
JBoss AOP - Aspect-Oriented Framework for Java

JBoss AOP Reference Documentation

2.0.0

Table of Contents
Preface ..vi
1. Terms ...1

1.1. Overview ...1
2. Chapter 2 ..2

2.1. Overview ...2
2.2. Aspect Class ..2
2.3. Advice Methods ...2
2.4. Interceptors ..2
2.5. Resolving Annotations ...3
2.6. Metadata ..3

2.6.1. Resolving XML Metadata ..3
2.6.2. Attaching Metadata ...4

2.7. Mixin Definition ..4
2.8. Dynamic CFlow ...4

3. Joinpoint and Pointcut Expressions ..5
3.1. Wildcards ..5
3.2. Type Patterns ...5
3.3. Method Patterns ...6
3.4. Constructor Patterns ...7
3.5. Field Patterns ...8
3.6. Pointcuts ..8
3.7. Pointcut Composition ...10
3.8. Pointcut References ..10
3.9. Typedef Expressions ..11
3.10. Joinpoints ..11

3.10.1. Joinpoint Beans ...11
3.10.2. Context Values ..11

4. Advices ..14
4.1. Around Advices ...14
4.2. Before/After/After-Throwing/Finally Advices ..15

4.2.1. Before Advice Signature ..16
4.2.2. After Advice Signature ..16
4.2.3. After-Throwing Advice Signature ...16
4.2.4. Finally Advice Signature ..16

4.3. Annotated Advice Parameters ...17
4.3.1. @Thrown annotated parameter ...18
4.3.2. JoinPoint Arguments ...20

4.4. Overloaded Advices ...23
4.4.1. Annotated-parameter Signature ..24

4.4.1.1. Presence priority ...24
4.4.1.2. Assignability Degree ...26
4.4.1.3. Return Types ..28
4.4.1.4. A Match ...29
4.4.1.5. Lowest Priority ...30

JBoss 2.0.0 ii

4.4.2. Default Signature ..30
4.4.3. Mixing Different Signatures ...31

5. XML Bindings ..32
5.1. Intro ..32
5.2. Resolving XML ...32

5.2.1. Standalone XML Resolving ...32
5.2.2. Application Server XML Resolving ..32

5.3. XML DTD ...32
5.4. aspect ..34

5.4.1. Basic Definition ..34
5.4.2. Scope ...34
5.4.3. Configuration ..35

5.4.3.1. Names ...36
5.4.3.2. Example configuration ..36

5.4.4. Aspect Factories ..36
5.5. interceptor ...36
5.6. bind ...37
5.7. stack ..37
5.8. pointcut ...38
5.9. introduction ...38

5.9.1. Interface introductions ...38
5.9.2. Mixins ..38

5.10. annotation-introduction ...39
5.11. cflow-stack ..39
5.12. typedef ..40
5.13. dynamic-cflow ...40
5.14. prepare ..40
5.15. metadata ..41
5.16. metadata-loader ..41
5.17. precedence ...41
5.18. declare ...42

5.18.1. declare-warning ...42
5.18.2. declare-error ..42

6. Annotation Bindings ...43
6.1. @Aspect ..43
6.2. @InterceptorDef ..44

6.2.1. Interceptor Example ..44
6.2.2. AspectFactory Example ...45

6.3. @PointcutDef ..45
6.4. @Bind ...46
6.5. @Introduction ..48
6.6. @Mixin ...49
6.7. @Prepare ...51

6.7.1. @Prepare POJO ..52
6.8. @TypeDef ...52
6.9. @CFlowDef ..53
6.10. @DynamicCFlowDef ...55
6.11. @AnnotationIntroductionDef ..55
6.12. @Precedence ...57

JBoss AOP - Aspect-Oriented Framework for Java

JBoss 2.0.0 iii

6.13. @DeclareError and @DeclareWarning ..58
7. Dynamic AOP ..60

7.1. Hot Deploment ..60
7.2. Per Instance AOP ...60
7.3. Preparation ..61
7.4. DynamicAOP with HotSwap ..61

8. JDK 1.4.2 Backwards Compatibility ..62
8.1. JBoss Retro ..62
8.2. JDK1.4.2 Annotation Compiler ...63

9. Installing ..70
9.1. Installing Standalone ..70
9.2. Installing with JBoss 4.0.x amd JBoss 4.2.x Application Server for JDK 570
9.3. Installing with JBoss 4.0.x Application Server for JDK 1.4 ...71
9.4. Installing with JBoss Application Server 5 ...71

10. Building and Compiling Aspectized Java ..72
10.1. Instrumentation modes ..72
10.2. Ant Integration ...72
10.3. Command Line ..76

11. Running Aspectized Applications ...77
11.1. Loadtime, Compiletime and HotSwap Modes ...77
11.2. Regular Java Applications ...78

11.2.1. Precompiled instrumentation ..78
11.2.2. Loadtime ...79

11.2.2.1. Loadtime JDK 1.4 ...79
11.2.2.2. Loadtime with JDK 5 ..80
11.2.2.3. Loadtime using JRockit ...81
11.2.2.4. Improving Loadtime Performance ..81

11.2.3. HotSwap ...82
11.3. JBoss Application Server ..83

11.3.1. Packaging AOP Applications ...84
11.3.2. JBoss 4.x and JDK 1.4 ...84
11.3.3. JBoss 4.x and JDK 5 ..86
11.3.4. JBoss 4.x and JRockit ..87
11.3.5. Improving Loadtime Performance in a JBoss AS Environment88

11.4. Scoping aop to the classloader ...88
11.4.1. Deploying as part of a scoped classloader ..88
11.4.2. Attaching to a scoped deployment ..88

12. Reflection and AOP ..90
12.1. Force interception via reflection ..90
12.2. Clean results from reflection info methods ...92

13. JBoss AOP IDE ..94
13.1. The AOP IDE ..94
13.2. Installing ...94
13.3. Tutorial ..95

13.3.1. Create Project ..95
13.3.2. Create Class ..96
13.3.3. Create Interceptor ..97
13.3.4. Applying the Interceptor ..97
13.3.5. Running ..98

JBoss AOP - Aspect-Oriented Framework for Java

JBoss 2.0.0 iv

13.3.6. Navigation ..98
13.3.6.1. Advised Markers ..98
13.3.6.2. The Advised Members View ...99
13.3.6.3. The Aspect Manager View .. 100

JBoss AOP - Aspect-Oriented Framework for Java

JBoss 2.0.0 v

Preface
Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and layer your software ap-
plications in ways that are impossible with traditional object-oriented approaches. Aspects allow you to transpar-
ently glue functionality together so that you can have a more layered design. AOP allows you to intercept any event
in a Java program and trigger functionality based on those events. Mixins allow you to introduce multiple inherit-
ance to Java so that you can provide APIs for your aspects. Combined with JDK 5.0 annotations, it allows you to
extend the Java language with new syntax.

JBoss AOP is a 100% Pure Java aspected oriented framework usable in any programming environment or tightly
integrated with our application server.

This document is meant to be a boring reference guide. It focuses solely on syntax and APIs and worries less about
providing real world examples. Please see our "User Guide: The Case for Aspects" document for a more interesting
discussion on the use of aspects.

If you have questions, use the user forum linked on the JBoss AOP website. We also provide tracking links for
tracking bug reports and feature requests. If you are interested in the development of JBoss AOP, post a message
on the forum. If you are interested in translating this documentation into your language, contact us on the developer
mailing list.

Commercial development support, production support and training for JBoss AOP is available through JBoss Inc.
(see http://www.jboss.org/). JBoss AOP is a project of the JBoss Professional Open Source product suite.

In some of the example listings, what is meant to be displayed on one line does not fit inside the available page
width. These lines have been broken up. A '\' at the end of a line means that a break has been introduced to fit in the
page, with the following lines indented. So:

Let's pretend to have an extremely \
long line that \
does not fit

This one is short

Is really:

Let's pretend to have an extremely long line that does not fit
This one is short

JBoss 2.0.0 vi

1
Terms

1.1. Overview

The section defines some basic terms that will be used throughout this guide.

Joinpoint
A joinpoint is any point in your java program. The call of a method. The execution of a constructor the access
of a field. All these are joinpoints. You could also think of a joinpoint as a particular Java event. Where an
event is a method call, constructor call, field access etc...

Invocation
An Invocation is a JBoss AOP class that encapsulates what a joinpiont is at runtime. It could contain informa-
tion like which method is being called, the arguments of the method, etc...

Advice
An advice is a method that is called when a particular joinpoint is executed, i.e., the behavior that is triggered
when a method is called. It could also be thought of as the code that does the interception. Another analogy is
that an advice is an "event handler".

Pointcut
Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut expression
matches a particular joinpoint.

Introductions
An introduction modifies the type and structure of a Java class. It can be used to force an existing class to im-
plement an interface or to add an annotation to anything.

Aspect
An Aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins, or any
other JBoss AOP construct.

Interceptor
An interceptor is an Aspect with only one advice named "invoke". It is a specific interface that you can imple-
ment if you want your code to be checked by forcing your class to implement an interface. It also will be port-
able and can be reused in other JBoss environments like EJBs and JMX MBeans.

JBoss 2.0.0 1

2
Chapter 2

2.1. Overview

JBoss AOP is a 100% pure Java framework. All your AOP constructs are defined as pure Java classes and bound to
your application code via XML or by annotations. This Chapter walks through implementing aspects.

2.2. Aspect Class

The Aspect Class is a plain Java class that can define zero or more advices, pointcuts, and/or mixins.

public class Aspect
{
public Object trace(Invocation invocation) throws Throwable {

try {
System.out.println("Entering anything");
return invocation.invokeNext(); // proceed to next advice or actual call

} finally {
System.out.println("Leaving anything");

}
}

}

The example above is of an advice trace that traces calls to any type of joinpoint. Notice that Invocation objects
are the runtime encapsulation of joinpoints. The method invocation.invokeNext() is used to drive the advice
chain. It either calls the next advice in the chain, or does the actual method or constructor invocation.

2.3. Advice Methods

For basic interception, any method that follows the form:

Object methodName(Invocation object) throws Throwable

can be an advice. The Invocation.invokeNext() method must be called by the advice code or no other advice will
be called, and the actual method, field, or constructor invocation will not happen.

JBoss AOP provides five types of advice: before, around, after and after-throwing. The advice sginature above is
the default one for an around advice. Advices types, signature rules and overloading will be covered in Chapter 4.

2.4. Interceptors

JBoss 2.0.0 2

Interceptors are a special type of aspect that contains only one advice. This advice has it signature defined by an in-
terface, org.jboss.aop.advice.Interceptor:

public interface Interceptor
{

public String getName();

public Object invoke(Invocation invocation) throws Throwable;
}

The method invoke(Invocation) is the unique advice contained in an interceptor. The method getName() is used
for identification in the JBoss AOP framework. So, this method must return a name that is unique in the whole sys-
tem (per instance?).

2.5. Resolving Annotations

JBoss AOP provides an abstraction for resolving JDK 5.0 annotations (and JDK 1.4 annotations if you use our An-
notation Compiler). In future versions of JBoss AOP, there will be a way to override annotation values on a per
thread basis, or via XML overrides, or even provide VM and cluster wide defaults for annotation values. Also if
you want to write a truly generic advice that takes the base Invocation type, you can still get the annotation value of
the method, constructor, or field you're invoking on by calling this method:

Object resolveAnnotation(Class annotation);

That's just resolving for resolving member annotations. If your aspect needs to resolve class level annotations then
this method should be called:

Object resolveClassAnnotation(Class annotation)

2.6. Metadata

2.6.1. Resolving XML Metadata

Untyped metadata can be defined within XML files and bound to org.jboss.aop.metadata.SimpleMetaData struc-
tures. This XML data can be attached per method, field, class, and constructor. To resolve this type of metadata, the
Invocation object provides a method to abstract out where the metadata comes from.

Object getMetaData(Object group, Object attr)

When this method is called, the invocation will look for metadata in this order:

1. First it looks in the Invocation's metadata (SimpleMetaData getMetaData())
2. Next it looks in org.jboss.aop.metadata.ThreadMetaData.instance(). ThreadMetaData allows you to

override metadata for the whole thread. The metadata is managed by a ThreadLocal. ThreadMetaData is used
by every single invocation object at runtime.

3. Next it looks in either org.jboss.aop.Advisor.getMethodMetaData(), Advisor.getConstructorMetaData(), or
Advisor.getFieldMetaData() depending on the invocation type.

Chapter 2

JBoss 2.0.0 3

4. Next it looks in either Advisor.getDefaultMetaData().

2.6.2. Attaching Metadata

You can attach untyped metadata to the invocation object, or even to the response. This allows advices to pass con-
textual data to one another in the incoming invocation or outgoing response for instance if you had advices running
on a remote client that wanted to pass contextual data to server-side aspects. This method on invocation gets you
access to a org.jboss.aop.metadata.SimpleMetaData instance so that you can attach or read data.

SimpleMetaData getMetaData()

SimpleMetaData has three types of metadata, AS_IS, MARSHALLED, and TRANSIENT. This allows you to spe-
cify whether or not metadata is marshalled across the wire. TRANSIENT says, attached metadata should not be
sent across the wire. MARSHALLED is for classloader sensitive contextual data. AS_IS doesn't care about class-
loaders. Read the Javadocs for more information.

To piggyback and read metadata on the invocation response, two methods are provided. One to attach data one to
read data.

Object getResponseAttachment(Object key);
void addResponseAttachment(Object key, Object value);

2.7. Mixin Definition

Mixins are a type of introduction in which you can do something like C++ multiple inheritance and force an exist-
ing Java class to implement a particular interface and the implementation of that particular interface is encapsulated
into a particular class called a mixin.

Mixin classes have no restrictions other than they must implement the interfaces that you are introducing.

2.8. Dynamic CFlow

Dynamic CFlows allow you to define code that will be executed that must be resolved true to trigger positive on a
cflow test on an advice binding. (See <cflow-stack> for more information). The test happens dynamically at
runtime and when combined with a pointcut expression allows you to do runtime checks on whether a advice bind-
ing should run or not. To implement a dynamic CFlow you just have to implement the simple
org.jboss.aop.pointcut.DynamicCFlow interface. You can then use it within cflow expressions. (See XML or An-
notations)

public interface DynamicCFlow
{

boolean shouldExecute(Invocation invocation);
}

Chapter 2

JBoss 2.0.0 4

3
Joinpoint and Pointcut Expressions

The pointcut language is a tool that allows joinpoint matching. A pointcut expression determines in which joinpoint
executions of the base system an advice should be invoked.

In this Chapter, we will explore the syntax of pointcut expressions.

We will also see the API used to represent a matched joinpoint during advice execution, and how this relates to
pointcut expression constructs.

3.1. Wildcards

There are two types of wildcards you can use within pointcut expressions

• * Is a regular wildcard that matches zero or more characters. It can be used within any type expression, field, or
method name, but not in an annotation expression

• .. Is used to specify any number of parameters in an constructor or method expression. .. following a pack-
age-name is used to specify all classes from within a given package ut not within sub-packages. e.g org.acme..

matches org.acme.Foo and org.acme.Bar, but it does not match org.acme.sub.SubFoo.

3.2. Type Patterns

Type patterns are defined by an annotation or by fully qualified class name. Annotation expressions are not allowed
to have wildcards within them, but class expressions are.

• org.acme.SomeClass matches that class.

• org.acme.* will match org.acme.SomeClass as well as org.acme.SomeClass.SomeInnerClass

• @javax.ejb.Entity will match any class tagged as such.

• String or Object are illegal. You must specify the fully qualified name of every java class. Even those under
the java.lang package.

To reference all subtypes of a certain class (or implementors of an interface), the $instanceof{} expression can be
used. Wildcards and annotations may also be used within $instanceof{} expressions.

$instanceof{org.acme.SomeInterface}
$instanceof{@org.acme.SomeAnnotation}

JBoss 2.0.0 5

$instanceof{org.acme.interfaces.*}

are all allowed.

For very complex type expressions, the Typedef construct can be used. To reference a Typedef within a class ex-
pression $typedef{id} is used.

3.3. Method Patterns

public void org.acme.SomeClass->methodName(java.lang.String)

The attributes(public, static, private) of the method are optional. If the attribute is left out then any attribute
is assumed. Attributes accept the ! modifier for negation.

public !static void org.acme.SomeClass->*(..)

$instanceof{} can be used in place of the class name.

void $instanceof{org.acme.SomeInterface}->methodName(java.lang.String)

To pick out all toString() methods of all classes within the org.acme package, we can use org.acme.. in place of
the class name.

java.lang.String org.acme..->toString()

To only match methods from a given interface you can use the $implements{} or $implementing{} keywords in
place of the method name. $implements{} only matches methods from the exact interface(s) given, while
$implementing{} matches methods from the interface(s) given AND their super interfaces.

void $instanceof{org.acme.IfA}->$implements(org.acme.IfA)

void $instanceof{org.acme.IfB}->$implementing(org.acme.IfA, org.acme.IfB)

Annotations can be used in place of the class name. The below example matches any methodName() of a tagged
@javax.ejb.Entity class.

void @javax.ejb.Entity->methodName(java.lang.String)

Annotations can be also be used in place of the method name. The below examples matches any method tagged as
@javax.ejb.Tx.

* *->@javax.ejb.Tx(..)

In addition you can use typedefs, $instanceof{}, annotations and wildcards for method parameters and return
types. The following matches all methods called loadEntity that return a class annotated with @javax.ejb.Entity,
that takes a class (or a class whose superclass/interface is) annotated as @org.acme.Ann and any class that matches
java.*.String (such as java.lang.String).

Joinpoint and Pointcut Expressions

JBoss 2.0.0 6

@javax.ejb.Entity *->loadEntity($instanceof{@org.acme.Ann}, java.*.String)

You can also include an optional throws clause in the pointcut expression:

public void org.acme.SomeClass->methodName(java.lang.String) \
throws org.acme.SomeException, java.lang.Exception

If any exceptions are present in the pointcut expression they must be present in the throws clause of the methods to
be matched.

3.4. Constructor Patterns

public org.acme.SomeClass->new(java.lang.String)

Constructor expressions are made up of the fully qualified classname and the new keyword The attributes(public,
static, private) of the method are optional. If the attribute is left out then any attribute is assumed. Attributes
accept the ! modifier for negation.

!public org.acme.SomeClass->new(..)

$instanceof{} can be used in the class name.

$instanceof{org.acme.SomeInterface}->new(..)

To pick out all no-args constructors of all classes within the org.acme package, we can use org.acme.. in place of
the class name.

org.acme..->new()

Annotations can be used in place of the class name. The below example matches any constructor of a tagged
@javax.ejb.Entity class.

@javax.ejb.Entity->new(..)

Annotations can be also be used in place of the new keyword. The below examples matches any constructor tagged
as @javax.ejb.MethodPermission.

*->@javax.ejb.MethodPermission(..)

In addition, just as for methods you can use typedefs, $instanceof{}, annotations and wildcards for constructor
parameters. The following matches all constructors that take a class annotated as @org.acme.Ann and any class
that matches java.*.String (such as java.lang.String).

->new(@org.acme.Ann, java..String)

You can also include an optional throws clause in the pointcut expression:

public void org.acme.SomeClass->new(java.lang.String) \
throws org.acme.SomeException, java.lang.Exception

If any exceptions are present in the pointcut expression they must be present in the throws clause of the construct-

Joinpoint and Pointcut Expressions

JBoss 2.0.0 7

ors to be matched.

3.5. Field Patterns

public java.lang.String org.acme.SomeClass->fieldname

Constructor expressions are made up of the type, the fully qualified classname where the field resides and the
field's name. The attributes(public, static, private) of the field are optional. If the attribute is left out then any
attribute is assumed. Attributes accept the ! modifier for negation.

!public java.lang.String org.acme.SomeClass->*

$instanceof{} can be used in the class name. The below expression matches any field of any type or subtype of
org.acme.SomeInterface

* $instanceof{org.acme.SomeInterface}->*

Annotations can be used in place of the class name. The below example matches any field where the type class is
tagged with @javax.ejb.Entity.

* @javax.ejb.Entity->*

Annotations can be also be used in place of the field name. The below examples matches any field tagged as
@org.jboss.Injected.

* *->@org.jboss.Injected

In addition, you can use typedefs, $instanceof{}, annotations and wildcards for field types. The following
matches all fields where the type class has been tagged with @javax.ejb.Entity.

@javax.ejb.Entity *->*

To pick out all fields annotated with @org.foo.Transient within the org.acme package, we can use org.acme.. in
place of the class name, and @org.foo.Transient in please of the field name

* org.acme..->@org.foo.Transient

3.6. Pointcuts

Pointcuts use class, field, constructor, and method expressions to specify the actual joinpoint that should be inter-
cepted/watched.

execution(method or constructor)

execution(public void Foo->method()
execution(public Foo->new())

Joinpoint and Pointcut Expressions

JBoss 2.0.0 8

execution is used to specify that you want an interception to happen whenever a method or constructor is
called. The the first example of matches anytime a method is called, the second matches a constructor. System
classes cannot be used within execution expressions because it is impossible to instrument them.

construction(constructor)

construction(public Foo->new())

construction is used to specify that you want aspects to run within the constructor. The execution pointcut
requires that any code that calls new() must be instrumented by the compiler. With construction the aspects
are weaved right within the constructor after all the code in the constructor. The aspects are appended to the
code of the constructor.

get (field expression)

get(public int Foo->fieldname)

get is used to specify that you want an interception to happen when a specific field is accessed for a read.

set(field expression)

get(public int Foo->fieldname)

set is used to specify that you want an interception to happen when a specific field is accessed for a write.

field(field expression)

field(public int Foo->fieldname)

field is used to specify that you want an interception to happen when a specific field is accessed for a read or a
write.

all(type expression)

all(org.acme.SomeClass)
all(@org.jboss.security.Permission)

all is used to specify any constructor, method or field of a particular class will be intercepted. If an annotation
is used, it matches the member's annotation, not the class's annotation.

call(method or constructor)

call(public void Foo->method()
call(public Foo->new())

call is used to specify any constructor or method that you want intercepted. It is different than execution in
that the interception happens at the caller side of things and the caller information is available within the Invoc-
ation object. call can be used to intercept System classes because the bytecode weaving happens within the
callers bytecode.

within(type expression)

Joinpoint and Pointcut Expressions

JBoss 2.0.0 9

within(org.acme.SomeClass)
within(@org.jboss.security.Permission)

within matches any joinpoint (method or constructor call) within any code within a particular type.

withincode(method or constructor)

withincode(public void Foo->method()
withincode(public Foo->new())

withincode matches any joinpoint (method or constructor call) within a particular method or constructor.

has(method or constructor)

has(void *->@org.jboss.security.Permission(..))
has(*->new(java.lang.String))

has is an additional requirement for matching. If a joinpoint is matched, its class must also have a constructor
or method that matches the has expression.

hasfield(field expression)

hasfield(* *->@org.jboss.security.Permission)
hasfield(public java.lang.String *->*)

has is an additional requirement for matching. If a joinpoint is matched, its class must also have a field that
matches the hasfield expression.

3.7. Pointcut Composition

Pointcuts can be composed into boolean expressions.

• ! logical not.

• AND logical and.

• OR logical or.

• Parathesis can be used for grouping expressions.

Here's some examples.

call(void Foo->someMethod()) AND withincode(void Bar->caller())
execution(* *->@SomeAnnotation(..)) OR field(* *->@SomeAnnotation)

3.8. Pointcut References

Pointcuts can be named in XML or annotation bindings (See in later chapters). They can be referenced directly
within a pointcut expression.

Joinpoint and Pointcut Expressions

JBoss 2.0.0 10

some.named.pointcut OR call(void Foo->someMethod())

3.9. Typedef Expressions

Sometimes, when writing pointcuts, you want to specify a really complex type they may or may not have boolean
logic associated with it. You can group these complex type definitions into a JBoss AOP Typedef either in XML or
as an annotation (See later in this document). Typedef expressions can also be used within introduction expres-
sions. Typedef expressions can be made up of has, hasfield, and class expressions. class takes a fully quali-
fied class name, or an $instanceof{} expression.

class(org.pkg.*) OR has(* *->@Tx(..)) AND !class($instanceof{org.foo.Bar})

3.10. Joinpoints

After getting acquainted with all pointcut constructs, let's see how this reflects on the API available to advices dur-
ing their execution.

3.10.1. Joinpoint Beans

JBoss AOP provides JoinPoint Beans, so that an advice can access all information regarding a joinpoint during its
execution. This information consists of context values, explained in the next subsection, and of reflection objects
(java.lang.reflection). The reflection objects describe the joinpoint being intercepted like a java.lang.Method

for a method execution joinpoint).

There are two groups of beans. The first one is the Invocation beans group. All classes of this group are subclasses
of org.jboss.aop.joinpoint.Invocation. The Invocation class was presented in Chapter 2 as a runtime encap-
sulation of a joinpoint. An Invocation object also contains an interceptor chain, where all advices and interceptors
that intercept the joinpoint are stored. Invocation beans provide the invokeNext() method, responsible for proceed-
ing execution to the next advice in the interceptor chain (if there is an advice that has not started execution yet) or
to the joinpoint itself (if all advices contained in the interceptor chain have already started running). We will see
more on this in the next chapter.

The other group of beans contains only information regarding the joinpoint itself, and are called the JoinPointBean

group. All beans of this group are defined in interfaces, with org.jboss.joinpoint.JoinPointBean being their
common superinterface.

The Invocation objects are available only to around advices. All other types of advices can use the JoinPointBean

types to access joinpoint specific data.

In both groups there is a specific type for each joinpoint type. The type of bean corresponding to each joinpoint
type can be seen in Table 3.1. All beans are in the package org.jboss.aop.joinpoint.

3.10.2. Context Values

According to the type of the joinpoint, there are specific context values available.

Joinpoint and Pointcut Expressions

JBoss 2.0.0 11

The context values are:

• return value: joinpoints like a constructor execution or a non-void method call, have a return value.

• arguments: the arguments of a constructor or method execution joinpoint are the arguments received by the
constructor or method. Similarly, the arguments of a call are the arguments received by the method or con-
structor being called.

• target: the target object of a joinpoint varies according to the joinpoint type. For method executions and calls, it
refers to the object whose method is being executed (available only on non-static methods). For field reads and
writes, it refers to the object that contains that field.

• caller: the caller object is available only on call joinpoints, and it refers to the object whose method or con-
structor is performing the call (notice the caller object is not available if the call is inside a static method).

Table 3.1 shows what context values may be available depending on the joinpoint type.

Table 3.1. Joinpoint Types Table

Joinpoint Pointcut Con-
struct

Bean ContextValues

Invocation JoinpointBean Target Caller Argu-
ments

Re-
turn

Value

field read read, field,
all

FieldReadIn-

vocation

FieldAccess Yes No No Yes

field write write, field,
all

FieldWriteIn-

vocation

FieldAccess Yes No Yes No

method execu-
tion

execution, all MethodInvoca-

tion

MethodExecu-

tion

Yes No Yes Yes

constructor exe-
cution

execution ConstructorIn-

vocation

ConstructorEx-

ecution

No No Yes Yes

construction construction Construction-

Invocation

ConstructorEx-

ecution

Yes No Yes No

method call call, within,
withincode

CallerInvoca-

tion, Method-
CalledByCon-

structorInvoc-

ation, Method-
CalledByMeth-

odInvocation

MethodCall,
MethodCallBy-

Constructor,
MethodCallBy-

Method

Yes Yes Yes Yes

constructor call call, within,
withincode

CallerInvoca-

tion, Con-
structor-

CalledByCon-

Constructor-

Call, Con-
structor-

CallByCon-

Yes Yes Yes Yes

Joinpoint and Pointcut Expressions

JBoss 2.0.0 12

Joinpoint Pointcut Con-
struct

Bean ContextValues

Invocation JoinpointBean Target Caller Argu-
ments

Re-
turn

Value

structorInvoc-

ation, Con-
structor-

CalledByMeth-

odInvocation

structor, Con-
structor-

CallByMethod

Joinpoint and Pointcut Expressions

JBoss 2.0.0 13

4
Advices

Advices are aspect methods that are invoked during specific joinpoint executions.

JBoss AOP provides four types of advice.

The default one is the around advice, and it can be used on all execution modes. This advice wraps the joinpoint, in
a way that it replaces the joinpoint execution in the base system, and is responsible for proceeding execution to the
joinpoint.

Besides around advices, you can write advices that, instead of wrapping the joinpoint, are executed before or after
it. In this category, JBoss AOP provides before, after, after-throwing and finally advices. These advices are avail-
able only when using the generated advisor mode (this is the default mode in JBoss AOP, to learn how to select an-
other weaving mode, refer to Chapter X).

The next sections will explain in detail the binding and signature rules for JBoss AOP advices.

4.1. Around Advices

An around advice can follow this template:

public Object [advice name]([Invocation] invocation) throws Throwable
{

try{
// do something before joinpoint execution
...
// execute the joinpoint and get its return value
Object returnValue = invocation.invokeNext();
// do something after joinpoint has executed successfully ...
// return a value
return returnValue;

}
catch(Exception e)
{

//handle any exceptions arising from calling the joinpoint
throw e;

}
finally
{

//Take some action once the joinpoint has completed successfully or not
}

}

In the template above, Invocation refers to one of the Invocation beans, and can be the class
org.jboss.aop.joinpoint.Invocation or one of its subtypes.

Since an around advice wraps a joinpoint, it must proceed execution to the joinpoint itself during its execution.

JBoss 2.0.0 14

This can be done by calling the method invokeNext() on invocation. This method will proceed execution to the
next around advice of that joinpoint. At the end of this chain this invokeNext() will proceed to the joinpoint itself.
The value returned by the around advice will replace the joinpoint return value in the base system.

For example, in the case where there are two around advices bound to a joinpoint, the first around advice will trig-
ger the second around advice by calling invokeNext(). The second advice will trigger the joinpoint execution by
calling the same method. As a result of the invokeNext() execution, the second advice will receive the joinpoint
return value. The value returned by this second advice will be received as a result by the first around advice. Fi-
nally, the value returned by this advice will replace the joinpoint return value in the base system execution. Nor-
mally though, around advices will simply return whatever value the joinpoint returned! This is shown in the pre-
ceding template example.

If an around advice wants to completely replace the joinpoint execution, it can skip the call to invokeNext(). This
will also skip execution of any subsequent around advices in the chain. As a third alternative, the around advice can
call the method invokeTarget() instead of invokeNext(). This method will invoke the target joinpoint directly,
skipping any subsequent advices.

The presence of the Invocation parameter is optional. If an around advice does not have this parameter, it can re-
place the call to invokeNext() with a call to org.jboss.aop.joinpoint.CurrentInvocation.proceed().

The signature described before is the default around advice signature rule. In addition to it, the around advice sig-
nature can also be of this form (only in generated advisor mode):

public [return type] [advice name]([annotated parameter],[annotated parameter],...[annotated parameter]) throws Throwable

This signature is joinpoint dependent. The return type of the advice must be a type assignable to the the return type
of the joinpoint to be intercepted (i.e. be the same type; a subclass, if the return type is class; or a subinterface or an
implementing class, if the return type is an interface). In case the joinpoint being intercepted does not have a return
type, this advice return type must be void.

An around advice can have zero or more annotated parameters. The annotated parameters will be covered in detail
in Section 4.3.

Finally, JBoss AOP also features a special type of around advice: Interceptor. An interceptor class implements
org.jboss.aop.Interceptor, and is described in Section 2.4.

4.2. Before/After/After-Throwing/Finally Advices

These advices are more lightweight in the JBoss AOP framework, since they do not wrap a joinpoint, avoiding the
creation of the Invocation objects per joinpoint execution.

Instead of Invocation objects, JBoss AOP provides JoinPointBean beans for these advices. As described in Sec-
tion 3.10.1, these beans contain all information regarding a joinpoint, like an Invocation would do. However,
since JoinPointBean objects are not used on around advice types, they do not provide proceeding methods, like
invokeNext(). They also do not allow you to attach metadata for a particular invocation.

The rules for before, after, after-throwing and finally advices are quite similar. All of them can have zero or more
annotated advice parameters in their signature, which will be described in the next subsection.

Advices

JBoss 2.0.0 15

4.2.1. Before Advice Signature

A before advice is executed before the joinpoint. The signature for a before advice must be of this form:

public void [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

4.2.2. After Advice Signature

Since an after advice is executed after a joinpoint, it can return a value to replace the joinpoint return value in the
base system. So, they can follow one of these signatures:

public void [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

public [return type] [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

In the first signature, the after advice does not overwrite the joinpoint return value. On the other hand, when using
the second signature, the after advice return value will replace the joinpoint return value. As with around advices,
this return type must be assignable to the joinpoint return type.

4.2.3. After-Throwing Advice Signature

The fourth type of advice provided by JBoss AOP is the after-throwing type. This advice is invoked only after the
execution of a joinpoint that has thrown a java.lang.Throwable or one of its subtypes.

The signature of such an advice is the same as the one for before advices:

public void [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

Different from the other advice types, an after-throwing advice has a mandatory annotated parameter. This para-
meter is the exception thrown by the joinpoint execution, as we will see in the next subsection.

4.2.4. Finally Advice Signature

Lastly, JBoss AOP provides the finally advice type. It is invoked from inside a finally block, after the joinpoint ex-
ecution.

This advice is the only one that is called after a joinpoint execution in a deterministic way. Calls to after and after-
throwing advices take place depending on the joinpoint execution outcome. After advices are not called when the
joinpoint execution terminates abruptly with an exception. After-throwing ones, on the other hand, are not called
when the joinpoint execution returns normally, since no exception is thrown this time. So, if an advice needs to be
run no matter what is the outcome of the joinpoint, it should be a finally advice.

Pretty much as after advices, finally advices can follow one of the signatures below:

public void [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

public [return type] [advice name]([annotated parameter], [annotated parameter],...[annotated parameter])

The last signature shows that finally advices can also overwrite the joinpoint execution return value by returning a

Advices

JBoss 2.0.0 16

value themselves. But notice that this return value will not be received by the base system if an exception has been
thrown. However, it is easy to know whether this condition is met, by making use of annotated parameters.

4.3. Annotated Advice Parameters

This section lists the annotated parameters that can be used on JBoss AOP advices (available only in generated ad-
visor execution mode). Table 4.1 lists all annotations and their semantics.

Except for the @JoinPoint annotation, used to refer to joinpoint beans, all other annotations are used on parameters
that contain joinpoint context values.

Notice that the types of annotated parameters are dependent on the joinpoint being intercepted by the advice.

JBoss AOP will accept any type that is assignable from the type referred by that parameter, as shown in the Type
Assignable From column of the table below. For example, for a joinpoint whose target is of type POJO, the annot-
ated parameter that receives the target must be of POJO type, one of POJO's superclasses, or one of the interfaces im-
plemented by POJO.

Regarding the type of joinpoint bean parameters, the rules are the same for the default signature of around advices
(without annotations). For example, an around advice that intercepts a method execution, can receive either a Meth-

odInvocation, or an Invocation (the complete list of joinpoint beans and their relationship with joinpoint types
was shown in Table 3.1). As already explained, around advices use Invocation instances, while the other advices
use JoinPointBean objects.

Notice also that only one annotated parameter can be mandatory: @Thrown. This will be further explained in Sec-
tion 4.3.1.

Except for @Arg, all annotations are single-enforced, i.e., there must be at most only one advice parameter with that
annotation per advice.

Table 4.1. Annotated Parameters Table

Annotation Semantics Type assignable
from

Mandatory Advice type

Be-
fore

Around After After-
Throw-

ing

Fi-
nally

@JoinPoint JoinPoint bean Joinpoint invoc-
ation type

No No Yes No No No

JoinpointBean
interface type

No Yes No Yes Yes Yes

@Target Joinpoint target Joinpoint target
type

No Yes Yes Yes Yes Yes

@Caller Joinpoint caller JoinPoint caller
type (only for

call joinpoints)

No Yes Yes Yes Yes Yes

Advices

JBoss 2.0.0 17

Annotation Semantics Type assignable
from

Mandatory Advice type

Be-
fore

Around After After-
Throw-

ing

Fi-
nally

@Thrown Joinpoint
thrown excep-

tion

Throwable Yes:

- for after-
throwing ad-
vices

- for finally
advices only
if @Return is
present

No: other-
wise

No No No Yes Yes

@Return Joinpoint re-
turn value

JoinPoint return
type

No No No Yes No Yes

@Arg One of the
joinpoint argu-

ments

JoinPoint argu-
ment type

No Yes Yes Yes Yes Yes

@Args All joinpoint
arguments

Object[] No Yes Yes Yes Yes Yes

Due to the fact that most of these parameters represent context values, their availability depends on the joinpoint
type. If an advice receives as a parameter a context value that is not available during a joinpoint execution, the
parameter value will be null. The exception to this rule is @Return. If an advice has this parameter, it will not inter-
cept joinpoints that don’t have a return value.

The only exception to this rule is @Args on field read joinpoints. Such an advice will be called with an empty argu-
ments array, in that case.

4.3.1. @Thrown annotated parameter

As shown in Table 4.1, the presence of a @Thrown annotated parameter can be mandatory depending on the advice
type and its parameters.

This annotation is available only for after-throwing and finally advices. For after-throwing advices this parameter is
always mandatory:

public class Aspect
{

public void throwing1(@Thrown Throwable thrownException)
{

...
}

Advices

JBoss 2.0.0 18

public void throwing2()
{

...
}

}

<aop>
<aspect class="Aspect"/>
<bind pointcut="...">

<throwing aspect="Aspect" name="throwing1"/>
<throwing aspect="Aspect" name="throwing2"/>

</bind>
</aop>

The advice throwing1 follows this rule; advice throwing2, on the other hand, is invalid, because it does not con-
tain the mandatory @Thrown annotated parameter.

For finally advices, the @Thrown annotation is compulsory only if a @Return annotated parameter is present. This
way, a finally advice can identify whether the return value is valid or not. If the @Thrown parameter is null, it
means that the joinpoint returned normally and that the value contained in the @Return annotated-parameter is val-
id. Otherwise, the value contained in @Return annotated parameter must be ignored (it will be null if the return
type is not primitive, 0 if it is a primitive number or false if it is boolean). If the finally advice does not receive the
joinpoint return value, the use of the @Thrown annotated parameter is optional and, as expected, its value will be
null if the joinpoint being intercepted did not throw an exception. Take a look at the next example:

public class Aspect
{

public void finally1(@Thrown Throwable thrownException)
{

...
}

public void finally2()
{

...
}

public void finally3(@Return int returnedValue, @Thrown Throwable thrownException)
{

if (thrownException == null)

{

//We returned normally, the @Return parameter is valid

int i = returnedValue;

}

else

{

//An exception happened while invoking the target joinpoint

//The return value is invalid

}

}

Advices

JBoss 2.0.0 19

public void finally4(@Return int returnedValue)
{

...
}

}

<aop>
<aspect class="Aspect"/>
<bind pointcut="execution(public int *->*(..))">

<finally aspect="Aspect" name="finally1"/>
<finally aspect="Aspect" name="finally2"/>

<finally aspect="Aspect" name="finally3"/>

<finally aspect="Aspect" name="finally4"/>

</bind>
</aop>

This example binds four finally advices to the execution of all public methods that return an int value.

The presence of @Thrown is not mandatory in advices finally1() and finally2(), because they do not have a
@Return annotated parameter. Hence, both advices are valid. Besides, finally1() will receive a non-null excep-
tion only when the joinpoint being intercepted throws an exception.

For advice method finally3() the presence of a @Thrown annotated parameter is mandatory because this advice
also has a @Return annotated parameter. If an exception happens when invoking the target joinpoint, this advice
will receive a non-null @Thrown parameter, meaning that the @Return annotated parameter is invalid. If the join-
point completes normally, the @Thrown annotated parameter will be null and the @Return annotated parameter will
contain the return value of the target joinpoint.

The finally4() advice is invalid, it contains a @Return parameter, but has no @Thrown annotated parameter. Fi-
nally advices require a @Thrown parameter if a @Return annotated parameter is present.

4.3.2. JoinPoint Arguments

As we saw, an advice can receive the joinpoint arguments as annotated parameters. This can be achieved with the
use of two different annotations: @Arg and @Args.

There is a great difference between these two approaches, though. With @Arg, each parameter is equivalent to a
single joinpoint parameter. With @Args, one single parameter, of type Object[], receives an array containing all
joinpoint arguments. This last possibility is more generic than the first one, since it can be used independently of
the joinpoint argument types. Plus, it allows changes to the argument values. Any changes performed on the values
of this array will be perpetuated to the joinpoint execution. However, the use of @Args parameters on a join point
interception means the arguments array needs creation. The same happens with the use of getArguments() and
setArguments() methods on Invocation classes. So the use of @Arg annotated parameters is more lightweight, and
should be used whenever there is no need to changing the joinpoint arguments.

When using @Arg annotated parameters, the types of these parameters depend on the joinpoint being intercepted.
Not all the target joinpoint arguments need to be included as parameters to the advice method. An advice can re-
ceive only the argument values that are relevant to its execution.

Advices

JBoss 2.0.0 20

Given all the possibilities in the usage of @Arg, JBoss AOP will match the advice parameters with the joinpoint
ones, to infer to which joinpoint argument each advice parameter refers to. This matching process consists of the
following steps:

• Each advice parameter will be matched to the first unmatched joinpoint argument that has the same type. This
is done in the order that the advice parameters appear in the advice method.

• If any advice parameter is left unmatched, we proceed to an additional step. Each advice parameter will be
matched to the first unmatched joinpoint argument that is assignable to it. This is done in the order that the ad-
vice parameters appear in the advice method declaration.

To illustrate this mechanism, consider the following scenario:

public class POJO
{

void method(Collection arg0, List arg1, int arg2, String arg3){}
}

<aop>
<aspect class="MyAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<before aspect="MyAspect" name="advice"/>
</bind>

</aop>

The example above shows a xml-declared binding. We will use examples with those to illustrate signature concepts
from now on. Detailed syntax of xml bindings is shown in Chapter 5.

Class POJO is a plain java old object that contains only one method. When calling this method, we want to trigger
MyAspet.advice() before this method is called. POJO.method() receives four distinct arguments, all of them can
be available to an advice by using @Arg annotated parameters. If MyAspect.advice() has the following signature:

public class MyAspect
{

public void advice(@Arg Collection param0, @Arg List param1, @Arg int param2, @Arg String param3)
{

...
}

}

MyAspect.advice() parameters will be trivially matched to POJO.method() arguments as follows:

param0 <- arg0
param1 <- arg1
param2 <- arg2
param3 <- arg3

The matching outcome will be the same if MyAspect.advice() signature changes slightly in the following manner,
since Collection is assignable from List for param2:

public class MyAspect
{

public void advice (@Arg Collection param0, @Arg Collection param1, @Arg int param2, @Arg String param3)

Advices

JBoss 2.0.0 21

{
...

}
}

If MyAspect.advice() receives only one parameter, of type java.lang.Object:

public class MyAspect
{

public void advice(@Arg Object param0)
{

...
}

}

The parameter matching outcome will be:

param0 <- arg0

Since there is no joinpoint argument of type Object, we proceed to the additional matching step in this case. Be-
cause arg0 is the first unmatched argument that is assignable to Object, we assign this argument to param0.

Notice that JBoss AOP will match all parameters correctly if we invert the order of parameters:

public class MyAspect
{

public void advice(@Arg int param2, @Arg Collection param0, @Arg String param3, @Arg List param1)
{

...
}

}

If one writes an advice whose unique parameter is a Collection, and we want to refer to the second joinpoint argu-
ment:

public class MyAspect
{

public void advice (@Arg Collection param1)
{

...
}

}

It will not work as desired. JBoss AOP will assign arg0 to param1:

param1 <- arg0

In cases like this, it is possible to enforce the correct matching of joinpoint arguments and advice parameters. The
annotation @Arg has an attribute, index, whose purpose is to define the index of the argument to which that para-
meter refers.

So, in this case, the MyAspect.advice() parameter list below:

Advices

JBoss 2.0.0 22

public class MyAspect
{

public void advice (@Arg(index=1) Collection param1)
{

...
}

}

Will have the desired matching, which is:

param1 <- arg1

In the example just shown in this section, MyAspect.advice() was a before advice, but the same rules are used for
all advices using @Arg annotated parameters.

4.4. Overloaded Advices

Method names can be overloaded for interception in different joinpoint scenarios. For instance, let's say you
wanted to have a different trace advice for each invocation type. You can specify the same method name trace and
just overload it with the concrete invocation type.

public class AroundAspect
{

public Object trace(MethodInvocation invocation) throws Throwabl
{

try
{

System.out.println("Entering method: " + invocation.getMethod()");
return invocation.invokeNext(); // proceed to next advice or actual call

}
finally
{

System.out.println("Leaving method: " + invocation.getMethod()");
}

}

public Object trace(ConstructorInvocation invocation) throws Throwable
{

try
{

System.out.println("Entering constructor: " + invocation.getConstructor()");
return invocation.invokeNext(); // proceed to next advice or actual call

}
finally
{

System.out.println("Leaving constructor: " + invocation.getConstructor()");
}

}
}

As you can see, the selection of the advice method is very dynamic. JBoss AOP will select the most appropriate ad-
vice method for each joinpoint interception. For the following setup:

class POJO
{

public POJO(){}

Advices

JBoss 2.0.0 23

public someMethod(){}
}

<aop>
<aspect class="AroundAspect"/>
<bind pointcut="all(POJO)">

<advice aspect="AroundAspect" name="trace"/>
</bind>

</aop>

When calling POJO’s constructor:

pojo.someMethod();

JBoss AOP will call the trace() method taking a ConstructorInvocation, and when calling:

pojo.someMethod();

JBoss AOP will call the trace() method taking a MethodInvocation.

This examples shows that JBoss AOP will select the most appropriate advice method for each joinpoint intercep-
tion. The capability of selecting overloaded advices is available for all types of advices. And its impact in the sys-
tem performance is minimal since this selection is done once.

In this section, we will describe every rule JBoss AOP uses to select an advice method when this one is overloaded.

4.4.1. Annotated-parameter Signature

Let's start with the selection of advices when all of them use the annotated-parameter signature. As we will see
later, very similar rules are used for selecting advices with the default signature.

The process of selection of advices that follow the annotated-parameter signature depends on the priority of each
kind of parameter:

@JoinPoint > @Target > @Caller > @Throwable = @Return > @Arg > @Args

This priority is used in two different criteria:

• presence of the annotated parameter

• assignability degree of the annotation parameter

4.4.1.1. Presence priority

This rule is quite simple, it means that an advice that receives only a joinpoint bean (@JoinPoint) as its parameter
will have a higher priority than another advice that receives all other annotated parameters available (notice we are
following the annotation priority order just described).

In other words, the first OneAspect.after() advice method will be chosen when calling POJO.someMethod() in
this example:

Advices

JBoss 2.0.0 24

public class POJO
{

String someMethod(String s){}
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->someMethod(..))">

<after aspect="OneAspect" name="after"/>
</bind>

</aop>

public class OneAspect
{

public void after(@JoinPoint MethodJoinPoint mjp){} //1
public String after(@Target POJO pojo, @Return String ret, @Arg String arg0){} //2

}

Again in the following example, the first OneAspect.after() advice method will be chosen when calling
POJO.someMethod(). The first after() advice method’s highest priority parameter is @Target, the second advice
parameter’s highest priority parameter is @Return, and @Target has a higher priority than @Return:

public class POJO
{

String someMethod(String s){}
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->someMethod(..))">

<after aspect="OneAspect" name="after"/>
</bind>

</aop>

public class OneAspect
{

public void after(@Target POJO pojo){} //1
public String after(@Return String ret, @Arg String arg0){} //2

}

In cases where the highest priority annotated parameter of two advice methods is the same, we move on to the next
highest priority annotated parameter of both advices. In the following scenario, both OneAspect.after() methods
have the @JoinPoint parameter as the highest priority parameter. The first one has a @Target as its second-highest
priority parameter while the second one has @Return as its second-highest priority parameter. Since @Target has a
higher priority than @Return, the first OneAspect.after() is chosen for POJO.someMethod().

public class POJO
{

String someMethod(String s){}
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->someMethod(..))">

<after aspect="OneAspect" name="after"/>
</bind>

</aop>

public class OneAspect

Advices

JBoss 2.0.0 25

{
public void after(@JoinPoint MethodJoinPoint mjp, @Target POJO pojo){} //1
public String after(@JoinPoint MethodJoinPoint mjp, @Return String ret){} //2

}

In the next example, the first OneAspect.before() advice is chosen over the second one when calling
POJO.someMethod(). The reason is that, all else being equal, the first one matches more parameters:.

public class POJO
{

String someMethod(String s, int i){}
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->someMethod(..))">

<before aspect="OneAspect" name="before"/>
</bind>

</aop>

public class OneAspect
{

public void before(@Arg String s, @Arg int i){} //1
public String before(@Arg String s){} //2

}

If the priority of annotated parameters using the presence criterion is the same on more than one advice, the next
criterion, the assignability degree, is used.

4.4.1.2. Assignability Degree

The assignability degree rule will select the advice with the lowest assignability degree on the highest priority para-
meter. The assignability degree is simply the distance in the class hierarchy between the parameter type, and the
type it must be assignable from.

As an example, let us look at the following class hierarchy:

public interface POJOInterface{}

public class POJOSuperClass extends java.lang.Object{}

public class POJO extends POJOSuperClass implements POJOInterface
{

void method(){}
}

And this advice binding:

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<before aspect="OneAspect" name="before"/>
</bind>

</aop>

public class OneAspect
{

public void before(@Target POJO target){} //1

Advices

JBoss 2.0.0 26

public void before(@Target POJOInterface target){} //2
public void before(@Target POJOSuperClass target){} //3
public void before(@Target Object target){} //4

}

With POJO as the target of a joinpoint, the parameter list fo the first OneAspect.before() advice method has an as-
signability degree 0 on @Target.

The parameter lists for the second and third OneAspect.before() advice methods both have an assignability de-
gree of 1 for @Target, since it takes one step through the hierarchy to reach the desired type, POJO.

Finally, the parameter list for the fourth OneAspect.before() advice method has an assignability degree of 2 on
@Target.

Hence, JBoss AOP will select the first advice in the example above, since it has the lowest asignability degree on
@Target.

The assignability degree rule is, similarly to the presence rule, applied on the highest priority annotated parameter,
which is @JoinPoint. In case there is a match using this criteria (i.e., either both advices lack a @JoinPoint annot-
ated parameter, or they both have the same type on the @JoinPoint parameter), we move to the next highest prior-
ity annotated parameter, which is @Target. The same rule is applied until we can find an advice with the highest
priority.

Notice that the assignability degree of an advice on @Arg is the sum of the assignability degree on all @Arg paramet-
ers. In the following scenario:

public class POJO
{

public void method(POJO argument0, String argument1, int argument2)
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<before aspect="OneAspect" name="before"/>
</bind>

</aop>

public class OneAspect
{

public void before(@Arg POJO p, @Arg String s, @Arg int i){} //1
public void before(@Arg POJOSuperClass p, @Arg String s, @Arg int i){} //2
public void before(@Arg POJO p, @Arg Object s, @Arg int i){} //3
public void before(@Arg Object p, @Arg Object s, @Arg int i){} //4

}

The first advice has assignability degree of 0 (for POJO) + 0 (for String) + 0 (for int). Notice how primitive types
don’t have superclasses, and, hence, have always a 0 value of assinability degree.

The second advice has a larger assignability degree, since POJOSuperClass is the superclass of POJO, @Arg POJOSu-

perClass p has assignability degree of 1. Hence, this advice assignability degree on @Arg is: 1 + 0 + 0 = 1.

The third one also has an assignability degree of 1, since Object is the superclass of String.

Advices

JBoss 2.0.0 27

Finally, the last advice has assignability degree of 3 on @Arg. The first parameter, @Arg Object p, refers to POJO

and has assignability degree of 2. The second one, assignability degree of 1, since it refers to String. And, since
@Arg int refers to the int argument of POJO.method(), we have 2 + 1 + 0 = 3.

In the above example, JBoss AOP would select the first advice to intercept POJO.method() execution.

4.4.1.3. Return Types

For annotated parameters typed around advices, there is a third rule, which is the return type. This rule also applies
to after and finally advices. If the joinpoint has a non-void return type, the assignability degree of the advice return
type is analyzed, pretty much in the same way we do with annotated parameters. So, for overloaded around ad-
vices, these three criteria are applied:

• presence of annotated parameter

• assignability degree of annotated parameter

• assignability degree of return type

If two advices have the same ranking on the first two criteria, we check their return types and pick the advice with
the lowest assignability degree:

public class POJO
{

public Collection method(int arg0, boolean arg1, short arg2) {…}
}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<advice aspect="OneAspect" name="around"/>
</bind>

</aop>

public class OneAspect
{

public Collection around(@JoinPoint Invocation inv, @Arg int param0) throws Throwable
{...} //1

public List around(@JoinPoint Invocation inv, @Arg boolean param1) throws Throwable
{...} //2

}

In OneAspect above, we have two around advices. Both of them are equal when compared using the presence cri-
teria. When comparing them using the assignability of annotated parameter, both of them have the same degrees on
@JoinPoint and on @Arg parameters. In this case, we will compare their return type assignability degree.

Notice that, when it comes to return types, it is the return type that must be assignable to the joinpoint type, and not
the contrary. This is due to the fact that JBoss AOP will assign the advice return value to the joinpoint return result
in the base system. Hence, in the example above, the caller of POJO.method() expects a Collection return value.
So, it is ok to receive either a Collection from the first advice, as the more specific type List from the second ad-
vice. But JBoss AOP will complain if your advice returns an Object (Object return type is allowed only in the de-

Advices

JBoss 2.0.0 28

fault signature; here we are discussing the annotated-parameter signature), because we can’t give an Object to the
base system when it is expecting a Collection.

So, in the above example, the first advice has an assignability degree of 0 on the return type, becase it takes 0 steps
in the hierarchy to go from Collection to Collection. In the second advice, this value is 1, because it takes 1 step
to go from List to Collection. JBoss AOP would select the first advice.

On overloaded after and finally advices, we also have a return type rule. But, since the return type is optional (these
advices can return a value, but is not enforced to it), we have a total of four rules for this advice:

• presence of annotated parameter

• assignability degree of annotated parameter

• presence of non-void return type

• assignability degree of return value type

The third rule, presence of non-void return type, states that JBoss AOP will give preference to an after advice that
returns a value:

<aop>
<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<after aspect="OneAspect" name="around"/>
</bind>

</aop>

public class OneAspect
{

public Collection after(@Arg int param0) {...} //1
public List after(@Arg boolean param1) { ... } //2
public void after(@Arg short param2) { ... } //3

}

Considering the same POJO class defined previously (with public void method(int, boolean, short)), all three
overloade versions of OneAspect.after() advice wil be considered equivalent in the first two criteria. Hence, we
move to the third rule, that states that JBoss AOP prefers an after advice that returns a value over another one that
is void. So, in the example above, the third advice is ruled out, and JBoss AOP still has two advices to select. Mov-
ing to the next rule, he assignability degree of the return type, we have the same result as the OneAspect.around()

advice: the first one has a 0 degree, and the second one, a 1 degree value. As a conclusion of these degrees, JBoss
AOP will select the first advice, with the lowest return assignability degree.

4.4.1.4. A Match

Notice that, iIf JBoss AOP cannot find an advice with highest priority, it just selects one of the methods arbitrarily.
This would be the case of the following advice method scenario:

public class POJO
{

public void method(int arg0, long arg1) {…}
}

<aop>

Advices

JBoss 2.0.0 29

<aspect class="OneAspect"/>
<bind pointcut="execution(* POJO->method(..))">

<before aspect="OneAspect" name="before"/>
</bind>

</aop>

public class OneAspect
{

public void advice(@Arg int arg0) {}
public void advice(@Arg long arg1) {}

}

4.4.1.5. Lowest Priority

There are exceptions for the rules we’ve seen. Advices with one or more of the following characteristics will be
considered lowest priority, regardless of any other criteria:

• an advice that receives @Target parameter to intercept a joinpoint with no target available

• an advice that receives @Caller parameter to intercept a joinpoint with no caller available

• an advice that receives @Arg parameter to intercept a field read joinpoint

4.4.2. Default Signature

For the default around advice signature (i.e., without annotated parameters), there is only one parameter to analyze,
the invocation. So, the priority rules are very simple:

• presence of the invocation parameter

• assignability degree of the invocation parameter.

Lets revisit the example given in the beginning of this section, in augmented version:

class POJO
{

public int field;
public POJO(){}
public someMethod(){}

}

public class OneAspect
{

public Object trace(MethodInvocation invocation) throws Throwable {...} //1
public Object trace(ConstructorInvocation invocation) throws Throwable {...} //2
public Object trace(Invocation invocation) throws Throwable {...} //3
public Object trace() throws Throwable {...} //4

}

<aop>
<aspect class="OneAspect"/>
<bind pointcut="all(POJO)">

<advice aspect="OneAspect" name="trace"/>
</bind>

Advices

JBoss 2.0.0 30

</aop>

The fourth advice above will never be called, considering the presence rule. It is the only one that lacks the Invoc-

ation parameter, and would be called only if all others were considered invalid in a scenario, which won’t happen
in this example. By ruling out this advice with the presence rule, all other advices are equivalent: the invocation
parameter is present in all of them. So, we need to move on to the assignability degree rule to select one of them.
However, the assignability degree needs to be calculated accordingly to the joinpoint being intercepted. JBoss AOP
needs to evaluate each joinpoint type to be intercepted to do the correct selection for each case.

Consider the interception of the constructor of POJO. In that case, the first advice is considered invalid, becase a
MethodInvocation is not assignable from the invocation type that JBoss AOP will provide, ConstrucorInvoca-
tion. We are now left with the second and third advices. The second one has assignability degree of 0 on the in-
vocation type. The third one, assignability degree of 1 (it takes one step in the hierarchy to go fom ConstructorIn-

vocation to Invocation). So, in this case, JBoss AOP will select the second advice, because it is the valid advice
with the lower assignability degree on the invocation.

Similary, to intercept the execution of POJO.someMethod(), JBoss AOP will consider the second advice invalid, be-
cause it is supposed to receive an invocation whose type is assignable from MethodInvocation. Since the first ad-
vice has an assignability degree of 0 on the invocation, and the third one, assignability degree of 1, JBoss AOP will
select the first one.

Given that Invocation will always be the super class of the expected invocation type, JBoss AOP will select this
advice, whose assignability degree will always be 1, only when the other two advices are invalid. That would be
the case of a field read, where the invocation type is FieldReadInvocation.

4.4.3. Mixing Different Signatures

Finally, when we mix default signature methods with annotated parameter ones, an advice in one of the forms:

public Object [advice name]([Invocation] invocation) throws Throwable

public Object [advice name]([Invocation] invocation) throws Throwable

public Object [advice name]() throws Throable

Has the highest priority over all annotated-parameter advices. If there is more than one with the default signature,
the criteria described in the previous section will be used to select one of them..

Notice that mixing different signatures is possible only with around advices, since only these ones can follow the
default signature.

Advices

JBoss 2.0.0 31

5
XML Bindings

5.1. Intro

In the last sections you saw how to code aspects and how pointcut expressions are formed. This chapter puts it all
together. There are two forms of bindings for advices, mixins, and introductions. One is XML which will be the fo-
cus of this chapter. The Annotated Bindings chapter discusses how you can replace XML with JDK 5.0 annota-
tions.

5.2. Resolving XML

JBoss AOP resolves pointcut and advice bindings at runtime. So, bindings are a deployment time thing. How does
JBoss AOP find the XML files it needs at runtime? There are a couple of ways.

5.2.1. Standalone XML Resolving

When you are running JBoss AOP outside of the application server there are a few ways that the JBoss AOP frame-
work can resolve XML files.

• jboss.aop.path This is a system property that is a ';' (Windows) or ':' (Unix) delimited list of XML files and/or
directories. If the item in the list is a directory, JBoss AOP will load any xml file in those directories with the fi-
lename suffix -aop.xml

• META-INF/jboss-aop.xml Any JAR file in your CLASSPATH that has a jboss-aop.xml file in the META-INF/

will be loaded. JBoss AOP does a ClassLoader.getResources("META-INF/jboss-aop.xml") to obtain all
these files.

5.2.2. Application Server XML Resolving

When you are running JBoss AOP outside of the application server there are a few ways that the JBoss AOP frame-
work can resolve XML files. One is to place an XML file with the suffix *-aop.xml in the deploy directory. The
other way is to JAR up your classes and provide a META-INF/jboss-aop.xml file in this JAR. This JAR file must
be suffixed with .aop and placed within the deploy/ directory or embedded as a nested archive.

5.3. XML DTD

JBoss 2.0.0 32

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT aop (interceptor|introduction|metadata-loader|metadata|
stack|aspect|pointcut|pluggable-pointcut|bind|
prepare|cflow-stack|dynamic-cflow|annotation-introduction|typedef)+>

<!ELEMENT interceptor ANY>
<!ATTLIST interceptor name CDATA #IMPLIED>
<!ATTLIST interceptor class CDATA #IMPLIED>
<!ATTLIST interceptor factory CDATA #IMPLIED>
<!ATTLIST interceptor scope (PER_VM|PER_CLASS|PER_INSTANCE|PER_JOINPOINT) "PER_VM">

<!ELEMENT aspect ANY>
<!ATTLIST aspect name CDATA #IMPLIED>
<!ATTLIST aspect class CDATA #IMPLIED>
<!ATTLIST aspect factory CDATA #IMPLIED>
<!ATTLIST aspect scope (PER_VM|PER_CLASS|PER_INSTANCE|PER_JOINPOINT) "PER_VM">

<!ELEMENT introduction (mixin*,interfaces)>
<!ATTLIST introduction class CDATA #IMPLIED>
<!ATTLIST introduction expr CDATA #IMPLIED>
<!ELEMENT mixin (interfaces, class, construction?)>
<!ATTLIST mixin transient (true|false) "true">
<!ELEMENT interfaces (#PCDATA)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT construction (#PCDATA)>

<!ELEMENT metadata-loader EMPTY>
<!ATTLIST metadata-loader tag CDATA #REQUIRED>
<!ATTLIST metadata-loader class CDATA #REQUIRED>

<!ELEMENT metadata ANY>
<!ATTLIST metadata tag CDATA #REQUIRED>
<!ATTLIST metadata class CDATA #REQUIRED>

<!ELEMENT stack (interceptor|interceptor-ref|stack-ref|advice)+>
<!ATTLIST stack name CDATA #REQUIRED>

<!ELEMENT interceptor-ref EMPTY>
<!ATTLIST interceptor-ref name CDATA #REQUIRED>

<!ELEMENT stack-ref EMPTY>
<!ATTLIST stack-ref name CDATA #REQUIRED>

<!ELEMENT advice EMPTY>
<!ATTLIST advice name CDATA #REQUIRED>
<!ATTLIST advice aspect CDATA #REQUIRED>

<!ELEMENT pointcut EMPTY>
<!ATTLIST pointcut name CDATA #REQUIRED>
<!ATTLIST pointcut expr CDATA #REQUIRED>

<!ELEMENT prepare EMPTY>
<!ATTLIST prepare expr CDATA #REQUIRED>

<!ELEMENT pluggable-pointcut ANY>
<!ATTLIST pluggable-pointcut name CDATA #REQUIRED>
<!ATTLIST pluggable-pointcut class CDATA #REQUIRED>

<!ELEMENT bind (interceptor|interceptor-ref|stack-ref|advice|before|around|after|throwing|finally)+>
<!ATTLIST bind name CDATA #IMPLIED>
<!ATTLIST bind pointcut CDATA #REQUIRED>
<!ATTLIST bind cflow CDATA #IMPLIED>

<!ELEMENT cflow-stack (called|not-called)+>

XML Bindings

JBoss 2.0.0 33

<!ATTLIST cflow-stack name CDATA #REQUIRED>

<!ELEMENT called EMPTY>
<!ATTLIST called expr CDATA #REQUIRED>
<!ELEMENT not-called EMPTY>
<!ATTLIST not-called expr CDATA #REQUIRED>

<!ELEMENT dynamic-cflow EMPTY>
<!ATTLIST dynamic-cflow name CDATA #REQUIRED>
<!ATTLIST dynamic-cflow class CDATA #REQUIRED>

<!ELEMENT annotation-introduction (#PCDATA)>
<!ATTLIST annotation-introduction expr CDATA #REQUIRED>
<!ATTLIST annotation-introduction invisible (true|false) #REQUIRED>

<!ELEMENT typedef EMPTY>
<!ATTLIST typedef name CDATA #REQUIRED>
<!ATTLIST typedef expr CDATA #REQUIRED>

5.4. aspect

The <aspect> tag specifies to the AOP container to declare an aspect class. It is also used for configuring aspects
as they are created and defining the scope of the aspects instance.

5.4.1. Basic Definition

<aspect class="org.jboss.MyAspect"/>

In a basic declaration you specify the fully qualified class name of the aspect. If you want to reference the aspect at
runtime through the AspectManager, the name of the aspect is the same name as the class name. The default Scope
of this aspect is PER_VM. Another important note is that aspect instances are created on demand and NOT at deploy-
ment time.

5.4.2. Scope

<aspect class="org.jboss.MyAspect" scope="PER_VM"/>

The scope attribute defines when an instance of the aspect should be created. An aspect can be created per vm, per
class, per instance, or per joinpoint.

Table 5.1. Aspect instance scope

Name Description

PER_VM One and only instance of the aspect class is allocated for the entire VM.

PER_CLASS One and only instance of the aspect class is allocated for a particular
class. This instance will be created if an advice of that aspect is bound to
that particular class.

XML Bindings

JBoss 2.0.0 34

Name Description

PER_INSTANCE An instance of an aspect will be created per advised object instance. For
instance, if a method has an advice attached to it, whenever an instance
of that advised class is allocated, there will also be one created for the
aspect.

PER_JOINPOINT An instance of an aspect will be created per joinpoint advised. If the
joinpoint is a static member (constructor, static field/method), then there
will be one instance of the aspect created per class, per joinpoint. If the
joinpoint is a regular non-static member, than an instance of the aspect
will be created per object instance, per joinpoint.

PER_CLASS_JOINPOINT An instance of an aspect will be created per advised joinpoint. The as-
pect instance is shared between all instances of the class (for that join-
point).

5.4.3. Configuration

<aspect class="org.jboss.SomeAspect">
<attribute name="SomeIntValue">55</attribute>
<advisor-attribute name="MyAdvisor"/>
<instance-advisor-attribute name="MyInstanceAdvisor"/>
<joinpoint-attribute name="MyJoinpoint"/>

</aspect>

Aspects can be configured by default using a Java Beans style convention. The <attribute> tag will delegate to a
setter method and convert the string value to the type of the setter method.

Table 5.2. Supported Java Bean types

primitive types (int, float, String, etc...)

java.lang.Class

java.lang.Class[]

java.lang.String[]

java.math.BigDecimal

org.w3c.dom.Document

java.io.File

java.net.InetAddress

java.net.URL

javax.management.ObjectName (if running in JBoss)

Besides types, you can also inject AOP runtime constructs into the aspect. These types of attributes are referenced
within XML under special tags. See the table below.

XML Bindings

JBoss 2.0.0 35

Table 5.3. Injecting AOP runtime constructs

<advisor-attribute> org.jboss.aop.Advisor

<instance-advisor-attribute> org.jboss.aop.InstanceAdvisor

<joinpoint-attribute> org.jboss.aop.joinpoint.Joinpoint

5.4.3.1. Names

If there is no name attribute defined, the name of the aspect is the same as the class or factory attribute value.

5.4.3.2. Example configuration

<aspect class="org.jboss.SomeAspect">
<attribute name="SomeIntValue">55</attribute>
<advisor-attribute name="MyAdvisor"/>
<instance-advisor-attribute name="MyInstanceAdvisor"/>
<joinpoint-attribute name="MyJoinpoint"/>

</aspect>

The above example would would need a class implemented as follows:

public class SomeAspect {
public SomeAspect() {}

public void setSomeIntValue(int val) {...}
public void setMyAdvisor(org.jboss.aop.Advisor advisor) {...}
public void setMyInstanceAdvisor(org.jboss.aop.InstanceAdvisor advisor) {...}
public void setMyJoinpoint(org.jboss.aop.joinpoint.Joinpoint joinpoin) {...}

}

5.4.4. Aspect Factories

<aspect name="MyAspect" factory="org.jboss.AspectConfigFactory" scope="PER_CLASS">
<some-arbitrary-xml>value</some-arbitrary-xml>

</aspect>

If you do not like the default Java Bean configuration for aspects, or want to delegate aspect creation to some other
container, you can plug in your own factory class by specifying the factory attribute rather than the class attrib-
ute. Any arbitrary XML can be specified in the aspect XML declaration and it will be passed to the factory class.
Factories must implement the org.jboss.aop.advice.AspectFactory interface.

5.5. interceptor

<interceptor class="org.jboss.MyInterceptor" scope="PER_VM"/>
<interceptor class="org.jboss.SomeInterceptor">

<attribute name="SomeIntValue">55</attribute>
<advisor-attribute name="MyAdvisor"/>
<instance-advisor-attribute name="MyInstanceAdvisor"/>

XML Bindings

JBoss 2.0.0 36

<joinpoint-attribute name="MyJoinpoint"/>
</interceptor>
<interceptor name="MyAspect" factory="org.jboss.InterceptorConfigFactory" scope="PER_CLASS">

<some-arbitrary-xml>value</some-arbitrary-xml>
</interceptor>

Interceptors are defined in XML the same exact way as aspects are. No difference except the tag. If there is no name

attribute defined, the name of the interceptor is the same as the class or factory attribute value.

5.6. bind

<bind pointcut="execution(void Foo->bar())">
<interceptor-ref name="org.jboss.MyInterceptor/>
<before name="beforeAdvice" aspect="org.jboss.MyAspect"/>
<around name="aroundAdvice" aspect="org.jboss.MyAspect"/>
<after name="afterAdvice" aspect="org.jboss.MyAspect"/>
<throwing name="throwingAdvice" aspect="org.jboss.MyAspect"/>
<finally name="finallyAdvice" aspect="org.jboss.MyAspect"/>
<advice name="trace" aspect="org.jboss.MyAspect"/>

</bind>

In the above example, the MyInterceptor interceptor and several advice methods of the MyAspect class will be ex-
ecuted when the Foo.bar method is invoked.

bind
bind tag is used to bind an advice of an aspect, or an interceptor to a specific joinpoint. The pointcut attribute
is required and at least an advice or interceptor-ref definition.

interceptor-ref
The interceptor-ref tag must reference an already existing interceptor XML definition. The name attribute
should be the name of the interceptor you are referencing.

before, around, after, throwing and finally
All these tags take a name attribute that should map to an advice of the specified type within the aspect class.
The aspect attribute should be the name of the aspect definition.

advice
The same as the previous, except for the fact that doesn't specify the type of the advice. This tag selects the de-
fault advice type, around, and is hence equivalent to the tag around.

5.7. stack

Stacks allow you to define a predefined set of advices/interceptors that you want to reference from within a bind

element.

<stack name="stuff">
<interceptor class="SimpleInterceptor1" scope="PER_VM"/>
<advice name="trace" aspect="org.jboss.TracingAspect"/>
<interceptor class="SimpleInterceptor3">

<attribute name="size">55</attribute>
</interceptor>

</stack>

XML Bindings

JBoss 2.0.0 37

After defining the stack you can then reference it from within a bind element.

<bind pointcut="execution(* POJO->*(..))">
<stack-ref name="stuff"/>

</bind>

5.8. pointcut

The pointcut tag allows you to define a pointcut expression, name it and reference it within any binding you want.
It is also useful to publish pointcuts into your applications to that others have a clear set of named integration
points.

<pointcut name="publicMethods" expr="execution(public * *->*(..))"/>
<pointcut name="staticMethods" expr="execution(static * *->*(..))"/>

The above define two different pointcuts. One that matches all public methods, the other that matches the execution
of all static methods. These two pointcuts can then be referenced within a bind element.

<bind pointcut="publicMethods AND staticMethods">
<interceptor-ref name="tracing"/>

</bind>

5.9. introduction

5.9.1. Interface introductions

The introduction tag allows you to force an existing Java class to implement a particular defined interface.

<introduction class="org.acme.MyClass">
<interfaces>java.io.Serializable</interfaces>

</introduction>

The above declaration says that the org.acme.MyClass class will be forced to implement java.io.Serializable. The
class attribute can take wildcards but not boolean expressions. If you need more complex type expressions, you
can use the expr attribute instead.

<introduction expr="has(* *->@test(..)) OR class(org.acme.*)">
<interfaces>java.io.Serializable</interfaces>

</introduction>

The expr can be any type expression allowed in a typedef expression

5.9.2. Mixins

When introducing an interface you can also define a mixin class which will provide the implementation of that in-
terface.

XML Bindings

JBoss 2.0.0 38

<introduction class="org.acme.MyClass">
<mixin>

<interfaces>
java.io.Externalizable

</interfaces>
<class>org.acme.ExternalizableMixin</class>
<construction>new org.acme.ExternalizableMixin(this)</construction>

</mixin>
</introduction>

interfaces
defines the list of interfaces you are introduction

class
The type of the mixin class.

construction
The construction statement allows you to specify any Java code to create the mixin class. This code will be em-
bedded directly in the class you are introducing to so this works in the construction statement.

5.10. annotation-introduction

Annotation introductions allow you to embed an annotation within a the class file of the class. You can introduce
an annotation to a class, method, field, or constructor.

<annotation-introduction expr="constructor(POJO->new())">
@org.jboss.complex (ch='a', string="hello world", flt=5.5, dbl=6.6, shrt=5, lng=6, integer=7, bool=true, annotation=@single("hello"), array={"hello", "world"}, clazz=java.lang.String)

</annotation-introduction>

The expr attribute takes method(), constructor(), class(), or field(). Within those you must define a valid expression
for that construct. The following rules must be followed for the annotation declaration:

• Any annotation, Class or Enum referenced, MUST be fully qualified.

5.11. cflow-stack

Control flow is a runtime construct. It allows you to specify pointcut parameters revolving around the call stack of
a Java program. You can do stuff like, if method A calls method B calls Method C calls Method D from Construct-
or A, trigger this advice. In defining a control flow, you must first paint a picture of what the Java call stack should
look like. This is the responsibility of the cflow-stack.

<cflow-stack name="recursive2">
<called expr="void POJO->recursive(int)"/>
<called expr="void POJO->recursive(int)"/>
<not-called expr="void POJO->recursive(int)"/>

</cflow-stack>

A cflow-stack has a name and a bunch of called and not-called elements that define individual constructor or
method calls with a Java call stack. The expr attribute must be a method or constructor expression. called states

XML Bindings

JBoss 2.0.0 39

that the expr must be in the call stack. not-called states that there should not be any more of the expression within
the stack. In the above example, the cflow-stack will be triggered if there are two and only two calls to the re-

cursive method within the stack. Once the cflow-stack has been defined, it can then be referenced within a bind

element through the cflow attribute. Boolean expressions are allowed here as well.

<bind pointcut="execution(void POJO->recursive(int))" cflow="recursive2 AND !cflow2">
<interceptor class="SimpleInterceptor"/>

</bind>

5.12. typedef

<typedef name="jmx" expr="class(@org.jboss.jmx.@MBean) OR
has(* *->org.jboss.jmx.@ManagedOperation) OR
has(* *->org.jboss.jmx.@ManagedAttribute)"/>

typedefs allow you to define complex type expressions and then use then pointcut expressions. In the above ex-
ample, we're defining a class that is tagged as @Mbean, or has a method tagged as @ManagedOperaion or
@ManagedAttribute. The above typedef could then be used in a pointcut, introduction, or bind element

<pointcut name="stuff" expr="execution(* $typedef{jmx}->*(..))"/>
<introduction expr="class($typedef{jmx})">

5.13. dynamic-cflow

dynamic-cflow allows you to define code that will be executed that must be resolved true to trigger positive on a
cflow test on an advice binding. (See Dynamic CFlow for more information). The test happens dynamically at
runtime and when combined with a pointcut expression allows you to do runtime checks on whether a advice bind-
ing should run or not. Create a dynamic cflow class, then you must declare it with XML so that it can be used in
bind expressions.

<dynamic-cflow name="simple" class="org.jboss.SimpleDynamicCFlow"/>

You can then use it within a bind

<bind expr="execution(void Foo->bar())" cflow="simple">

5.14. prepare

The prepare tag allows you to define a pointcut expression. Any joinpoint that matches the expression will be as-
pectized and bytecode instrumented. This allows you to hotdeploy and bind aspects at runtime as well as to work
with the per instance API that every aspectized class has. To prepare something, just define a pointcut expression
that matches the joinpoint you want to instrument.

<prepare expr="execution(void Foo-bar())"/>

XML Bindings

JBoss 2.0.0 40

5.15. metadata

You can attach untyped metadata that is stored in org.jboss.aop.metadata.SimpleMetaData structures within
the org.jboss.aop.Advisor class that manages each aspectized class. The XML mapping has a section for each
type of metadata. Class, method, constructor, field, and defaults for the whole shabang. Here's an example:

<metadata tag="testdata" class="org.jboss.test.POJO">
<default>

<some-data>default value</some-data>
</default>
<class>

<data>class level</data>
</class>
<constructor expr="POJOConstructorTest()">

<some-data>empty</some-data>
</constructor>
<method expr="void another(int, int)">

<other-data>half</other-data>
</method>
<field name="somefield">

<other-data>full</other-data>
</field>

</metadata>

Any element can be defined under the class, default, method, field, and constructor tags. The name of these ele-
ments are used as attribute names in SimpleMetaData structures. The tag attribute is the name used to reference the
metadata within the Advisor, or Invocation lookup mechanisms.

5.16. metadata-loader

<metadata-loader tag="security" class="org.jboss.aspects.security.SecurityClassMetaDataLoader"/>

If you need more complex XML mappings for untyped metadata, you can write your own metadata binding. The
tag attribute is used to trigger the loader. The loader class must implement the
org.jboss.aop.metadata.ClassMetaDataLoader interface.

public interface ClassMetaDataLoader
{

public ClassMetaDataBinding importMetaData(Element element, String name,
String tag, String classExpr) throws Exception;

public void bind(ClassAdvisor advisor, ClassMetaDataBinding data,
CtMethod[] methods, CtField[] fields, CtConstructor[] constructors) throws Exception;

public void bind(ClassAdvisor advisor, ClassMetaDataBinding data,
Method[] methods, Field[] fields, Constructor[] constructors) throws Exception;

}

Any arbitrary XML can be in the metadata element. The ClassMetaDataBinding.importMetaData method is re-
sponsible for parsing the element and building ClassMetaDataBinding structurs which are used in the precompiler
and runtime bind steps. Look at the SecurityClassMetaDataLoader code shown above for a real concrete example.

5.17. precedence

XML Bindings

JBoss 2.0.0 41

Precedence allows you to impose an overall relative sorting order of your interceptors and advices.

<precedence>
<interceptor-ref name="org.acme.Interceptor"/>
<advice aspect="org.acme.Aspect" name="advice1"/>
<advice aspect="org.acme.Aspect" name="advice2"/>

</precedence>

This says that when a joinpoint has both org.acme.Interceptor and org.acme.Aspect.advice() bound to it,
org.acme.Interceptor must always be invoked before org.acme.Aspect.advice1() which must in turn be in-
voked before org.acme.Aspect.advice2(). The ordering of interceptors/advices that do not appear in a preced-
ence is defined by their ordering for the individual bindings or intercerceptor stacks.

5.18. declare

You can declare checks to be enforced at instrumentation time. They take a pointcut and a message. If the pointcut
is matched, the message is printed out.

5.18.1. declare-warning

<declare-warning expr="class($instanceof{VehicleDAO}) \
AND !has(public void *->save())">

All VehicleDAO subclasses must override the save() method.
</declare-warning>

The above declaration says that if any subclass of VehicleDAO does not implement a noargs save() method, a
warning with the supplied message should be logged. Your application will continue to be instrumented/run (since
we are using declare-warning in this case).

5.18.2. declare-error

<declare-error expr="call(* org.acme.businesslayer.*->*(..)) \
AND within(org.acme.datalayer.*)">

Data layer classes should not call up to the business layer
</declare-error>

The above declaration says that if any classes in the datalayer call classes in the business layer of your application,
an error should be thrown. Instumentation/execution of your application will stop.

XML Bindings

JBoss 2.0.0 42

6
Annotation Bindings

JDK 5.0 has introduced a new concept called annotations. Annotations can be used as an alternative to XML for
configuring classes for AOP. For backward compatibility with JDK 1.4.2, refer to Chapter 8

6.1. @Aspect

To mark a class as an aspect you annotate it with the @Aspect annotation. Remember that a class to be used as an
aspect does not need to inherit or implement anything special, but it must have an empty constuctor and contain
one or more methods (advices) of the format:

public Object <any-method-name>(org.jboss.aop.joinpoint.Invocation)

The declaration of org.jboss.aop.Aspect is:

package org.jboss.aop;

import org.jboss.aop.advice.Scope;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME)
public @interface Aspect

{
Scope scope() default Scope.PER_VM;

}

and Scope is:

package org.jboss.aop.advice;

public enum Scope
{

PER_VM, PER_CLASS, PER_INSTANCE, PER_JOINPOINT
}

See Section 5.4.2 for a description of the various scopes.

We use the @Aspect annotation as follows:

package com.mypackage;

JBoss 2.0.0 43

import org.jboss.aop.Aspect;
import org.jboss.aop.advice.Scope;
import org.jboss.aop.joinpoint.Invocation;

@Aspect (scope = Scope.PER_VM)
public class MyAspect
{

public Object myAdvice(Invocation invocation)
}

The name of the class (in this case com.mypackage.MyAspect) gets used as the internal name of the aspect. The
equivalent using XML configuration would be:

<aop>
<aspect class="com.mypackage.MyAspect" scope="PER_VM"/>
</aop>

6.2. @InterceptorDef

To mark a class as an interceptor or an aspect factory you annotate it with the @InterceptorDef annotation. The
class must either implement the org.jboss.aop.advice.Interceptor interface or the
org.jboss.aop.advice.AspectFactory interface.

The declaration of org.jboss.aop.InterceptorDef is:

package org.jboss.aop;

@Target({ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME)
public @interface Aspect

{
Scope scope() default Scope.PER_VM;

}

The same Scope enum is used as for Aspect. The following examples use the @Bind annotation, which will be de-
scribed in more detail below.

6.2.1. Interceptor Example

We use the @InterceptorDef annotation to mark an Interceptor as follows:

package com.mypackage;

import org.jboss.aop.Bind;
import org.jboss.aop.InterceptorDef;
import org.jboss.aop.advice.Interceptor;

@InterceptorDef (scope = Scope.PER_VM)
@Bind (pointcut="execution("* com.blah.Test->test(..)")

Annotation Bindings

JBoss 2.0.0 44

public class MyInterceptor implements Interceptor
{

public Object invoke(Invocation invocation)throws Throwable
{

return invocation.invokeNext();
}

}

The name of the class (in this case com.mypackage.MyInterceptor) gets used as the class name of the interceptor.
The equivalent using XML configuration would be:

<aop>
<interceptor class="com.mypackage.MyInterceptor" scope="PER_VM"/>
</aop>

6.2.2. AspectFactory Example

The @InterceptorDef annotation is used to mark an AspectFactory as follows:

package com.mypackage;

import org.jboss.aop.advice.AspectFactory;

@InterceptorDef (scope=org.jboss.aop.advice.Scope.PER_VM)
@Bind (pointcut="execution("* com.blah.Test->test2(..)")
public class MyInterceptorFactory implements AspectFactory
{

//Implemented methods left out for brevity
}

6.3. @PointcutDef

To define a named pointcut you annotate a field within an @Aspect or @InterceptorDef annotated class with
@PointcutDef. @PointcutDef only applies to fields and is not recognised outside @Aspect or @InterceptorDef an-
notated classes.

The declaration of org.jboss.aop.PointcutDef is:

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface PointcutDef
{

String value();
}

@PointcutDef takes only one value, a valid pointcut expression. The name of the pointcut used internally and when
yo want to reference it is:

Annotation Bindings

JBoss 2.0.0 45

<name of @Aspect/@InterceptorDef annotated class>.<name of @PointcutDef annotated field>

An example of an aspect class containing a named pointcut which it references from a bindng's pointcut expres-
sion:

package com.mypackage;

import org.jboss.aop.PointcutDef;
import org.jboss.aop.pointcut.Pointcut;

@Aspect (scope = Scope.PER_VM)
public class MyAspect
{

@PointcutDef ("(execution(* org.blah.Foo->someMethod()) OR \
execution(* org.blah.Foo->otherMethod()))")

public static Pointcut fooMethods;

public Object myAdvice(Invocation invocation)
{

return invocation.invokeNext();
}

}

It is worth noting that named pointcuts can be referenced in pointcut expressions outside the class they are declared
in (if the annotated fields are declared public of course!).

Using XML configuration this would be:

<aop>
<aspect class="com.mypackage.MyAspect" scope="PER_VM"/>
<pointcut
name="com.mypackage.MyAspect.fooMethods"
expr="(execution(* org.blah.Foo->someMethod()) OR \

execution(* org.blah.Foo->otherMethod()))"
/>

</aop>

6.4. @Bind

To create a binding to an advice method from an aspect class, you annotate the advice method with @Bind. To cre-
ate a binding to an Interceptor or AspectFactory, you annotate the class itself with @Bind since Interceptors only
contain one advice (the invoke() method). The @Bind annotation will only be recognised in the situations just
mentioned.

The declaration of org.jboss.aop.Bind is:

package org.jboss.aop;

@Target({ElementType.METHOD, ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME)
public @interface Bind
{

String pointcut();
String cflow() default "";

Annotation Bindings

JBoss 2.0.0 46

}

The @Bind annotation takes two parameters:

• pointcut, which is a pointcut expression resolving to the joinpoints you want to bind an aspect/interceptor to

• cflow, which is optional. If defined it must resolve to the name of a defined cflow.)

In the case of a binding to an advice in an aspect class, the internal name of the binding becomes:

<name of the aspect class>.<the name of the advice method>

In the case of a binding to an Interceptor or AspectFactory implementation, the internal name of the binding be-
comes:

<name of the Interceptor/AspectFactory implementation class>

An example of a binding using an advice method in an aspect class:

package com.mypackage;

import org.jboss.aop.Bind;

@Aspect (scope = Scope.PER_VM)
public class MyAspect
{

@PointcutDef ("(execution(* org.blah.Foo->someMethod()) \
OR execution(* org.blah.Foo->otherMethod()))")

public static Pointcut fooMethods;

@Bind (pointcut="com.mypackage.MyAspect.fooMethods")
public Object myAdvice(Invocation invocation)
{

return invocation.invokeNext();
}

@Bind (pointcut="execution("* org.blah.Bar->someMethod())")
public Object myAdvice(Invocation invocation)
{

return invocation.invokeNext();
}

}

The equivalent using XML configuration would be:

<aop>
<aspect class="com.mypackage.MyAspect" scope="PER_VM"/>
<pointcut
name="com.mypackage.MyAspect.fooMethods"
expr="(execution("* org.blah.Foo->someMethod()) OR \

execution("* org.blah.Foo->otherMethod()))"
/>

<bind pointcut="com.mypackage.MyAspect.fooMethods">
<advice name="myAdvice" aspect="com.mypackage.MyAspect">
</bind>
<bind pointcut="execution("* org.blah.Bar->someMethod())">

Annotation Bindings

JBoss 2.0.0 47

<advice name="otherAdvice" aspect="com.mypackage.MyAspect">
</bind>
</aop>

Revisiting the examples above in the @InterceptorDef section, now that we know what @Bind means, the equival-
ent using XML configuration would be:

<aop>
<interceptor class="com.mypackage.MyInterceptor" scope="PER_VM"/>
<interceptor factory="com.mypackage.MyInterceptorFactory" scope="PER_VM"/>

<bind pointcut="execution("* com.blah.Test->test2(..)">
<interceptor-ref name="com.mypackage.MyInterceptor"/>
</bind>
<bind pointcut="execution("* com.blah.Test->test2(..)">
<interceptor-ref name="com.mypackage.MyInterceptorFactory"/>
</bind>
</aop>

6.5. @Introduction

Interface introductions can be done using the @Introduction annotation. Only fields within a class annotated with
@Aspect or @InterceptorDef can be annotated with @Introduction.

The declaration of org.jboss.aop.Introduction:

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface Introduction
{

Class target() default java.lang.Class.class;
String typeExpression() default "";
Class[] interfaces();

}

The parameters of @Introduction are:

• target, the name of the class we want to introduce an interface to.

• typeExpression, a type expression that should resolve to one or more classes we want to introduce an interface
to.

• interfaces, an array of the interfaces we want to introduce

target or typeExpression has to be specified, but not both.

This is how to use this annotation:

package com.mypackage;

import org.jboss.aop.Introduction;

Annotation Bindings

JBoss 2.0.0 48

@Aspect (scope = Scope.PER_VM)
public class IntroAspect
{

@Introduction (target=com.blah.SomeClass.class, \
interfaces={java.io.Serializable.class})

public static Object pojoNoInterfacesIntro;
}

This means make com.blah.SomeClass.class implement the java.io.Serializable interface. The equivalent
configured via XML would be:

<introduction class="com.blah.SomeClass.class">
<interfaces>

java.io.Serializable
</interfaces>
</introduction>

6.6. @Mixin

Sometimes when we want to introduce/force a new class to implement an interface, that interface introduces new
methods to a class. The class needs to implement these methods to be valid. In these cases a mixin class is used.
The mixin class must implement the methods specified by the interface(s) and the main class can then implement
these methods and delegate to the mixin class.

Mixins are created using the @Mixin annotation. Only methods within a class annotated with @Aspect or
@InterceptorDef can be annotated with @Mixin. The annotated method has

• be public

• be static

• have an empty parameter list, or receive the target of introduction as parameter

• contain the logic to create the mixin class

• return an instance of the mixin class

The declaration of org.jboss.aop.Mixin:

package org.jboss.aop;

@Target({ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME)
public @interface Mixin
{

Class target() default java.lang.Class.class;
String typeExpression() default "";
Class[] interfaces();
boolean isTransient() default true;

}

Annotation Bindings

JBoss 2.0.0 49

The parameters of @Mixin are:

• target, the name of the class we want to introduce an interface to.

• typeExpression, a type expression that should resolve to one or more classes we want to introduce an interface
to.

• interfaces, an array of the interfaces we want to introduce, implemented by the mixin class.

• isTransient. Internally AOP makes the main class keep a reference to the mixin class, and this sets if that ref-
erence should be transient or not. The default is true.

target or typeExpression has to be specified, but not both.

An example aspect using @Mixin follows:

package com.mypackage;

import org.jboss.aop.Mixin;
import com.mypackage.POJO;

@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class IntroductionAspect
{

@Mixin (target=com.mypackage.POJO.class, interfaces={java.io.Externalizable.class})
public static ExternalizableMixin createExternalizableMixin(POJO pojo) {

return new ExternalizableMixin(pojo);
}

}

Since this is slightly more complex than the previous examples we have seen, the POJO and ExternalizableMixin

classes are included here.

package com.mypackage;

public class POJO
{

String stuff;
}

package com.mypackage;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class ExternalizableMixin implements Externalizable
{

POJO pojo;

public ExternalizableMixin(POJO pojo)
{

this.pojo = pojo;
}

Annotation Bindings

JBoss 2.0.0 50

public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{

pojo.stuff = in.readUTF();
}

public void writeExternal(ObjectOutput out) throws IOException
{

out.writeUTF(pojo.stuff);
}

}

This has the same effect as the following XML configuration:

<introduction classs="com.mypackage.POJO">
<mixin transient="true">
<interfaces>

java.io.Externalizable
</interfaces>
<class>com.mypackage.ExternalizableMixin</class>
<construction>IntroductionAspect.createExternalizableMixin(this)</construction>
</mixin>
</introduction>

6.7. @Prepare

To prepare a joinpoint or a set of joinpoints for DynamicAOP annotate a field with @Prepare in a class anotated
with @Aspect or @InterceptorDef.

The declaration of org.jboss.aop.Prepare is:

package org.jboss.aop;

@Target({ElementType.FIELD, ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME)
public @interface Prepare {

String value() default "";
}

The single field value contains a pointcut expression matching one or more joinpoints.

To use @Prepare follow this example:

package com.mypackage;

import org.jboss.aop.Prepare;

@InterceptorDef (scope = Scope.PER_VM)
@Bind (pointcut="execution("* com.blah.Test->test(..)")
public class MyInterceptor2 implements Interceptor
{

@Prepare ("all(com.blah.DynamicPOJO)")
public static Pointcut dynamicPOJO;

public Object invoke(Invocation invocation)throws Throwable
{

Annotation Bindings

JBoss 2.0.0 51

return invocation.invokeNext();
}

}

Using XML configuration instead we would write:

<prepare expr="all(com.blah.DynamicPOJO)"/>

This simple example used an @InterceptorDef class for a bit of variety in the examples, and to reiterate that
@Pointcut, @Introduction, @Mixin, @Prepare, @Typedef, @CFlow, @DynamicCFlow and
@AnnotationIntroductionDef can all be used both in @InterceptorDef annotated classes AND @Aspect annot-
ated classes. Same for @Bind, but that is a special case as mentioned above.

6.7.1. @Prepare POJO

You can also annotate a POJO with @Prepare directly in cases where you are using Dynamic AOP, and the exact
bindings are not known at instrumentation time. In this case you annotate the class itself. Here's how it is done:

package com.mypackage;

import org.jboss.aop.Prepare;

@Prepare ("all(this)")
public class MyDynamicPOJO implements Interceptor
{

...
}

all(this) means the same as all(com.blah.MyDynamicPOJO), but the use of all(this) is recommended.

The examples just given equate to this XML

<prepare expr="all(com.blah.MyDynamicPOJO)"/>

To summarise, when using @Prepare within an @Interceptor or @Aspect annotated class, you annotate a field
within that class. When using @Prepare with a POJO you annotate the class itself.

6.8. @TypeDef

To use a typedef, you annotate a field with @TypeDef in a class anotated with @Aspect or @InterceptorDef.

The declaration of org.jboss.aop.TypeDef:

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)

Annotation Bindings

JBoss 2.0.0 52

public @interface TypeDef {
String value();

}

The single value field takes a type expression that resolves to one or more classes. The name of the typedef used
for reference and internally is:

<name of @Aspect/@InterceptorDef annotated class>.<name of @TypeDef annotated field>

Here's how to use it:

package com.mypackage;

import org.jboss.aop.TypeDef;
import org.jboss.aop.pointcut.Typedef;
@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class TypedefAspect
{

@TypeDef ("class(com.blah.POJO)")
public static Typedef myTypedef;

@Bind (pointcut="execution(* \
$typedef{com.mypackage.TypedefAspect.myTypedef}->methodWithTypedef())")

public Object typedefAdvice(Invocation invocation) throws Throwable
{

return invocation.invokeNext();
}

}

The equivalent using XML configuration would be:

<aop>
<aspect class="com.mypackage.TypedefAspect" scope="PER>VM"/>
<typedef name="com.mypackage.TypedefAspect.myTypedef" expr="class(com.blah.POJO)"/>
<bind

pointcut="execution(* \
$typedef{com.mypackage.TypedefAspect.myTypedef}->methodWithTypedef())"
>
<advice name="typedefAdvice" aspect="com.mypackage.TypedefAspect"/>
</bind>
</aop>

6.9. @CFlowDef

To create a CFlow stack, you annotate a field with @CFlowDef in a class anotated with @Aspect or
@InterceptorDef. The declaration of org.jboss.aop.CFlowStackDef is:

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface CFlowStackDef

{
CFlowDef[] cflows();

Annotation Bindings

JBoss 2.0.0 53

}

In turn the declaration of org.jboss.aop.CFlowDef is:

package org.jboss.aop;

public @interface CFlowDef {
boolean called();
String expr();

}

The parameters of @CFlowDef are:

• called, whether the corresponding expr should appear in the stack trace or not.

• expr, a string matching stack a trace element

The name of the CFlowStackDef used for reference and internally is:

<name of @Aspect/@InterceptorDef annotated class>.<name of @CFlowStackDef annotated field>

CFlowStackDef is used like the following example:

package com.mypackage;

import org.jboss.aop.CFlowStackDef;
import org.jboss.aop.pointcut.CFlowStack;

@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class CFlowAspect
{

@CFlowStackDef (cflows={@CFlowDef(expr= "void com.blah.POJO->cflowMethod1()", \
called=false), @CFlowDef(expr = "void com.blah.POJO->cflowMethod2()", \
called=true)})

public static CFlowStack cfNot1And2Stack;

@Bind (pointcut="execution(void com.blah.POJO*->privMethod())", \
cflow="com.mypackage.CFlowAspect.cfNot1And2Stack")

public Object cflowAdvice(Invocation invocation) throws Throwable
{

return invocation.invokeNext();
}

}

The above means the same as this XML:

<aop>
<cflow-stack name="com.mypackage.CFlowAspect.cfNot1And2Stack">
<called expr="void com.blah.POJO->cflowMethod1()"/>
<not-called expr="void com.blah.POJO->cflowMethod2()"/>
</cflow-stack>
</aop>

Annotation Bindings

JBoss 2.0.0 54

6.10. @DynamicCFlowDef

To create a dynamic CFlow you annotate a class implementing org.jboss.aop.pointcut.DynamicCFlow with
@DynamicCFlowDef. The declaration of @org.jboss.aop.DynamicCFlowDef is:

package org.jboss.aop;

@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME)
public @interface DynamicCFlowDef
{
}

Here is a @DynamicCFlow annotated class:

package com.mypackage;

import org.jboss.aop.DynamicCFlowDef;
import org.jboss.aop.pointcut.DynamicCFlow;

@DynamicCFlowDef
public class MyDynamicCFlow implements DynamicCFlow
{

public static boolean execute = false;

public boolean shouldExecute(Invocation invocation)
{

return execute;
}

}

The name of the @DynamicCFlowDef annotated class gets used as the name of the cflow for references.

To use the dynamic cflow we just defined:

package com.mypackage;

@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class CFlowAspect
{

@Bind (pointcut="execution(void com.blah.POJO->someMethod())", \
cflow="com.mypackage.MyDynamicCFlow")

public Object cflowAdvice(Invocation invocation) throws Throwable
{

return invocation.invokeNext();
}

}

6.11. @AnnotationIntroductionDef

You can introduce annotations by annotating a field with the @AnnotationIntroductionDef in a class anotated
with @Aspect or @InterceptorDef. The declaration of org.jboss.aop.AnnotationIntroductionDef is:

Annotation Bindings

JBoss 2.0.0 55

package org.jboss.aop;

@Target (ElementType.FIELD) @Retention(RetentionPolicy.RUNTIME)
public @interface AnnotationIntroductionDef

{
String expr();
boolean invisible();
String annotation();

}

The parameters of @AnnotationIntroductionDef are:

• expr, pointcut matching the classes/constructors/methods/fields we want to annotate.

• invisible, if true: the annotation's retention is RetentionPolicy.CLASS; false: RetentionPolicy.RUNTIME

• annotation, the annotation we want to introduce.

The listings below make use of an annotation called @com.mypackage.MyAnnotation:

package com.mypackage;
public interface MyAnnotation
{

String string();
int integer();
boolean bool();

}

What its parameters mean is not very important for our purpose.

The use of @AnnotationIntroductionDef:

package com.mypackage;

import org.jboss.aop.AnnotationIntroductionDef:
import org.jboss.aop.introduction.AnnotationIntroduction;

@.InterceptorDef (scope=org.jboss.aop.advice.Scope.PER_VM)
@org.jboss.aop.Bind (pointcut="all(com.blah.SomePOJO)")
public class IntroducedAnnotationInterceptor implements Interceptor
{

@org.jboss.aop.AnnotationIntroductionDef \
(expr="method(* com.blah.SomePOJO->annotationIntroductionMethod())", \
invisible=false, \
annotation="@com.mypackage.MyAnnotation \

(string='hello', integer=5, bool=true)")
public static AnnotationIntroduction annotationIntroduction;

public String getName()
{

return "IntroducedAnnotationInterceptor";
}

public Object invoke(Invocation invocation) throws Throwable
{

return invocation.invokeNext();
}

}

Annotation Bindings

JBoss 2.0.0 56

Note that the reference to @com.mypackage.MyAnnotation must use the fully qualified class name, and that the
value for its string parameter uses single quotes.

The previous listings are the same as this XML configuration:

<annotation-introduction
expr="method(* com.blah.SomePOJO->annotationIntroductionMethod())
invisible="false"

>
@com.mypackage.MyAnnotation (string="hello", integer=5, bool=true)

</annotation-introduction>

6.12. @Precedence

You can declare precedence by annotating a class with @Precedence, and then annotate fields where the types are
the various Interfaces/Aspects you want to sort. You annotate fields where the type is an interceptor with
@PrecedenceInterceptor. When the type is an aspect class, you annotate the field with @PrecedenceAdvice. The
definitions of org.jboss.aop.Precedence, org.jboss.aop.PrecedenceInterceptor and org.jboss.aop.PrecedenceAdvice
are

package org.jboss.aop;

@Target({ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME)
public @interface Precedence
{
}

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface PrecedenceInterceptor
{
}

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface PrecedenceAdvice
{

String value();
}

The value() attribute of PrecedenceAdvice is the name of the advice method to use.

The example shown below declares a relative sort order where org.acme.Interceptor must always be invoked be-
fore org.acme.Aspect.advice1() which must be invoked before org.acme.Aspect.advice2():

Annotation Bindings

JBoss 2.0.0 57

import org.jboss.aop.Precedence;
import org.jboss.aop.PrecedenceAdvice;

@Precedence
public class MyPrecedence
{

@PrecedenceInterceptor
org.acme.Interceptor intercept;

@PrecedenceAdvice ("advice1")
org.acme.Aspect precAdvice1;

@PrecedenceAdvice ("advice2")
org.acme.Aspect precAdvice2;

}

The ordering of interceptors/advices defined via annotations that have no precedence defined, is arbitrary.

6.13. @DeclareError and @DeclareWarning

You can declare checks to be enforced at instrumentation time. They take a pointcut and a message. If the pointcut
is matched, the message is printed out. To use this with annotations, annotate fields with DeclareWarning or De-
clareError within a class annotated with @Aspect or @InterceptorDef. The definitions of
org.jboss.aop.DeclareError and org.jboss.aop.DeclareWarning are:

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface DeclareWarning
{

String expr();
String msg();

}

package org.jboss.aop;

@Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME)
public @interface DeclareError
{

String expr();
String msg();

}

For both: the expr() attribute is a pointcut expression that should not occur, and the msg() attribute is the message
to print out if a match is found for the pointcut. If you use DeclareWarning instrumentation/your application will
simply continue having printed the message you supplied. In the case of DeclareError, the message is logged and
an error is thrown, causing instrumentation/your application to stop. Here is an example:

import org.jboss.aop.Aspect;
import org.jboss.aop.pointcut.Pointcut;
import org.jboss.aop.DeclareError;

Annotation Bindings

JBoss 2.0.0 58

import org.jboss.aop.DeclareWarning;

@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class DeclareAspect
{

@DeclareWarning (expr="class($instanceof{VehicleDAO}) AND \
!has(public void *->save())", \
msg="All VehicleDAO subclasses must override the save() method.")

Pointcut warning;

@DeclareError (expr="call(* org.acme.businesslayer.*->*(..)) \
AND within(org.acme.datalayer.*)", \
msg="Data layer classes should not call up to the business layer")

Pointcut error;
}

Annotation Bindings

JBoss 2.0.0 59

7
Dynamic AOP

7.1. Hot Deploment

With JBoss AOP you can change advice and interceptor bindings at runtime. You can unregister existing bindings,
and hot deploy new bindings if the given joinpoints have been instrumented. Hot-deploying within the JBoss ap-
plication server is as easy as putting (or removing) a *-aop.xml file or .aop jar file within the deploy/ directory.
There is also a runtime API for adding advice bindings at runtime. Getting an instance of
org.jboss.aop.AspectManager.instance(), you can add your binding.

org.jboss.aop.advice.AdviceBinding binding = new AdviceBinding("execution(POJO->new(..))", null);
binding.addInterceptor(SimpleInterceptor.class);
AspectManager.instance().addBinding(binding);

First, you allocated an AdviceBinding passing in a pointcut expression. Then you add the interceptor via its class
and then add the binding through the AspectManager. When the binding is added the AspectManager will iterate
through ever loaded class to see if the pointcut expression matches any of the joinpoints within those classes.

7.2. Per Instance AOP

Any class that is instrumented by JBoss AOP, is forced to implement the org.jboss.aop.Advised interface.

public interface InstanceAdvised
{

public InstanceAdvisor _getInstanceAdvisor();
public void _setInstanceAdvisor(InstanceAdvisor newAdvisor);

}

public interface Advised extends InstanceAdvised
{

public Advisor _getAdvisor();
}

The InstanceAdvisor is the interesting interface here. InstanceAdvisor allows you to insert Interceptors at the be-
ginning or the end of the class's advice chain.

public interface InstanceAdvisor
{

public void insertInterceptor(Interceptor interceptor);
public void removeInterceptor(String name);
public void appendInterceptor(Interceptor interceptor);

public void insertInterceptorStack(String stackName);
public void removeInterceptorStack(String name);
public void appendInterceptorStack(String stackName);

JBoss 2.0.0 60

public SimpleMetaData getMetaData();

}

So, there are three advice chains that get executed consecutively in the same java call stack. Those interceptors that
are added with the insertInterceptor() method for the given object instance are executed first. Next, those ad-
vices/interceptors that were bound using regular binds . Finally, those interceptors added with the appendInter-

ceptor() method to the object instance are executed. You can also reference stacks and insert/append full stacks
into the pre/post chains.

Besides interceptors, you can also append untyped metadata to the object instance via the getMetaData() method.

7.3. Preparation

Dynamic AOP cannot be used unless the particular joinpoint has been instrumented. You can force intrumentation
with the prepare functionality

7.4. DynamicAOP with HotSwap

When running JBoss AOP with HotSwap, the dynamic AOP operations may result in the weaving of bytecodes. In
this case, the flow control of joinpoints matched only by prepare expressions is not affected before any advices or
interceptors are applied to them via dynamic aop. Only then, the joinpoint bytecodes will be weaved to start invok-
ing the added advices and interceptors and, as a result, their flow control will be affected.

On the other hand, if HotSwap is disabled, the joinpoints matched by prepare expressions are completely instru-
mented and the flow control is affected before classes get loaded, even if no interceptors are applied to them with
dynamic aop.

To learn how to enable HotSwap, refer to the "Running Aspectized Application" chapter.

Dynamic AOP

JBoss 2.0.0 61

8
JDK 1.4.2 Backwards Compatibility

Despite the fact that it has been a while since the release of JDK 5, there are projects that still require backwards
compatibility with JDK 1.4.2. This is relatively common, and the reasons for it are diverse. To deal with this type
of requirement, JBoss AOP provides two different solutions. By using one of them, you can use all features JBoss
AOP provides, including annotation-related features, and still keep your code backwards compatible with
JDK1.4.2.

8.1. JBoss Retro

The first solution to achieve JDK 1.4.2 backwards compatibility is to use the JBoss Retro tool. JBoss Retro con-
verts JDK 5 compiled bytecodes into bytecodes that can be run using a JDK 1.4.2 virtual machine.

This tool acts as a bytecode processor, and using it is very simple. You just need to write your code using JDK 5
constructs and features, and then compile it, using JDK 5. Next, process the generated bytecodes using JBoss Retro
tool (just like you do when you use aopc compiler), and now your bytecodes are ready to run using a JDK 1.4.2 vir-
tual machine. Notice this solution allows not only the use of JBoss AOP annotations, but of most JDK 5 features
and new API operations.

The simplest way to run JBoss Retro is using the ant task. You just need to declare it:

<taskdef name="retro" classname="org.jboss.ant.tasks.retro.Retro" classpathref="jboss.retro.classpath"/>

And use it as in the following example:

<retro compilerclasspathref="jboss.retro.classpath" destdir=".">
<classpath refid="jboss.retro.classpath"/>
<classpath path="."/>
<src path="."/>

</retro>

This task takes the following parameters:

• compilerclasspathref - This represent the jars needed for the JBoss Retro processor to work. The compiler-

classpath version takes the paths of the jar files, and the compilerclasspathref version takes the name of a
predefined ant path.

• classpath or classpathref - Path to the compiled classes to be processed by JBoss Retro. The classpath ver-
sion takes the path of the directory, and the classpathref version takes the name of a predefined ant path.

• verbose - Default is false. If true, verbose output is generated, which comes in handy for diagnosing unexpec-
ted results.

JBoss 2.0.0 62

• suppress - Default is true. If false, error messages will not be suppressed.

• maxmemory - Sets the maximum memory of the java task that will be forked.

• destdir - the dir where JBoss Retro will write the resulting bytecodes.

It is also possible to run JBoss Retro with the following command line:

$ java -cp <all the JBoss AOP jars and the directory containing files we want to AOP> \
-verbose <true/false> -suppress <true/false> -destdir <
org.jboss.ant.tasks.retro.Weaver \
[-bytecode]<files>+

JBoss Retro is the de facto standard solution JBoss Group provides to achieve JDK 1.4.2 backward compatibility.
However, if you do not have the option to compile your code using JDK 5, you should go with the next solution,
the annotation compiler.

8.2. JDK1.4.2 Annotation Compiler

Unlike JBoss Retro, the annotation compiler does not support all JDK 5 constructs and new APIs. Its functionality
consists in supporting only annotations, that must be written in the form of doclets. Nevertheless, this is enough to
allow the use of all JBoss AOP features, and doesn't require a JDK 5 compiler.

This way, if you can't use a JDK 5 compiler to compile your code, you should stick with the annotation compiler. It
will process your application's bytecodes, transforming doclets into annotations. The result of this transformation is
that your doclets will become viewable by JBoss AOP as if they were regular JDK 5 annotations.

In the next sections, we will see what is the format your doclets need to follow in order to be transformed into an-
notations, and how to use the annotation compiler.

8.1. Annotations with JDK 1.4.2

In JDK 5, annotations must map to an annotation type, which is defined using the following syntax:

package com.mypackage;

public @interface MyAnnotation
{

String myString();
int myInteger();

}

Similarly, annotations for use with the annotation compiler also need to map to a type. And this one is defined in
exactly the same way as above, with the important difference that '@interface' is replaced by 'interface'. i.e. the
simulated annotation type is a normal Java interface:

package com.mypackage;

public interface MyAnnotation extends org.jboss.lang.Annotation

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 63

{
String myString();
int myInteger();

}

One difference from AOP 1.x is that the interfaces defining the annotations must now extend
org.jboss.lang.Annotation, this is because JBoss Retro is now the primary mechanism for using annotations in
JDK 1.4.2.

The syntax for using annotations in JDK 1.4.2 is almost exactly the same as JDK 5 annotations except for these
subtle differences:

• they are embedded as doclet tags

• You use a double at sign, i.e. '@@'

• You MUST have a space after the tag name otherwise you will get a compilation error. (This is the quirkiness
of the QDox doclet compiler used to compile the annotations.')

• You cannot import the annotation type, you must use the fully qualified name of the interface.

• You can only annotate top-level and inner classes, and their constructors, methods and fields. Annotating an-
onyomus classes, local classes, and parameters for constructors or methods is not supported.

• You cannot specify default values for an annotation's value

This example shows an annotated class in JDK 1.4.2:

package com.mypackage;

/**
* @@com.mypackage.MyAnnotation (myString="class", myInteger=5)
*/
public class MyClass
{

/**
* @@com.mypackage.MyAnnotation (myString="field", myInteger=4)
*/

private String myField;

/**
* @@com.mypackage.MyAnnotation (myString="constructor", myInteger=3)
*/

public MyClass()
{
}

/**
* @@com.mypackage.MyAnnotation (myString="method", myInteger=3)
*/

public int myMethod()
{
}

}

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 64

The next aspect is the JDK1.4.2 version of the @Introduction exammple (Chapter 6). Notice the slight difference in
the JDK 1.4.2 annotation: class values don't have the ".class" suffix:

package com.mypackage;

/*
* @@org.jboss.aop.Aspect (scope = Scope.PER_VM)
*/
public class IntroAspect
{

/*
* @org.jboss.aop.Introduction (target=com.blah.SomeClass, \

interfaces={java.io.Serializable})
*/

public static Object pojoNoInterfacesIntro;
}

Now, look at the next example:

package com.mypackage;

import org.jboss.aop.introduction.AnnotationIntroduction;

/**
* @@org.jboss.aop.InterceptorDef (scope=org.jboss.aop.advice.Scope.PER_VM)
* @@org.jboss.aop.Bind (pointcut="all(com.blah.SomePOJO)")
*/
public class IntroducedAnnotationInterceptor implements Interceptor
{

/**
* @@org.jboss.aop.AnnotationIntroductionDef \

(expr="method(* com.blah.SomePOJO->annotationIntroductionMethod())", \
invisible=false, \
annotation="@com.mypackage.MyAnnotation \
(string='hello', integer=5, bool=true)")

*/
public static AnnotationIntroduction annotationIntroduction;

public String getName()
{

return "IntroducedAnnotationInterceptor";
}

public Object invoke(Invocation invocation) throws Throwable
{

return invocation.invokeNext();
}

}

The code above is the jdk1.4.2 version equivalent to the @AnnotationIntroductionDef example we have seen in
Chapter 6. Note that, in the version above, the reference to only uses one '@'. In addition,the value for its string
parameter uses single quotes instead of double ones.

8.2. Enums in JDK 1.4.2

Another JDK 5 feature that JBoss AOP helps introduce to JBoss 1.4.2 are Enums. As an example we can look at
the org.jboss.aop.advice.Scope enum that is used for the @Aspect annotation. Here is the JDK 5 version.

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 65

package org.jboss.aop.advice;

public enum Scope
{

PER_VM, PER_CLASS, PER_INSTANCE, PER_JOINPOINT
}

And it's usage in JDK 5

package com.mypackage;

@Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
public class SomeAspect
{
}

The usage in JDK 1.4.2 is similar:

package com.mypackage;

/**
* @@org.jboss.aop.Aspect (scope=org.jboss.aop.advice.Scope.PER_VM)
*/
public class SomeAspect
{

//...
}

However the declaration of the enumeration is different in 1.4.2:

package org.jboss.aop.advice;

import java.io.ObjectStreamException;

public class Scope extends org.jboss.lang.Enum
{

private Scope(String name, int v)
{

super(name, v);
}

public static final Scope PER_VM = new Scope("PER_VM", 0);
public static final Scope PER_CLASS = new Scope("PER_CLASS", 1);
public static final Scope PER_INSTANCE = new Scope("PER_INSTANCE", 2);
public static final Scope PER_JOINPOINT = new Scope("PER_JOINPOINT", 3);

private static final Scope[] values = {PER_VM, PER_CLASS, PER_INSTANCE, PER_JOINPOINT};

Object readResolve() throws ObjectStreamException
{

return values[ordinal];
}

}

To create your own enum class for use within annotations, you need to inherit from org.jboss.lang.Enum. Each

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 66

enum has two values, a String name, and an integer ordinal. The value used for the ordinal must be the same as it's
index in the static array.

8.3. Using Annotations within Annotations

The annotation compiler allows you to use annotations within annotations. This is best illustrated with an example.
The definitions of the annotation interfaces in JDK 1.4.2:

com.mypackage;

public interface Outer
{

Inner[] values();
}

com.mypackage;

public interface Inner
{

String str();
int integer();

}

The annotations can be applied as follows

com.mypackage;

/**
* @@com.mypackage.Outer ({@@com.mypackage.Inner (str="x", integer=1), \

@@com.mypackage.Inner (str="y", integer=2)})
*/

public class Test
{

Inner[] values();
}

8.4. Using the Annotation Compiler

In order to use the JDK 1.4.2 annotations you have to precompile your files with an annotation compiler.

To use the annotation compiler you can create a simple ant build.xml file

<?xml version="1.0" encoding="UTF-8"?>

<project default="run" name="JBoss/AOP">
<target name="prepare">

Include the jars AOP depends on

<path id="javassist.classpath">

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 67

<pathelement path="../../../javassist.jar"/>
</path>
<path id="trove.classpath">

<pathelement path="../../../trove.jar"/>
</path>
<path id="concurrent.classpath">

<pathelement path="../../../concurrent.jar"/>
</path>
<path refid="jboss.common.core.classpath"/>
<path refid="jboss.common.logging.spi.classpath"/>
<path refid="jboss.common.logging.log4j.classpath"/>
<path refid="jboss.common.logging.jdk.classpath"/>

<pathelement path="../../../jboss-common.jar"/>
</path>
<path id="jboss.aop.classpath">

<pathelement path="../../../jboss-aop.jar"/>
</path>
<path id="qdox.classpath">

<pathelement path="../../../qdox.jar"/>
</path>
<path id="classpath">

<path refid="javassist.classpath"/>
<path refid="trove.classpath"/>
<path refid="jboss.aop.classpath"/>

<path refid="jboss.common.core.classpath"/>
<path refid="jboss.common.logging.spi.classpath"/>
<path refid="jboss.common.logging.log4j.classpath"/>
<path refid="jboss.common.logging.jdk.classpath"/>

<path refid="concurrent.classpath"/>
<path refid="qdox.classpath"/>

</path>

Define the ant task that does the annnotation compilation

<taskdef
name="annotationc"
classname="org.jboss.aop.ant.AnnotationC"
classpathref="jboss.aop.classpath"/>

</target>

<target name="compile" depends="prepare">]></programlisting>
Compile the source files
<programlisting><!CDATA[

<javac srcdir="."
destdir="."
debug="on"
deprecation="on"
optimize="off"
includes="**">

<classpath refid="classpath"/>
</javac>

Run the annotation compiler

<annotationc compilerclasspathref="classpath" classpath="." bytecode="true">
<src path="."/>

</annotationc>
</target>

</project>

The org.jboss.aop.ant.AnnotationC ant task takes several parameters.

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 68

• compilerclasspath, compilerclasspathref, classpath, classpathref and verbose - These have the same
meaning as in the JBoss Retro task.

• bytecode - The default is false. If true the annotation compiler instruments (i.e. modifies) the class files with
the annotations. In this case, the classes must be precompiled with javac and classpath or classpathref must
be specified.

• xml - Default is false. If true an xml file is generated containing information of how to attach the annotations at
a later stage in the aop process.

• output - If xml="true", this lets you specify the name you would like for the generated xml file. The default
name is metadata-aop.xml

You cannot currently specify both bytecode and xml.

You can also run org.jboss.aop.ant.AnnotationC from the command line, you need

$ java -cp <all the JBoss AOP jars and the directory containing files we want to AOP> \
org.jboss.aop.annotation.compiler.AnnotationCompiler \
[-xml [-o outputfile]] [-bytecode]<files>+

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage is:

$ annotationc <classpath> [-verbose] [-xml [-o outputfile]] [-bytecode] <dir_or_file>+

• classpath - path to your classes and any jars your code depends on

The other parameters are the same as above.

JDK 1.4.2 Backwards Compatibility

JBoss 2.0.0 69

9
Installing

This section defines how to install JBoss AOP standalone, within JBoss 4.0.x, JBoss 4.2.x and within JBoss 5.x

9.1. Installing Standalone

There's nothing really to install if you're running outside the JBoss application server. If you are using JDK 1.4.x,
use the libraries under the lib-14/ directory to build your JBoss AOP applications. If you're using JDK 5.0, use the
libraries under lib-50/.

9.2. Installing with JBoss 4.0.x amd JBoss 4.2.x Application
Server for JDK 5

To install JBoss AOP in JBoss 4.0.x or JBoss 4.2.x Application Server: with JDK 5, there is an ant build script to
install into the application server. It lives in jboss-40-install/jboss-aop-jdk50.deployer/build.xml. Modify
jboss-40-install/jboss-aop-jdk50.deployer/jboss.properties to point to the the root of your JBoss installa-
tion and specify the application server configuration you want to upgrade. These are the steps taken by the ant
script:

1. Back up the existing jboss-40-install/jboss-aop-jdk50.deployer to server/

<config-name>/deploy/jboss-aop-jdk50.deployer.bak

2. Copy the files from jboss-40-install/jboss-aop-jdk50.deployer over the files that already exist in your
existing JBoss Application Server distribution under server/

<config-name>/deploy/jboss-aop-jdk50.deployer

3. In JBoss 4.0.4.GA and later, move server/

<config-name>/deploy/jboss-aop-jdk50.deployer/javassist.jar to server/

<config-name>/lib/javassist.jar. Any existing javassist.jar in that location is copied to server/

JBoss 2.0.0 70

<config-name>/deploy/jboss-aop-jdk50.deployer.bak/lib/javassist.bak

4. If you NOT upgrading from a previous AOP 2 distribution, open up server/

<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-aspect-library-jdk50.jar and delete all
classes and subpackages under org.jboss.aop. In AOP 2.0 we changed the packaging, these classes now ex-
ist inside server/<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-aop-as4-deployer.jar.
Also, we delete any files that also exist in server/

<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-standalone-aspect-library-jdk14.jar

9.3. Installing with JBoss 4.0.x Application Server for JDK 1.4

To install JBoss AOP in JBoss 4.0.x with JDK 1.4 (JBoss 4.2.x requires JDK 5), there is an ant build script to in-
stall into the application server. It lives in jboss-40-install/jboss-aop-jdk14.deployer/build.xml. Modify
jboss-40-install/jboss-aop-jdk14.deployer/jboss.properties to point to the the root of your JBoss installa-
tion and specify the application server configuration you want to upgrade. These are the steps taken by the ant
script:

1. Back up the existing jboss-40-install/jboss-aop.deployer (if upgrading from AOP 1.x) or jboss-

40-install/jboss-aop-jdk14.deployer (if upgrading from AOP 2.x) to server/

<config-name>/deploy/jboss-aop.deployer.bak

2. Copy the files from jboss-40-install/jboss-aop-jdk14.deployer to server/

<config-name>/deploy/jboss-aop-jdk50.deployer

3. In JBoss 4.0.4.GA and later, move server/

<config-name>/deploy/jboss-aop-jdk50.deployer/javassist.jar to server/

<config-name>/lib/javassist.jar. Any existing javassist.jar in that location is copied to server/

<config-name>/deploy/jboss-aop-jdk50.deployer.bak/lib/javassist.bak

4. In JBoss 4.0.4.GA and later, move server/

<config-name>/deploy/jboss-aop-jdk50.deployer/jbossretro-rt.jar to server/

<config-name>/lib/jbossretro-rt.jar. Any existing jbossretro-rt.jar in that location is copied to server/

<config-name>/deploy/jboss-aop-jdk50.deployer.bak/lib/jbossretro-rt.bak

5. In JBoss 4.0.4.GA and later, move client/jbossretro-rt.jar to client/jbossretro-rt.bak.
6. In JBoss 4.0.4.GA and later, move client/javassist.jar to client/javassist.bak.
7. If you NOT upgrading from a previous AOP 2 distribution, open up server/

<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-aspect-library-jdk50.jar and delete all
classes and subpackages under org.jboss.aop. In AOP 2.0 we changed the packaging, these classes now ex-
ist inside server/<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-aop-as4-deployer.jar.
Also, we delete any files that also exist in server/

<config-name>/deploy/jboss-aop-jdk50.deployer/jboss-standalone-aspect-library-jdk14.jar

9.4. Installing with JBoss Application Server 5

JBoss 5 is not released yet, this section will be modified when the packaging is finalised, but all you should need to
do is copy the contents of the jboss-50-install/lib directory into $JBOSS_ROOT/lib, and copy the contents of
the jboss-50-install/jboss-aop-jboss5.deployer folder into
$JBOSS_ROOT/server/<config-name>/deployers/jboss-aop-jboss5.deployer

Installing

JBoss 2.0.0 71

10
Building and Compiling Aspectized Java

10.1. Instrumentation modes

JBoss AOP works by instrumenting the classes you want to run. This means that modifications to the bytecode are
made in order to add extra information to the classes to hook into the AOP library. JBoss AOP allows for two types
of instrumentation

• Precompiled - The classes are instrumented in a separate aop compilation step before they are run.

• Loadtime - The classes are instrumented when they are first loaded.

This chapter describes the steps you need to take to precompile your classes with the aop precompiler.

10.2. Ant Integration

JBoss AOP comes with an ant task that you can use for precompiling your classes with the aop precompiler. An ex-
ample build.xml file is the basis for the explanation. (It is quite similar to the one used in the previous chapter.)
There will be differences in the build.xml file if you are using JDK 1.4.2 or JDK 5.0, these are outlined below:

<?xml version="1.0" encoding="UTF-8"?>

<project default="compile" name="JBoss/AOP">
<target name="prepare">

Define the source directory, and the directory to compile classes to. If you're not fussy, they can point to the same
directory.

<property name="src.dir" value="PATH TO YOUR SOURCE DIR">
<property name="classes.dir" value="PATH TO YOUR DIR FOR COMPILED CLASSES">

Include the jars AOP depends on, these are common to all JDK's

<path id="javassist.classpath">
<pathelement path="../../../javassist.jar"/>

</path>

<path id="trove.classpath">
<pathelement path="../../../trove.jar"/>

JBoss 2.0.0 72

</path>

<path id="concurrent.classpath">
<pathelement path="../../../concurrent.jar"/>

</path>

<path refid="jboss.common.core.classpath"/>
<path refid="jboss.common.logging.spi.classpath"/>
<path refid="jboss.common.logging.log4j.classpath"/>
<path refid="jboss.common.logging.jdk.classpath"/>

<pathelement path="../../../jboss-common.jar"/>
</path>

<path id="lib.classpath">
<path refid="javassist.classpath"/>
<path refid="trove.classpath"/>
<path refid="jboss.aop.classpath"/>
<path refid="jboss.common.core.classpath"/>
<path refid="jboss.common.logging.spi.classpath"/>
<path refid="jboss.common.logging.log4j.classpath"/>
<path refid="jboss.common.logging.jdk.classpath"/>
<path refid="concurrent.classpath"/>

</path>

This snippet shows what to do for JDK 1.4. It will also work with JDK 5.0 if your classes do not use JDK 5.0 style
annotations and enums:

<!-- JDK version 1.4.2 -->
<!-- Do not include this if using JDK 5 with annotations!!!! -->

<path id="jboss.aop.classpath">
<pathelement path="../../../jboss-aop.jar"/>

</path>

<!-- JDK version 1.4.2 - END -->

This snippet shows what to do for JDK 5.0 if you are using JDK 5.0 annotations:

<!-- JDK version 1.5 -->
<!-- Do not include this if using JDK 1.4.2!!!! -->

<path id="jboss.aop.classpath">
<pathelement path="../../../jboss-aop-jdk50.jar"/>

</path>

<!-- JDK version 1.5 - END -->

(You should only use one of the two previous snippets for setting up jboss.aop.classpath)

Now we set up the full classpath of all the needed libraries:

<path id="classpath">
<path refid="lib.classpath"/>
<path refid="jboss.aop.classpath"/>

</path id="classpath">

Building and Compiling Aspectized Java

JBoss 2.0.0 73

Define the org.jboss.aop.ant.AopC ant aop precompiler task:

<taskdef name="aopc" classname="org.jboss.aop.ant.AopC"
classpathref="jboss.aop.classpath"/>

</target>

<target name="compile" depends="prepare">

Compile the files (from the source directory to the compiled classes directory:

<javac srcdir="${src.dir}"
destdir="${classes.dir}"
debug="on"
deprecation="on"
optimize="off"
includes="**">
<classpath refid="classpath"/>

</javac>

Now use the ant aop precompiler task, it reads the files from the

<aopc compilerclasspathref="classpath" verbose="true">
<classpath path="${classes.dir}"/>
<src path="${classes.dir}"/>
<include name="**/*.class"/>
<aoppath path="jboss-aop.xml"/>
<aopclasspath path="aspects.jar"/>

</aopc>
</target>

</project>

If you are using JDK 1.4.2 and wish to use annotations, you need to define the org.jboss.aop.ant.AnnotationC

ant task, and run that BEFORE you invoke the org.jboss.aop.ant.AopC task. How to do this is shown in the pre-
vious chapter.

The org.jboss.aop.ant.AopC ant task takes several parameters.

• compilerclasspath or compilerclasspathref - These are interchangable, and represent the jars needed for
the aop precompiler to work. The compilerclasspath version takes the paths of the jar files, and the com-

pilerclasspathref version takes the name of a predefined ant path. They can be specified as attributes of
aopc, as shown above. compilerclasspath can also be specified as a child element of aopc, in which case you
can use all the normal ant functionality for paths (e.g. fileset).

• classpath or classpathref - Path to the compiled classes to be instrumented. The classpath version takes the
path of the directory, and the classpathref version takes the name of a predefined ant path. They both be spe-
cified as attributes of aopc. classpath can also be specified as a child element of aopc, as shown above, in
which case you can use all the normal ant functionality for paths (e.g. fileset). The full classpath of the underly-

Building and Compiling Aspectized Java

JBoss 2.0.0 74

ing java process will be classpath + compilerclasspath.

• src - A directory containing files to be transformed. You can use multiple src elements to specify more that one
root directory for transformation.

• include - This is optional and it serves as a filter to pick out which files within src should be transformed. You
can use wildcards within the name expression, and you can also use multiple include elements.

• verbose - Default is false. If true, verbose output is generated, which comes in handy for diagnosing unexpec-
ted results.

• report - Default is false. If true, the classes are not instrumented, but a report called aop-report.xml is gener-
ated which shows all classes that have been loaded that pertain to AOP, what interceptors and advices that are
attached, and also what metadata that has been attached. One particularly useful thing is the unbounded section.
It specifys all bindings that are not bound. It allows you to debug when you might have a typo in one of your
XML deployment descriptors.

Report generation works on the instrumented classes, so to get valid data in your report, you have to to make
two passes with aopc. First you run aopc with report="false" to instrument the classes, and then you run aopc

with report="true" to generate the report.

• aoppath - The path of the *-aop.xml file containing the xml configuration of your bindings. Files or Director-
ies can be specified. If it is a directory, JBoss AOP will take all aop.xml files from that directory. This gets
used for the jboss.aop.path optional system property which is described in the "Command Line" section. If
you have more than one xml file, for example if you have both a "normal" jboss-aop.xml file, and a
metadata-aop.xml file having used the JDK 1.4.2 annotation compiler, you can specify these as follows:

<aoppath>
<pathelement path="jboss-aop.xml"/>
<pathelement path="metadata-aop.xml"/>
<pathelement path="xmldir"/>
</aoppath>

• aopclasspath - This should mirror your class path and contain all JARs/directories that may have annotated as-
pects (Ses Chapter "Annotated Bindings"). The AOPC compiler will browser each class file in this path to de-
termine if any of them are annotationed with @Aspect. This gets used for the jboss.aop.class.path optional
system property which is described in the "Command Line" section. If you have more than one jar file, you can
specify these as follows:

<aopclasspath>
<pathelement path="aspects.jar"/>
<pathelement path="foo.jar"/>
</aopclasspath>

• maxsrc - The ant task expands any directories in src to list all class files, when creating the parameters for the
java command that actually performs the compilation. On some operating systems there is a limit to the length
of vaid command lines. The default value for maxsrc is 1000. If the total length of all the files used is greater
than maxsrc, a temporary file listing the files to be transformed is used and passed in to the java command in-
stead. If you have problems running the aopc task, try setting this value to a value smaller than 1000.

Building and Compiling Aspectized Java

JBoss 2.0.0 75

10.3. Command Line

To run the aop precompiler from the command line you need all the aop jars on your classpath, and the class files
you are instrumenting must have everything they would need to run in the java classpath, including themselves, or
the precompiler will not be able to run.

The jboss.aop.path optional system property points to XML files that contain your pointcut, advice bindings, and
metadata definitions that the precompiler will use to instrument the .class files. The property can have one or files it
points to delimited by the operating systems specific classpath delimiter (';' on windows, ':' on unix). Files or Dir-
ectories can be specified. If it is a directory, JBoss AOP will take all aop.xml files from that directory.

The jboss.aop.class.path optional system property points to all JARs or directories that may have classes that
are annotated as @Aspect (See Chapter "Annotated Bindings"). JBoss AOP will browse all classes in this path to
see if they are annotated. The property can have one or files it points to delimited by the operating systems specific
classpath delimiter (';' on windows, ':' on unix). Note for this to have effect with JDK 1.4, you first have to run the
annotation compiler with bytecode=true.

It is invoked as:

$java -classpath ... [-Djboss.aop.path=...] [-Djboss.aop.class.path=...] \
org.jboss.aop.standalone.Compiler <class files or directories>

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage for JDK 1.4 is:

$ aopc <classpath> [-aoppath ...] [-aopclasspath ...] [-report] [-verbose] \
<class files or directories>+

And for JDK 5:

$ aopc15 <classpath> [-aoppath ...] [-aopclasspath ...] [-report] [-verbose] \
<class files or directories>+

• classpath - path to your classes and any jars your code depends on

The other parameters are the same as above.

Building and Compiling Aspectized Java

JBoss 2.0.0 76

11
Running Aspectized Applications

This section will show you how to run JBoss AOP with standalone applications and how to run it integrated with
the JBoss application server.

11.1. Loadtime, Compiletime and HotSwap Modes

There are 3 different modes to run your aspectized applications. Precompiled, loadtime or hotswap. JBoss AOP
needs to weave your aspects into the classes which they aspectize. You can choose to use JBoss AOP's precompiler
to accomplish this (Compiletime) or have this weavining happen at runtime either when the class is loaded
(Loadtime) or after it (HotSwap).

Compiletime happens before you run your application. Compiletime weaving is done by using the JBoss AOP pre-
compiler to weave in your aspects to existing .class files. The way it works is that you run the JBoss AOP precom-
piler on a set of .class files and those files will be modified based on what aspects you have defined. Compiletime
weaving isn't always the best choice though. JSPs are a good instance where compiletime weaving may not be feas-
ible. It is also perfectly reasonable to mix and match compile time and load time though. If you have load-time
transformation enabled, precompiled aspects are not transformed when they are loaded and ignored by the class-
loader transformer.

Loadtime weaving offers the ultimate flexibility. JBoss AOP does not require a special classloader to do loadtime
weaving, but there are some issues that you need to think about. JDK 1.4 does not have a standard simple way of
transforming/instrumenting classes at runtime, so what JBoss AOP does is have a way to modify
java.lang.ClassLoader.class to add the appropriate hooks. Its pretty simple. Take a look at the source under
org.jboss.aop.hooks package and you'll see what we're doing is not that magical at all. Although this JDK 1.4
works with JDK 5, JDK5 actually has a simple standard mechanism of hooking in a class transformer through the -

javaagent. JBoss AOP an additional load-time transformer that can hook into classloading via this standard mech-
anism.

Load-time weaving also has other serious side effects that you need to be aware of. JBoss AOP needs to do the
same kinds of things that any standard Java profiling product needs to do. It needs to be able to process bytecode at
runtime. This means that boot can end up being significantly slowed down because JBoss AOP has to do a lot of
work before a class can be loaded. Once all classes are loaded though, load-time weaving has zero effect on the
speed of your application. Besides boottime, load-time weaving has to create a lot of Javassist datastructure that
represent the bytecode of a particular class. These datastructures consume a lot of memory. JBoss AOP does its
best to flush and garbage collect these datastructures, but some must be kept in memory. We'll talk more about this
later.

HotSwap weaving is a good choice if you need to enable aspects in runtime and don't want that the flow control of
your classes be changed before that. When using this mode, your classes are instrumented a minimum necessary
before getting loaded, without affecting the flow control. If any joinpoint becomes intercepted in runtime due to a

JBoss 2.0.0 77

dynamic AOP operation, the affected classes are weaved, so that the added interceptors and aspects can be invoked.
As the previous mode, hot swap contains some drawbacks that need to be considered.

11.2. Regular Java Applications

JBoss AOP does not require an application server to be used. Applications running JBoss AOP can be run stan-
dalone outside of an application server in any standard Java application. This section focuses on how to run JBoss
AOP applications that don't run in the JBoss application server.

11.2.1. Precompiled instrumentation

Running a precompiled aop application is quite similar to running a normal java application. In addition to the
classpath required for your application you need to specify the files required for aop:

• javassist.jar

• trove.jar

• concurrent.jar

• jboss-common.jar

• jboss-aop.jar

• or jboss-aop-jdk50.jar

- depending on if you are using JDK 1.4 (jboss-aop.jar) or JDK 5.0 (jboss-aop-jdk50.jar)

JBoss AOP finds XML configuration files in these two ways:

• You tell JBoss AOP where the XML files are. Set the jboss.aop.path system property. (You can specify mul-
tiple files or directories separated by ':' (*nix) or ';' (Windows), i.e. -

Djboss.aop.path=jboss-aop.xml;metadata-aop.xml) If you specify a directory, all aop.xml files will be
loaded from there as well.

• Let JBoss AOP figure out where XML files are. JBoss AOP will look for all XML files that match this pattern
/META-INF/jboss-aop.xml. So, if you package your jars and put your JBoss AOP XML files within /

META-INF/jboss-aop.xml, JBoss AOP will find these files.

If you are using annotated bindings (See Chapter "Annotated Bindings"), you must tell JBoss AOP which JARS or
directories that may have annotated @Aspects. To do this you must set the jboss.aop.class.path system prop-
erty. (You can specify multiple jars or directories separated by ':' (*nix) or ';' (Windows), i.e. -

Djboss.aop.class.path=aspects.jar;classes)

So to run a precompiled AOP application, where your jboss-aop.xml file is not part of a jar, you enter this at a com-
mand prompt:

$ java -cp=<classpath as described above> -Djboss.aop.path=<path to jboss-aop.xml> \
-Djboss.aop.class.path=aspects.jar

Running Aspectized Applications

JBoss 2.0.0 78

com.blah.MyMainClass

To run a precompiled AOP application, where your application contains a jar with a META-INF/jboss-aop.xml
file, you would need to do this from the command-line:

$ java -cp=<classpath as described above> com.blah.MyMainClass

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage for JDK 1.4 is:

$ run-precompiled classpath [-aoppath path_to_aop.xml] [-aopclasspath path_to_annotated] \
com.blah.MyMainClass [args...]

For JDK 5:

$ run-precompiled15 classpath [-aoppath path_to_aop.xml] [-aopclasspath path_to_annotated] \
com.blah.MyMainClass [args...]

If your application is not in a jar with a META-INF/jboss-aop.xml file, you must specify the path to your
*-aop.xml files in the -aoppath parameter, and if your class comtains aspects configured via annotations (@Aspect
etc.) you must pass in this classpath via the -aopclasspath parameter. (For JDK 1.4, you must have compiled the
annotations first).

11.2.2. Loadtime

This section describes how to use loadtime instrumentation of classes with aop. The classes themselves are just
compiled using Java, but are not precompiled with the aop precompiler. (If you want to use annotations with JDK
1.4, you will still need to use the JDK 1.4 Annotation Compiler). In the examples given if your classes are con-
tained in a jar with a META-INF/jboss-aop.xml file, you would omit the -Djboss.aop.path system property.

11.2.2.1. Loadtime JDK 1.4

In order to do loadtime weaving of aspects with JDK 1.4, we had to massage java.lang.ClassLoader.
java.lang.ClassLoader is modified to add hooks for class transformation before class loading. It is very similar to
JDK 5's built in ability to define class transformers. What you have to do is generate a modification of
java.lang.ClassLoader and add this class to the default bootstrap class path (bootclasspath) for your classes to
get instrumented at loadtime. The classes used are dependent upon the VM. At present this custom classloader has
only been tested with Sun's J2SE 1.4.x and 5.0. The steps to compile and use the custom classloader are shown be-
low.

$ java -cp=<classpath as described above> \
org.jboss.aop.hook.GenerateInstrumentedClassLoader <output dir>

Running Aspectized Applications

JBoss 2.0.0 79

For the following example, the aop boot classpath should be the output dir specified above, followed by the
jars needed for AOP, i.e. javassist.jar, trove.jar, concurrent.jar, jboss-common.jar and jboss-aop.jar.
You separate the classpath elements as normal, with ';' (Windows) or ':' (Unix). The path to your classes should
NOT be included here! You then use this aop boot classpath as the argument for -Xbootclasspath option as
shown here:

$ java -Xbootclasspath/p:<aop boot classpath as described> \
-Djboss.aop.path=<path to jboss-aop.xml> \
-classpath <path to your classes> com.blah.MyMainClass

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files:

$ run-load-boot classpath [-aoppath path_to_aop.xml] [-aopclasspath path_to_annotated] \
com.blah.MyMainClass [args...]

The parameters have the same meaning as for the run-precompiled scripts. (Since this is for JDK 1.4, you must
have compiled the annotations first). This script both creates the instrumented class loader and makes sure that that
the JAVA_HOME environment variable has been set (Your job is to make sure it points to a 1.4 distribution!).

11.2.2.2. Loadtime with JDK 5

JDK 5.0 has a pluggable way of defining a class transformer via the java.lang.instrument package. JBoss AOP
uses this mechanism to weave aspects at class load time with JDK 5. Using loadtime with JDK 5 is really easy. All
you have to do is define an additional standard switch on the Java command line. -javaa-

gent:jboss-aop-jdk50.jar. For these examples make sure that you use jboss-aop-jdk50.jar and not jboss-
aop.jar in your classpath. Here's how run an AOP application in JDK 5.0 with loadtime instrumentation, where
your jboss-aop.xml file is not part of a jar:

$ java -cp=<classpath as described above> -Djboss.aop.path=<path to jboss-aop.xml> \
-javaagent:jboss-aop-jdk50.jar com.blah.MyMainClass

And to run an AOP application in JDK 5.0 with loadtime instrumentation, where your application contains a jar
with a META-INF/jboss-aop.xml file:

$ java -cp=<classpath as described above> -javaagent:jboss-aop-jdk50.jar \
com.blah.MyMainClass

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage for JDK 5 is:

$ run-load15 classpath [-aoppath path_to_aop.xml] [-aopclasspath path_to_annotated] \
com.blah.MyMainClass [args...]

The parameters have the same meaning as for the run-precompiled scripts.

Running Aspectized Applications

JBoss 2.0.0 80

If you invoke the previous java examples with ant, by using the ant java task, make sure that you set fork="true"
in the ant java task. Failure to do so, causes the java task to execute in the same VM as ant which is already run-
ning. This means that the special classloader used to do the loadtime transformations does not replace the standard
one, so no instrumentation takes place.

11.2.2.3. Loadtime using JRockit

In JRockit the -Xbootclass/p option does not work, so we cannot replace the classloader. Instead we plug natively
into its JVM using vendor specific hooks to provide transformation when a class is loaded. All you have to do is
define an additional switch on the Java command line. -Xmanage-

ment:class=org.jboss.aop.hook.JRockitClassPreProcessor Here's how run an AOP application in JDK 1.4
with loadtime instrumentation, with JRockit:

$ java -cp=<classpath as described above> -Djboss.aop.path=<path to jboss-aop.xml> \
-Xmanagement:class=org.jboss.aop.hook.JRockitClassPreProcessor com.blah.MyMainClass

The above will also work with JRockit 5.0, but this can also use the "normal" -javaagent switch.

11.2.2.4. Improving Loadtime Performance

Boss AOP needs to do the same kinds of things that any standard Java profiling product needs to do. It needs to be
able to process bytecode at runtime before a class is loaded. JBoss AOP has to do a lot of work before a class can
be loaded. This means that boot time can end up being significantly slowed down. Once all classes are loaded
though, load-time weaving has zero effect on the speed of your application.

Besides boottime, load-time weaving has to create a lot of Javassist datastructures that represent the bytecode of a
particular class. These datastructures consume a lot of memory. JBoss AOP does its best to flush and garbage col-
lect these datastructures, but some must be kept in memory. This section focuses on how you can improve the per-
formance of Loadtime weaving.

Increase the Java Heapspace
In Java, when your application is getting close to eating up all of its memory/heapspace, the Java Garbage Col-
lector starts to run more frequently and aggressively. When the GC starts running more often the performance
of your application will suffer. JBoss AOP does its best to balance bootup speed vs. memory consumption, but
it does require loading bytecode into Javassist datastructures so it can analyze and transform a class. For speed
purposes, the datastructures are cached thus leading to the extra memory consumption. Javassist structures of
non-transformed classes are placed a SoftReference cache, so they are GC'd when memory is running low.
Transformed classes, however, are locked in the cache. Transformed classes are help in memory, as they may
effect pointcut matching on classes that haven't been loaded yet.

To increase your Heap size, use the standard -Xmx switch.

Filtering
Filtering probably has the greatest effect on overall boot-time speed. If you've ever worked with a Java profil-
ing product before, you probably noticed that it has an option to filter classes that you are not interested in pro-
filing. THis can speed up performance of the tool. JBoss AOP has to analyze every class in the system to make
sure it does not need to be transformed. THis is one reason why load-time weaving can be so slow. You can
give JBoss AOP a lot of help by specifying sets of classes that do not need to be transformed.

Running Aspectized Applications

JBoss 2.0.0 81

To enable filtering, you can use the jboss.aop.exclude System Property. This System Property is a comma
delimited list. The strings in the list can be package names and/or classnames. No wildcards are allowed. Pack-
ages/classes within this list will ignored by JBoss AOP.

java -Djboss.aop.exclude=org.jboss,org.apache ...

There is also a mirror opposite of exclude. The System Property jboss.aop.include overrides any thing spe-
cified with exclude.

Turn off optimizations
To increase overall runtime performance, JBoss AOP has to dynamically create a lot of extra code. If you turn
off these optimizations, JBoss AOP can weave a bit quicker. There is a good chance, depending on your applic-
ation that you will not even notice that these optimizations are turned off. The jboss.aop.optimized system
property can be set to turn off optimizations.

java -Djboss.aop.optimized=false ...

Turn off pruning
JBoss AOP tries to aggressive prune cached Javassist structures. This may, may not have a tiny effect on per-
formance. The jboss.aop.prune system property can be set to turn off pruning.

java -Djboss.aop.prune=false ...

-client/-server
Strangely enough, it seems that the -client VM switch is a little faster for JBoss AOP loadtime weaving that -
server. If you are using the -server VM, trying switching to -client (the default).

bootclasspath Vs. JDK5 -javaagent
It is significantly slower to use the -javaagent vs. the JDK 1.4 bootclasspath approach. So, if you are using
JDK5, use the JDK1.4 bootclasspath approach.

Ignore
A way to completely ignore classes from being instrumented. This overrides whatever you have set up using
the include/exclude filters. The system property is jboss.aop.ignore, and you can use wildcards in the class-
names. As for include/exclude you may specify a comma separated list of class name patterns. This following
example avoids instrumenting the cglib generated proxies for hibernate:

java -Djboss.aop.ignore=*$$EnhancerByCGLIB$$*

11.2.3. HotSwap

The HotSwap feature allows bytecode of your classes to be weaved in runtime. This results in application flow con-
trol changes to your classes only when joinpoints become intercepted (to do this, use the dynamic aop funcionality

Running Aspectized Applications

JBoss 2.0.0 82

provided by JBoss AOP). This is a mode to be considered when you want to assure the flow control of your classes
will be kept intact until a binding or a interceptor is added.

This mode is currently provided through the java.lang.instrument.Instrumentation hot swap functionality,
which is part of the JVMTI (Java Virtual Machine Tool Interface) added in JDK5. So, you cannot run JBoss AOP
in this mode when using a previous JDK version.

To enable HotSwap, you have to add an argument to the Java command line in a very similar way to the "Loadtime
with JDK5" mode: -javaagent:jboss-aop-jdk50.jar=-hotSwap. The difference is that the -hotSwap argument
was added to the agent parameter list.

This way, if your jboss-aop.xml file is contained in a jar file, run:

$ java -cp=<classpath as described above> -Djboss.aop.path=<path to jboss-aop.xml> \
-javaagent:jboss-aop-jdk50.jar=-hotSwap com.blah.MyMainClass

And if your jboss-aop.xml file is contained in a jar, run the following command line:

$ java -cp=<classpath as described above> -javaagent:jboss-aop-jdk50.jar=-hotSwap \
com.blah.MyMainClass

The run-load15HotSwap batch/script files contained in the /bin folder of the distribution are similar to the run-

load15 ones, described in the previous subsection. All aop libs are included in these script files. To use them, run:

$ run-load15 classpath [-aoppath path_to_aop.xml] [-aopclasspath path_to_annotated] \
com.blah.MyMainClass [args...]

When hotswap is enabled, the prunning of classes is turned off. Therefore, if you try to configure the
jboss.aop.prune option as true, this setup will be ignored.

As with the "Loadtime with JDK5" mode, the HotSwap mode results in a boot time delay. Besides this drawback,
the execution of some dynamic aop operations may be slower than in the other modes, when classes need to be hot
swapped. The available options to tune performance are the same as described in the "Improving Loadtime Per-
formance" subsection, except the pruning of classes.

11.3. JBoss Application Server

JBoss AOP is integrated with JBoss 4.0.1+ and JBoss 3.2.6+ application server. The integration steps are different
depending on what version of JBoss AS you are using and what JDK version you are using. It is also dependent on
whether you want to use loadtime or compiletime instrumentation.

If you wish to use JBoss AS 4.0.0 you will need to use JBoss AOP 1.0 Final since later releases of JBoss AOP
leverage improvements in JBoss's deployement architecture. If you do this please consult the docs for JBoss AOP
1.0 Final. It is recommended though that you use the latest versions of JBoss AOP and AS.

Running Aspectized Applications

JBoss 2.0.0 83

Based on what JDK you are on and what loadtime weaving option you want to you, you must configure JBoss AS
differently.

11.3.1. Packaging AOP Applications

To deploy an AOP application in JBoss you need to package it. AOP is packaged similarly to SARs(MBeans). You
can either deploy an XML file directly in the deploy/ directory with the signature *-aop.xml along with your pack-
age (this is how the base-aop.xml, included in the jboss-aop.deployer file works) or you can include it in the jar
file containing your classes. If you include your xml file in your jar, it must have the file extension .aop and a
jboss-aop.xml file must be contained in a META-INF directory, i.e. META-INF/jboss-aop.xml.

If you want to create anything more than a non-trivial example, using the .aop jar files, you can make any top-level
deployment contain a .aop file containing the xml binding configuration. That is you can have a .aop file in an .ear
file, or a .aop file in a war file etc. The bindings specified in the META-INF/jboss-aop.xml file contained in the
.aop file will affect all the classes in the whole war!

To pick up a .aop file in an .ear file, it must be listed in the .ear/META-INF/application.xml as a java module,
e.g.:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN'

'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
<display-name>AOP in JBoss example</display-name>
<module>

<java>example.aop</java>
</module>
<module>

<ejb>aopexampleejb.jar</ejb>
</module>
<module>

<web>
<web-uri>aopexample.war</web-uri>
<context-root>/aopexample</context-root>

</web>
</module>

</application>

Note that in newer versions of JBoss (>= 4.0.5), the contents of the .ear file are deployed in the order they are listed
in the application.xml. When using loadtime weaving the bindings listed in the example.aop file must be deployed
before the classes being advised are deployed, so that the bindings exist in the system before the ejb, servlet etc.
classes are loaded. This is acheived by listing the .aop file at the start of the application.xml. Older versions of
JBoss did not have this issue since the contained .aop files were deployed before anything else, and this still holds
true for other types of archives such as .sar and .war files.

11.3.2. JBoss 4.x and JDK 1.4

JBoss AOP comes distributed with the JBoss 4.x Application Server. It is best to download the latest version and
update your JBoss Application Server installation as described in the "Installing" chapter of this guide. Also, the

Running Aspectized Applications

JBoss 2.0.0 84

version distributed with JBoss 4.x Application Server may not be up to date. Check ht-
tp://www.jboss.org/products/aop to see if a new version of JBoss AOP is available. To install a new version re-
move the jboss-aop.deployer file from the JBoss AS deploy/ directory and copy the jboss-aop.deployer directory
from the JBoss AOP distribution to the JBoss AS deploy/ directory. This jboss-aop.deployer/ is in the JBoss AOP
distribution within the jboss-40-install/ directory.

JBoss 4.x Application Server works out of the box with precompiled applications. If you want to do load-time
transformations, you must edit jboss-aop.deployer/META-INF/jboss-service.xml as follows:

The jboss-aop.deployer file contains some MBeans that deploy and manage the AOP framework.

<mbean code="org.jboss.aop.deployment.AspectManagerService"
name="jboss.aop:service=AspectManager">
<attribute name="EnableLoadtimeWeaving">false</attribute>
<!-- These switches are only relevant when EnableLoadtimeWeaving is true -->
<attribute name="SuppressTransformationErrors">true</attribute>
<attribute name="Prune">true</attribute>
<attribute name="Include">org.jboss.test</attribute>
<attribute name="Exclude">org.jboss.</attribute>
<attribute name="Optimized">true</attribute>
<attribute name="Verbose">false</attribute>

</mbean>

<mbean code="org.jboss.aop.deployment.AspectDeployer"
name="jboss.aop:service=AspectDeployer">

</mbean>

By default, JBoss application server will not do load-time bytecode manipulation of AOP files. You can turn load-
time on by setting the EnableLoadtimeWeaving attribute to true. If SuppressTransformationErrors is true failed
bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss deploy-
ment will not have all the classes a class references.

The next thing you have to do is create a new java.lang.ClassLoader.class. This new class will bytecode modi-
fy a copy of java.lang.ClassLoader.class to put in the appropriate hooks for loadtime transformation. There is a
script in the bin/ directory of the JBoss-AOP distribution to create this class and also create a jar from it.

$ cd jboss-aop1.3.bin
$ create-pluggable-jboss-classloader.sh

This will create a jboss-classloader-transformer.jar. Copy this jar to the bin/ directory of your JBoss Application
server distribution.

Next, you need to copy the jdk14-pluggable-instrumentor.jar from the lib-14/ directory of your JBoss AOP distri-
bution to the bin/ directory of your JBoss application server installation. Next edit run.sh or run.bat (depending on
what OS you're on) and add the following to the JAVA_OPTS environment variable

On Unix/linux edit run.sh (note the : separating the bootclasspath entries)

JAVA_OPTS="$JAVA_OPTS -Dprogram.name=%PROGNAME% \
-Xbootclasspath/p:jboss-classloader-transformer.jar:jdk14-pluggable-instrumentor.jar"

Running Aspectized Applications

JBoss 2.0.0 85

Note that if you are using a cygwin shell on Windows, you will need to use a semicolon instead of a colon to separ-
ate the bootclasspath jars:

JAVA_OPTS="$JAVA_OPTS -Dprogram.name=%PROGNAME% \
-Xbootclasspath/p:jboss-classloader-transformer.jar;jdk14-pluggable-instrumentor.jar"

On Windows edit run.bat (note the ; separating the bootclasspath entries)

set JAVA_OPTS=%JAVA_OPTS% -Dprogram.name=%PROGNAME% \
-Xbootclasspath/p:jboss-classloader-transformer.jar;jdk14-pluggable-instrumentor.jar

After modifying JAVA_OPTS and setting the EnableLoadtimeWeaving to true, then you should be ready to go.

11.3.3. JBoss 4.x and JDK 5

JBoss AS has special integration with JDK 5.0 to do loadtime transformations. This section explains how to use it.

JBoss AOP comes distributed with the JBoss 4.x Application Server. The version that comes with JBoss 4.x does
not take advantage of JDK 5.0 features. It is best to install the jboss-aop-jdk50.deployer/ distribution into your
JBoss Application Server install base. See the "Installing" chapter for more details.

If you want to do load-time transformations with JBoss 4 and JDK 5, there are two steps you must take.

The jboss-aop-jdk50.deployer file contains some MBeans that deploy and manage the AOP framework.

<mbean code="org.jboss.aop.deployment.AspectManagerServiceJDK5"
name="jboss.aop:service=AspectManager">
<attribute name="EnableLoadtimeWeaving">true</attribute>
<!-- only relevant when EnableLoadtimeWeaving is true -->
<attribute name="SuppressTransformationErrors">true</attribute>
<attribute name="Prune">true</attribute>
<attribute name="Include">org.jboss.test</attribute>
<attribute name="Exclude">org.jboss.</attribute>
<attribute name="Optimized">true</attribute>
<attribute name="Verbose">false</attribute>

</mbean>

<mbean code="org.jboss.aop.deployment.AspectDeployer"
name="jboss.aop:service=AspectDeployer">

</mbean>

By default, JBoss application server will not do load-time bytecode manipulation of AOP files. You can turn load-
time on by setting the EnableLoadtimeWeaving attribute to true. If SuppressTransformationErrors is true failed
bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss deploy-
ment will not have all the classes a class references.

The next step is to copy the pluggable-instrumentor.jar from the lib-50/ directory of your JBoss AOP distribution to
the bin/ directory of your JBoss AOP application server installation. Next edit run.sh or run.bat (depending on what
OS you're on) and add the following to the JAVA_OPTS environment variable

Running Aspectized Applications

JBoss 2.0.0 86

set JAVA_OPTS=%JAVA_OPTS% -Dprogram.name=%PROGNAME% -javaagent:pluggable-instrumentor.jar

After modifying JAVA_OPTS and setting the EnableLoadtimeWeaving to true, then you should be ready to go.

Note that the code attribute of the AspectManager mbean must be
org.jboss.aop.deployment.AspectManagerServiceJDK5 as that is what works with the -javaagent weaver.

11.3.4. JBoss 4.x and JRockit

To use loadtime transformations with JRockit we can instruct Jrockit to use its native classloader hooks. Note that
with JRockit 1.4.2 this is your only option to do loadtime transformations.

If you are using JRockit 5.0 and you wish to use the JDK 5 features of JBoss AOP, you should replace jboss-
aop.deployer with jboss-aop-jdk50.deployer as mentioned in "JBoss 4.x and JDK 5.0".

If you want to do load-time transformations with JBoss 4 and JRockit, there are two steps you must take.

The jboss-aop.deployer or jboss-aop-jdk50.deployer file (depending on which you are using) contains some
MBeans that deploy and manage the AOP framework.

<mbean code="org.jboss.aop.deployment.AspectManagerService"
name="jboss.aop:service=AspectManager">
<attribute name="EnableLoadtimeWeaving">true</attribute>
<!-- only relevant when EnableLoadtimeWeaving is true -->
<attribute name="SuppressTransformationErrors">true</attribute>
<attribute name="Prune">true</attribute>
<attribute name="Include">org.jboss.test</attribute>
<attribute name="Exclude">org.jboss.</attribute>
<attribute name="Optimized">true</attribute>
<attribute name="Verbose">false</attribute>

</mbean>

<mbean code="org.jboss.aop.deployment.AspectDeployer"
name="jboss.aop:service=AspectDeployer">

</mbean>

By default, JBoss application server will not do load-time bytecode manipulation of AOP files. You can turn load-
time on by setting the EnableLoadtimeWeaving attribute to true. If SuppressTransformationErrors is true failed
bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss deploy-
ment will not have all the classes a class references.

The next step is to copy the jrockit-pluggable-instrumentor.jar from the lib-50/ directory of your JBoss AOP distri-
bution to the bin/ directory of your JBoss AOP application server installation. Next edit run.sh or run.bat
(depending on what OS you're on) and add the following to the JAVA_OPTS and JBOSS_CLASSPATH environ-
ment variables

Setup JBoss sepecific properties
JAVA_OPTS="$JAVA_OPTS -Dprogram.name=$PROGNAME \

-Xmanagement:class=org.jboss.aop.hook.JRockitPluggableClassPreProcessor"
JBOSS_CLASSPATH="$JBOSS_CLASSPATH:jrockit-pluggable-instrumentor.jar"

Running Aspectized Applications

JBoss 2.0.0 87

After modifying JAVA_OPTS, JBOSS_CLASSPATH and setting the EnableLoadtimeWeaving to true, then you
should be ready to go.

Note that the code attribute of the AspectManager mbean must be
org.jboss.aop.deployment.AspectManagerService as that is what works with the JRockit special hooks.

11.3.5. Improving Loadtime Performance in a JBoss AS Environment

The same rules apply to JBoss AS for tuning loadtime weaving performance as standalone Java. See the previous
chapter on tips and hints. YOU CANNOT USE THE SAME SYSTEM PROPERTIES THOUGH! Switches like
pruning, optimized, and include/exclude are configured through the jboss-
aop.deployer/META-INF/jboss-service.xml file talked about earlier in this chapter. You should be able to figure
out how to turn the switches on/off from the above documentation.

11.4. Scoping aop to the classloader

By default all deployments in JBoss are global to the whole application server. That means that any ear, sar, jar etc.
that is put in the deploy directory can see the classes from any other deployed archive. Similarly, aop bindings are
global to the whole virtual machine. This "global" visibility can be turned off per top-level deployment.

11.4.1. Deploying as part of a scoped classloader

How the following works may be changed in future versions of jboss-aop. If you deploy a .aop file as part of a
scoped archive, the bindings etc. applied within the .aop/META-INF/jboss-aop.xml file will only apply to the
classes within the scoped archive and not to anything else in the application server. Another alternative is to deploy
-aop.xml files as part of a service archive (SAR). Again if the SAR is scoped, the bindings contained in the -
aop.xml files will only apply to the contents of the SAR file. It is not currently possible to deploy a standalone -
aop.xml file and have that attach to a scoped deployment. Standalone -aop.xml files will apply to classes in the
whole application server.

11.4.2. Attaching to a scoped deployment

If you have an application using classloader isolation, as long as you have "prepared your classes" you can later at-
tach a .aop file to that deployment. If we have a .ear file scoped using a jboss-app.xml file, with the scoped loader
repository jboss.test:service=scoped:

<jboss-app>
<loader-repository>

jboss.test:service=scoped
</loader-repository>

</jboss-app>

We can later deploy a .aop file containing aspects and configuration to attach that deployment to the scoped .ear.
This is done using the loader-repository tag in the .aop files META-INF/jboss-aop.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<aop>

<loader-repository>jboss.test:service=scoped</loader-repository>

Running Aspectized Applications

JBoss 2.0.0 88

<!-- Aspects and bindings -->
</aop>

This has the same effect as deploying the .aop file as part of the .ear as we saw previously, but allows you to hot
deploy aspects into your scoped application.

Running Aspectized Applications

JBoss 2.0.0 89

12
Reflection and AOP

While AOP works fine for normal access to fields, methods and constructors, there are some problems with using
the Reflection API for this using JBoss. The problems are:

• Intereptors/aspects bound to execution pointcuts for fields and constructors don't get invoked.

• Intereptors/aspects bound to caller pointcuts for methods and constructors don't get invoked.

• Reflection Methods such as Class.getMethods() and Class.getField() return extra JBoss AOP "plumbing"
information.

12.1. Force interception via reflection

To address the issues with interceptors not being invoked when you use reflection, we have provided a reflection
aspect. You bind it to a set of caller pointcuts, and it mounts the pre-defined interceptor/aspect chains. The jboss-
aop.xml entries are:

<aspect class="org.jboss.aop.reflection.ReflectionAspect" scope="PER_VM"/>

<bind pointcut="call(* java.lang.Class->newInstance())">
<advice name="interceptNewInstance" \

aspect="org.jboss.aop.reflection.ReflectionAspect"/>
</bind>

<bind pointcut="call(* java.lang.reflect.Constructor->newInstance(java.lang.Object[]))">
<advice name="interceptNewInstance" \

aspect="org.jboss.aop.reflection.ReflectionAspect"/>
</bind>

<bind pointcut="call(* java.lang.reflect.Method->invoke(java.lang.Object, java.lang.Object[]))">
<advice name="interceptMethodInvoke" \

aspect="org.jboss.aop.reflection.ReflectionAspect"/>
</bind>

<bind pointcut="call(* java.lang.reflect.Field->get*(..))">
<advice name="interceptFieldGet" \

aspect="org.jboss.aop.reflection.ReflectionAspect"/>
</bind>

<bind pointcut="call(* java.lang.reflect.Field->set*(..))">
<advice name="interceptFieldSet" \

aspect="org.jboss.aop.reflection.ReflectionAspect"/>
</bind>

JBoss 2.0.0 90

The ReflectionAspect class provides a few hooks for you to override from a subclass if you like. These methods
described below.

protected Object interceptConstructor(
Invocation invocation,
Constructor constructor,
Object[] args)
throws Throwable;

Calls to Class.newInstance() and Constructor.newInstance() end up here. The default behavior is to mount
any constructor execution or caller interceptor chains. If you want to override the behaviour, the parameters are:

• invocation - The invocation driving the chain of advices.

• constructor - The constructor being called

• args - the arguments being passed in to the constructor (in the case of Class.newInstance(), a zero-length array
since it takes no parameters)

protected Object interceptFieldRead(
Invocation invocation,
Field field,
Object instance)
throws Throwable;

Calls to Field.getXXX() end up here. The default behavior is to mount any field read interceptor chains. If you
want to override the behaviour, the parameters are:

• invocation - The invocation driving the chain of advices.

• field - The field being read

• instance - The instance from which we are reading a non-static field.

protected Object interceptFieldWrite(
Invocation invocation,
Field field,
Object instance,
Object arg)
throws Throwable;

Calls to Field.setXXX() end up here. The default behavior is to mount any field write interceptor chains. If you
want to override the behaviour, the parameters are:

• invocation - The invocation driving the chain of advices.

Reflection and AOP

JBoss 2.0.0 91

• field - The field being written

• instance - The instance on which we are writing a non-static field.

• arg - The value we are setting the field to

protected Object interceptMethod(
Invocation invocation,
Method method,
Object instance,
Object[] args)
throws Throwable;

Calls to Method.invoke() end up here. The default behavior is to mount any method caller interceptor chains
(method execution chains are handled correctly by default). If you want to override the behaviour, the parameters
are:

• invocation - The invocation driving the chain of advices.

• method - The method being invoked

• instance - The instance on which we are invoking a non-static method.

• args - Values for the method arguments.

12.2. Clean results from reflection info methods

The ReflectionAspect also helps with getting rid of the JBoss AOP "plumbing" information. You bind it to a set
of caller pointcuts, using the followingjboss-aop.xml entries :

<bind pointcut="call(* java.lang.Class->getInterfaces())">
<advice name="interceptGetInterfaces" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getDeclaredMethods())">
<advice name="interceptGetDeclaredMethods" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getDeclaredMethod(..))">
<advice name="interceptGetDeclaredMethod" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getMethods())">
<advice name="interceptGetMethods" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getMethod(..))">

Reflection and AOP

JBoss 2.0.0 92

<advice name="interceptGetMethod" \
aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>

</bind>

<bind pointcut="call(* java.lang.Class->getDeclaredFields())">
<advice name="interceptGetDeclaredFields" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getDeclaredClasses())">
<advice name="interceptGetDeclaredClasses" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

<bind pointcut="call(* java.lang.Class->getDeclaredField(..))">
<advice name="interceptGetDeclaredField" \

aspect="org.jboss.test.aop.reflection.ReflectionAspectTester"/>
</bind>

This way the calls to Class.getMethods() etc. only return information that is present in the "raw" class, by filter-
ing out the stuff added to the class by JBoss AOP.

Reflection and AOP

JBoss 2.0.0 93

13
JBoss AOP IDE

13.1. The AOP IDE

JBoss AOP comes with an Eclipse plugin that helps you define interceptors to an eclipse project via a GUI, and to
run the appication from within Eclipse. This is a new project, and expect the feature set to grow quickly!

13.2. Installing

You install the JBoss AOP IDE in the same way as any other Eclipse plugin.

• Make sure you have Eclipse 3.0.x installed, and start it up.

• Select Help > Software Updates > Find and Install in the Eclipse workbench.

• In the wizard that opens, click on the "Search for new features to install" radio button, and click Next.

• On the next page you will need to add a new update site for JBossIDE. Click the "New Remote Site.." button.

• Type in "JBossIDE" for the name, and "http://jboss.sourceforge.net/jbosside/updates" for the URL, and click
OK.

• You should see a new site in the list now called JBossIDE. click the "+" sign next to it to show the platforms
available.

• Now, depending if you just want to install the AOP IDE (if you don't know what JBoss-IDE is, go for this set of
options):

• Check the "JBoss-IDE AOP Standalone" checkbox.

• In the feature list you should check the "JBoss-IDE AOP Standalone 1.0" checkbox.

If you have JBoss-IDE installed, or want to use all the other (non-AOP) features of JBoss-IDE:

• If you don't have JBossIDE installed, check the "JBoss-IDE 1.4/Eclipse 3.0" checkbox.

• Check the "JBoss-IDE AOP Extension" checkbox.

• In the feature list you should check the "JBoss-IDE AOP Extension 1.0" checkbox, and the JBoss-IDE
(1.4.0) checkbox if you don't have JBossIDE installed.

JBoss 2.0.0 94

• At this point you should only need to accept the license agreement(s) and wait for the install process to finish.

13.3. Tutorial
This tutorial is meant to guide you through creating a new AOP project in eclipse using the AOP extension to
JBossIDE. It assumes that you have some working knowledge of AOP, and Java.. and possibly some minimal ex-
perience dealing with eclipse as well.

13.3.1. Create Project

• From eclipse's main menu, you can click on the File Menu, and under it, New > Project...

• Double click on JBoss AOP Project under the JBossAOP folder

• In the Project Name text box, let's enter HelloAOP.

• Use Default should be fine for the project location. (If you want to use an external location, make sure there
are no spaces in the path.)

• Click Finish

At this point, your eclipse workbench should look something like this:

JBoss AOP IDE

JBoss 2.0.0 95

13.3.2. Create Class

Next step is to create a normal Java class.

• Right click on the "src" directory in the Package Explorer and in the menu, click New > Class.

• The only thing you should need to change is the Name of the class. Enter HelloAOP without quotes into the
Name textbox, and click Finish

Modify the code for your class so it loks like

public class HelloAOP {

public void callMe ()
{

System.out.println("AOP!");
}

public static void main (String args[])
{

new HelloAOP().callMe();

JBoss AOP IDE

JBoss 2.0.0 96

}
}

13.3.3. Create Interceptor

Next we want to create an interceptor to the class.

• Right click on the "src" directory in the Package Explorer and in the menu, click New > Class. In the resulting
dialog:

• Name the class HelloAOPInterceptor

• Add org.jboss.aop.advice.Interceptor to the list of interceptors.

Then modify the class so it looks like:

import org.jboss.aop.advice.Interceptor;
import org.jboss.aop.joinpoint.Invocation;

public class HelloAOPInterceptor implements Interceptor {

public String getName() {
return "HelloAOPInterceptor";

}

//We renamed the arg0 parameter to invocation
public Object invoke(Invocation invocation) throws Throwable {

System.out.print("Hello, ");
//Here we invoke the next in the chain

return invocation.invokeNext();
}

}

13.3.4. Applying the Interceptor

In order to apply your Interceptor to the callMe() method, we'll first need to switch back to the HelloAOP.java edit-
or. Once the editor is active, you should be able to see the callMe() method in the Outline view (If you cannot see
the outline view, go to Window > Show View > Outline).

JBoss AOP IDE

JBoss 2.0.0 97

Right click on this method, and click JBoss AOP > Apply Interceptor(s)... A dialog should open, with a list of
available Interceptors. Click on HelloAOPInterceptor, and click Finish.

You should see in your Package Explorer that the file "jboss-aop.xml" now exists under your project root.

13.3.5. Running

Now all that's left is running the application! Similar to running a normal Java Application from Eclipse, you must
create a Run Configuration for your project.

• From the Run menu of eclipse, and choose "Run..."

• In the dialog that opens, you should see a few choices in a list on the left. Double click on "JBoss AOP Applic-
ation".

• Once it is finished loading, you should have a new Run Configuration under JBoss AOP Application called
"Hello AOP".

• Click the "Run" button

The Eclipse console should now say: Hello, AOP!, where the Hello, bit has been added by the interceptor.

13.3.6. Navigation

In the real world, when developing AOP application across a development team, you can expect it will be hard to
understand when and where aspects are applied in your codebase. JBoss-IDE/AOP has a few different strategies for
notifying developers when an aspect is applied to a certain part of code.

13.3.6.1. Advised Markers

A marker in eclipse is a small icon that appears on the left side of the editor. Most developers are familiar with the
Java Error and Bookmark markers. The AOP IDE provides markers for methods and fields which are intercepted.
To further facilitate this marking, anytime the developer presses Ctrl + 1 (the default key combination for the Ec-
lipse Quick Fix functionality)), a list of interceptors and advice will be given for that method or field. This makes
navigation between methods and their interceptors extremeley easy!

JBoss AOP IDE

JBoss 2.0.0 98

13.3.6.2. The Advised Members View

The Advised Members view gives the developer an overview of every single method and field in the current class
that is advised by an Aspect or Interceptor. Let's have a look.

• From the Eclipse main menu, click on Window > Show View > Other...

• In the window that opens, you should see a folder called "JBoss AOP". Press the "+" to expand it.

• Double click on "Advised Members"

Once you've done this, you should now make sure you are currently editing the HelloAOP class we created in the
last tutorial. Once you have that class open in an editor, you should see something similar to this in the Advised
Members view:

Here we see that the method "callMe()" is intercepted by the interceptor HelloInterceptor. Double clicking on
HelloInterceptor will take you straight to it. This view is similar to the Outline view, except it only shows mem-

JBoss AOP IDE

JBoss 2.0.0 99

bers in your class which are intercepted.

13.3.6.3. The Aspect Manager View

The Aspect Manager View is a graphical representation of the AOP descriptor file (jboss-aop.xml). It allows you to
remove an Interceptor or advice from a pointcut, as well as apply new Interceptors and Advice to existing
pointcuts.

• From the Eclipse main menu, click on Window > Show View > Other...

• In the window that opens, you should see a folder called "JBoss AOP". Press the "+" to expand it.

• Double click on "Aspect Manager"

Under Bindings, you'll notice that a pointcut is already defined that matches our "callMe()" method, and our Hel-
loInterceptor is directly under it. Right Click on HelloInterceptor will provide you with this menu:

You can remove the interceptor, or jump to it directly in code. If you right click on the binding (pointcut) itself,
you'll be able to apply more interceptors and advice just like when right clicking on a field or method in the outline
view. You can also remove the entire binding altogether (which subsequently removes all child interceptors and ad-
vice, be warned)

JBoss AOP IDE

JBoss 2.0.0 100

	JBoss AOP - Aspect-Oriented Framework for Java
	Table of Contents
	Preface
	Chapter 1. Terms
	1.1. Overview

	Chapter 2. Implementing Aspects
	2.1. Overview
	2.2. Aspect Class
	2.3. Advice Methods
	2.4. Interceptors
	2.5. Resolving Annotations
	2.6. Metadata
	2.6.1. Resolving XML Metadata
	2.6.2. Attaching Metadata

	2.7. Mixin Definition
	2.8. Dynamic CFlow

	Chapter 3. Joinpoint and Pointcut Expressions
	3.1. Wildcards
	3.2. Type Patterns
	3.3. Method Patterns
	3.4. Constructor Patterns
	3.5. Field Patterns
	3.6. Pointcuts
	3.7. Pointcut Composition
	3.8. Pointcut References
	3.9. Typedef Expressions
	3.10. Joinpoints
	3.10.1. Joinpoint Beans
	3.10.2. Context Values

	Chapter 4. Advices
	4.1. Around Advices
	4.2. Before/After/After-Throwing/Finally Advices
	4.2.1. Before Advice Signature
	4.2.2. After Advice Signature
	4.2.3. After-Throwing Advice Signature
	4.2.4. Finally Advice Signature

	4.3. Annotated Advice Parameters
	4.3.1. @Thrown annotated parameter
	4.3.2. JoinPoint Arguments

	4.4. Overloaded Advices
	4.4.1. Annotated-parameter Signature
	4.4.1.1. Presence priority
	4.4.1.2. Assignability Degree
	4.4.1.3. Return Types
	4.4.1.4. A Match
	4.4.1.5. Lowest Priority

	4.4.2. Default Signature
	4.4.3. Mixing Different Signatures

	Chapter 5. XML Bindings
	5.1. Intro
	5.2. Resolving XML
	5.2.1. Standalone XML Resolving
	5.2.2. Application Server XML Resolving

	5.3. XML DTD
	5.4. aspect
	5.4.1. Basic Definition
	5.4.2. Scope
	5.4.3. Configuration
	5.4.3.1. Names
	5.4.3.2. Example configuration

	5.4.4. Aspect Factories

	5.5. interceptor
	5.6. bind
	5.7. stack
	5.8. pointcut
	5.9. introduction
	5.9.1. Interface introductions
	5.9.2. Mixins

	5.10. annotation-introduction
	5.11. cflow-stack
	5.12. typedef
	5.13. dynamic-cflow
	5.14. prepare
	5.15. metadata
	5.16. metadata-loader
	5.17. precedence
	5.18. declare
	5.18.1. declare-warning
	5.18.2. declare-error

	Chapter 6. Annotation Bindings
	6.1. @Aspect
	6.2. @InterceptorDef
	6.2.1. Interceptor Example
	6.2.2. AspectFactory Example

	6.3. @PointcutDef
	6.4. @Bind
	6.5. @Introduction
	6.6. @Mixin
	6.7. @Prepare
	6.7.1. @Prepare POJO

	6.8. @TypeDef
	6.9. @CFlowDef
	6.10. @DynamicCFlowDef
	6.11. @AnnotationIntroductionDef
	6.12. @Precedence
	6.13. @DeclareError and @DeclareWarning

	Chapter 7. Dynamic AOP
	7.1. Hot Deploment
	7.2. Per Instance AOP
	7.3. Preparation
	7.4. DynamicAOP with HotSwap

	Chapter 8. JDK 1.4.2 Backwards Compatibility
	8.1. JBoss Retro
	8.2. JDK1.4.2 Annotation Compiler
	8.1. Annotations with JDK 1.4.2
	8.2. Enums in JDK 1.4.2
	8.3. Using Annotations within Annotations
	8.4. Using the Annotation Compiler

	Chapter 9. Installing
	9.1. Installing Standalone
	9.2. Installing with JBoss 4.0.x amd JBoss 4.2.x Application Server for JDK 5
	9.3. Installing with JBoss 4.0.x Application Server for JDK 1.4
	9.4. Installing with JBoss Application Server 5

	Chapter 10. Building and Compiling Aspectized Java
	10.1. Instrumentation modes
	10.2. Ant Integration
	10.3. Command Line

	Chapter 11. Running Aspectized Applications
	11.1. Loadtime, Compiletime and HotSwap Modes
	11.2. Regular Java Applications
	11.2.1. Precompiled instrumentation
	11.2.2. Loadtime
	11.2.2.1. Loadtime JDK 1.4
	11.2.2.2. Loadtime with JDK 5
	11.2.2.3. Loadtime using JRockit
	11.2.2.4. Improving Loadtime Performance

	11.2.3. HotSwap

	11.3. JBoss Application Server
	11.3.1. Packaging AOP Applications
	11.3.2. JBoss 4.x and JDK 1.4
	11.3.3. JBoss 4.x and JDK 5
	11.3.4. JBoss 4.x and JRockit
	11.3.5. Improving Loadtime Performance in a JBoss AS Environment

	11.4. Scoping aop to the classloader
	11.4.1. Deploying as part of a scoped classloader
	11.4.2. Attaching to a scoped deployment

	Chapter 12. Reflection and AOP
	12.1. Force interception via reflection
	12.2. Clean results from reflection info methods

	Chapter 13. JBoss AOP IDE
	13.1. The AOP IDE
	13.2. Installing
	13.3. Tutorial
	13.3.1. Create Project
	13.3.2. Create Class
	13.3.3. Create Interceptor
	13.3.4. Applying the Interceptor
	13.3.5. Running
	13.3.6. Navigation
	13.3.6.1. Advised Markers
	13.3.6.2. The Advised Members View
	13.3.6.3. The Aspect Manager View

