexts for both
WS-AT and JTA.

The JAX-WS pipeline processing continues, eventually calling whatever business logic is
exposed. This may be e.g. an EJB using JSR-181 annotations. The business logic may use the
JTA transaction in the normal manner e.g. enlisting Synchronizations and XAResources or
performing other transactional activity either directly or though the usual JEE abstractions.

On the return path, the bridge header processor disassociates the JTA transaction context from
the Thread via the Bridge. The XTS context processor then does likewise for the WS-AT
TxContext.

9

On subsequent web services calls to the same or other web services from the same client, the
process is repeated. However, the BridgeManager will, upon seeing the same WS-AT
transaction context again, return the existing Bridge instance and not register further
Participant instances. This allows substantially better performance than registering one
Participant per web service invocation.

Upon transaction termination by the client, the WS-AT transaction coordinator will drive the
enlisted bridge Participants through the transaction termination protocol. The Participants
maps these calls down to the JTA subtransaction coordinator, which in turn passes them on
to any Synchronizations or XAResources enlisted in the transaction. This process is not
visible to the business logic, except in so far as it may have registered its own
Synchronizations, XAResources or Participants with the transaction.

Outbound Bridging

The process flow when using the outbound bridge is as follows:

A client starts a JTA transaction and invokes a remote transactional Web Service in the scope
of that transaction. The client must have JBossTS JTA (or JTS) and XTS deployed, as well as
the transaction bridge. The coordinator used for the JTA transaction is the root coordinator.
The server hosting the target web service needs a WS-AT transaction implementation but not
a JTA or the transaction bridge.

The outbound WS invocation flows though a handler chain that has the outbound transaction
bridge handler and XTS header context processor registered, such that they are invoked in
that order.

The bridge handler calls the outbound bridge manager to obtain an outbound bridge instance
corresponding to the JTA transaction context. As the BridgeManager is seeing the context for
the first time, it creates a new Bridge instance. It also creates a Synchronization and
XAResource instance to wrap the subordinate WS-AT transaction and registers these with the
JTA transaction.

The bridge handler starts the bridge, which associates the subordinate WS-AT transaction
context to the Thread. The WS-AT header context processor then serializes this into XML in
the headers of the outbound Web Services call.

The receiving Web Service sees a WS-AT context and can work with it in the normal manner,
without knowing it is a subordinate context.

On the return path, the bridge handler disassociates the WS-AT TxContext from the Thread
via the Bridge.

On subsequent calls to the same or other transactional Web Services in the scope of the same
JTA transaction, the process is repeated. However, the BridgeManager will, upon seeing the
same JTA transaction context again, return the existing Bridge and not register another
Synchronization or XAResource with the parent JTA transaction. This allows substantially
better performance than registering once per web service invocation.

Upon transaction termination by the client, the JTA transaction coordinator will drive the
enlisted bridge Synchronization and XAResource through the transaction termination
protocol. The XAResource maps these calls down to the WS-AT subtransaction coordinator,

10

which in turn passes them on to any Volatile or Durable Participants enlisted in the
transaction. This process is not visible to the business logic, except in so far as it may have
registered its own Participants, XAResources or Synchronizatons with the transaction.

Crash Recovery

TODO

11

Chapter 3

Using the Transaction
Bridge

Introduction

This section describes how to use the transaction bridge in your applications. It is
recommended you first read the preceding chapters for a theoretical background in the way
the bridge functions.

Deployment

The txbridge.jar file should be placed in JBossAS server/<config>/deploy directory. The
server must also be running JBossTS JTA (the default transaction manager) or JTS, and also
JBossTS XTS. The versions of all these components must be consistent.

Inbound Bridging

To use the inbound bridge, register the JAX-WS handler into the handler chain of any Web
Service as follows:

<handler-chain>

 <protocol-bindings>##SOAP11_HTTP</protocol-bindings>

 <handler>

 <handler-name>TransactionBridgeHandler</handler-name>

 <handler-
class>org.jboss.jbossts.txbridge.inbound.JaxWSTxInboundBridgeHandler</handle
r-class>

</handler>

 <handler>

 <handler-name>WebServicesTxContextHandler</handler-name>

 <handler-
class>com.arjuna.mw.wst11.service.JaxWSHeaderContextProcessor</handler-
class>

</handler>

</handler-chain>

12

The web service may then operate as though running in the scope of a JTA transaction, as
indeed it is. For example, it can call (or indeed simply be) an EJB3 business logic method
annotated with @TansactionAttribute(TransactionAttributeType.MANDATORY).

Note that the handlers expect a WS-AT transaction context to be present on all inbound
invocations. If you wish deploy your service in such a way as to make transactional
invocation optional, you must expose it though two different endpoints, one transactional and
one not, with the handlers registered only on the former. This limitation may be addressed in
future versions.

Outbound Bridging

To use the outbound bridge, register the JAX-WS handler into the handler chain of any Web
Service client application as follows:

<handler-chain>

<protocol-bindings>##SOAP11_HTTP</protocol-bindings>

 <handler>

<handler-name>TransactionBridgeHandler</handler-name>

 <handler-
class>org.jboss.jbossts.txbridge.outbound.JaxWSTxOutboundBridgeHandler</hand
ler-class>

 </handler>

 <handler>

 <handler-name>WebServicesTxContextHandler</handler-name>

 <handler-
class>com.arjuna.mw.wst11.client.JaxWSHeaderContextProcessor</handler-class>

 </handler>

</handler-chain>

The web service client may then make calls to web service implementations that expect to be
invoked in the scope of a WS-AT transaction.

Note that the handlers expect a JTA transaction context to be present on the client thread used
to make the outbound web service invocation. If the context is not always present, different
stubs must be used for the transactional and non-transactional cases and the handler chain
registered only on the former. This limitation may be addressed in future versions.

Demonstration Application

A simple demonstration application is available to show usage of the bridge. It is modeled to
some extent on the XTS 'Night Out' demonstrator application, with which readers are
assumed to be familiar.

Since transactions mostly run without visible effect, the demo is useful mainly as an example
of how to utilize the bridge. The bridge implementation does however contain trace level
logging for most functions. Used in conjunction with verbose logging from XTS, the
transaction manager, the Web Service stack and the EJB container, this can be used to gain a

13

detailed understanding of the flow of events in the system. Alternatively, stepping though the
demo using a source debugger can be instructive.

To deploy and run the demo application, edit demo/build.xml to ensure the jbossas.home and
jbossas.server properties are set correctly, then execute 'ant dist' to build the application
artifacts. Start the application server, then deploy the service side of the demo using 'ant
deploy-service' Once it has deployed, the client app can be similarly installed using 'ant
deploy-client'. Depending on your server configuration, the client will then be accessible from
e.g. http://localhost:8080/txbridge-demo-client/

Inbound Bridge

The demonstrator exposes a EJB3 SLSB as a transactional web service ('Bistro') via the
inbound bridge. Note that the code implementing this service is standard EJB with JSR-181
annotations and has no compile time dependency on XTS or the txbridge. The only point of
linkage is the usage of the @HandlerChain(file = "jaxws-handlers-server.xml") annotation to
reference a xml file containing the XTS and txbridge handlers, as detailed above. Other than
this the service side of the application uses only standard JEE elements and has no direct
knowledge of WS-AT transactions.

A client starts a WS-AT transaction and makes an invocation on the web service. The client
does not use JTA (XA) transactions. It uses @HandlerChain(file = "jaxws-handlers-
client.xml") to register the XTS header context processor, but is otherwise similar to the XTS
demo client.

In this demo, the inbound bridge converts the WS-AT context to a JTA one and invokes the
EJB in that scope. By default the EJB is backed by the hsqldb embedded in JBossAS, for ease
of deployment. This database does not support XA, so the resource registered for it uses
LRCO. However, this point is not significant to the demo. Curious uses can readily use a true
XA database by deploying it into JBossAS via the usual <xa-datasource> in a -ds.xml file,
then alter the demo's dd/persistence.xml to reference it.

Outbound Bridge

The demonstrator client application can also be used to invoke the XTS Night Out demo
Restaurant Service via the outbound bridge. Deploy the XTS demo application services, then
select the 'JTA' transaction type in the client. In this scenario the client uses a JTA
transaction only, whilst the service understands WS-AT type transactions only. Note that the
client has its own copy of the service API, annotated with @HandlerChain(file = "jaxws-
handlers-client.xml"), which is the only point of linkage with the transaction bridge. Once
again neither the client nor server have any compile time dependency on the bridge.

Loops and Diamonds

In distributed environments that utilize transaction bridging, it is possible to construct
arrangements of servers such that a transaction context passes though more than one
interposition. These can give rise to some undesirable issues, including locking and
performance problems.

A simple case would be a loop in which a JTA transaction context is bridged outbound to a
WS-AT context, passed though one or more remote servers and inflowed back to the original

14

http://localhost:8080/txbridge-demo-client/

server through an inbound bridge. This may result in a new subordinate JTA context, rather
than reuse of the existing parent context in the original server.

This situation has two main observable effects. Firstly, the parent JTA transaction and
indirectly subordinate JTA transaction are considered distinct and XAResources may not be
shared between them. In most cases this will cause isolation between the transactions, such
that they do not share locks or see eachother's changes. This may cause deadlocks in the
application. Secondly, performance will be poor relative to reuse of the original context,
particularly if the interposition chain becomes long.

A similar problem exists where a transaction context is propagated from a single source to a
single destination server via two or more separate routes, the paths forming a diamond shape.
In such case the intermediate nodes operate independently and will bridge the original context
to two separate interposed contexts. To the destination server these will appear unrelated,
rather than as representations of the same transaction. Thus instead of recombining into a
single shared transaction context at the destination, they will behave as different transactions,
giving rise once again to potential deadlock and performance issues.

These problems may be partially addressed by having a shared context mapping service
available on the network, which each bridge consults when working with a previously unseen
transaction context for the first time. Using such a mechanism, bridge instances may identify
transactions for which an established mapping already exists and reuse that relationship rather
than creating a new one.

This shared service model does however cause some issues of its own with regard to
performance and availability. It is not currently implemented. Therefore, users are urged to be
cautious when constructing distributed applications. Whilst location abstraction is sometimes
desirable, is is important to maintain a clear understanding of the deployment relationships
between transactional components in the system.

Distributed JTA and the JTS

The JEE transaction engine in JBossTS comes in two varieties. These are the local only JTA,
which does not support propagation of transaction context or transaction control calls between
JVMs and the JTAX, which provides the JTA API implemented by a JTS engine that does
support distributed usage.

JBossAS uses the local JTA implementation by default, but can be reconfigured to use the
JTS via the JTA API, such that it supports distributed transactions without requiring any
changes to business applications.

In environments requiring transaction propagation of JTA transactions, it is feasible to use
either the JTS or an outbound and inbound bridge pair to achieve this. In the former case the
transport is RMI/IIOP for the transaction control and RMI/IIOP or JRMP for the transactional
business logic calls. In the latter case the transport is Web Services for both transaction
control and business logic.

From a transaction management perspective the JTS solution is preferred, due to simplicity
(no protocol mapping is needed), maturity (JBossTS JTS was the world's first JTS
implementation and has been extensively used and tested in production environments),
reliability (JTS does not suffer the crash recovery limitations of the current bridge
implementation) and performance (binary vs. xml).

15

It is possible to use transactions that propagate context on some calls via JTS and on others
via Web Services, such as a client invoking both EJBs via RMI/IIOP and Web services with
WS-AT context. In such cases it's possible for a transaction to have multiple representations
that the infrastructure cannot determine are related, even if they actually represent different
contexts in the same interposition hierarchy. Care must therefore be taken to avoid the
problems described previously in 'Loops and Diamonds'.

Logging

The transaction bridge uses the log4j logging system. When running inside JBossAS, logging is
configured via the server's conf/jboss-log4j.xml file. To enable full logging for the transaction bridge,
which may be useful for debug purposes, the following should be used:

 <category name="org.jboss.jbossts.txbridge">

 <priority value="ALL"/>

 </category>

Note that the transaction bridge is a thin layer on top of the XTS and JTA/JTS components of
JBossTS, and that it also interacts with other parts of the application server. To gain a comprehensive
understanding of the system's operation, it may be necessary to enable verbose logging for some of these
other components also. The JBossTS logging system is discussed in detail in the documentation set, but
for ease of reference the following settings are used to enable verbose logging: In deploy/transaction-
jboss-beans.xml, change the LoggingEnvironmentBean's debugLevel property as follows

<bean name="LoggingEnvironmentBean"
class="com.arjuna.common.internal.util.logging.LoggingEnvironmentBean">

...

<property name="debugLevel">0xffffffff</property>

and in conf/jboss-log4j.xml, ensure that the com.arjuna category is at ALL or TRACE.

16

Chapter 4

Known Limitations

The current transaction bridge release has the following limitations:

The bridge operates only on WS-AT 1.2, not 1.0, although XTS includes implementations of
both versions of WS-AT. Care must therefore be taken to deploy and configure the system
correctly.

The bridge provides JAX-WS handlers only, not JAX-RPC, although it is possible to create
such if required.

Long running activities that occur during the transaction termination process may cause
timeouts in the transaction system, which can in turn cause inconsistent transaction outcomes
or incomplete transaction termination. To minimize this problem, it is advised to manually
flush data that would otherwise be flushed by Synchronizations during termination, such as
hibernate session state.

A transaction context must always be present on the Thread in order for the context
processors to operate correctly, as detailed previously in 'Using the Transaction Bridge'.

A subordinate transaction context will be created and registered into the parent transaction
unconditionally, which can cause unnecessary overhead in situations where no transactional
activity takes place in the scope of the subordinate. Care should be taken to register the bridge
handlers only on methods that do require them. In future releases this may be addressed by
the use of WS-Policy or lazy initialization techniques.

Transaction mappings are local to BridgeManagers, which are singletons. This means
mappings are classloader scoped and not shared across JVMs. This gives rise to issues where
transactional resources are accessed indirectly though multiple bridges or transaction context
transports, as described in 'Loops and Diamonds'.

Crash recovery is subject to certain timing issues, due to the interaction between recovery of
the JTA/XA and XTS sides of the transaction. It may take more than one crash recovery cycle
for a bridged transaction to recover fully. With the exception of the case detailed below,
recovery should eventually occur. Note that recovery of subordinate transactions is dependent
on the recovery of their parent, so care must be taken to ensure the correct recovery of any
external transaction manager used in that role. The transaction bridge does not currently
provide dedicated tooling for the manual resolution of orphaned subordinates, instead relying
on the general purpose objectstore maintenance tooling provided by JBossTS.

Inbound Bridging features completely automated recovery. However, with Outbound
Bridging, if a transaction crashes in the time window between prepare of the subordinate and
prepare of the parent, automated crash recovery may not occur. The subordinate will recover,
but remain in a wait state pending instructions from its parent. The parent, having crashed
before writing a log, will not recover. Such cases currently require manual recovery.

17

Appendix A

Design Notes

General Points

This section records key design points relating to the bridge implementation. The target
audience for this section is software engineers maintaining or extending the transaction bridge
implementation. It is unlikely to contain material useful to users, except in so far as they wish
to contribute to the project. An in-depth knowledge of JBossTS internals may be required to
make sense of some parts of this appendix.

The txbridge is written as far as possible as a user application layered on top of the JTA and
XTS implementations. It accesses these underlying components through standard or
supported APIs as far as possible. For example, XAResource is favored over AbstractRecord,
the JCA standard XATerminator is used for driving subordinates and so on. This facilitates
modularity and portability.

It follows that functionality required by the bridge should first be evaluated for inclusion in
one of the underlying modules, as experience has shown it is often also useful for other user
applications. For example, improvements to allows subordinate termination code portability
between JTA and JTS, and support for subordinate crash recovery have benefited from this
approach. The txbridge remains a thin layer on top of this functionality, containing only
purpose specific code.

The 'loops and diamonds' problem boils down to providing deterministic, bi-directional 1:1
mapping between an Xid (which is fixed length) and a WS-AT context (which is unbounded
length in the spec, although bounded for instances created by the XTS). Consistent hashing
techniques get you so far with independent operation, but the only 100% solution is to have a
shared service on the network providing the mapping lookup. Naturally this then becomes a
single point of failure as well as a scalability issue. For some scenarios it may be possible to
use interceptors to propagate the Xid on the web services call as extra data, instead of trying
to reproduce the mapping at the other end. Unfortunately XA does not provide for this kind of
extensibility, although CORBA does, leading to the possibility of solving the issue without a
centralized approach in mixed JTS+WS-AT environments.

Requiring a tx context on all calls is a bit limiting, but JBossWS native lacks a WS-Policy
implementation. Things may change with the move to CXF. This is really a wider issue with
XTS, not just the bridge.

18

Crash Recovery Considerations

As usual with transactions, it's the crash recovery that provides for the most complexity.
Recovery for the inbound and outbound sides is handled independently. Because of event
ordering between recovery modules (JTA, XTS), it requires two complete cycles to resolve
some of these crash recovery situations.

Inbound Crash Recovery

An inbound transaction involves at least four log writes. Top down (i.e. in reverse order of
log creation) these are: The WS-AT coordinator log (assumed here to be XTS, but may be 3 rd

party), the XTS Participant log in the receiving server, the JCA Subordinate transaction log
and at least one XA Resource Manager log (which are 3rd party e.g. Oracle).

There is no separate log created by the txbridge. The XTS Participant log inlines the
Serializable BridgeDurableParticipant via its writeObject method. Recorded state includes its
identity (the Xid) and the identity of the separately logged JTA subordinate tx (a Uid).

XTS is responsible for the top level coordinator log. JBossTS is responsible for the JTA
subordinate tx log and 3rd party RMs are each responsible for their own.

The following situations may exist at recovery time, according to the point in time at which
the crash occurred:

RM log only. In this case, the InboundBridgeRecoveryManager's XAResourceOrphanFilter
implementation will be invoked via JBossTS XARecoveryModule, will recognize the
orphaned Xids by their formatId (which they inherit from the JCA subordinate, which the
txbridge previously created with a specially constructed inflowed Xid) and will vote to have
the XARecoveryModule roll them back as no corresponding JCA subordinate log exists, so
presumed abort applies.

RM log and JTA subordinate tx log. The InboundBridgeRecoverytManager's scan of indoubt
subordinate JTA transactions identifies the JTA subordinate as being orphaned and rolls it
back, which in turn causes the rollback of the RM's XAResource.

RM log, JTA subordinate log and XTS Participant log. XTS is responsible for detecting that
the Participant is orphaned (by re-sending Prepared to the Coordinator and receiving
'unknown tx' back) and initiating rollback under the presumed abort convention.

WS-AT coordinator log and all downstream logs: The coordinator re-sends Commit to the
Participant and the transaction completes.

Outbound Crash Recovery

An outbound transaction involves log writes for the JTA parent transaction and the XTS
BridgeWrapper coordinator. There is not a separate log created by the txbridge. The JTA tx
log inlines the Serializable BridgeXAResource via its writeObject method. Recorded state
includes the JTA tx id and bridgeWrapper id String. In addition a Web Service participating
in the subordinate transaction will create a log. Assuming it's XTS, the participant side log
will inline any Serializable Durable2PCParticipant, effectively forming the RM log.

19

The following situations may exist at recovery time, according to the point in time at which
the crash occurred:

RM log (i.e. XTS Participant log, inlining Serializable Durable2PCParticipant) only. TODO

RM log and XTS subordinate log. TODO

RM log, XTS subordinate log and JTA parent log (with inlined BridgeXAResource). Top
down recovery by the JTA recovery module drives tx to completion.

TODO: update after JBTM-725

Test framework

The test suite for the txbridge is split along two axis. Firstly, the inbound and outbound sides
of the bridge have their own test suites in a parallel hierarchy. These are largely mirrors,
containing tests which have matching intent but different implementation details. Secondly,
the tests are split between those for normal execution and those for crash recovery.

The tests use a framework consisting of a basic servlet acting as client, a basic web service as
server and a set of utility classes implementing the appropriate interfaces
(Participant/Synchronization/XAResource). These classes contain the bare minimum of test
logic. In order to make the tests as easy to understand and modify as possible, an attempt is
made to capture the entirety of the test logic within the junit test function instead of splitting it
over the framework classes. To facilitate this, extensive use is made of byteman and its
associated dtest library, which provides basic distributed mock-like execution tracing and
configuration. You probably need to take a detour and read the dtest docs before proceeding
further.

The basic tests all follow the same pattern: make a call through the bridge, following different
logic paths in each test, and verify that the test resources see the expected method calls. For
example, in a test that runs a transaction successfully, expect to see commit called on enlisted
resources and rollback not called. For a test that configures the prepare to fail, expect to see
rollback called and commit not called. The tests verify behaviour in the presence of 'expected'
errors e.g. prepare failures, but generally don't cover unexpected failures e.g. exceptions
thrown from commit.

TODO: crash rec tests.

20

	Inbound Bridge
	Outbound Bridge
	Inbound Crash Recovery
	Outbound Crash Recovery

