
Arjuna CLF 2.0

Programmer's Guide

CLF-PG-3/30/10

Legal Notices

The information contained in this documentation is subject to change without notice.

Arjuna Technologies Limited makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. Arjuna
Technologies Limited shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company.

Software Version

Arjuna CLF 2.0

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

Arjuna Technologies Limited
Nanotechnology Centre
Herschel Building
Newcastle Upon Tyne
NE1 7RU
United Kingdom

© Copyright 2010 Arjuna Technologies Limited

Content

Table Of Contents

About This Guide.. 4

What This Guide Contains................................. 4
Audience.. 4
Organization... 4
Documentation Conventions.............................. 4

Overview.. 6

CLF 2.0 Architecture... 6
Package Overview:

com.arjuna.common.util.logging6

LogFactory... 7
Setup of Log subsystem..................................... 7
Getting Started... 8
Log Interface.. 8
Dependencies... 9

Basic File Logging... 10

Overview.. 10
Setup.. 10

Index... 11

About This Guide

What This Guide Contains

The Programmer's Guide contains information on how to use Arjuna CLF 2.0.

Audience

This guide is most relevant to engineers who are responsible for using Arjuna CLF 2.0
installations.

Organization

This guide contains the following chapters:

1. Chapter 1, Overview
2. Chapter 2, Migration to CLF 2.0
3. Chapter 3, Helper Classes
4. Chapter 4, The Log Interface

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the

4

following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note: and

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

5

Chapter 1

Overview

CLF 2.0 Architecture

CLF 2.0

Jakarta Commons Logging Core Services
Framework

(CSF) Logginglog4j
JDK
1.4

JDK
1.1

Avalon

Pure JDK 1.1 logging
(for compilation to MS .net)

Console-Appender can also
write to CSF log viewer

JMS

JDBCFile
(rolling)

Chain
saw

Chain
saw

console

Win NT
syslog

Tcp/ip
Socket

JMX

XML
Log

Figure 0-1 CLF 2.0 Architecture

Package Overview: com.arjuna.common.util.logging

Interface Summary
Logi18n A simple logging interface abstracting the various logging APIs

supported by CLF and providing an internationalization layer
based on resource bundles.

LogNoi18n A simple logging interface abstracting the various logging APIs
supported by CLF without internationalization support

Class Summary

DebugLevel
The DebugLevel class provides default finer debugging value
to determine if finer debugging is allowed or not.

6

FacilityCode
The FacilityCode class provides default finer facilitycode value to
determine if finer debugging is allowed or not.

VisibilityLevel
The VisibilityLevel class provides default finer visibility value to
determine if finer debugging is allowed or not.

LogFactory Factory for Log objects.

LogFactory

Factory for Log objects. LogFactory returns different subclasses of logger according to which
logging subsystem is chosen. The log system is selected through the property
LoggingEnvironmentBean.loggingFactory. Supported log systems are:

• jakarta Jakarta Commons Logging (JCL). JCL can delegate to various other logging
subsystems, such as:

 log4j
 JDK 1.4 logging

Log subsystems are not configured through CLF but instead rely on their own configuration
files for the setup of eg. debug level, appenders, etc...

Setup of Log subsystem

The underlying log system can be selected in two ways:

• Through the commonPropertyManager:
commonPropertyManager.getLoggingEnvironmentBean.setLoggingFactory(value);

• As a System property (deprecated) (see following table)

Property Name Description
LoggingEnvironment
Bean.loggingFactor
y

This property selects the log subsystem to use. Note that
this can only be set as a System property, e.g. as a
parameter to start up the client application:

java –
DLoggingEnvironmentBean.loggingFactory=com
.arjuna ..

Table 2 System property to select the underlying log system to use.

Νοτε: The properties of the underlying log system are configured in a manner
specific to that log system, e.g., a log4j.properties file in the case that log4j
logging is used.

Example: To set off log4j (default log system), provide the following System properties:

java –
DLoggingEnvironmentBean.loggingFactory=”com.arjuna.common.internal.ut
il.logging.jakarta.JakartaLogFactory;com.arjuna.common.internal.util.

7

file:///C:\docs\com\arjuna\common\util\logging\CommonVisibilityLevel.html
file:///C:\docs\com\arjuna\common\util\logging\Log.html
file:///C:\docs\com\arjuna\common\util\logging\LogFactory.html

logging.jakarta.Log4JLogger”
-Dlog4j.configuration=file://c:/Projects/common/log4j.properties

Getting Started

Simple use example:

import com.arjuna.common.util.logging.*;

public class Test
{
 static Log mylog = LogFactory.getLog(Test.class);

 public static void main(String[] args)
 {
 String param0 = "foo";
 String param1 = "bar";

 // different log priorities
 mylog.debug("key1", new Object[]{param0, param1});
 mylog.info("key2", new Object[]{param0, param1});
 mylog.warn("key3", new Object[]{param0, param1});
 mylog.error("key4", new Object[]{param0, param1});
 mylog.fatal("key5", new Object[]{param0, param1});

 // optional throwable
 Throwable throwable = new Throwable();
 mylog.debug("key1", new Object[]{param0, param1}, throwable);
 mylog.info("key2", new Object[]{param0, param1}, throwable);
 mylog.warn("key3", new Object[]{param0, param1}, throwable);
 mylog.error("key4", new Object[]{param0, param1}, throwable);
 mylog.fatal("key5", new Object[]{param0, param1}, throwable);

 // debug guard to avoid an expensive operation if the logger does not
 // log at the given level:
 if (mylog.isDebugEnabled())
 {
 String x = expensiveOperation();
 mylog.debug("key6", new Object[]{x});
 }
 }
}

Log Interface

A simple logging interface abstracting the various logging APIs supported by CLF.

The logging levels used by Log are (in order):

1. debug (the least serious)
2. info
3. warn
4. error
5. fatal (the most serious)

The mapping of these log levels to the concepts used by the underlying logging system is
implementation dependent. The implemention should ensure, though, that this ordering
behaves as expected.

8

Performance is often a logging concern. By examining the appropriate property, a component
can avoid expensive operations (producing information to be logged).

For example,

 if (log.isDebugEnabled()) {
 ... do something expensive ...
 log.debug(...);
 }

Configuration of the underlying logging system will generally be done external to the
Logging APIs, through whatever mechanism is supported by that system.

Dependencies
Name Description
Commons-logging-1.1.jar Jakarta Commons Logging JAR
log4j-1.2.14.jar Log4j Jar file (required when using log4j)

Table 3 Jar file dependencies

9

Chapter 2

Basic File Logging

Overview

Where it is undesirable to have 3rd party dependencies, a simple file based logger may be
used.

Setup

Usage of this feature is simple and can be controlled through a set of properties on the
BasicLogEnvironmentBean instance obtained via commonPropertyManager, but can also be
set using the system properties below.

Property Name Values Description
BasicLogEnvironmentBean.level Info/error/fatal Severity level for this log
BasicLogEnvironmentBean.showLogNa
me

true/false Record the fully qualified log name

BasicLogEnvironmentBean.showShort
LogName

true/false Record an abbreviated log name

BasicLogEnvironmentBean.showDate true/false Record the date
BasicLogEnvironmentBean.logFile error.log

(default)
File to use for default logging. This
can be an absolute filename or
relative to the working directory

BasicLogEnvironmentBean.logFileAp
pend

true/false Append to the log file above in case
that this file already exists

Table 4 Properties to control default file-based logging (default values are highlighted)

10

Index

11

