JBoss AOP - Aspect-Oriented Framework for Java

JBoss AOP Reference Documentation

2.0.0

Table of Contents

1= =0 2 PPPERR Vi
R I 1 15PN 1
L1 OVEBIVIBIV ettt ettt e oo oo ettt et e e e e e e e et tee et e eeee e e e e nntteeeeeaaeeeeaansnteseeeaaeeeeaannsnnneeeaens 1

R G g o = PSP PPRSPRR 2
N R @ V= o PRSP 2

A N o L= o O - PRSP 2

2.3. AAVICE MELNOASeviiiiiiiee et e e e e e e e e e e e e s e st eeaae e s s e sntaaneeeeeeesaansnnneeneens 2

pA i L = o= o (] £ 3

2.5. RESOIVING ANNOLBLIONSeiieiiiiiiiiiie e e e e e s st e e e e e e st e e e e e e s s e st nt e e e e e aeeesssasntaaereeaeeessannaaneeeeeas 3

TV = I - SRR SRR 3
2.6.1. ResolVING XML MEAOAAovveiiiiieiiiiciee et a e e e 3

2.6.2. AttaChing MELAOAEALceiiiiiiiie et e e e e 4

2.7. MIXIN DEFINITION ...ttt e e e et e e e e st e e e e ssbe e e e e anseeeeeannreeeeeanseeeeeans 4

2.8. DYNAMIC CHIOW ...ttt ettt e et e e e st e e e e et e e e anbb e e e e e anbneeeeans 4

3. Joinpoint and POINLCUL EXPIESSIONScceiiviiiiiieiiiieeeeeeeeeeeeeeeeeereeeeeeereteeeeeeeeeteeererererererererererrerrererrrrrereees 5
BTN I 1Y o (o= o PP PRP T SPPRRRPPPRPN 5

3.2, TYPE PEILEINS ...ceeieeeiii ettt e e e e e s s e e e e e e e s s s e e et e e e e e a e e e e e e e nnnnnes 5

3.3 MENOU PEITEIMIS ...ttt ettt s et e e ettt e e e s bt e e e e nbb e e e e ennbeeeeeanbeeeeeans 6

3.4, CONSLIUCTON PELTEIMISeeiiiiiiiiiiiiiei ittt ettt ettt ettt ettt et et e ettt et e et e e e et eeeeeeeeeeeeeeeeeees 7

RN o 1= Lo I 1 1 SRR 8

G o (1 | £ TR PP 8

O A = o 1 1 (o(| 0] 0 700 1= 1] o SR 10

3.8. POINLCUL REFEIBINCESeeiiiiiiie ettt ettt et e e e et e e e e e anbb e e e e s nnbneeas 10

3.9. TYPEUES EXPrESSIONScoiiieiieiiiii ettt e e e e e st e e e s e e e et e e e s annn e e e e e nnnree s 11

G50 (0N o g £ USSR 11
3.10.2. JOINPOINE BEANSeeiiiiiiiieeiiii ettt e et e e e e s e e e eas 11

3.10.2. CONEXE VBIUBS ...ttt ettt ettt e e e e e e st e e e e e e e e e e nebaeeeeeeas 11

R N o |V o= PRSP 14
g AN oo 1o (V] o= SR 14

4.2. Before/After/After-Throwing/FiNally AQVICEScovveiiiiiiiiiiee e 15
4.2.1. BEFOre AQVICE SIGNALUIEcoiiiiiieiiiie ettt e e e eas 16

4.2.2. ATLEr AGVICE SIGNELUIEeeeieeei ittt e e e e e e s s st e e e e e e s s e eatrreaeeeeas 16

4.2.3. ATter-Throwing AdVICE SIQNEIUIEccoiiiiiiieiiiiie et 16

4.2.4. FINAllY AQVICE SIGNALUIEooeiieeeeeeeeeeeeeeee ettt ee e e e e et e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeees 16

4.3. ANNOtated AQVICE ParaMELErSvviiiiiieei it e e ettt e e e e e e s r e e e e e s s et e e e e e e e s e ennnnnees 17
4.3.1. @Thrown annOtated PAraMELESooiiiiiiiiiiiiir e e e e e e e eeeee e e e e e s e e eeeeeeeas 18

4.3.2. JOINPOINE ATQUIMENES ...uvviiieeeees ittt e e e e e s ettt e e e e e e e e s st e e e e e e e s s s ssntaaeeeeaeessannnsrnneeaeas 20

A @Y= g [L= o AN 1Y SRS 23
4.4.1. Annotated-parameter SIGNALUIEueeeeeeeieiiiiiiriee e e e e s et e e e e e e e s s starrre e e e e e e s s e arrreaeeeeas 24

4.4.1. 1. PreSENCE PIIONTY ..veeeeiiieieeeiiiieee ettt e sttt e et e et e e e e e s anb et e e s snbee e e e annneeas 25

R NS o [T o | L YA <o = T 26

A.4.0.3. RELUIM TYPES ittt e ettt e e e sttt e e e e s s bbb e e e e e e e e e e s abbbe e et e aeeessannneees 28

N V. (o PSR 29

N T W0 Y= = T) Y SRR 30

JBoss 2.0.0

JBoss AOP - Aspect-Oriented Framework for Java

4.4.2. DEFAUIT SIGNBEUMEeviieieieee ettt e e e e e e et e e e e e e s s et e e e e e e e e e s s annnareneeeeas 30
4.4.3. MixXing DIifferent SIQNaIUIEScooiuiiieiiiiiie et e e 31

A.5. COMMON MISEAKESttt e e e e e e et e e e e e e e e s aabbneeeeaaeeeeannnneees 32
5. XML BINAINGS -ttt e et e e e et e e e e bt e e e a et e e e a b e e e e e bt e e e b e e e e e nnr s 33
B INEIO e 33
I 2 L==o AV oo 10 PSSR 33
5.2.1. Standalone XML RESOIVINGcoieiiiiiieiiiiiiee et e e e 33
5.2.2. Application Server XML ReSOIVINGooccuviiiiieiie e 33

B3 XML SChEMA ... 34
O = oo 34
5.4.1. BaSiCDEfINITION ...ccooeiiiiiiieee 34
D 2, SO I . i 34
5.4.3. CONFIGUIBLIONeeiiiieiiee ettt e e e e e e e et e e e e e e s s et e e e e e aeesaasanntereeeaaeesaaas 35
543 L NAMES ..o, 36

5.4.3.2. Example configurationcc.ueveiieeeiiiiiiiieeee e e e e 36

5.4.4. ASPECE FACIOMESeeiiiiiiiie ittt ettt et e e et e e e st e e e e et e e e e nnbneeeeans 36

T 110 o= o () S 36
SIS T 1 o PP OTPRRRTPRR 37
ST = oSSR 37
o3RS T oo 1] ot U | R ESSTR 38
o3RS I T 11 0o 1o o) o PSS 38
5.9.1. INterfaCe iNtrOAUCTIONSiiuvieieiiiiiieesitieie e st e et e e e e et e e e s b e e e e asbe e e e e anbaeeeeans 38
B.9.2. MIXINS .. 38
Eo300 0 J=o o = 4 o) i oo LB o1 o o SR 39
AL CFIOW-SEACK ..o 39
ST Y 0= L= SRR SUPRRRR 40
o300 0 V0= 0 T ot o f Lo P ESSUR 40
O LA PIEPAIE ... 40
T T 101 7= o= - PSRRI 41
5.16. metadatarlOader ... 41
B.A7. PrECEAENCEo 42
B.18. AECIAIE ..ttt e e b e et e e b bt e e e b e e e e breeeeaas 42
5.18.1. AECIAIE-WAITING ...eeeeiureeeeeiieeee e et e e e et e e e st e e e s e e e e e s e e e e st et e e aass e e e e e anne e e e s annneeeeans 42
5.18.2. AECIAIE-EITON ... ettt ettt e e sttt e et e e et e e e e snbb e e e annbe e e e e ennbeeeesantaeeeeans 42

6. ANNOLELTON BINGINGS ...eeiiiiiiieeii e et e e st e e e et e e e e abb e e e e s anbr e e e e annreeas 43
LI (@) o= v PP RUPTRPP 43
6.2. @INLEICEPIOTDEN ... s e e e s e 44
6.2.1. Interceptor EXample ... 44
6.2.2. ASPECLFACOrY EXAMPIE ... 45

SRS (@) 2ol 1ot U (1 < TR 45
G B (2] =T o PP UPRRRRTPRRN 46
SRS @] L g 1107 [8o: o o [N 48
3G (o) (] PR UPRRRRRR 49
A (0 (= 7= =P PP T TUPPRPRTPRPN 51
6.7.1. @Prepare POJOcocueieeiiiiiee et e e ettt e e e sttt e e e sttt e e e e ntee e e s annneeeeannseeeeeanneeeeeannaeeeeans 52

B.8. @TYPEDEScoeieeeee e e e e e e ra e e e e s a i aaaee e s aanraaes 52
6.9, @CFIOWDESeiiieiiie ettt e e e e e e ettt e e e et e e e e ante e e e e aseeee e e nnaaeeeanraaeeennrreeaeans 53
6.10. @DYNAMICCHIOWDEScoiiiieiee e e e e e e e e e r e e e e e e e s eeanreees 55
6.11. @ANNOtatiONINEFOAUCLIONDESveiiiiiieeeeeee e e e e e e e e 55

JBoss 2.0.0

JBoss AOP - Aspect-Oriented Framework for Java

ST @) = <ei=T0 (< o< YT TPRTTR 57
6.13. @DeclareError and @DeClareWarningueeeeeeeiiiiieiiiiereeeeessssiiierereeesssssenrnrereeeessssnnseens 58
T.DYNAMIC AP ... 60
A O o D= o o)V 0 1T= o | PP PPTUPPRPTOTPRP 60
T.2.Per INSEANCE ADRP ... 60

AT 1= o= - (o) o [PPSR 61

7.4. IMProved INSLANCE AP ...t a e e e e e e s anne e e 61

7.5. DynamiCAOP WIth HOLSWADcuviiiiiiieiiiiciiee et e et e e e e e e e e annnees 62

8L INSEBIIING ..ttt e et et e et e e n et e e e e e s 64
8.1. Installing Standalone ..o 65

8.2. Installing with JBoss 4.0.x and JBoss 4.2.x Application Server for IDK 5ocvviviiiiiiieiiiiiienens 65

8.3. Installing with JBOSS APPliCalioN SEIVEN'Deeieiiiiie e 65

9. Building and Compiling ASPECIZEA JAVAuueiiieeeeiiiiieiie e e e e e e e e e e e st baare e e e e e e e 66
9.1, INStrUMENEAtiON MOUESeeiieeiiiiiieiie et e e e e e e e r e e e e e s s et eeeaaeeeaansnanneeeaeeeesannnnenes 66

oA A o | 0l 141 e = 1 o o AR RSRTR 66

S G T @0 49> Vo [1T P ESET 69

10. Running ASPectized APPIICALIONSuuiiii e a s s snsasansnnsnnnsnsnnnsnnnnnnnnns 71
10.1. Loadtime, Compiletime and HOtSWaPR MOEScuueiiiiiiiieeiiiiie e 71
10.2. Regular JaVa APPIICALIONSueeiiiieeieieee et e e ettt e e e e e e et e e e e e e e e e et eeeaaeeeeaannnnneeeeeens 72
10.2.1. Precompiled iNSIrUMENEAtioNcccuvviiiiiiee e e s e e e 72

O o = |11 1 1 RSP 73

10.2.2.1. Loadtime using JROCKITcooiiiiiiiiiiiiee et 73

10.2.2.2. Improving Loadtime Performancecuveeeiiieieiiiiiie e 73

L0O.2.3. HOESWAD ..eeeeeiniiiieeeeiiiie e e et e ettt e e e sttt e e et e e e e sttt e e e e nnat e e e e esteeeeeanseeeeeannseeeeeansnneaeans 75

10.2.4. User-Defined ClassLOaderscooccviiiiiiie it a e e a e e e 76

10.3. IBOSS APPIICALION SEIVET ...ttt e e e s e e e s e e e e e s e e e eans 76
10.3.1. Packaging AOP APPLICALIONScccuuiiiiiiie et e e e nnnnes 77

10.3.2. The JB0SS ASPECIMANAGES SEIVICE ...cuuviiieieiiiiee ettt e 78

10.3.2.1. JB0SS 5 ASPECIMANAGEr SEIVICEuvviiiieiieeee ettt et e et e e 78

10.3.2.2. JIBOSS 4.X ASPECIMBNEGEN SEIVICEveiieiiiiiie ettt 79

10.3.3. Loadtime transformation in JBosS AS USING SUN DKuuiiiiiiiniiiiiiiieinnnnnnnnnnnnnnns 79

10.3.4. IBOSS 5 @A JROCKITceeeiiiiiiieiiiiiie ettt e e s snbne e e e 80

10.3.5. Improving Loadtime Performance in aJBoss AS ENVIironmentccccooecvvveeiiinneeenns 80

10.4. Scoping 80P tO the ClASTI0AUEYccii i e e e e as 81
10.4.1. Deploying as part of ascoped classloadercoocvvviiiiiiiiii e 81

10.4.2. Attaching to a scoped dePlOYMENEeeeiiieiiiiiiiieeee e e e 81

11. Building JBOSS AOP WIth MBVENZccoiiiiiieiiieie ettt e e e e e 82
11.1. AOP Compile With MAVENZuuii i n s nnsnsnsnnnnnnnnnnns 82

11.2. AOP CompiletestSWith MaVvEN2coviiiiiiee e 83
11.3. Running precompiled With MAVEN2oooiiiiiie et 84

11.4. Running loadtime weaving With MaVeN2cocciiiiiiiie e 85

11.5. RUNNING TESES WITN IMAVENZcoiiiiiiieeeeee ettt e s e nnbee e 85

12. REFIECHON @NA AOIP ...ttt e e e e e e ettt e e e e e e e e s e sabe et e aeeeeeaansbbneeeeaeeeaanns 87
12.1. Force interception VIareflECtIONooouiiiiiiiiiie et 87
12.2. Clean results from reflection info MethodS ... 89

13. Interception of Array EIEMENt ACCESScc.uiiiiiiiiee et e e e e e s e s r e e e e e e s asnt e eeaaaeeaaans 91
13.1. REPIACING ATTAY ACCESSuiieeieeiiteeeeeaieee e e e et e e e et e e e ase e e e e e b e e e e e asbe e e e s anne e e e s annrneeesanrneeeeans 91

13.2. Preparing Array FIEIAS ..o as 91

13.3. Binding AdViCestO array €l@MENt GCCESScuurieiiiiiiee et et et e s e e e senee e 91

JBoss 2.0.0

JBoss AOP - Aspect-Oriented Framework for Java

13.4. Invocation types for array element acCess intErCEPLiONccccvvvieeieeeeiiiiiiee e 92

14, INStrumeENtation MOOESooeiiieiiie ettt e e e e s e et e e e e e e s s s ssateaeeeaeeeesannssanneneeeeenans 9
I @ =S oY== LY o 94

14. 1.1 NON-OPLIMIZEA ..eiieiiiiiiee ettt e e e et e e e s abb e e e e anbb e e e e anbaeeeean 94

14.1.2. OPtIMIZEA ..ottt e e e sttt e e e ettt e e e e nte e e e e aneeeeeeannneeeeeansaeeeeans 95

14.2. Generated AQVISOr WEBVING ...vveiiiieeiiiiiiiiiiie e e e e e s e ettt e e e e e e s e e e e e e e e s st e e e e e e e e e sentsraaeeaeas 95
14.2.1. LightWeIgNt ASPECESeeeiiiiiieeiiiiie ettt e e e s st e e e s e e e e nnreeeeeans 96

14.2.2. IMProved INSLANCE APlovieieiiee e e e e e e s aa s 96

14.2.3. Chain Overriding of Inherited Methodscooiiiiiiiiiii e 96

JBoss 2.0.0

Preface

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and layer your software ap-
plications in ways that are impossible with traditional object-oriented approaches. Aspects allow you to transpar-
ently glue functionality together so that you can have a more layered design. AOP allows you to intercept any event
in a Java program and trigger functionality based on those events. Mixins allow you to introduce multiple inherit-
ance to Java so that you can provide APIs for your aspects. Combined with annotations, it allows you to extend the
Java language with new syntax.

JBoss AOP is a 100% Pure Java aspected oriented framework usable in any programming environment or tightly
integrated with our application server.

This document is meant to be a boring reference guide. It focuses solely on syntax and APIs and worries less about
providing real world examples. Please see our "User Guide: The Case for Aspects' document for a more interesting
discussion on the use of aspects.

If you have questions, use the user forum linked on the JBoss AOP website. We also provide tracking links for
tracking bug reports and feature requests. If you are interested in the development of JBoss AOP, post a message
on the forum. If you are interested in translating this documentation into your language, contact us on the devel oper
mailing list.

Commercia development support, production support and training for JBoss AOP is available through JBoss Inc.
(see http://www.jboss.org/). JBoss AOP is a project of the JBoss Professional Open Source product suite.

In some of the example listings, what is meant to be displayed on one line does not fit inside the available page
width. These lines have been broken up. A '\' at the end of aline means that a break has been introduced to fit in the
page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \
does not fit

This one is short

Isredly:

Let's pretend to have an extrenely long line that does not fit
This one is short

JBoss 2.0.0 Y

Terms

1.1. Overview

The section defines some basic terms that will be used throughout this guide.

Joinpoint
A joinpoint is any point in your java program. The call of a method. The execution of a constructor the access
of afield. All these are joinpoints. You could aso think of a joinpoint as a particular Java event. Where an
event is a method call, constructor call, field access etc...

Invocation
An Invocation is a JBoss AOP class that encapsulates what ajoinpiont is at runtime. It could contain informa-
tion like which method is being called, the arguments of the method, etc...

Advice
An advice is a method that is called when a particular joinpoint is executed, i.e., the behavior that is triggered
when a method is called. It could also be thought of as the code that does the interception. Another analogy is
that an advice isan "event handler”.

Pointcut
Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut expression
matches a particular joinpoint.

Introductions
An introduction modifies the type and structure of a Java class. It can be used to force an existing class to im-

plement an interface or to add an annotation to anything.

Aspect
An Aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins, or any
other JBoss AOP construct.

I nterceptor
An interceptor is an Aspect with only one advice named "invoke". It is a specific interface that you can imple-
ment if you want your code to be checked by forcing your class to implement an interface. It also will be port-
able and can be reused in other JBoss environments like EJBs and IMX MBeans.

JBoss 2.0.0 1

Chapter 2

2.1. Overview

JBoss AOP is a100% pure Java framework. All your AOP constructs are defined as pure Java classes and bound to
your application code via XML or by annotations. This Chapter walks through implementing aspects.

2.2. Aspect Class

The Aspect Classis aplain Java class that can define zero or more advices, pointcuts, and/or mixins.

public class Aspect

public Ooject trace(lnvocation invocation) throws Throwabl e {

try {
Systemout. println("Entering anything");
return invocation.invokeNext(); // proceed to next advice or actual cal

} finally {
System out . println("Leaving anything");

}
}
}

The example above is of an advice t r ace that traces calls to any type of joinpoint. Notice that | nvocat i on objects
are the runtime encapsulation of joinpoints. The method i nvocati on. i nvokeNext () is used to drive the advice
chain. It either calls the next advice in the chain, or does the actual method or constructor invocation.

2.3. Advice Methods

For basic interception, any method that follows the form:

bj ect et hodNane(| nvocati on object) throws Throwabl e

can be an advice. The ! nvocat i on. i nvokeNext () method must be called by the advice code or no other advice will
be called, and the actual method, field, or constructor invocation will not happen.

JBoss AOP provides five types of advice: before, around, after, finally and after-throwing. The advice sginature
above is the default one for an around advice. Advices types, signature rules and overloading will be covered in
Chapter 4.

JBoss 2.0.0 2

Chapter 2

2.4. Interceptors

Interceptors are a special type of aspect that contains only one advice. This advice has its signature defined by an
interface, or g. j boss. aop. advi ce. I nt er cept or:

public interface Interceptor

{
public String getNane();

public Object invoke(lnvocation invocation) throws Throwabl e;

}

The method i nvoke(I nvocati on) isthe unique advice contained in an interceptor. The method get Name() is used
for identification in the JBoss AOP framework. So, this method must return a name that is unique in the whole sys-
tem. It isonly really used for aspects added to the | nst anceAdvi sor as shown in Section 7.2.

2.5. Resolving Annotations

JBoss AOP provides an abstraction for resolving annotations. In future versions of JBoss AOP, there will be away
to override annotation values on a per thread basis, or via XML overrides, or even provide VM and cluster wide de-
faults for annotation values. Also if you want to write a truly generic advice that takes the base Invocation type,
you can still get the annotation value of the method, constructor, or field you're invoking on by calling this method:

oj ect resol veAnnot ati on(Cl ass annot ati on);

That's just resolving for resolving member annotations. If your aspect needs to resolve class level annotations then
this method should be called:

bj ect resol ved assAnnot ati on(Cl ass annot ati on)

2.6. Metadata

2.6.1. Resolving XML Metadata

Untyped metadata can be defined within XML files and bound to org.jboss.aop.metadata.SimpleMetaData struc-
tures. This XML data can be attached per method, field, class, and constructor. To resolve this type of metadata, the
Invocation object provides a method to abstract out where the metadata comes from.

hj ect get Met aDat a(Obj ect group, Object attr)

When this method is called, the invocation will look for metadata in this order:

1. Firstit looksin the Invocation's metadata (Si npl eMet aDat a get Met aDat a())

2. Next it looks in org.jboss. aop. net adat a. Thr eadMet aDat a. i nst ance() . ThreadMetaData allows you to
override metadata for the whole thread. The metadata is managed by a ThreadlL ocal. ThreadMetaData is used
by every single invocation abject at runtime.

3. Next it looks in either org.jboss.aop.Advisor.getMethodMetaData(), Advisor.getConstructorMetaData(), or

JBoss 2.0.0 3

Chapter 2

Advisor.getFieldMetaData() depending on the invocation type.
4. Nextitlooksin either Advisor.getDefaultMetaData().

2.6.2. Attaching Metadata

Y ou can attach untyped metadata to the invocation object, or even to the response. This allows advices to pass con-
textual datato one another in the incoming invocation or outgoing response for instance if you had advices running
on aremote client that wanted to pass contextual data to server-side aspects. This method on invocation gets you
accessto aorg. j boss. aop. met adat a. Si mpl eMet aDat a instance so that you can attach or read data.

Si npl eMet aDat a get Met aDat a()

Si npl eMet aDat a has three types of metadata, AS 1S, MARSHALLED, and TRANSIENT. This allows you to spe-
cify whether or not metadata is marshalled across the wire. TRANSIENT says, attached metadata should not be
sent across the wire. MARSHALLED is for classloader sensitive contextual data. AS IS doesn't care about class-
loaders. Read the Javadocs for more information.

To piggyback and read metadata on the invocation response, two methods are provided. One to attach data one to
read data.

hj ect get ResponseAttachnent (Ooj ect key);
voi d addResponseAttachnent (Gbj ect key, Object val ue);

2.7. Mixin Definition

Mixins are atype of introduction in which you can do something like C++ multiple inheritance and force an exist-
ing Java class to implement a particular interface and the implementation of that particular interface is encapsul ated
into a particular class called amixin.

Mixin classes have no restrictions other than they must implement the interfaces that you are introducing.

2.8. Dynamic CFlow

Dynamic CFlows allow you to define code that will be executed that must be resolved true to trigger positive on a
cflow test on an advice binding. (See <cflow-stack> for more information). The test happens dynamically at
runtime and when combined with a pointcut expression allows you to do runtime checks on whether a advice bind-
ing should run or not. To implement a dynamic CHow you just have to implement the simple
org.jboss.aop.pointcut.DynamicCFlow interface. You can then use it within cflow expressions. (See XML or An-
notations)

public interface Dynam cCFl ow

{

bool ean shoul dExecut e(l nvocati on i nvocati on);

}

JBoss 2.0.0 4

Joinpoint and Pointcut Expressions

The pointcut language is atool that allows joinpoint matching. A pointcut expression determines in which joinpoint
executions of the base system an advice should be invoked.

In this Chapter, we will explore the syntax of pointcut expressions.

We will also see the APl used to represent a matched joinpoint during advice execution, and how this relates to
pointcut expression constructs.

3.1. Wildcards

There are two types of wildcards you can use within pointcut expressions

e * |saregular wildcard that matches zero or more characters. It can be used within any type expression, field, or
method name, but not in an annotation expression

e .. Isused to specify any number of parameters in an constructor or method expression. .. following a pack-
age-name is used to specify all classes from within a given package ut not within sub-packages. e.g or g. acre. .
matches or g. acne. Foo and or g. acne. Bar , but it does not match or g. acne. sub. SubFoo.

3.2. Type Patterns

Type patterns are defined by an annotation or by fully qualified class name. Annotation expressions are not allowed
to have wildcards within them, but class expressions are.

e org. acne. Soned ass matchesthat class.
e org.acne. * Will match or g. acne. Soned ass aswell asor g. acne. Soned ass. Sonel nner d ass
e @avax. ej b. Enti ty will match any class tagged as such.

e String or Qbject areillegal. You must specify the fully qualified name of every java class. Even those under
thej ava. | ang package.

To reference all subtypes of a certain class (or implementors of an interface), the $i nst anceof {} expression can be
used. Wildcards and annotations may also be used within $i nst anceof {} expressions.

$i nst anceof { org. acme. Sonel nt er f ace}
$i nst anceof { @r g. acne. SoneAnnot at i on}

JBoss 2.0.0 5

Joinpoint and Pointcut Expressions

$i nst anceof {org. acne. i nterfaces. *}

are al alowed.

For very complex type expressions, the Typedef construct can be used. To reference a Typedef within a class ex-
pression $t ypedef {i d} isused.

3.3. Method Patterns

public void org.acne. Soned ass->net hodNane(j ava. | ang. Stri ng)

The attributes(public, static, private) of the method are optional. If the attribute is |eft out then any attribute
is assumed. Attributes accept the! modifier for negation.

public !static void org.acne. SomeCl ass->*(..)

$i nst anceof {} can be used in place of the class name.

voi d $i nst anceof { or g. acne. Sonel nt er f ace} - >met hodNane(j ava. | ang. Stri ng)

To pick out all t oSt ring() methods of al classes within the or g. acne package, we can useor g. acne. . in place of
the class name.

java.lang. String org.acme..->toString()

To only match methods from a given interface you can use the $i npl enent s{} or $i npl ementi ng{} keywordsin
place of the method name. s$i npl enents{} only matches methods from the exact interface(s) given, while
$i npl ement i ng{} matches methods from the interface(s) given AND their super interfaces.

voi d $i nstanceof {org. acne. | f A}->$i npl ement s(org. acne. | f A)
voi d $i nstanceof {org. acne. | f B} - >$i npl ementi ng(org. acne. | fA, org.acne.|fB)

Annotations can be used in place of the class name. The below example matches any methodName() of a tagged
@javax.gjb.Entity class.

voi d @ avax. ej b. Entity->nmet hodNane(j ava. | ang. Stri ng)

Annotations can be also be used in place of the method name. The below examples matches any method tagged as
@javax.gb.Tx.

* *->@avax. ejb. Tx(..)

In addition you can use typedefs, $i nst anceof {}, annotations and wildcards for method parameters and return
types. The following matches all methods called | oadEnt i ty that return a class annotated with @javax.gjb.Entity,
that takes a class (or a class whose superclass/interface is) annotated as @org.acme.Ann and any class that matches
java.*. String (such asjavalang.String).

JBoss 2.0.0 6

Joinpoint and Pointcut Expressions

@avax.ejb. Entity *->l oadEntity($i nstanceof { @rg. acne. Ann}, java.*.String)
Y ou can also include an optional throws clause in the pointcut expression:

public void org.acne. Soned ass->net hodNane(j ava.l ang. String) \
throws org. acrme. SoneExcepti on, java.l ang. Exception

If any exceptions are present in the pointcut expression they must be present in the throws clause of the methods to
be matched.

3.4. Constructor Patterns

public org.acne. Soned ass->new(j ava. | ang. Stri ng)

Constructor expressions are made up of the fully qualified classname and the new keyword The attributes(publ i c,
static, private) of the method are optional. If the attribute is left out then any attribute is assumed. Attributes
accept the! modifier for negation.

I'public org.acne. Soned ass->new . .)

$i nst anceof {} can be used in the class hame.

$i nst anceof { or g. acnme. Sonel nt er f ace} - >new(. .)

To pick out al no-args constructors of al classes within the or g. acne package, we can use or g. acne. . in place of
the class name.

org. acne. . - >new)

Annotations can be used in place of the class name. The below example matches any constructor of a tagged
@javax.gjb.Entity class.

@ avax. ejb. Entity->new(..)

Annotations can be also be used in place of the new keyword. The below examples matches any constructor tagged
aS @ avax. ej b. Met hodPer mi ssi on.

*->@ avax. ej b. Met hodPer mi ssi on(. .)

In addition, just as for methods you can use typedefs, $i nst anceof {}, annotations and wildcards for constructor
parameters. The following matches all constructors that take a class annotated as @org.acme.Ann and any class
that matchesj ava. *. Stri ng (such asjavalang.String).

->new(@r g. acne. Ann, java.. String)

Y ou can also include an optional throws clause in the pointcut expression:

public void org.acne. Soned ass->new(j ava. |l ang. String) \
throws org.acne. SonmeException, java.lang. Exception

If any exceptions are present in the pointcut expression they must be present in the throws clause of the construct-

JB0ss 2.0.0 7

Joinpoint and Pointcut Expressions

orsto be matched.

3.5. Field Patterns

public java.lang. String org.acne. Soned ass->fi el dnane

Constructor expressions are made up of the type, the fully qualified classname where the field resides and the
field's name. The attributes(publ i c, static, private) of thefield areoptional. If the attribute is|eft out then any
attribute is assumed. Attributes accept the! modifier for negation.

I'public java.lang. String org.acme. SoneCl ass- >*

$i nst anceof {} can be used in the class name. The below expression matches any field of any type or subtype of
org. acne. Sorel nterface

* $i nstanceof {org. acne. Sonel nt er f ace} - >*

Annotations can be used in place of the class name. The below example matches any field where the type class is
tagged with @ avax. ej b. Entity.

* @avax.ejb.Entity->*

Annotations can be also be used in place of the field name. The below examples matches any field tagged as
@r g. j boss. I nj ect ed.

* *_->@rg.jboss. I njected

In addition, you can use typedefs, $instanceof{}, annotations and wildcards for field types. The following
matches all fields where the type class has been tagged with @javax.ejb.Entity.

@avax.ejb. Entity *->*

To pick out all fields annotated with @r g. f 0o. Transi ent within the or g. acne package, we can useor g. acrre. . in
place of the class name, and @r g. f oo. Tr ansi ent in please of the field name

* org.acne..->@rg.foo. Transi ent

3.6. Pointcuts

Pointcuts use class, field, constructor, and method expressions to specify the actual joinpoint that should be inter-
cepted/watched.

execution(nmethod or constructor)

execution(public void Foo->nethod()
execut i on(public Foo->new())

JBoss 2.0.0 8

Joinpoint and Pointcut Expressions

execution is used to specify that you want an interception to happen whenever a method or constructor is
called. The the first example of matches anytime a method is called, the second matches a constructor. System
classes cannot be used within execut i on expressions because it isimpossible to instrument them.

construction(constructor)

construction(public Foo->new))

construction is used to specify that you want aspects to run within the constructor. The execut i on pointcut
requires that any code that calls new() must be instrumented by the compiler. With const ructi on the aspects
are weaved right within the constructor after all the code in the constructor. The aspects are appended to the
code of the constructor.

get (field expression)

get (public int Foo->fiel dnane)

get isused to specify that you want an interception to happen when a specific field is accessed for aread.
set(field expression)

get (public int Foo->fieldnane)

set isused to specify that you want an interception to happen when a specific field is accessed for awrite.
field(field expression)

field(public int Foo->fiel dnane)

fiel disusedto specify that you want an interception to happen when a specific field is accessed for aread or a
write.

al |l (type expression)

al | (org. acne. Soned ass)
all (@rg.jboss.security.Perm ssion)

al | is used to specify any constructor, method or field of a particular class will be intercepted. If an annotation
is used, it matches the member's annotation, not the class's annotation.

cal | (nethod or constructor)

cal | (public void Foo->nethod()
call (public Foo->new())

cal | isused to specify any constructor or method that you want intercepted. It is different than execution in
that the interception happens at the caller side of things and the caller information is available within the Invoc-
ation object. cal | can be used to intercept System classes because the bytecode weaving happens within the
callers bytecode.

wi thin(type expression)

JBoss 2.0.0 9

Joinpoint and Pointcut Expressions

wi t hi n(org. acme. Soned ass)
Wi t hin(@rg.j boss. security.Permn ssion)

wi t hi n matches any joinpoint (method or constructor call) within any code within a particular type.
wi t hi ncode(net hod or constructor)

wi t hi ncode(public void Foo->nethod()
wi t hi ncode(public Foo->new())

wi t hi ncode matches any joinpoint (method or constructor call) within a particular method or constructor.
has(met hod or constructor)

has(void *->@rg.jboss.security.Perm ssion(..))
has(*->new(j ava. | ang. String))

has is an additional requirement for matching. If ajoinpoint is matched, its class must aso have a constructor
or method that matches the has expression.

hasfield(field expression)

hasfield(* *->@rg.]jboss.security. Perm ssion)
hasfi el d(public java.lang. String *->*)

has is an additional requirement for matching. If a joinpoint is matched, its class must also have a field that
matches the hasf i el d expression.

3.7. Pointcut Composition

Pointcuts can be composed into boolean expressions.

* 1 logical not.

e ANDlogica and.

e ORlogicd or.

» Paranthesis can be used for grouping expressions.
Here's some examples.

call (void Foo->sonmeMet hod()) AND withi ncode(void Bar->caller())
execution(* *->@oneAnnotation(..)) OR field(* *->@onmeAnnot ati on)

3.8. Pointcut References

Pointcuts can be hamed in XML (Chapter 5) or annotation (Chapter 6) bindings. They can be referenced directly
within a pointcut expression.

JBoss 2.0.0 10

Joinpoint and Pointcut Expressions

sone. naned. poi ntcut OR cal |l (voi d Foo- >soneMet hod())

3.9. Typedef Expressions

Sometimes, when writing pointcuts, you want to specify areally complex type they may or may not have boolean
logic associated with it. Y ou can group these complex type definitions into a JBoss AOP Typedef either in XML or
as an annotation (See later in this document). Typedef expressions can also be used within i nt r oduct i on expres-
sions. Typedef expressions can be made up of has, hasfield, and class expressions. cl ass takes afully quali-
fied class name, or an $i nst anceof {} expression.

class(org. pkg.*) OR has(* *->@x(..)) AND !cl ass(%$i nstanceof{org.foo.Bar})

3.10. Joinpoints

After getting acquainted with al pointcut constructs, let's see how this reflects on the API available to advices dur-
ing their execution.

3.10.1. Joinpoint Beans

JBoss AOP provides JoinPoint Beans, so that an advice can access al information regarding a joinpoint during its
execution. This information consists of context values, explained in the next subsection, and of reflection objects
(java.lang. refl ection). The reflection objects describe the joinpoint being intercepted like aj ava. | ang. Met hod
for a method execution joinpoint).

There are two groups of beans. The first oneisthel nvocat i on beans group. All classes of this group are subclasses
of org. j boss. aop. j oi npoi nt . I nvocati on. The I nvocat i on class was presented in Chapter 2 as a runtime encap-
sulation of ajoinpoint. An I nvocat i on oObject also contains an interceptor chain, where all advices and interceptors
that intercept the joinpoint are stored. Invocation beans provide the i nvokeNext () method, responsible for proceed-
ing execution to the next advice in the interceptor chain (if there is an advice that has not started execution yet) or
to the joinpoint itself (if all advices contained in the interceptor chain have already started running). We will see
more on thisin the next chapter.

The other group of beans contains only information regarding the joinpoint itself, and are called the Joi nPoi nt Bean
group. All beans of this group are defined in interfaces, with org. j boss. j oi npoi nt . Joi nPoi nt Bean being their
common superinterface.

Thel nvocat i on objects are available only to around advices. All other types of advices can use the Joi nPoi nt Bean
types to access joinpoint specific data.

In both groups there is a specific type for each joinpoint type. The type of bean corresponding to each joinpoint
type can be seen in Table 3.1. All beans are in the package or g. j boss. aop. j oi npoi nt .

3.10.2. Context Values

According to the type of the joinpoint, there are specific context values available.

JBoss 2.0.0 11

Joinpoint and Pointcut Expressions

The context values are;

e return value: joinpoints like a constructor execution or anon-void method call, have areturn value.

« arguments: the arguments of a constructor or method execution joinpoint are the arguments received by the
constructor or method. Similarly, the arguments of a call are the arguments received by the method or con-
structor being called.

« target: the target object of ajoinpoint varies according to the joinpoint type. For method executions and calls, it
refers to the object whose method is being executed (available only on non-static methods). For field reads and
writes, it refers to the object that contains that field.

o cdler: the caller object is available only on call joinpoints, and it refers to the object whose method or con-
structor is performing the call (notice the caller object is not available if the call isinside a static method).

Table 3.1 shows what context values may be available depending on the joinpoint type.

Table 3.1. Joinpoint Types Table

Joinpoint Pointcut Con- Bean ContextValues
struct . . .
Invocation JoinpointBean | Target Caller Argu- Re
ments turn
Value
field read read,field, Fi el dReadl n- Fi el dAccess Yes No No Yes
al | vocation
field write wite,field, FieldWiteln- Fi el dAccess Yes No Yes No
al | vocation
method execu- | execution,all | Methodl nvoca- Met hodExecu- Yes No Yes Yes
tion tion tion
constructor exe- execution Constructorln- ConstructorEx- No No Yes Yes
cution vocati on ecution
construction construction | Construction- | ConstructorEx- Yes No Yes No
I nvocati on ecution
method call call,within, | Callerlnvoca- Met hodCal | , Yes Yes Yes Yes
wi t hi ncode tion, Met hod- Met hodCal | By-
Cal | edByCon- Constructor,
structorlnvoc- | MethodCal | By-
at i on, Met hod- Met hod
Cal | edByMet h-
odl nvocat i on
constructor call call,within, | Callerlnvoca- Const ruct or - Yes Yes Yes Yes

wi t hi ncode

tion, Con-
structor-
Cal | edByCon-

Cal |, Con-
structor-
Cal | ByCon-

JBoss 2.0.0

12

Joinpoint and Pointcut Expressions

Joinpoint

Pointcut Con-
struct

Bean ContextValues

Invocation JoinpointBean | Target Caller | Argu-
ments

structorlnvoc- structor, Con-

ati on, Con- structor-
structor- Cal | ByMet hod
Cal | edByMet h-

odl nvocat i on

Re-
turn
Value

JBoss 2.0.0

13

Advices

Advices are aspect methods that are invoked during specific joinpoint executions.
JBoss AOP provides five types of advice.

The default oneis the around advice, and it can be used on all execution modes. This advice wraps the joinpoint, in
away that it replaces the joinpoint execution in the base system, and is responsible for proceeding execution to the
joinpoint.

Besides around advices, you can write advices that, instead of wrapping the joinpoint, are executed before or after
it. In this category, JBoss AOP provides before, after, after-throwing and finally advices. These advices are avail-
able only when using the generated advisor mode (this is the default mode in JBoss AOP, to learn how to select an-
other weaving mode, refer to Chapter X).

The next sections will explain in detail the binding and signature rules for JBoss AOP advices.

4.1. Around Advices

An around advice can follow this template:

public Object [advice nane] ([l nvocation] invocation) throws Throwabl e

{
try{
/1 do sonething before joinpoint execution
/| execute the joinpoint and get its return val ue
oj ect returnVal ue = invocation.invokeNext ();
/1 do sonething after joinpoint has executed successfully ...
[/ return a val ue
return returnVal ue;
cat ch(Exception e)
/' handl e any exceptions arising fromcalling the joinpoint
t hrow e;
}
finally
/| Take some action once the joi npoint has conpl eted successfully or not
}
}

In the template above, Invocation refers to one of the Invocation beans, and can be the class
org. j boss. aop. j oi npoi nt . | nvocat i on or one of its subtypes.

Since an around advice wraps a joinpoint, it must proceed execution to the joinpoint itself during its execution.

JBoss 2.0.0 14

Advices

This can be done by calling the method i nvokeNext () oni nvocati on. This method will proceed execution to the
next around advice of that joinpoint. At the end of this chain thisi nvokeNext () will proceed to the joinpoint itself.
The value returned by the around advice will replace the joinpoint return value in the base system.

For example, in the case where there are two around advices bound to a joinpoint, the first around advice will trig-
ger the second around advice by calling i nvokeNext () . The second advice will trigger the joinpoint execution by
calling the same method. As a result of the i nvokeNext () execution, the second advice will receive the joinpoint
return value. The value returned by this second advice will be received as a result by the first around advice. Fi-
nally, the value returned by this advice will replace the joinpoint return value in the base system execution. Nor-
mally though, around advices will simply return whatever value the joinpoint returned! This is shown in the pre-
ceding template example.

If an around advice wants to completely replace the joinpoint execution, it can skip the call to i nvokeNext (). This
will also skip execution of any subsequent around advices in the chain. As athird alternative, the around advice can
call the method i nvokeTar get () instead of i nvokeNext (). This method will invoke the target joinpoint directly,
skipping any subsequent advices.

The presence of the I nvocat i on parameter is optional. If an around advice does not have this parameter, it can re-
place the call toi nvokeNext () withacall toorg. j boss. aop. j oi npoi nt. Current | nvocati on. proceed() .

The signature described before is the default around advice signature rule. In addition to it, the around advice sig-
nature can also be of thisform (only in generated advisor mode):

public [return type] [advice nane] ([annotated paraneter],[annotated paraneter],...[annotated paraneter])

This signature is joinpoint dependent. The return type of the advice must be a type assignable to the the return type
of the joinpoint to be intercepted (i.e. be the same type; a subclass, if the return type is class; or a subinterface or an
implementing class, if the return type is an interface). In case the joinpoint being intercepted does not have areturn
type, this advice return type must be voi d.

An around advice can have zero or more annotated parameters. The annotated parameters will be covered in detail
in Section 4.3.

Finally, JBoss AOP aso features a special type of around advice: | nt er cept or. An interceptor class implements
org. j boss. aop. I nter cept or, and isdescribed in Section 2.4.

4.2. Before/After/After-Throwing/Finally Advices

These advices are more lightweight in the JBoss AOP framework, since they do not wrap ajoinpoint, avoiding the
creation of the I nvocat i on objects per joinpoint execution.

Instead of I nvocat i on objects, JBoss AOP provides JoinPointBean beans for these advices. As described in Sec-
tion 3.10.1, these beans contain all information regarding a joinpoint, like an 1 nvocati on would do. However,
since Joi nPoi nt Bean objects are not used on around advice types, they do not provide proceeding methods, like
i nvokeNext (). They also do not allow you to attach metadata for a particular invocation.

The rules for before, after, after-throwing and finally advices are quite similar. All of them can have zero or more
annotated advice parametersin their signature, which will be described in the next subsection.

JBoss 2.0.0 15

Advices

4.2.1. Before Advice Signature

A before advice is executed before the joinpoint. The signature for a before advice must be of this form:

public void [advice nane] ([annotated paraneter], [annotated paraneter],...[annotated paraneter])

4.2.2. After Advice Signature

Since an after advice is executed after a joinpoint, it can return a value to replace the joinpoint return value in the
base system. So, they can follow one of these signatures:

public void [advice nane] ([annotated paraneter], [annotated paraneter],...[annotated paraneter])

public [return type] [advice nane] ([annotated paraneter], [annotated paraneter],...[annotated paraneter])

In the first signature, the after advice does not overwrite the joinpoint return value. On the other hand, when using
the second signature, the after advice return value will replace the joinpoint return value. As with around advices,
this return type must be assignable to the joinpoint return type.

4.2.3. After-Throwing Advice Signature

The fourth type of advice provided by JBoss AOP is the after-throwing type. This advice is invoked only after the
execution of ajoinpoint that has thrown aj ava. | ang. Thr owabl e or one of its subtypes.

The signature of such an advice is the same as the one for before advices:

public void [advice nanme] ([annotated paraneter], [annotated paraneter],...[annotated paraneter])

Different from the other advice types, an after-throwing advice has a mandatory annotated parameter. This para-
meter is the exception thrown by the joinpoint execution, as we will see in the next subsection.

4.2.4. Finally Advice Signature

Lastly, JBoss AOP provides the finally advice type. It isinvoked from inside a finally block, after the joinpoint ex-
ecution.

This advice is the only one that is called after ajoinpoint execution in a deterministic way. Calls to after and after-
throwing advices take place depending on the joinpoint execution outcome. After advices are not called when the
joinpoint execution terminates abruptly with an exception. After-throwing ones, on the other hand, are not called
when the joinpoint execution returns normally, since no exception is thrown this time. So, if an advice needs to be
run no matter what is the outcome of the joinpoint, it should be afinally advice.

Pretty much as after advices, finaly advices can follow one of the signatures below:

public void [advice nanme] ([annotated paraneter], [annotated paraneter],...[annotated paraneter])

public [return type] [advice nane] ([annotated paraneter], [annotated paranmeter],...[annotated paraneter])

The last signature shows that finally advices can also overwrite the joinpoint execution return value by returning a

JBoss 2.0.0 16

Advices

value themselves. But notice that this return value will not be received by the base system if an exception has been
thrown. However, it is easy to know whether this condition is met, by making use of annotated parameters.

4.3. Annotated Advice Parameters

This section lists the annotated parameters that can be used on JBoss AOP advices (available only in generated ad-
visor execution mode). Table 4.1 lists all annotations and their semantics.

Except for the @oi nPoi nt annotation, used to refer to joinpoint beans, all other annotations are used on parameters
that contain joinpoint context values.

Notice that the types of annotated parameters are dependent on the joinpoint being intercepted by the advice.

JBoss AOP will accept any type that is assignable from the type referred by that parameter, as shown in the Type
Assignable From column of the table below. For example, for a joinpoint whose target is of type PO, the annot-
ated parameter that receives the target must be of Pasotype, one of Poid's superclasses, or one of the interfaces im-
plemented by paio.

Regarding the type of joinpoint bean parameters, the rules are the same for the default signature of around advices
(without annotations). For example, an around advice that intercepts a method execution, can receive either amet h-
odl nvocati on, Or an I nvocati on (the complete list of joinpoint beans and their relationship with joinpoint types
was shown in Table 3.1). As already explained, around advices use | nvocat i on instances, while the other advices
use Joi nPoi nt Bean Objects.

Notice also that only one annotated parameter can be mandatory: @rhr own. This will be further explained in Sec-
tion 4.3.1.

Except for @\ g, all annotations are single-enforced, i.e., there must be at most only one advice parameter with that
annotation per advice.

Table4.1. Annotated Parameters Table

Annotation Semantics | Typeassignable Mandatory Advicetype
from .
Be- Around After After- Fi-
fore Throw- nally
ing
@oinPoint | JoinPoint bean Joinpoint invoc- No No Yes No No No
ation type
JoinpointBean No Yes No Yes Yes Yes
interface type
@rar get Joinpoint target Joinpoint target No Yes Yes Yes Yes Yes
type
@cal | er Joinpoint caller | JoinPoint caller No Yes Yes Yes Yes Yes
type (only for
call joinpoints)

JBoss 2.0.0 17

Advices

Annotation Semantics | Typeassighable Mandatory Advicetype
from _
Be- Around After After- Fi-
fore Throw- nally
ing
@hr own Joinpoint java.lang. Thro Yes No No No Yes Yes
thrown excep- wabl e
tion - for after-
If used on an throwing ad-
after-throwing vices
advice, this para-
meter canalso - for finaly
be: advices only
if @Returnis
- assignable present
from any excep-
tiondeclaredto NO: other-
be thrown by the WISe
joinpoint
java. | ang. Runt
i meException Or
any subtype of
thisclass
@return Joinpoint re- JoinPoint return No No No Yes No Yes
turn value type
@vrg One of the JoinPoint argu- No Yes Yes Yes Yes Yes
joinpoint argu- ment type
ments
@\r gs All joinpoint |j ava. | ang. Obj e No Yes Yes Yes Yes Yes
arguments ct[]

Due to the fact that most of these parameters represent context values, their availability depends on the joinpoint
type. If an advice receives as a parameter a context value that is not available during a joinpoint execution, the
parameter value will be null. The exception to thisrule is @Return. If an advice has this parameter, it will not inter-
cept joinpoints that don’t have areturn value.

The only exception to thisruleis @ gs on field read joinpoints. Such an advice will be called with an empty argu-

ments array, in that case.

4.3.1. @Thrown annotated parameter

As shown in Table 4.1, the presence of a @hr own annotated parameter can be mandatory depending on the advice
type and its parameters.

This annotation is available only for after-throwing and finally advices. For after-throwing advices this parameter is

JBoss 2.0.0 18

Advices

always mandatory:
public class Aspect
{
public void throw ngl(@hrown RuntineException thrownException)
{
}
public void throw ng2()
{
}
}
<aop>
<aspect cl ass="Aspect"/>
<bind pointcut="...">
<t hrowi ng aspect="Aspect" nanme="t hrow ngl"/>
<t hrowi ng aspect ="Aspect" nanme="t hrow ng2"/>
</ bi nd>
</ aop>

The advice t hr owi ng1 follows this rule; advice t hr owi ng2, on the other hand, is invalid, because it does not con-
tain the mandatory @hr own annotated parameter.

For finally advices, the @hr own annotation is compulsory only if a @et ur n annotated parameter is present. This
way, a finally advice can identify whether the return value is valid or not. If the @hrown parameter is nul I, it
means that the joinpoint returned normally and that the value contained in the @et ur n annotated-parameter is val-
id. Otherwise, the value contained in @ret ur n annotated parameter must be ignored (it will be nul I if the return
typeisnot primitive, o if it isaprimitive number or f al se if it is boolean). If the finally advice does not receive the
joinpoint return value, the use of the @hr own annotated parameter is optional and, as expected, its value will be
nul | if thejoinpoint being intercepted did not throw an exception. Take alook at the next example:

public class Aspect

{
public void finallyl(@hrown Throwabl e t hr ownExcepti on)

{
}

public void finally2()
{

}

public void finally3(@Return int returnedVal ue, @hrown Throwabl e t hrownExcepti on)

{

i f (thrownException == null)

{
//\We returned normally, the @eturn paraneter is valid
int i = returnedVal ue;

}

el se

{

JB0ss 2.0.0 19

Advices

/1 An exception happened while invoking the target joinpoint

// The return value is invalid

}

public void finally4(@Return int returnedVal ue)
{

}

<aop>
<aspect cl ass="Aspect"/>
<bi nd poi ntcut ="execution(public int *->*(..))">
<finally aspect="Aspect" name="finallyl"/>
<finally aspect="Aspect" name="finally2"/>

<finally aspect="Aspect" name="finally3"/>
<finally aspect="Aspect" name="finally4"/>

</ bi nd>
</ aop>

This example binds four finally advices to the execution of al public methods that return an int value. Take note on
the type of the @hr own-annotated parameters, which must be Thr owabl e for thistype of advice.

The presence of @hrown is not mandatory in advices finally1() and final I y2(), because they do not have a
@ret ur n annotated parameter. Hence, both advices are valid. Besides, final | y1() will receive a non-null excep-
tion only when the joinpoint being intercepted throws an exception.

For advice method final 1 y3() the presence of a @hrown annotated parameter is mandatory because this advice
also has a @ret ur n annotated parameter. If an exception happens when invoking the target joinpoint, this advice
will receive a non-null @hrown parameter, meaning that the @ret ur n annotated parameter is invalid. If the join-
point completes normally, the @hr own annotated parameter will be nul I and the @ret ur n annotated parameter will
contain the return value of the target joinpoint.

The final | y4() adviceisinvalid, it contains a @et urn parameter, but has no @hr own annotated parameter. Fi-
nally advices require a @hr own parameter if a @et ur n annotated parameter is present.

4.3.2. JoinPoint Arguments

As we saw, an advice can receive the joinpoint arguments as annotated parameters. This can be achieved with the
use of two different annotations: @ g and @r gs.

There is a great difference between these two approaches, though. With @\ g, each parameter is equivalent to a
single joinpoint parameter. With @v gs, one single parameter, of type j ect[], receives an array containing all
joinpoint arguments. This last possibility is more generic than the first one, since it can be used independently of
the joinpoint argument types. Plus, it allows changes to the argument values. Any changes performed on the values
of this array will be perpetuated to the joinpoint execution. However, the use of @vr gs parameters on a join point

JB0ss 2.0.0 20

Advices

interception means the arguments array needs creation. The same happens with the use of get Argunents() and
set Argunent s() methodson I nvocat i on classes. So the use of @r g annotated parameters is more lightweight, and
should be used whenever there is no need to changing the joinpoint arguments.

When using @ g annotated parameters, the types of these parameters depend on the joinpoint being intercepted.
Not al the target joinpoint arguments need to be included as parameters to the advice method. An advice can re-
ceive only the argument values that are relevant to its execution.

Given al the possihilities in the usage of @r g, JBoss AOP will match the advice parameters with the joinpoint
ones, to infer to which joinpoint argument each advice parameter refers to. This matching process consists of the
following steps:

» Each advice parameter will be matched to the first unmatched joinpoint argument that has the same type. This
isdonein the order that the advice parameters appear in the advice method.

e If any advice parameter is left unmatched, we proceed to an additional step. Each advice parameter will be
matched to the first unmatched joinpoint argument that is assignable to it. Thisis done in the order that the ad-
vice parameters appear in the advice method declaration.

To illustrate this mechanism, consider the following scenario:

public class PQIO
{

}

void net hod(Col | ection arg0, List argl, int arg2, String arg3){}

<a0p>
<aspect class="M/Aspect"/>
<bi nd poi nt cut ="executi on(* PQIO >net hod(..))">
<bef ore aspect ="M/Aspect" nanme="advi ce"/>
</ bi nd>
</ aop>

The example above shows a xml-declared binding. We will use examples with those to illustrate signature concepts
from now on. Detailed syntax of xml bindingsis shown in Chapter 5.

Class Pajois a plain java old object that contains only one method. When calling this method, we want to trigger
MyAspet . advi ce() before this method is called. PO, net hod() receives four distinct arguments, all of them can
be available to an advice by using @ g annotated parameters. If MyAspect . advi ce() hasthe following signature:

public class My/Aspect
{

public void advice(@rg Collection paranD, @\wg List paranml, @\wg int paran2, @\wg String paranB)

{

}
}

MyAspect . advi ce() parameterswill betrivially matched to PQJO. net hod() arguments as follows:

paranD <- argO
paraml <- argl
paran® <- arg2
paranB8 <- arg3

JB0ss 2.0.0 21

Advices

The matching outcome will be the same if MyAspect . advi ce() Signature changes sightly in the following manner,
since Col | ect i on isassignable from Li st for par ang:

public class My/Aspect

{
public void advice (@\rg Collection paranD, @\vrg Collection paranl, @\wg int paran2, @\rg String parar
{
}

}

If MyAspect . advi ce() receivesonly one parameter, of typej ava. | ang. Obj ect :

public class MyAspect

{
public void advi ce(@rg Object paranD)
{
}

}

The parameter matching outcome will be:

paranD <- arg0

Since there is no joinpoint argument of type j ect , we proceed to the additional matching step in this case. Be-
cause ar g0 isthe first unmatched argument that is assignable to j ect , we assign this argument to par ano.

Notice that JBoss AOP will match all parameters correctly if we invert the order of parameters:

public class My/Aspect

{
public void advice(@\vrg int paran2, @\vrg Collection paranD, @\vg String paranB, @\wrg List paraml)
{
}

}

If one writes an advice whose unique parameter isa ol | ecti on, and we want to refer to the second joinpoint argu-
ment:

public class My/Aspect

{
public void advice (@vrg Collection paranl)
{
}

}

It will not work as desired. JBoss AOP will assign ar go to par ant.:

paranml <- argO

JB0ss 2.0.0 22

Advices

In cases like this, it is possible to enforce the correct matching of joinpoint arguments and advice parameters. The
annotation @ g has an attribute, index, whose purpose is to define the index of the argument to which that para-
meter refers.

S0, in this case, the MyAspect . advi ce() parameter list below:

public class My/Aspect

{
public void advice (@\rg(index=1) Collection paranidl)
{
}

}

Will have the desired matching, which is:

paraml <- argl

In the example just shown in this section, MyAspect . advi ce() was a before advice, but the same rules are used for
all advices using @ g annotated parameters.

4.4. Overloaded Advices

Method names can be overloaded for interception in different joinpoint scenarios. For instance, let's say you
wanted to have a different trace advice for each invocation type. Y ou can specify the same method namet r ace and
just overload it with the concrete invocation type.

public class AroundAspect

{
public Qoject trace(Mthodl nvocation invocation) throws Throwab
{
try
{
Systemout.println("Entering nmethod: " + invocation.getMethod()");
return invocation.invokeNext(); // proceed to next advice or actual cal
}
finally
{
Systemout. println("Leaving method: " + invocation.getMthod()");
}
}

public Ooject trace(Constructorlnvocation invocation) throws Throwabl e

{

try

{
Systemout.println("Entering constructor: " + invocation.getConstructor()");
return invocation.invokeNext(); // proceed to next advice or actual cal

}

finally

{

System out. println("Leaving constructor: " + invocation.getConstructor()");

}

JB0ss 2.0.0 23

Advices

Asyou can see, the selection of the advice method is very dynamic. JBoss AOP will select the most appropriate ad-
vice method for each joinpoint interception. For the following setup:

class PQIO

{
public PQIQ(){}

publ i c sonmeMet hod() {}
}

<aop>
<aspect cl ass="AroundAspect"/>
<bi nd pointcut="all (PQIO ">
<advi ce aspect ="AroundAspect" nanme="trace"/>
</ bi nd>
</ aop>

When calling POJO’ s constructor:

poj o. sonmeMet hod() ;

JBoss AOP will call thetrace() method taking a Const ruct or I nvocat i on, and when calling:

poj o. someMet hod() ;

JBoss AOP will call thetrace() method taking aMet hodl nvocat i on.

This examples shows that JBoss AOP will select the most appropriate advice method for each joinpoint intercep-
tion. The capability of selecting overloaded advices is available for al types of advices. And its impact in the sys-
tem performance is minimal since this selection is done once.

In this section, we will describe every rule JBoss AOP uses to select an advice method when this one is overloaded.

4.4.1. Annotated-parameter Signature

Let's start with the selection of advices when al of them use the annotated-parameter signature. As we will see
later, very similar rules are used for selecting advices with the default signature.

The process of selection of advices that follow the annotated-parameter signature depends on the priority of each
kind of parameter:

@oi nPoi nt > @arget > @cal |l er > @hrowabl e =@Return> @\g > @\rgs
This priority is used in two different criteria:

e presence of the annotated parameter

e assignability degree of the annotation parameter

JB0ss 2.0.0 24

Advices

4.4.1.1. Presence priority

Thisruleis quite smple, it means that an advice that receives only ajoinpoint bean (@oi nPoi nt) as its parameter
will have a higher priority than another advice that receives al other annotated parameters available (notice we are
following the annotation priority order just described).

In other words, the first oneAspect . after () advice method will be chosen when caling PQIO. someMet hod() in
this example:

public class PQIO

{
String soneMethod(String s){}
}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* POJO >soneMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@oinPoint MethodJoi nPoint njp){} //1

public String after(@arget PQJO pojo, @Return String ret, @vrg String arg0){} //2

Again in the following example, the first oneAspect.after() advice method will be chosen when calling
PQJIQ sonmeMet hod() . The first af ter () advice method's highest priority parameter is @ar get , the second advice
parameter’ s highest priority parameter is @et ur n, and @ar get has a higher priority than @ret ur n:

public class PQIO

{
String soneMet hod(String s){}
}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* POQIO >soneMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@arget PQJO pojo){} //1

public String after(@Return String ret, @rg String arg0){} //2

In cases where the highest priority annotated parameter of two advice methods is the same, we move on to the next
highest priority annotated parameter of both advices. In the following scenario, both tneAspect . aft er () methods
have the @oi nPoi nt parameter as the highest priority parameter. The first one has a @rar get as its second-highest
priority parameter while the second one has @ret ur n as its second-highest priority parameter. Since @ar get hasa
higher priority than @ret ur n, the first oneAspect . af t er () ischosen for PQJO. soneMet hod() .

public class PQIO
{

JB0ss 2.0.0 25

Advices

String soneMethod(String s){}

}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* POQJO >soneMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@oinPoint MethodJoi nPoint njp, @arget PQJO pojo){} //1

public String after(@oi nPoi nt Met hodJoi nPoint njp, @Return String ret){} //2

In the next example, the first oneAspect.before() advice is chosen over the second one when calling
PQJIQ soneMet hod() . Thereason isthat, all else being equal, the first one matches more parameters..

public class PQIO

{
String soneMethod(String s, int i){}
}
<a0p>
<aspect class="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >sonmeMet hod(..))">
<bef ore aspect ="OneAspect" nane="before"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void before(@rg String s, @rg int i){} //1

public String before(@vrg String s){} //2

If the priority of annotated parameters using the presence criterion is the same on more than one advice, the next
criterion, the assignability degree, is used.

4.4.1.2. Assignability Degree

The assignability degree rule will select the advice with the lowest assignability degree on the highest priority para-
meter. The assignability degree is simply the distance in the class hierarchy between the parameter type, and the
type it must be assignable from.

Asan example, let uslook at the following class hierarchy:

public interface PQJA nterface{}
public class PQICSuper d ass extends java.lang. Ooj ect{}

public class PQIO extends PQJCOSuperCl ass inpl ements PQJA nterface
{

}

voi d method(){}

JB0ss 2.0.0 26

Advices

And this advice binding:

<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >met hod(..))">
<bef ore aspect =" OneAspect" nanme="before"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void before(@arget PQIO target){} //1
public void before(@arget POQJO nterface target){} //2
public void before(@arget PQIOCSuperC ass target){} //3
public void before(@arget Object target){} //4

}

With paso as the target of ajoinpoint, the parameter list fo the first ocneAspect . bef ore() advice method has an as-
signability degree O on @rar get .

The parameter lists for the second and third neAspect . bef ore() advice methods both have an assignability de-
gree of 1 for @ar get , since it takes one step through the hierarchy to reach the desired type, Paio.

Finally, the parameter list for the fourth oneAspect . bef ore() advice method has an assignability degree of 2 on
@rar get .

Hence, JBoss AOP will select the first advice in the example above, since it has the lowest asignability degree on
@rar get .

The assignability degree rule is, similarly to the presence rule, applied on the highest priority annotated parameter,
which is @oi nPoi nt . In case there is a match using this criteria (i.e., either both advices lack a @oi nPoi nt annot-
ated parameter, or they both have the same type on the @oi nPoi nt parameter), we move to the next highest prior-
ity annotated parameter, which is @ar get . The same rule is applied until we can find an advice with the highest
priority.

Notice that the assignability degree of an advice on @\ g isthe sum of the assignability degree on al @v g paramet-
ers. In the following scenario:

public class PQIO

{

public void nmethod(PQJO argunment0, String argunmentl, int argunent?2)
}
<aop>

<aspect cl ass="OneAspect"/>

<bi nd poi nt cut ="execution(* PQIO >net hod(..))">

<bef ore aspect =" OneAspect" nanme="before"/>

</ bi nd>

</ aop>

public class OneAspect

{
public void before(@rg PQJO p, @\rg String s, @rg int i){} //1
public void before(@rg PQICSuperCl ass p, @\vg String s, @rg int i){} //2
public void before(@rg PQIO p, @rg bject s, @rg int i){} //3
public void before(@rg Object p, @rg bject s, @rg int i){} //4
}

JB0ss 2.0.0 27

Advices

The first advice has assignability degree of O (for pPas0) + O (for St ri ng) + O (for i nt). Notice how primitive types
don’t have superclasses, and, hence, have always a 0 value of assinability degree.

The second advice has alarger assignability degree, since PQiOsuper d ass is the superclass of P10, @ g PQICSu-
per G ass p has assignability degree of 1. Hence, this advice assignability degreeon@vgis:1+0+0=1.

The third one also has an assignability degree of 1, since tbj ect isthe superclass of Stri ng.

Finally, the last advice has assignability degree of 3 on @ g. The first parameter, @rg j ect p, refersto PJO
and has assignability degree of 2. The second one, assignability degree of 1, since it refers to St ri ng. And, since
@vg int referstothei nt argument of PQJO net hod(), wehave2+1+0=23.

In the above example, JBoss AOP would select the first advice to intercept PQIO. met hod() execution.

4.4.1.3. Return Types

For annotated parameters typed around advices, there is a third rule, which is the return type. This rule also applies
to after and finally advices. If the joinpoint has a non-void return type, the assignability degree of the advice return
type is analyzed, pretty much in the same way we do with annotated parameters. So, for overloaded around ad-
vices, these three criteria are applied:

e presence of annotated parameter
e assignability degree of annotated parameter
e assignability degree of return type

If two advices have the same ranking on the first two criteria, we check their return types and pick the advice with
the lowest assignability degree:

public class PQIO
{

}

public Collection nmethod(int argO, bool ean argl, short arg2) {.}

<aop>
<aspect class="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >met hod(..))">
<advi ce aspect ="OneAspect" nane="around"/>
</ bi nd>
</ aop>

public class OneAspect
{

public Collection around(@oi nPoint Invocation inv, @rg int paranD) throws Throwabl e
{...} /1

public List around(@oi nPoint Invocation inv, @wg bool ean paraml) throws Throwabl e
{...} II2

In OneAspect above, we have two around advices. Both of them are equal when compared using the presence cri-

JB0ss 2.0.0 28

Advices

teria. When comparing them using the assignability of annotated parameter, both of them have the same degrees on
@oi nPoi nt and on @r g parameters. In this case, we will compare their return type assignability degree.

Notice that, when it comes to return types, it is the return type that must be assignable to the joinpoint type, and not
the contrary. Thisis due to the fact that JBoss AOP will assign the advice return value to the joinpoint return result
in the base system. Hence, in the example above, the caller of PQIO. et hod() expects a Col | ect i on return value.
So, it is ok to receive either acol | ect i on from the first advice, as the more specific type Li st from the second ad-
vice. But JBoss AOP will complain if your advice returns an bj ect (oj ect return type is allowed only in the de-
fault signature; here we are discussing the annotated-parameter signature), because we can’t give an vj ect to the
base system when it is expecting a ol | ecti on.

So, in the above example, the first advice has an assignability degree of 0 on the return type, becase it takes O steps
in the hierarchy to go from Collection to Col | ecti on. In the second advice, this value is 1, because it takes 1 step
to go from Li st to Col | ecti on. JBoss AOP would select the first advice.

On overloaded after and finally advices, we also have areturn type rule. But, since the return type is optional (these
advices can return avalue, but is not enforced to it), we have atotal of four rules for this advice:

e presence of annotated parameter

e assignability degree of annotated parameter
e presence of non-void return type

» assignability degree of return value type

The third rule, presence of non-void return type, states that JBoss AOP will give preference to an after advice that
returns avaue:

<aop>
<aspect class="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >met hod(..))">
<after aspect="OneAspect" nanme="around"/>
</ bi nd>
</ aop>

public class OneAspect

{
public Collection after(@vrg int paranD) {...} //1

public List after(@vwg boolean paramt) { ... } //2
public void after(@vg short paran2) { ... } /13

}

Considering the same pai 0 class defined previoudly (with publi ¢ voi d met hod(int, bool ean, short)), al three
overloade versions of neAspect . after () advice wil be considered equivalent in the first two criteria. Hence, we
move to the third rule, that states that JBoss AOP prefers an after advice that returns a value over another one that
isvoi d. S0, in the example above, the third advice is ruled out, and JBoss AOP still has two advices to select. Mov-
ing to the next rule, he assignability degree of the return type, we have the same result as the neAspect . ar ound()

advice: the first one has a 0 degree, and the second one, a 1 degree value. As a conclusion of these degrees, JBoss
AOP will select the first advice, with the lowest return assignability degree.

4.4.1.4. A Match

JBoss 2.0.0 29

Advices

Notice that, ilf JBoss AOP cannot find an advice with highest priority, it just selects one of the methods arbitrarily.
Thiswould be the case of the following advice method scenario:

public class PQIO

{
public void nethod(int argO, long argl) {.}
}
<a0p>
<aspect class="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >nethod(..))">
<bef ore aspect ="OneAspect” nane="before"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void advice(@rg int arg0) {}

public void advice(@rg long argl) {}
}

4.4.1.5. Lowest Priority

There are exceptions for the rules we've seen. Advices with one or more of the following characteristics will be
considered lowest priority, regardless of any other criteria:

e anadvicethat receives @ar get parameter to intercept a joinpoint with no target available
e anadvicethat receives @al | er parameter to intercept ajoinpoint with no caller available

* anadvicethat receives @v g parameter to intercept afield read joinpoint

4.4.2. Default Signature

For the default around advice signature (i.e., without annotated parameters), there is only one parameter to analyze,
the invocation. So, the priority rules are very simple;

e presence of the invocation parameter
e assignability degree of the invocation parameter.
Letsrevisit the example given in the beginning of this section, in augmented version:

class PQIO

{
public int field,
public PQIQ(){}
publ i c sonmeMet hod(){}

}

public class OneAspect
{

public Object trace(Methodlnvocation invocation) throws Throwable {...} //1

JB0ss 2.0.0 30

Advices

public Object trace(Constructorlnvocation invocation) throws Throwable {...} //2
public Object trace(lnvocation invocation) throws Throwable {...} //3
public Object trace() throws Throwable {...} //4

}

<a0p>
<aspect class="OneAspect"/>
<bi nd poi ntcut="all (PQIO) ">
<advi ce aspect ="OneAspect" nane="trace"/>
</ bi nd>
</ aop>

The fourth advice above will never be called, considering the presence rule. It is the only one that lacks the | nvoc-
ati on parameter, and would be called only if all others were considered invalid in a scenario, which won't happen
in this example. By ruling out this advice with the presence rule, al other advices are equivaent: the invocation
parameter is present in all of them. So, we need to move on to the assignability degree rule to select one of them.
However, the assignability degree needs to be calculated accordingly to the joinpoint being intercepted. JBoss AOP
needs to eval uate each joinpoint type to be intercepted to do the correct selection for each case.

Consider the interception of the constructor of paso. In that case, the first advice is considered invalid, becase a
Met hodl nvocat i on IS not assignable from the invocation type that JBoss AOP will provide, Const rucor | nvoca-

ti on. We are now left with the second and third advices. The second one has assignability degree of 0 on the in-
vocation type. The third one, assignability degree of 1 (it takes one step in the hierarchy to go fom Const ruct or I n-

vocat i on tO | nvocat i on). S0, in this case, JBoss AOP will select the second advice, because it is the valid advice
with the lower assignability degree on the invocation.

Similary, to intercept the execution of PQJO. soneMet hod() , JBoss AOP will consider the second advice invalid, be-
cause it is supposed to receive an invocation whose type is assignable from Met hodl nvocat i on. Since the first ad-
vice has an assignability degree of 0 on the invocation, and the third one, assignability degree of 1, JBoss AOP will
select thefirst one.

Given that 1 nvocat i on will always be the super class of the expected invocation type, JBoss AOP will select this
advice, whose assignability degree will aways be 1, only when the other two advices are invalid. That would be
the case of afield read, where the invocation typeisFi el dReadl nvocat i on.

4.4.3. Mixing Different Signatures

Finally, when we mix default signature methods with annotated parameter ones, an advice in one of the forms:

public Object [advice nanme] ([l nvocation] invocation) throws Throwabl e
public Object [advice nane] ([l nvocation] invocation) throws Throwabl e
public Object [advice nanme] () throws Throabl e

Has the highest priority over all annotated-parameter advices. If there is more than one with the default signature,
the criteria described in the previous section will be used to select one of them..

Notice that mixing different signatures is possible only with around advices, since only these ones can follow the
default signature.

JB0ss 2.0.0 31

Advices

4.5. Common Mistakes

While writing advices and bindings, it is possible to make some mistakes, like, for example, mistyping the advice
name, or writing an advice with an invalid signature.

Whenever there is a mistake in the advice name or signature, JBoss AOP will throw an exception with a message
stating the cause of the error. The exception thrown is a runtime exception and should not be treated. Instead, it in-
dicates a mistake that must be fixed.

There are two types of exceptions JBoss AOP can throw on those cases:

org.j boss. I nval i dAdvi ceExcepti on
This exception indicates that an advice's signature is considered invalid for the type used on the binding.

This can happen when the advice is mistakenly declared to be of the wrong type, or when one of the signature
rules was not followed.

org. j boss. NoMat chi ngAdvi ceExcepti on

This exception is thrown when JBoss AOP can not find an advice method suitable for a specific joinpoint to be
intercepted.

A possible scenario is when there is no advice method with the name used on the bind declaration. To solve it,
just fix the advice name on the declaration or add a method with the declared advice name.

When there is one or more methods with the advice name, this exception indicates that JBoss was not able to
find an advice with a signature that suits the joinpoint to be intercepted. In this case, the solution can be to alter
the signature of one of the existent advice methods, or to add an overloaded advice method that matches the
joinpoint to be intercepted.

JBoss 2.0.0 32

XML Bindings

5.1. Intro

In the last sections you saw how to code aspects and how pointcut expressions are formed. This chapter putsit all
together. There are two forms of bindings for advices, mixins, and introductions. One is XML which will be the fo-
cus of this chapter. The Annotated Bindings chapter discusses how you can replace XML with annotations.

5.2. Resolving XML

JBoss AOP resolves pointcut and advice bindings at runtime. So, bindings are a deployment time thing. How does
JBoss AOP find the XML filesit needs at runtime? There are a couple of ways.

5.2.1. Standalone XML Resolving

When you are running JBoss AOP outside of the application server there are afew ways that the JBoss AOP frame-
work can resolve XML files.

e jboss. aop. pat h Thisisasystem property that isa’;' (Windows) or "' (Unix) delimited list of XML files and/or
directories. If theiteminthelist is adirectory, JBoss AOP will load any xml file in those directories with the fi-
lename suffix - aop. xm

e META-INF/ | boss-aop. xni Any JAR filein your CLASSPATH that has aj boss- aop. xm file in the META- | NF/
will be loaded. JBoss AOP does a C assLoader . get Resour ces(" META- | NF/ j boss-aop. xni) to obtain all
thesefiles.

5.2.2. Application Server XML Resolving

On the other hand, when you are running JBoss AOP integrated with the application server, XML files can be de-
ployed in two different ways. One is to place an XML file with the suffix *- aop. xm in the deploy directory. The
other way isto JAR up your classes and provide a META- | NF/ j boss- aop. xm filein this JAR. This JAR file must
be suffixed with . aop and placed within the deploy/ directory or embedded as a hested archive.

Note that in JBoss 5, you MUST specify the schema used, otherwise your information will not be parsed correctly.
Y ou do this by adding the xm ns="ur n: j boss: aop- beans: 1: 0 atribute to the root aop element, as shown here:

<aop xm ns="urn:j boss: aop- beans: 1. 0" >
<l-- The exact contents will be explained bel ow -->
</ aop>

JBoss 2.0.0 33

XML Bindings

5.3. XML Schema

The xml schema can be found in the distribution's et c/ literal> folder.

5.4. aspect

The <aspect > tag specifies to the AOP container to declare an aspect class. It is also used for configuring aspects
as they are created and defining the scope of the aspects instance.

5.4.1. Basic Definition

<aspect class="org.jboss. MyAspect"/ >
In abasic declaration you specify the fully qualified class name of the aspect. If you want to reference the aspect at
runtime through the AspectManager, the name of the aspect is the same name as the class name. The default Scope

of this aspect is PER_vM Another important note is that aspect instances are created on demand and NOT at deploy-
ment time.

5.4.2. Scope

<aspect cl ass="org.jboss. M\yAspect" scope="PER VM'/>

The scope attribute defines when an instance of the aspect should be created. An aspect can be created per vm, per
class, per instance, or per joinpoint.

Table5.1. Aspect instance scope

Name Description
PER_VM One and only instance of the aspect classis alocated for the entire VM.
PER_CLASS One and only instance of the aspect class is allocated for a particular

class. Thisinstance will be created if an advice of that aspect is bound to
that particular class.

PER_INSTANCE An instance of an aspect will be created per advised object instance. For
instance, if a method has an advice attached to it, whenever an instance
of that advised class is allocated, there will also be one created for the

aspect.

PER_JOINPOINT An instance of an aspect will be created per joinpoint advised. If the
joinpoint is a static member (constructor, static field/method), then there
will be one instance of the aspect created per class, per joinpoint. If the
joinpoint is a regular non-static member, than an instance of the aspect

JBoss 2.0.0 34

XML Bindings

Name Description

will be created per object instance, per joinpoint.

PER_CLASS JOINPOINT An instance of an aspect will be created per advised joinpoint. The as-
pect instance is shared between all instances of the class (for that join-
point).

5.4.3. Configuration

<aspect cl ass="org.jboss. SomeAspect" >
<attri bute name="Sonel nt Val ue" >55</ attri but e>
<advi sor-attri bute name="MAdvi sor"/>
<i nst ance- advi sor-attribute name="M/I nstanceAdvi sor"/>
<j oi npoi nt-attribute nane="My/Joi npoint"/>
</ aspect >

Aspects can be configured by default using a Java Beans style convention. The <at t ri but e> tag will delegate to a
setter method and convert the string value to the type of the setter method.

Table5.2. Supported Java Bean types
primitive types (int, float, String, etc...)
javalang.Class
javalang.Clasq[]
javalang.String[]
java.math.BigDecimal
org.w3c.dom.Document
java.io.File
java.net.InetAddress
java.net. URL

javax.management.ObjectName (if running in JBoss)

Besides types, you can aso inject AOP runtime constructs into the aspect. These types of attributes are referenced
within XML under special tags. See the table below.

Table5.3. Injecting AOP runtime constructs

<advisor-attribute> org.jboss.aop.Advisor
<instance-advisor-attribute> org.jboss.aop.InstanceAdvisor
<joi npoint-attri bute> org.jboss.aop.j oi npoint.Joi npoint

JBoss 2.0.0 35

XML Bindings

5.4.3.1. Names

If there is no name attribute defined, the name of the aspect isthe same asthecl ass or f act or y attribute value.

5.4.3.2. Example configuration

<aspect class="org.jboss. SoneAspect" >
<attri bute name="Sonel nt Val ue" >55</ attri but e>
<advi sor-attribute name="M/Advi sor"/>
<i nst ance-advi sor-attribute name="M/I nst anceAdvi sor"/>
<j oi npoi nt-attribute name="MyJoi npoint"/>
</ aspect >

The above example would would need a class implemented as follows:

public class SonmeAspect {
publ i c SoneAspect () {}

public void setSonel ntValue(int val) {...}

public void set M/Advi sor (org.j boss. aop. Advi sor advisor) {...}

public void set M/l nst anceAdvi sor (org.jboss. aop. | nstanceAdvi sor advisor) {...}
public void set MyJoi npoi nt (org.jboss. aop.joi npoi nt.Joi npoi nt joinpoin) {...}

5.4.4. Aspect Factories

<aspect nanme="M/Aspect" factory="org.|boss. Aspect Confi gFactory" scope="PER_CLASS">
<some- arbi trary-xm >val ue</ sonme-arbi trary-xmn >
</ aspect >

If you do not like the default Java Bean configuration for aspects, or want to del egate aspect creation to some other
container, you can plug in your own factory class by specifying the f act ory attribute rather than the cl ass attrib-
ute. Any arbitrary XML can be specified in the aspect XML declaration and it will be passed to the factory class.
Factories must implement the or g. j boss. aop. advi ce. Aspect Fact or y interface.

5.5. interceptor

<interceptor class="org.jboss. MInterceptor" scope="PER VM'/>
<interceptor class="org.jboss. Sonel nterceptor">
<attribute name="Sonel nt Val ue" >55</attri but e>
<advi sor-attribute name="M/Advisor"/>
<i nstance-advi sor-attribute name="M/I nst anceAdvi sor"/>
<j oi npoi nt-attribute name="MyJoi npoint"/>
</interceptor>
<i nterceptor nane="MAspect" factory="org.jboss.|nterceptorConfigFactory" scope="PER _CLASS">
<some- arbi trary-xm >val ue</ sonme-arbi trary-xmn >
</interceptor>

Interceptors are defined in XML the same exact way as aspects are. No difference except the tag. If there is no nane
attribute defined, the name of the interceptor isthe sasme asthecl ass or f act or y attribute value.

JBoss 2.0.0 36

XML Bindings

5.6. bind

<bi nd poi nt cut =" executi on(voi d Foo->bar())">
<interceptor-ref nane="org.jboss. Wlnterceptor/>
<bef or e nane="bef oreAdvi ce" aspect="org.jboss. MyAspect"/>
<around nane="aroundAdvi ce" aspect="org.jboss. MyAspect"/ >
<after name="afterAdvi ce" aspect="org.]jboss. MyAspect"/>
<t hrowi ng nane="t hr om ngAdvi ce" aspect="org.jboss. M\yAspect"/>
<finally nane="final | yAdvi ce" aspect="org.jboss. M\yAspect"/>
<advi ce name="trace" aspect="org.jboss. MyAspect"/>

</ bi nd>

In the above example, the My nt er cept or interceptor and several advice methods of the MyAspect class will be ex-
ecuted when the Foo. bar method isinvoked.

bind
bi nd tag is used to bind an advice of an aspect, or an interceptor to a specific joinpoint. The poi nt cut attribute
isrequired and at least an advice or interceptor-ref definition.

interceptor-ref
Thei ntercept or-ref tag must reference an aready existing i nt er cept or XML definition. The name attribute
should be the name of the interceptor you are referencing.

before, around, after, throwing and finaly
All these tags take a nane attribute that should map to an advice of the specified type within the aspect class.
Theaspect attribute should be the name of the aspect definition.

advice
The same as the previous, except for the fact that doesn't specify the type of the advice. This tag selects the de-
fault advice type, around, and is hence equivalent to the tag ar ound.

5.7. stack

Stacks allow you to define a predefined set of advices/interceptors that you want to reference from within a bi nd
element.

<stack nanme="stuff">
<interceptor class="Sinplelnterceptorl" scope="PER VM'/>
<advi ce name="trace" aspect="org.jboss. Traci ngAspect"/>
<interceptor class="Sinplelnterceptor3">
<attribute name="size">55</attri bute>
</interceptor>
</ st ack>

After defining the stack you can then reference it from within abi nd element.

<bi nd poi nt cut ="executi on(* PQIO->*(..))">
<stack-ref name="stuff"/>
</ bi nd>

JBoss 2.0.0 37

XML Bindings

5.8. pointcut

The poi nt cut tag allows you to define a pointcut expression, name it and reference it within any binding you want.
It is aso useful to publish pointcuts into your applications to that others have a clear set of named integration
points.

<poi nt cut nane="publ i cMet hods" expr="execution(public * *->*(..))
<poi nt cut nanme="stati cMet hods" expr="execution(static * *->*(..))"/>

The above define two different pointcuts. One that matches all public methods, the other that matches the execution
of all static methods. These two pointcuts can then be referenced within abi nd element.

<bi nd poi nt cut =" publ i cMet hods AND st ati cMet hods" >
<interceptor-ref nane="tracing"/>
</ bi nd>

5.9. introduction

5.9.1. Interface introductions

Thei nt r oduct i on tag alows you to force an existing Java class to implement a particular defined interface.

<i ntroduction class="org.acnme. \yd ass">
<interfaces>java.io. Serializabl e</interfaces>
</introduction>

The above declaration says that the org.acme.MyClass class will be forced to implement java.io.Serializable. The
cl ass attribute can take wildcards but not boolean expressions. If you need more complex type expressions, you
can usetheexpr attribute instead.

<i ntroduction expr="has(* *->@est(..)) OR class(org.acne.*)">
<interfaces>java.io. Serializabl e</interfaces>
</introduction>

Theexpr can be any type expression allowed in at ypedef expression

5.9.2. Mixins

When introducing an interface you can aso define a mixin class which will provide the implementation of that in-
terface.

<introduction class="org.acne. My ass" >
<m xi n>
<interfaces>
java.io. Externalizabl e
</interfaces>
<cl ass>or g. acne. Ext er nal i zabl eM xi n</ cl ass>
<const ructi on>new org. acne. Ext ernal i zabl eM xi n(t hi s) </ construction>
</ m xi n>
</introduction>

JB0ss 2.0.0 38

XML Bindings

interfaces
defines thelist of interfaces you are introducing

class
The type of the mixin class.

construction
The construction statement allows you to specify any Java code to create the mixin class. This code will be em-
bedded directly in the class you are introducing to so t hi s works in the construction statement.

5.10. annotation-introduction

Annotation introductions allow you to embed an annotation within a the class file of the class. Y ou can introduce
an annotation to a class, method, field, or constructor.

<annot ati on-introducti on expr="constructor(PQIO >new())">
@rg.j boss. conmplex (ch="a', string="hello world", flt=5.5, dbl=6.6, shrt=5, |ng=6, \
i nteger=7, bool =true, annotation=@ingle("hello"), array={"hello", "world"}, \
cl azz=j ava. | ang. Stri ng)

</ annot ati on-i ntroducti on>

The expr attribute takes method(), constructor(), class(), or field(). Within those you must define avalid expression
for that construct. The following rules must be followed for the annotation declaration:

¢ Any annotation, Class or Enum referenced, MUST be fully qualified.

5.11. cflow-stack

Control flow is a runtime construct. It allows you to specify pointcut parameters revolving around the call stack of
a Java program. Y ou can do stuff like, if method A calls method B calls Method C calls Method D from Construct-
or A, trigger this advice. In defining a control flow, you must first paint a picture of what the Java call stack should
look like. Thisisthe responsibility of the cflow-stack.

<cfl ow stack nane="recursive2">
<cal | ed expr="void PQIO >recursive(int)"/>
<cal | ed expr="void PQIO >recursive(int)"/>
<not -cal | ed expr="void PQIO >recursive(int)"/>
</ cfl ow st ack>

A cfl ow stack has aname and a bunch of cal | ed and not - cal | ed elements that define individual constructor or
method calls with a Java call stack. The expr attribute must be a method or constructor expression. cal | ed states
that the expr must be in the call stack. not - cal | ed states that there should not be any more of the expression within
the stack. In the above example, the cf | ow st ack will be triggered if there are two and only two callsto there-
cur si ve method within the stack. Once the cf | ow st ack has been defined, it can then be referenced within abi nd
element through the cf | ow attribute. Boolean expressions are allowed here as well.

<bi nd poi nt cut =" executi on(voi d PQJO >recursive(int))" cflow="recursive2 AND !cfl ow2">
<interceptor class="Sinplelnterceptor"/>
</ bi nd>

JBoss 2.0.0 39

XML Bindings

5.12. typedef

<t ypedef name="j nx" expr="class(@rg.jboss.jnx. @Bean) OR \
has(* *->org.jboss.jnx. @kanagedOperation) OR\
has(* *->org.jboss.jnx. @hanagedAttribute)"/>

t ypedef s allow you to define complex type expressions and then use then pointcut expressions. In the above ex-
ample, we're defining a class that is tagged as @Mbean, or has a method tagged as @M anagedOperaion or
@M anagedAttribute. The above typedef could then be used in a pointcut, introduction, or bind element

<poi ntcut name="stuff" expr="execution(* $typedef{jm}->*(..))"/>
<i ntroduction expr="cl ass($typedef{jnm})">

5.13. dynamic-cflow

dynani c- cf | ow allows you to define code that will be executed that must be resolved true to trigger positive on a
cflow test on an advice binding. The test happens dynamically at runtime and when combined with a pointcut ex-
pression allows you to do runtime checks on whether a advice binding should run or not. Create a dynamic cflow
class, by implementing the following interface.

package org.j boss. aop. poi ntcut;

i mport org.jboss. aop.j oi npoint.Ilnvocation

/**
* Dynam c cflow allows you to programmatically check to see if
* you want to execute a given advi ce binding.

*

* @ut hor
<a>Bi || Burke

* @ersion $Revision: 79662 $

*

**/
public interface Dynamn cCFl ow

{
}

bool ean shoul dExecut e(l nvocati on i nvocati on);

Y ou must declare it with XML so that it can be used in bind expressions.

<dynami c- cf | ow nane="si npl e" cl ass="org. j boss. Si npl eDynani cCFl ow'/ >

Y ou can then use it within abi nd

<bi nd expr="execution(void Foo->bar())" cflow="sinple">

5.14. prepare

The prepar e tag allows you to define a pointcut expression. Any joinpoint that matches the expression will be as-

JB0ss 2.0.0 40

XML Bindings

pectized and bytecode instrumented. This allows you to hotdeploy and bind aspects at runtime as well as to work
with the per instance API that every aspectized class has. To prepare something, just define a pointcut expression
that matches the joinpoint you want to instrument.

<prepare expr="execution(void Foo-bar())"/>

5.15. metadata

Y ou can attach untyped metadata that is stored in or g. j boss. aop. net adat a. Si npl eMet aDat a st ruct ures Within
the or g. j boss. aop. Advi sor class that manages each aspectized class. The XML mapping has a section for each
type of metadata. Class, method, constructor, field, and defaults for the whole shabang. Here's an example:

<net adata tag="testdata" class="org.]jboss.test. PQIO" >
<def aul t >
<sone- dat a>def aul t val ue</ sone- dat a>
</ def aul t >
<cl ass>
<dat a>cl ass | evel </ dat a>
</ cl ass>
<constructor expr="PQIOConstructorTest()">
<some- dat a>enpt y</ sone- dat a>
</ constructor>
<nmet hod expr="void another(int, int)">
<ot her - dat a>hal f </ ot her - dat a>
</ met hod>
<field name="sonefiel d">
<ot her - dat a>f ul | </ ot her - dat a>
</field>
</ net adat a>

Any element can be defined under the class, default, method, field, and constructor tags. The name of these ele-
ments are used as attribute names in SimpleMetaData structures. Thet ag attribute is the name used to reference the
metadata within the Advisor, or Invocation lookup mechanisms.

5.16. metadata-loader

<net adat a- | oader tag="security" class="org.]jboss. aspects.security. Securityd assMet aDat aLoader"/ >

If you need more complex XML mappings for untyped metadata, you can write your own metadata binding. The
tag atribute is wused to trigger the loader. The loader class must implement the
org. j boss. aop. net adat a. Cl assMet aDat aLoader interface.

public interface Cl assMetaDat aLoader

{
publ i ¢ C assMet aDat aBi ndi ng i nport Met aDat a(El enent el enent, String nane,
String tag, String classExpr) throws Exception
public void bind(d assAdvi sor advi sor, O assMet aDat aBi ndi ng dat a,
Ct Met hod[] nmethods, CtField[] fields, CtConstructor[] constructors) \
t hrows Excepti on;
public void bind(d assAdvi sor advi sor, O assMet aDat aBi ndi ng dat a,
Met hod[] methods, Field[] fields, Constructor[] constructors) \
t hrows Excepti on;
}

JB0ss 2.0.0 41

XML Bindings

Any arbitrary XML can be in the net adat a element. The ClassMetaDataBinding.importMetaData method is re-
sponsible for parsing the element and building ClassMetaDataBinding structurs which are used in the precompiler
and runtime bind steps. Look at the SecurityClassM etaDatal oader code shown above for areal concrete example.

5.17. precedence

Precedence alows you to impose an overall relative sorting order of your interceptors and advices.

<pr ecedence>
<interceptor-ref nane="org.acne.|nterceptor"/>
<advi ce aspect="org. acne. Aspect" nanme="advi cel"/>
<advi ce aspect="org.acne. Aspect"” nanme="advi ce2"/>
</ precedence>

This says that when a joinpoint has both org. acne. I nterceptor and org. acne. Aspect . advi ce() bound to it,
org. acre. | nt er cept or must always be invoked before or g. acne. Aspect . advi ce1() which must in turn be in-
voked before or g. acre. Aspect . advi ce2() . The ordering of interceptors/advices that do not appear in a preced-
ence is defined by their ordering for the individual bindings or intercerceptor stacks.

5.18. declare

Y ou can declare checks to be enforced at instrumentation time. They take a pointcut and a message. If the pointcut
is matched, the message is printed out.

5.18.1. declare-warning

<decl ar e-war ni ng expr ="cl ass($i nst anceof { Vehi cl eDAG}) \
AND ! has(public void *->save())">
Al'l Vehi cl eDAO subcl asses must override the save() method.
</ decl ar e- war ni ng>

The above declaration says that if any subclass of VehicleDAO does not implement a noargs save() method, a
warning with the supplied message should be logged. Y our application will continue to be instrumented/run (since
we are using decl ar e- war ni ng in this case).

5.18.2. declare-error

<decl are-error expr="call (* org.acmne. busi nesslayer.*->*(..)) \
AND wi t hi n(org. acne. dat al ayer. *)">
Data | ayer classes should not call up to the business |ayer
</ decl are-error>

The above declaration says that if any classes in the datalayer call classes in the business layer of your application,
an error should be thrown. Instumentation/execution of your application will stop.

JBoss 2.0.0 42

Annotation Bindings

Annotations can be used as an alternative to XML for configuring classes for AOP.

6.1. @Aspect

To mark a class as an aspect you annotate it with the @spect annotation. Remember that a class to be used as an
aspect does not need to inherit or implement anything special, but it must have an empty constuctor and contain
one or more methods (advices) of the format:

publ i c Obj ect <any-net hod- name>(org.j boss. aop.j oi npoi nt. | nvocati on)

The declaration of or g. j boss. aop. Aspect IS

package org.j boss

i mport org.jboss.
i mport java.l ang.
i mport java.l ang.
i mport java.l ang.
i mport java.l ang.

. aop;

aop. advi ce
annot ati on
annot ati on
annot ati on
annot ati on

. Scope;

. El ement Type;

. Retenti on;

. RetentionPol i cy;
. Tar get ;

@ar get ({El enent Type. TYPE}) @Rretenti on(RetentionPolicy. RUNTI ME)
public @nterface Aspect

{

Scope scope() default Scope. PER VM

}

and Scopeis:

package org.j boss. aop. advi ce;

publ i ¢ enum Scope

PER_VM PER _CLASS, PER | NSTANCE, PER JO NPO NT

See Section 5.4.2 for a description of the various scopes.

We use the @A spect annotation as follows:

package com nypac

kage;

JB0ss 2.0.0

Annotation Bindings

i mport org.jboss. aop. Aspect;
i mport org.jboss. aop. advi ce. Scope;
i mport org.jboss. aop.joi npoint.|nvocati on;

@\spect (scope = Scope. PER_ VM
public class My/Aspect
{

}

publ i c Object myAdvi ce(lnvocation invocation)

The name of the class (in this case com nypackage. MyAspect) gets used as the internal name of the aspect. The
equivalent using XML configuration would be:

<aop>
<aspect class="com nypackage. M\yAspect" scope="PER VM'/>
</ aop>

6.2. @InterceptorDef

To mark a class as an interceptor or an aspect factory you annotate it with the @ nt er cept or Def annotation. The
class must ether implement the org.|boss. aop. advi ce. I nt er cept or interfface or the
org.j boss. aop. advi ce. Aspect Fact ory interface.

The declaration of or g. j boss. aop. I nt er cept or Def iS:

package org.j boss. aop;

@rar get ({ El ement Type. TYPE}) @Retention(RetentionPolicy. RUNTI VE)
public @nterface Aspect

{
}

Scope scope() default Scope. PER VM

The same Scope enum is used as for Aspect . The following examples use the @Bind annotation, which will be de-
scribed in more detail below.

6.2.1. Interceptor Example

We usethe @ nt er cept or Def annotation to mark an Interceptor as follows:

package com nypackage;

i mport org.jboss. aop. Bi nd;
i mport org.jboss. aop. | nt ercept or Def;
i mport org.jboss. aop. advi ce. | nterceptor;

@ ntercept or Def (scope = Scope. PER_VM
@i nd (poi ntcut="execution("* com bl ah. Test->test(..)")
public class Mylnterceptor inplenments Interceptor

JB0ss 2.0.0 44

Annotation Bindings

{
public Object invoke(lnvocation invocation)throws Throwabl e
{
return invocation.invokeNext();
}
}

The name of the class (in this case com nypackage. Myl nt er cept or) gets used as the class name of the interceptor.
The equivalent using XML configuration would be:

<aop>
<interceptor class="com nypackage. M/l nterceptor" scope="PER VM'/>
</ aop>

6.2.2. AspectFactory Example

The @ nt er cept or Def annotation is used to mark an AspectFactory as follows:

package com nypackage;
i mport org.jboss. aop. advi ce. Aspect Fact ory;
@ nt ercept or Def (scope=org.j boss. aop. advi ce. Scope. PER_VM

@i nd (poi ntcut="execution("* com bl ah. Test->test2(..)")
public class Myl nterceptorFactory inplenments Aspect Factory

{
}

/1l mpl enented nethods left out for brevity

6.3. @PointcutDef

To define a named pointcut you annotate a field within an @spect or @ntercept or Def annotated class with
@oi nt cut Def . @oi nt cut Def only appliesto fields and is not recognised outside @spect Or @ nt er cept or Def an-
notated classes.

The declaration of or g. j boss. aop. Poi nt cut Def iS:

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface Pointcut Def

{

}
@oi nt cut Def takes only one value, avalid pointcut expression. The name of the pointcut used internally and when
yo want to referenceitis:

String val ue();

<name of @\spect/ @nterceptorDef annotated cl ass>. <nane of @oi ntcutDef annotated fiel d>

JB0ss 2.0.0 45

Annotation Bindings

An example of an aspect class containing a named pointcut which it references from a bindng's pointcut expres-
sion:

package com nypackage;

i mport org.jboss. aop. Poi nt cut Def ;
i mport org.jboss. aop. poi nt cut. Poi nt cut;

@\spect (scope = Scope. PER_ VM
public class My/Aspect

{
@roi nt cut Def (" (execution(* org. bl ah. Foo->someMet hod()) OR \
execution(* org.bl ah. Foo->ot her Met hod()))")
public static Pointcut fooMethods;
public Object myAdvi ce(lnvocation invocation)
{
return invocation.invokeNext();
}
}

It is worth noting that named pointcuts can be referenced in pointcut expressions outside the class they are declared
in (if the annotated fields are declared public of course!).

Using XML configuration this would be:

<a0p>
<aspect class="com nypackage. MyAspect" scope="PER _ VM'/>
<poi nt cut
nanme="com nypackage. MyAspect . f ooMet hods"
expr="(execution(* org.bl ah. Foo- >someMet hod()) OR \
execution(* org. bl ah. Foo->ot her Met hod()))"

/>

</ aop>

6.4. @Bind

To create a binding to an advice method from an aspect class, you annotate the advice method with @i nd. To cre-
ate a binding to an Interceptor or AspectFactory, you annotate the class itself with @i nd since Interceptors only
contain one advice (the i nvoke() method). The @Bind annotation will only be recognised in the situations just
mentioned.

The declaration of or g. j boss. aop. Bi nd iS:

package org.j boss. aop;

@rar get ({ El ement Type. METHOD, El enent Type. TYPE}) @Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface Bind

{
Advi ceType type() default AdviceType. AROUND,
String pointcut();
String cflom) default ""

}

JB0ss 2.0.0 46

Annotation Bindings

The @i nd annotation takes three parameters:

* type, vaid values are Advi ceType. AROUND, Advi ceType. BEFORE, Advi ceType. AFTER, Advi ceType. THROW NG
and Advi ceType. FI NALLY. See Chapter 4 for a description of the different advice types. If omitted, the default is
an around advice.

e poi nt cut, which isa pointcut expression resolving to the joinpoints you want to bind an aspect/interceptor to
» cflow, whichisoptional. If defined it must resolve to the name of adefined cflow.)
In the case of abinding to an advice in an aspect class, the internal name of the binding becomes:

<nanme of the aspect class>.<the name of the advice nethod>

In the case of abinding to an | nt er cept or OF Aspect Fact ory implementation, the internal name of the binding be-
COMmes:

<nane of the Interceptor/AspectFactory inplenentation class>

An example of abinding using an advice method in an aspect class:

package com nypackage;
i mport org.jboss. aop. Bi nd;

@\spect (scope = Scope. PER_VM
public class My/Aspect

{
@roi nt cut Def (" (execution(* org. bl ah. Foo- >someMet hod()) \

OR execution(* org. bl ah. Foo- >ot her Met hod()))")
public static Pointcut fooMethods;

@Bi nd (poi nt cut ="com nypackage. MyAspect . f ooMet hods")
publ i c Object nyAdvice(lnvocation invocation)

{
}

return invocation.invokeNext();

@i nd (poi ntcut="execution("* org. bl ah. Bar->sonmeMet hod())")
public Object nyAdvice(lnvocation invocation)

{
}

return invocation.invokeNext();

The equivaent using XML configuration would be:

<a0p>
<aspect class="com nypackage. MyAspect" scope="PER_VM'/>
<poi nt cut
nanme="com nypackage. MyAspect . f ooMet hods"
expr="(execution("* org. bl ah. Foo- >sonmeMet hod()) OR\
execution("* org. bl ah. Foo->ot her Met hod()))"

/>
<bi nd poi nt cut ="com nmypackage. MyAspect . f ooMet hods" >
<advi ce nane="nyAdvi ce" aspect="com mypackage. MyAspect ">
</ bi nd>

JB0ss 2.0.0 47

Annotation Bindings

<bi nd poi nt cut ="executi on("* org. bl ah. Bar - >soneMet hod())" >
<advi ce nanme="ot her Advi ce" aspect="com nypackage. M/Aspect ">
</ bi nd>

</ aop>

Revisiting the examples above in the @InterceptorDef section, now that we know what @Bind means, the equival-
ent using XML configuration would be:

<aop>
<i nterceptor class="com nmypackage. M/l nterceptor" scope="PER VM'/>
<interceptor factory="com nypackage. Myl nt erceptorFactory" scope="PER VM'/>

<bi nd poi nt cut ="execution("* com bl ah. Test->test2(..)">

<i nterceptor-ref name="com nypackage. Myl nterceptor"/>

</ bi nd>

<bi nd poi nt cut ="executi on("* com bl ah. Test->test2(..)">
<interceptor-ref nane="com nmypackage. Myl nt er cept or Fact ory"/ >
</ bi nd>

</ aop>

6.5. @Introduction

Interface introductions can be done using the @ nt r oduct i on annotation. Only fields within a class annotated with
@spect Or @ nt er cept or Def can be annotated with @ nt r oduct i on.

The declaration of or g. j boss. aop. I ntroducti on:

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface |ntroduction

{
Class target() default java.lang.d ass. cl ass;
String typeExpression() default "";
Class[] interfaces();

}

The parameters of @ nt r oduct i on are:

* target, the name of the class we want to introduce an interface to.

e typeExpression, atype expression that should resolve to one or more classes we want to introduce an interface
to.

e interfaces, anarray of theinterfaces we want to introduce
target Of t ypeExpressi on hasto be specified, but not both.

Thisis how to use this annotation:

package com nypackage;

JB0ss 2.0.0 48

Annotation Bindings

i mport org.jboss. aop. | ntroduction;

@\spect (scope = Scope. PER_ VM
public class IntroAspect

{
@ntroduction (target=com bl ah. Soned ass. cl ass, \
interfaces={java.io.Serializable.class})
public static Object pojoNolnterfaceslntro;
}

This means make com bl ah. Soned ass. cl ass implement the j ava.io. Seri al i zabl e interface. The equivalent
configured via XML would be:

<introduction class="com bl ah. SoneC ass. cl ass" >
<i nterfaces>
java.io. Serializable
</interfaces>
</introduction>

6.6. @Mixin

Sometimes when we want to introduce/force a new class to implement an interface, that interface introduces new
methods to a class. The class needs to implement these methods to be valid. In these cases a mixin class is used.
The mixin class must implement the methods specified by the interface(s) and the main class can then implement
these methods and delegate to the mixin class.

Mixins are created using the @Mixin annotation. Only methods within a class annotated with @spect or
@ nt er cept or Def can be annotated with @ xi n. The annotated method has

e bepublic

be static

» have an empty parameter list, or receive the target of introduction as parameter

contain the logic to create the mixin class

* return an instance of the mixin class
The declaration of or g. j boss. aop. M xi n:

package org.j boss. aop;

@rar get ({ El erent Type. METHOD}) @Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface Mxin

{
Class target() default java.lang.d ass. cl ass;
String typeExpression() default "";
Class[] interfaces();
bool ean i sTransient() default true;
}

JB0ss 2.0.0 49

Annotation Bindings

The parameters of @ xi n are:

* target, the name of the class we want to introduce an interface to.

* typeExpression, atype expression that should resolve to one or more classes we want to introduce an interface
to.

* interfaces, anarray of the interfaces we want to introduce, implemented by the mixin class.

e isTransient. Internally AOP makes the main class keep areference to the mixin class, and this setsif that ref-
erence should be transient or not. The default is true.
target Of t ypeExpressi on hasto be specified, but not both.

An example aspect using @ xi n follows:

package com nypackage;

i mport org.jboss. aop. M xi n;
i mport com mypackage. PQIO

@\spect (scope=org.]jboss. aop. advi ce. Scope. PER_VM
public class IntroductionAspect

{
@ xin (target=com nmypackage. PQJO cl ass, interfaces={java.io.Externalizable.class})
public static Externalizabl eM xin creat eExternalizabl eM xi n(PQJO poj o) {
return new Externalizabl eM xi n(poj o) ;
}
}

Since this is dlightly more complex than the previous examples we have seen, the PQ10 and Ext er nal i zabl eM xi n
classes are included here.

package com nypackage;

public class PQIO
{

}

String stuff;

package com nypackage;

i mport java.io.Externalizable;
i mport java.io.| OException;

i mport java.io.Qojectlnput;

i mport java.io.ObjectQutput;

public class Externalizabl eMxin inplenments Externalizable

{
PQJO poj o;
public Externalizabl eM xi n(PQIO poj o)
{
this.pojo = pojo;
}

JB0ss 2.0.0 50

Annotation Bindings

public void readExternal (Cbjectlnput in) throws | OException, C assNotFoundException

{
poj o.stuff = in.readUTF();
}
public void witeExternal (ObjectQutput out) throws | OException
{
out.witeUTF(pojo.stuff);
}

This has the same effect as the following XML configuration:

<i ntroduction cl asss="com nypackage. PQJO' >
<mi xin transient="true">
<interfaces>
java.io. Externalizable
</interfaces>
<cl ass>com nypackage. Ext er nal i zabl eM xi n</ cl ass>
<construction>l ntroducti onAspect. cr eat eExt ernal i zabl eM xi n(t hi s) </ construction>
</ m xi n>
</introduction>

6.7. @Prepare

To prepare ajoinpoint or a set of joinpoints for DynamicAOP annotate a field with @r epar e in a class anotated
with @spect or @ nt er cept or Def .

The declaration of or g. j boss. aop. Prepare IS.

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD, El enent Type. TYPE}) @Retenti on(Retenti onPolicy. RUNTI ME)
public @nterface Prepare {
String val ue() default

The singlefield val ue contains a pointcut expression matching one or more joinpoints.

To use @ epar e follow this example:

package com nypackage;
i mport org.j boss. aop. Prepare;

@ nt er cept or Def (scope = Scope. PER_ VM
@i nd (poi ntcut="execution("* com bl ah. Test->test(..)")
public class Mylnterceptor2 inplenents I|nterceptor
{
@repare ("all (com bl ah. Dynani cPQIO ")
public static Pointcut dynam cPQIQ,

public Object invoke(lnvocation invocation)throws Throwabl e

{

JB0ss 2.0.0 51

Annotation Bindings

return invocation.invokeNext();
}
}

Using XML configuration instead we would write:

<prepare expr="all (com bl ah. Dynani cPQIO) "/ >

This simple example used an @ nt er cept or Def class for a bit of variety in the examples, and to reiterate that
@oi nt cut , @ ntroducti on, @M xi n, @r epar e, @vypedef, @CFI ow, @ynam cCFl ow and
@nnot ati onl ntroducti onDef can al be used both in @ nt er cept or Def annotated classes AND @spect annot-
ated classes. Same for @i nd, but that is a special case as mentioned above.

6.7.1. @Prepare POJO

Y ou can aso annotate a POJO with @Prepare directly in cases where you are using Dynamic AOP, and the exact
bindings are not known at instrumentation time. In this case you annotate the class itself. Here's how it is done:

package com nypackage;
i mport org.jboss. aop. Prepare;

@repare ("all(this)")
public class MyDynam cPQJO i npl enments | nterceptor
{

}
al | (this) meansthesameasal | (com bl ah. MyDynani cPQIO) , but the use of al | (t hi s) isrecommended.

The examples just given equate to this XML

<prepare expr="all (com bl ah. MyDynam cPQIO) "/ >

To summarise, when using @Prepare within an @Interceptor or @Aspect annotated class, you annotate a field
within that class. When using @Prepare with a POJO you annotate the class itself.

6.8. @TypeDef

To use atypedef, you annotate a field with @ypeDef in aclass anotated with @spect Or @ nt er cept or Def .

The declaration of or g. j boss. aop. TypeDef :

package org.j boss. aop;

@ar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPolicy. RUNTI ME)

JB0ss 2.0.0 52

Annotation Bindings

public @nterface TypeDef {
String val ue();
}

The single val ue field takes a type expression that resolves to one or more classes. The name of the typedef used
for reference and internally is:

<nane of @Aspect/ @nterceptorDef annotated cl ass>. <nane of @ypeDef annotated fiel d>

Here's how to useit;

package com nypackage;

i mport org.jboss. aop. TypeDef;
i mport org.jboss. aop. poi nt cut. Typedef;
@\spect (scope=org.]jboss. aop. advi ce. Scope. PER_ VM
public class Typedef Aspect
{
@ypebDef ("class(com bl ah. PQIO)")
public static Typedef nyTypedef;

@i nd (poi ntcut="execution(* \
$t ypedef { com nypackage. Typedef Aspect . nyTypedef } - >met hodW t hTypedef ())")
public Object typedefAdvice(lnvocation invocation) throws Throwabl e

{
}

return invocation.invokeNext();

The equivaent using XML configuration would be:

<aop>
<aspect cl ass="com nypackage. Typedef Aspect" scope="PER>VM'/ >
<t ypedef nanme="com nypackage. Typedef Aspect. nyTypedef" expr="cl ass(com bl ah. PQJIO) "/ >
<bi nd
poi nt cut ="execution(* \
$t ypedef { com nypackage. Typedef Aspect . nyTypedef } - >met hodW t hTypedef ())"
>

<advi ce nane="typedef Advi ce" aspect ="com nypackage. Typedef Aspect "/ >

</ bi nd>
</ aop>

6.9. @CFlowDef

To create a CHow stack, you annotate a field with @rFl owbef in a class anotated with @spect or
@ nt er cept or Def . The declaration of or g. j boss. aop. CFl owSt ackDef iS:

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface CFl owSt ackDef
{

CFl owDef [] cflows();

JB0ss 2.0.0 53

Annotation Bindings

In turn the declaration of or g. j boss. aop. CFl owDef iS:

package org.j boss. aop;
public @nterface CFl owDef {

bool ean cal |l ed();
String expr();

The parameters of @rl owDef are:

e cal | ed, whether the corresponding expr should appear in the stack trace or not.

e expr, astring matching stack atrace element
The name of the CFlowStackDef used for reference and internally is:

<nane of @Aspect/ @ nterceptorDef annotated cl ass>. <nane of @CFl owSt ackDef annotated fiel d>

CFowStackDef is used like the following example:

package com nypackage;

i mport org.jboss. aop. CFl owSt ackDef ;
i mport org.jboss. aop. poi nt cut. CFl owSt ack;

@\spect (scope=org.]jboss. aop. advi ce. Scope. PER_ VM
public class CFl owAspect

{

@CFl owst ackDef (cf |l ows={ @Fl owDef (expr= "voi d com bl ah. PQIO >cf | owivet hod1()", \
cal | ed=fal se), @CFl owDef (expr = "void com bl ah. PQJO >cf| ow\et hod2()", \
cal l ed=true)})

public static CFl owStack cfNot1And2St ack;

@i nd (poi nt cut ="execution(void com bl ah. PQIO*->pri vMet hod())", \
cfl ow="com nypackage. CFl owAspect . cf Not 1And2St ack")

public Object cflowAdvice(lnvocation invocation) throws Throwabl e

{

return invocation.invokeNext();
}
}

The above means the same as this XML :

<a0p>

<cfl ow st ack nane="com nypackage. CFl owAspect . cf Not LAnd2St ack" >
<cal I ed expr="void com bl ah. PQIO >cf | owivet hod1()"/ >

<not-cal |l ed expr="void com bl ah. PQIO >cf | omvet hod2() "/ >

</ cfl ow st ack>

</ aop>

JB0ss 2.0.0

Annotation Bindings

6.10. @DynamicCFlowDef

To create a dynamic CFlow you annotate a class implementing or g. j boss. aop. poi nt cut . Dynani cCFl ow With
@ynami cCFl owDef . The declaration of @r g. j boss. aop. Dynani cCFl owDef IS:

package org.j boss. aop;

@rar get (El enent Type. TYPE) @Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Dynam cCFl owDef

{
}

Hereis a @DynamicCFl ow annotated class:

package com nypackage;

i mport org.jboss. aop. Dynam cCFl owDef ;
i mport org.jboss. aop. poi nt cut . Dynani cCFl ow,

@ynam cCFl owDef
public class MyDynam cCFl ow i npl ements Dynam cCFl ow

{
public static bool ean execute = fal se;
publ i ¢ bool ean shoul dExecut e(l nvocati on invocati on)
{
return execute;
}
}

The name of the @ynani cCFl owbef annotated class gets used as the name of the cflow for references.

To use the dynamic cflow we just defined:

package com nypackage;

@\spect (scope=org.jboss. aop. advi ce. Scope. PER_VM
public class CFl owAspect

{
@Bi nd (poi nt cut ="execution(void com bl ah. PQIO >soneMet hod())", \
cf | ow="com nypackage. M/Dynani cCFl ow")
public Object cflowAdvice(lnvocation invocation) throws Throwabl e
{
return invocation.invokeNext();
}
}

6.11. @AnnotationintroductionDef

You can introduce annotations by annotating a field with the @nnot ati onl ntroducti onDef in a class anotated
with @spect or @ nt er cept or Def . The declaration of or g. j boss. aop. Annot at i onl nt r oduct i onDef IS:

JB0ss 2.0.0 55

Annotation Bindings

package org.j boss. aop;

@arget (El ement Type. Fl ELD) @Retention(RetentionPolicy. RUNTI VE)
public @nterface Annotationlntroducti onDef

{
String expr();
bool ean invisible();
String annotation();
}

The parameters of @nnot at i onl nt r oduct i onDef are:

e expr, pointcut matching the classes/constructors/methods/fiel ds we want to annotate.
e invisible,if true: the annotation's retention is RetentionPolicy.CLASS,; false: RetentionPolicy. RUNTIME
* annot at i on, the annotation we want to introduce.

The listings below make use of an annotation called @om nypackage. MyAnnot at i on:

package com nypackage;
public interface M/Annotation

{
String string();
int integer();
bool ean bool ();
}

What its parameters mean is not very important for our purpose.

The use of @nnot ati onl nt roduct i onDef :

package com nypackage;

i mport org.jboss. aop. Annot ati onl ntroducti onDef:
i mport org.jboss.aop.introduction. Annot ati onl ntroducti on;

@ | nt ercept or Def (scope=org. | boss. aop. advi ce. Scope. PER_VM
@r g. j boss. aop. Bi nd (poi ntcut="all (com bl ah. SonePQJO ")
public class IntroducedAnnotationlnterceptor inplenments |nterceptor
{
@r g. j boss. aop. Annot ati onl ntroducti onDef \
(expr="net hod(* com bl ah. SonePQIO- >annot at i onl nt r oduct i onMet hod())", \
i nvi si bl e=fal se, \
annot at i on=" @om nypackage. M\yAnnot ati on \
(string="hello', integer=5, bool=true)")
public static Annotationlntroduction annotationlntroduction;

public String getNane()

{
return "I ntroducedAnnot ati onl nterceptor”;
}
public Object invoke(lnvocation invocation) throws Throwabl e
{
return invocation.invokeNext();
}

JB0ss 2.0.0

Annotation Bindings

Note that the reference to @om nypackage. MAnnot ati on must use the fully qualified class name, and that the
value for its string parameter uses single quotes.

The previous listings are the same as this XML configuration:

<annot ati on-introduction
expr="met hod(* com bl ah. SonePQJO >annot at i onl nt r oduct i onMet hod())
i nvi si bl e="fal se"
>
@om nypackage. MyAnnot ati on (string="hello", integer=5, bool=true)
</ annot ati on-i ntroduction>

6.12. @Precedence

Y ou can declare precedence by annotating a class with @r ecedence, and then annotate fields where the types are
the various Interfaces/Aspects you want to sort. You annotate fields where the type is an interceptor with
@r ecedencel nt er cept or . When the type is an aspect class, you annotate the field with @r ecedenceAdvi ce. The
definitions of org.jboss.aop.Precedence, org.jboss.aop.Precedencel nterceptor and org.jboss.aop.PrecedenceAdvice
are

package org.j boss. aop;

@rar get ({ El ement Type. TYPE}) @Retention(RetentionPolicy. RUNTI VE)
public @nterface Precedence

{
}

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Precedencel nterceptor

{
}

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface PrecedenceAdvice

{
}

String val ue();

Theval ue() attribute of PrecedenceAdvi ce isthe name of the advice method to use.

The example shown below declares arelative sort order where or g. acre. | nt er cept or must always be invoked be-
foreorg. acne. Aspect . advi ce1() which must beinvoked before or g. acne. Aspect . advi ce2() :

JB0ss 2.0.0 57

Annotation Bindings

i mport org.jboss. aop. Precedence;
i mport org.jboss. aop. PrecedenceAdvi ce;

@r ecedence
public class M/Precedence

{

@r ecedencel nt er cept or
org.acne. | nterceptor intercept;

@Pr ecedenceAdvi ce ("advicel")
org. acne. Aspect precAdvi cel;

@°r ecedenceAdvi ce ("advice2")
org. acnme. Aspect precAdvi cez;

The ordering of interceptors/advices defined via annotations that have no precedence defined, is arbitrary.

6.13. @DeclareError and @DeclareWarning

Y ou can declare checks to be enforced at instrumentation time. They take a pointcut and a message. If the pointcut
is matched, the message is printed out. To use this with annotations, annotate fields with Decl ar ewar ni ng or De-
clareError within a class annotated with @spect oOr @nterceptorDef. The definitions of
org. j boss. aop. Decl areError and or g. j boss. aop. Decl ar eWar ni ng are:

package org.j boss. aop;

@rar get ({ El enent Type. FI ELD}) @Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Decl areWarni ng

{
String expr();
String nmsg();

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Decl areError

{
String expr();
String msg();

For both: the expr() attribute is a pointcut expression that should not occur, and the msg() attribute is the message
to print out if a match is found for the pointcut. If you use Decl ar eWar ni ng instrumentation/your application will
simply continue having printed the message you supplied. In the case of Decl ar eErr or , the message is logged and
an error isthrown, causing instrumentation/your application to stop. Here is an example:

i mport org.jboss. aop. Aspect;
i mport org.jboss. aop. poi nt cut. Poi nt cut;
i mport org.jboss. aop. Decl areError;

JB0ss 2.0.0 58

Annotation Bindings

i mport org.jboss. aop. Decl ar eV\r ni ng;

@\spect (scope=org.]jboss. aop. advi ce. Scope. PER_ VM
public class Decl ar eAspect

{
@ecl ar eWar ni ng (expr="cl ass($i nst anceof { Vehi cl eDAC}) AND \
I'has(public void *->save())", \
msg="Al| Vehi cl eDAO subcl asses nust override the save() nethod.")
Poi nt cut war ni ng;
@ecl areError (expr="call (* org.acne. busi nesslayer.*->*(..)) \
AND wi t hi n(org. acne. dat al ayer.*)", \
nsg="Data | ayer classes should not call up to the business |ayer")
Poi ntcut error;
}

JBoss 2.0.0

59

Dynamic AOP

7.1. Hot Deployment

With JBoss AOP you can change advice and interceptor bindings at runtime. Y ou can unregister existing bindings,
and hot deploy new bindings if the given joinpoints have been instrumented. Hot-deploying within the JBoss ap-
plication server is as easy as putting (or removing) a*-aop. xm file or . aop jar file within the deploy/ directory.
There is adso a runtime APl for adding advice bindings a runtime. Getting an instance of
org. j boss. aop. Aspect Manager . i nst ance() , you can add your binding.

org. j boss. aop. advi ce. Advi ceBi ndi ng bi nding =

new Advi ceBi ndi ng("executi on(PQIO >new..))", null);
bi ndi ng. addl nt er cept or (Si npl el nt ercept or. cl ass) ;
Aspect Manager . i nst ance() . addBi ndi ng(bi ndi ng) ;

First, you allocated an Advi ceBi ndi ng passing in a pointcut expression. Then you add the interceptor via its class

and then add the binding through the AspectManager. When the binding is added the AspectManager will iterate
through ever loaded class to seeif the pointcut expression matches any of the joinpoints within those classes.

7.2. Per Instance AOP

Any class that isinstrumented by JBoss AOP, isforced to implement the or g. j boss. aop. Advi sed i nterface.

public interface |nstanceAdvi sed

{
public I nstanceAdvi sor _getlnstanceAdvi sor();
public void _setlnstanceAdvi sor (I nstanceAdvi sor newAdvi sor);
}
public interface Advised extends |nstanceAdvi sed
{
publ i c Advisor _getAdvisor();
}

The InstanceAdvisor is the interesting interface here. InstanceAdvisor allows you to insert Interceptors at the be-
ginning or the end of the class's advice chain.

public interface |InstanceAdvisor

{
public void insertlnterceptor(Interceptor interceptor);
public void renpvel nterceptor(String nane);
public void appendl nterceptor(Interceptor interceptor);

public void insertlnterceptorStack(String stackNane);
public void renovel nterceptorStack(String nane);
public void appendl nterceptorStack(String stackNane);

JBoss 2.0.0 60

Dynamic AOP

public Sinpl eMet aDat a get Met abDat a() ;

So, there are three advice chains that get executed consecutively in the same java call stack. Those interceptors that
are added with the i nsert I ntercept or () method for the given object instance are executed first. Next, those ad-
vices/interceptors that were bound using regular bi nds. Finally, those interceptors added with the appendi nt er -
cept or () method to the object instance are executed. Y ou can aso reference st acks and insert/append full stacks
into the pre/post chains.

Besides interceptors, you can also append untyped metadata to the object instance via the getMetaData() method.

7.3. Preparation

Dynamic AOP cannot be used unless the particular joinpoint has been instrumented. Y ou can force intrumentation
with the pr epar e functionality

7.4. Improved Instance API

As mentioned, you can add more aspects to awoven class using the or g. j boss. aop. | nst anceAdvi sor. ThiSAPI is
limited to adding interceptors to the existing intereptor chains, so it isabit limited.

The new default weaving mode introduced in JBoss AOP 2.0.0 still allows you access to the | nst anceAdvi sor in-
terface, but also offers a fuller instance API, which allows you to add bindings, annotation overrides etc. via the
normal dynamic AOP API. This is underdocumented, but for afull overview of the capabilites take alook at how
org. j boss. aop. Aspect Xnl Loader interacts with or g. j boss. aop. Aspect Manager . We are working on a new tidier
API for the next version of JBoss AOP. Normally, for dynamic AOP you add things to the top level Aspect Man-
ager , which means that all instances of all woven classes can be affected.

In JBoss AOP 2.0.0, each aspectized class has its own Domain. A domain is a sub-AspectManager. What is de-
ployed in the main AspectManager is visible to the class's domain, but not vice versa. Furthermore each advised in-
stance has its own Domain again which is a child of the class's domain. The Domain classis a sub-class of the As-
pectManager, meaning you can add ANY THING supported by JBoss AOP to it, you are not limited to just inter-
ceptors. In the following example we prepare al joinpoints of the POJO class and declare an aspect called m-
Aspect

<I-- Wave in the hooks into our PQJO cl ass and add the interceptors -->
<a0p>

<aspect class="M/Aspect"/>

<prepare expr="all (PQIO"/>

</ aop>
PQJO poj 0ol = new PQIQ();
PQJO poj 02 = new PQIQ();

JB0ss 2.0.0 61

Dynamic AOP

poj ol. someMet hod() ;

At this stage, our pPai0O has the hooks woven in for AOP, but now bindings are deployed, so our cal to
PQJO. soneMet hod() isnot intercepted. Next let us add a binding to PaiO's class domain.

/1A'l woven classes inplenent the Advised interface

Advi sed cl assAdvi sor = ((Advi sed)poj ol);

/1 Get the domain used by all instances of PQIO

Aspect Manager poj oDormai n = cl assAdvi sor. _get Advi sor (). get Manager () ;

/1 Add a binding with an aspect for that class this is simlar to

Advi ceBi ndi ng bi ndi ngl = new Advi ceBi ndi ng("execution(* PQIO >sonmeMethod*(..))", null);
Aspect Definiti on myAspect = Aspect Manager.instance().get AspectDefinition("MAspect");

bi ndi ngl. addl nt er cept or Fact or y(new Advi ceFact ory(myAspect, "intercept"));

/1 Add the binding to PQJO s donai n
poj oDonmai n. addBi ndi ng(bi ndi ngl);

poj ol1. someMet hod() ;
poj 02. someMet hod() ;

Now we have added a binding to Pai0's class Domain. Both callsto someMet hod() get intercepted by MyAspect

[/ Create an annotation introduction

Annot ati onl ntroduction intro = Annotati onl ntroducti on. createMthodAnnot ati onl ntroducti on(
"* PQJIO >soneMet hod()",
" @& Annot ati on",
true);

/I Creat e anot her bindi ng
Advi ceBi ndi ng bi ndi ng2 = new Advi ceBi ndi ng("execution(* PQIO >@FAnnotation)", null);
bi ndi ng2. addl nt er cept or (MyI nt ercept or. cl ass) ;

/1 Al'l woven instances have an instance advi sor
I nst anceAdvi sor instanceAdvi sorl = ((Advi sed)pojol)._getlnstanceAdvisor();

// The instance advisor has its own donmin
Dorei n poj olDonmai n = instanceAdvi sor 1. get Domai n() ;

/1 Add the annotation override and binding to the donain
poj o1Domai n. addAnnot ati onOverri de(intro);
poj o1Domai n. addBi ndi ng(bi ndi ng2) ;

poj ol. someMet hod() ;
poj 02. somreMet hod() ;

We have added an annotation override and a new binding matching on that annotaton to poj o1's domain, so when
calling poj o1. someMet hod() this gets intercecpted by MyAspect AND Ml nt er cept or . poj 02. someMet hod() Still
gets intercepted by MyAspect only.

7.5. DynamicAOP with HotSwap

JB0ss 2.0.0 62

Dynamic AOP

When running JBoss AOP with HotSwap, the dynamic AOP operations may result in the weaving of bytecodes. In
this case, the flow control of joinpoints matched only by prepar e expressions is not affected before any advices or
interceptors are applied to them via dynamic aop. Only then, the joinpoint bytecodes will be weaved to start invok-
ing the added advices and interceptors and, as aresult, their flow control will be affected.

On the other hand, if HotSwap is disabled, the joinpoints matched by pr epar e expressions are completely instru-
mented and the flow control is affected before classes get loaded, even if no interceptors are applied to them with
dynamic aop.

To learn how to enable HotSwap, refer to the "Running Aspectized Application” chapter.

JBoss 2.0.0 63

Installing

This section defines how to install JBoss AOP standalone, within JBoss 4.0.x, JBoss 4.2.x and within JBoss 5.x

[jboss-aop-2.0.0.GA

& bin
[build.xml
Bl docs
Bl etc
(] jboss-40-install
D jboss-aop-jdk50.deployer
= jboss-50-install
- jboss-aop-jboss5.deployer
& lib
ReadMe-AS5.1xt
jbossorg-eula.txt
&l lib
i javassist.jar
?j' jboss-aop-client.jar
= jboss-aop-single.jar

= jboss-aop.jar

F__1

i jboss-comman-caore.jar
2 |boss-logging-log4j.jar
= jboss-logging-spi.jar

= jboss-mdr.jar

F_1

i jboss-reflect.jar

jj' jboss-standalone-aspect-library.jar
= jrockit-pluggable-instrumentaor.jar

g log4j.jar
i pluggable-instrumentaor.jar
jj' trove.jar

Bl lib-test
RELEASE_MNOTES.html

[: 5rc

JBoss 2.0.0

Installing

8.1. Installing Standalone

There's nothing really to install if you're running outside the JBoss application server. Just use the libraries under
lib/.

8.2. Installing with JBoss 4.0.x and JBoss 4.2.x Application Serv-
er for JIDK 5

Toinstall JBoss AOP in JBoss 4.0.x or JBoss 4.2.x Application Server: with JDK 5, there is an ant build script to
install into the application server. It livesin j boss- 40-i nstal | / j boss- aop-j dk50. depl oyer/ bui | d. xn . Modify
j boss-40-instal | /j boss- aop-j dk50. depl oyer/ j boss. properti es to point to the the root of your JBoss installa-
tion and specify the application server configuration you want to upgrade. These are the steps taken by the ant
script:

1. Back up the existing ${jboss.hone}/server/<config-name>/ depl oy/j boss- aop-j dk50. depl oyer tO
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer . bak
2. Copy the files from j boss- 40-i nstal | / j boss- aop- j dk50. depl oyer over the files that already exist in your

existing JBoss Application Server distribution under
${j boss. hone}/server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer

3. In JBoss 4.0.4.GA and |ater, move
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/j avassi st.jar to
${j boss. hore}/ server/ <confi g-name>/ | i b/ j avassi st.jar. Any existing javassist.jar in that location is
copied to

${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer. bak/ | i b/j avassi st. bak

4. If you NOT upgrading from a previous AOP 2 distribution, open up
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/j boss-aspect-library-jdk5
0.jar and delete all classes and subpackages under or g. j boss. aop. In AOP 2.0 we changed the packaging,

these classes now exist inside
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/j boss- aop- as4- depl oyer.ja
r. Also, we delete any files that aso exist in

${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/j boss- st andal one- aspect - |
i brary.jar

8.3. Installing with JBoss Application Server 5

JBoss AS 5 ships with AOP 2.0.0.GA. To upgrade to a newer AOP version, we have provided am an script to up-
grade the server. It can be found at j boss- 50-i nstal | / bui | d. xmi . Modifly j boss-50-i nstal | to point to the root
of your JBoss installation, and specify the application server configuration you want to upgrade. These are the steps
taken by the ant script:

1. Back up the existing ${j boss. hone}/lib and
${j boss. hone}/ server/ <confi g- nane>/ depl oyer s/ j boss- aop-j boss5. depl oyer folders.

2. Overwrite the ${j boss. hore}/ server/ <conf i g- name>/ depl oyer s/ j boss- aop- j boss5. depl oyer folder with
thefilesfromj boss-50-i nstal | /j boss- aop- j boss5. depl oyer.

3. Overwritethe ${j boss. hone}/ i b folder with the filesfromj boss-50-instal | /1i b.

JBoss 2.0.0 65

Building and Compiling Aspectized Java

9.1. Instrumentation modes

JBoss AOP works by instrumenting the classes you want to run. This means that modifications to the bytecode are
made in order to add extrainformation to the classes to hook into the AOP library. JBoss AOP allows for two types
of instrumentation

« Precompiled - The classes are instrumented in a separate aop compilation step before they are run.

» Loadtime - The classes are instrumented when they are first |oaded.
This chapter describes the steps you need to take to precompile your classes with the aop precompiler.

9.2. Ant Integration

JBoss AOP comes with an ant task that you can use for precompiling your classes with the aop precompiler. An ex-
ample build.xml fileis the basis for the explanation.

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect default="conpile" name="JBoss/ ACP">
<t arget nane="prepare">

Define the source directory, and the directory to compile classesto.

<property nane="src.dir" val ue="PATH TO YOUR SOURCE DI R'>
<property nane="cl asses.dir" val ue="PATH TO YOUR DI R FOR COWI LED CLASSES" >

Define also the path of your JBoss AOP installation, as well as the path to the lib directory:

<property nane="j boss. aop.root" val ue="PATH TO JBOSS ACP HOVE"/ >
<property nanme="jboss. aop.|ib" val ue="${j boss.aop.root}/lib"/>

Include the jboss-aop.jar and the jars it depends on in the classpath:

<path id="cl asspath">

JB0ss 2.0.0 66

Building and Compiling Aspectized Java

<pat hel ement pat h="${j boss. aop. i b}/jboss-aop.jar"/>
<pat hel enent pat h="${j boss. aop.|ib}/javassist.jar"/>
<pat hel ement pat h="${j boss. aop.lib}/trove.jar"/>
<pat hel enent pat h="${j boss. aop. | i b}/j boss-conmon-core.jar"/>
<pat hel ement pat h="${j boss. aop. | i b}/j boss-1o0ggi ng-spi.jar"/>
<pat hel enent pat h="$%${j boss. aop. | i b}/j boss-1o0ggi ng-1o0g4j.jar"/>
<pat hel ement pat h="${j boss. aop.|ib}/jboss-mdr.jar"/>
<pat hel ement pat h="${j boss. aop. |ib}/jboss-reflect.jar"/>
<pat hel ement pat h="${j boss. aop.lib}/log4j.jar"/>

</ pat h>

As an alternative, you can use the single jar provided with JBoss AOP. This jar bundles all the libraries used by
JBoss AOP in asingle unit. To use thisjar, just define:

<path id="cl asspath">
<pat hel ement pat h="${j boss. aop. | i b}/j boss-aop-single.jar"/>
</ pat h>

Now, definetheor g. j boss. aop. ant . AopC ant aop precompiler task:

<t askdef nanme="aopc" cl assname="org.j boss. aop. ant. AopC"
cl asspat hr ef ="j boss. aop. cl asspat h"/ >
</target>

<target nanme="conpile" depends="prepare">

Compile the files (from the source directory to the compiled classes directory):

<javac srcdir="${src.dir}"
destdir="%{cl asses. dir}"
debug="on"
deprecati on="on"
optim ze="of f"
i ncl udes="**">
<cl asspath refid="cl asspath"/>
</javac>

Now use the ant aop precompiler task, it reads the files from the classes directory and weaves those classes, ove-
writing them with the corresponding weaved version.

<aopc conpil ercl asspat href ="cl asspat h" verbose="true">
<cl asspath path="${cl asses.dir}"/>
<src path="${classes.dir}"/>
<i ncl ude name="**/*_ class"/>
<aoppat h pat h="j boss-aop. xm "/>
<aopcl asspath path="${cl asses.dir}"/>

</ aopc>

</target>
</ proj ect>

JB0ss 2.0.0 67

Building and Compiling Aspectized Java

The last tag, aopcl asspat h, must be used only if you used annotations to configure aspects, bindings, and the like.
If thisisthe case and you are not using a jboss-aop.xml file, you can ommit the aoppat h tag. Y ou can also use both
annotations and XML to configure aspects. In this case, you must declare both tags. The complete list of the para-
metersthat or g. j boss. aop. ant . AopC ant task takes follows:

e conpil ercl asspath Of conpil ercl asspat href - These are interchangable, and represent the jars needed for
the aop precompiler to work. The conpi | ercl asspat h version takes the paths of the jar files, and the com
pi | ercl asspat href version takes the name of a predefined ant path. They can be specified as attributes of
aopc, as shown above. conpi | er cl asspat h can aso be specified as a child element of aopc, in which case you
can use al the normal ant functionality for paths (e.g. fileset).

e classpath orcl asspat href - Path to the compiled classes to be instrumented. The cl asspat h version takes the
path of the directory, and the cl asspat hr ef version takes the name of a predefined ant path. They both be spe-
cified as attributes of aopc. cl asspat h can also be specified as a child element of aopc, as shown above, in
which case you can use all the normal ant functionality for paths (e.g. fileset). The full classpath of the underly-
ing java process will be classpath + compilerclasspath.

e src - A directory containing filesto be transformed. Y ou can use multiple src el ements to specify more that one
root directory for transformation.

* include - Thisisoptional and it serves as afilter to pick out which files within sr ¢ should be transformed. Y ou
can use wildcards within the nane expression, and you can also use multiplei ncl ude elements.

* verbose - Default isfalse. If true, verbose output is generated, which comes in handy for diagnosing unexpec-
ted results.

* report - Default isfalse. If true, the classes are not instrumented, but a report called aop-report. xm isgener-
ated which shows all classes that have been loaded that pertain to AOP, what interceptors and advices that are
attached, and aso what metadata that has been attached. One particularly useful thing is the unbounded section.
It specifys all bindings that are not bound. It allows you to debug when you might have a typo in one of your
XML deployment descriptors.

Report generation works on the instrumented classes, so to get valid data in your report, you have to to make
two passes with aopc. First you run aopc with report="fal se" to instrument the classes, and then you run aopc
withreport="t rue" to generate the report.

* aoppat h - The path of the *- aop. xni file containing the xml configuration of your bindings. Files or Director-
ies can be specified. If it is a directory, JBoss AOP will take all aop. xm files from that directory. This gets
used for the j boss. aop. pat h optional system property which is described in the "Command Line" section. If
you have more than one xml file, for exampleif you have both a"normal” j boss- aop. xni file, and a

<aoppat h>

<pat hel enent pat h="j boss-aop. xm "/>
<pat hel enent path="xm dir"/>

</ aoppat h>

* aopcl asspat h - This should mirror your class path and contain all JARSdirectories that may have annotated as-

JBoss 2.0.0 68

Building and Compiling Aspectized Java

pects (Ses Chapter "Annotated Bindings"). The AOPC compiler will browse each class file in this path to de-
termine if any of them are annotationed with @spect . This gets used for the j boss. aop. cl ass. pat h optional
system property which is described in the "Command Line" section. If you have more than one jar file, you can
specify these as follows:

<aopcl asspat h>

<pat hel emrent pat h="aspects.jar"/>
<pat hel enent path="foo.jar"/>

</ aopcl asspat h>

* maxsrc - The ant task expands any directoriesin src to list al class files, when creating the parameters for the
java command that actually performs the compilation. On some operating systems there is a limit to the length
of vaid command lines. The default value for maxsrc is 1000. If the total length of all the files used is greater
than maxsr ¢, a temporary file listing the files to be transformed is used and passed in to the java command in-
stead. If you have problems running the aopc task, try setting this value to a value smaller than 1000.

9.3. Command Line

To run the aop precompiler from the command line you need all the aop jars on your classpath, and the class files
you are instrumenting must have everything they would need to run in the java classpath, including themselves, or
the precompiler will not be able to run.

Thej boss. aop. pat h optional system property pointsto XML files that contain your pointcut, advice bindings, and
metadata definitions that the precompiler will use to instrument the .class files. The property can have one or files it
points to delimited by the operating systems specific classpath delimiter (*;' on windows, "' on unix). Files or Dir-
ectories can be specified. If itisadirectory, JBoss AOP will take all aop. xni files from that directory.

The j boss. aop. cl ass. pat h optional system property points to all JARs or directories that may have classes that
are annotated as @spect (See Chapter "Annotated Bindings'). JBoss AOP will browse all classes in this path to
seeif they are annotated. The property can have one or files it points to delimited by the operating systems specific
classpath delimiter (*;' on windows, "' on unix).

Itisinvoked as;

$j ava -classpath ... [-D boss.aop.path=...] [-D boss.aop.class.path=...] \
org. j boss. aop. st andal one. Conpi |l er <class files or directories>

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage:

$ aopc <cl asspath> [-aoppath ...] [-aopclasspath ...] [-report] [-verbose] \
<class files or directories>+

* classpat h - path to your classes and any jars your code depends on

JB0ss 2.0.0 69

Building and Compiling Aspectized Java

The other parameters are the same as above.

JBoss 2.0.0

70

10

Running Aspectized Applications

This section will show you how to run JBoss AOP with standalone applications and how to run it integrated with
the JBoss application server.

10.1. Loadtime, Compiletime and HotSwap Modes

There are 3 different modes to run your aspectized applications. Precompiled, loadtime or hotswap. JBoss AOP
needs to weave your aspects into the classes which they aspectize. Y ou can choose to use JBoss AOP's precompiler
to accomplish this (Compiletime) or have this weavining happen at runtime either when the class is loaded
(Loadtime) or after it (HotSwap).

Compiletime happens before you run your application. Compiletime weaving is done by using the JBoss AOP pre-
compiler to weave in your aspects to existing .class files. The way it works is that you run the JBoss AOP precom-
piler on a set of .class files and those files will be modified based on what aspects you have defined. Compiletime
weaving isn't always the best choice though. JSPs are a good instance where compiletime weaving may not be feas-
ible. It is also perfectly reasonable to mix and match compile time and load time though. If you have load-time
transformation enabled, precompiled aspects are not transformed when they are loaded and ignored by the class-
loader transformer.

L oadtime weaving offers the ultimate flexibility. JBoss AOP does not require a special classloader to do loadtime
weaving, but there are some issues that you need to think about. The Java Virtual Machine actually has a simple
standard mechanism of hooking in a class transformer through the - j avaagent . JBoss AOP an additional load-time
transformer that can hook into classloading via this standard mechanism.

Load-time weaving also has other serious side effects that you need to be aware of. JBoss AOP needs to do the
same kinds of things that any standard Java profiling product needs to do. It needs to be able to process bytecode at
runtime. This means that boot can end up being significantly slowed down because JBoss AOP has to do alot of
work before a class can be loaded. Once al classes are loaded though, load-time weaving has zero effect on the
speed of your application. Besides boottime, load-time weaving has to create a lot of Javassist datastructure that
represent the bytecode of a particular class. These datastructures consume a lot of memory. JBoss AOP does its
best to flush and garbage collect these datastructures, but some must be kept in memory. We'll talk more about this
later.

HotSwap weaving is a good choice if you need to enable aspects in runtime and don't want that the flow control of
your classes be changed before that. When using this mode, your classes are instrumented a minimum necessary
before getting loaded, without affecting the flow control. If any joinpoint becomes intercepted in runtime due to a
dynamic AOP operation, the affected classes are weaved, so that the added interceptors and aspects can be invoked.
As the previous mode, hot swap contains some drawbacks that need to be considered.

JBoss 2.0.0 71

Running Aspectized Applications

10.2. Regular Java Applications

JBoss AOP does not require an application server to be used. Applications running JBoss AOP can be run stan-
dalone outside of an application server in any standard Java application. This section focuses on how to run JBoss
AOP applications that don't run in the JBoss application server.

10.2.1. Precompiled instrumentation

Running a precompiled aop application is quite similar to running a normal java application. In addition to the
classpath required for your application you need to specify the files required for aop, which are the files in the dis-
tribution's1i b/ folder.

As an adternative, you can replace all those jars by j boss- aop- si ngl e. j ar, that bundles the libraries used by JBoss
AOP with JBoss AOP classfilesinasinglejar.

JBoss AOP finds XML configuration filesin these two ways:

e Youtell IBBoss AOP where the XML files are. Set thej boss. aop. pat h system property. (Y ou can specify mul-

tiple files or directories separated by ' (*nix) or ;' (Windows), i.e
Dj boss. aop. pat h=j boss- aop. xni ; met adat a- aop. xm) If you specify a directory, all aop. xm files will be
loaded from there as well.

e Let JBoss AOP figure out where XML files are. JBoss AOP will look for all XML files that match this pattern
| META- | NF/ j boss-aop. xm . S0, if you package your jars and put your JBoss AOP XML files within /
MVETA- | NF/ j boss- aop. xni , JBoss AOP will find these files.

If you are using annotated bindings (See Chapter "Annotated Bindings"), you must tell JBoss AOP which JARS or
directories that may have annotated @A spects. To do this you must set the j boss. aop. ¢l ass. pat h system prop-
erty. (You can specify multiple jars or directories separated by ' (*nix) or ‘' (Windows), i.e

Dj boss. aop. cl ass. pat h=aspects.jar; cl asses)

So to run a precompiled AOP application, where your jboss-aop.xml fileis not part of ajar, you enter this at a com-

mand prompt:

$ java -cp=<cl asspath as descri bed above> - D boss. aop. pat h=<path to jboss-aop.xnm >\
- Dj boss. aop. cl ass. pat h=aspects.j ar
com bl ah. M\yMai nd ass

To run a precompiled AOP application, where your application contains a jar with a META-INF/jboss-aop.xml
file, you would need to do this from the command-line:

$ java -cp=<cl asspath as descri bed above> com bl ah. M/Mai nC ass

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage:

JBoss 2.0.0 72

Running Aspectized Applications

$ run-preconpil ed cl asspath [-aoppath path_to_aop.xm] [-aopcl asspath path_to_annotated] \
com bl ah. MyMai nC ass [args...]

If your application is not in a jar with a META-INF/jboss-aop.xml file, you must specify the path to your
*-aop. xni filesin the - aoppat h parameter, and if your class comtains aspects configured via annotations (@spect
etc.) you must passin this classpath viathe - aopcl asspat h parameter.

10.2.2. Loadtime

This section describes how to use loadtime instrumentation of classes with aop. The classes themselves are just
compiled using Java, but are not precompiled with the aop precompiler. In the examples given if your classes are
contained in ajar with a META-INF/jboss-aop.xml file, you would omit the - Oj boss. aop. pat h System property.

The JVM has a pluggable way of defining a class transformer viathej ava. | ang. i nst rument package. JBoss AOP
uses this mechanism to weave aspects at class load time. Using |oadtime weaving is really easy. All you have to do
is define an additional standard switch on the Java command line. - j avaagent : j boss- aop. j ar . Here's how run an
AOP application with loadtime instrumentation, where your jboss-aop.xml fileis not part of ajar:

$ java -cp=<cl asspath as descri bed above> -Dj boss. aop. pat h=<path to jboss-aop. xm > \
-j avaagent: j boss-aop.jar com bl ah. MyMai nCl ass

And to run an AOP application with |oadtime instrumentation, where your application contains ajar with aMETA-
INF/jboss-aop.xml file:

$ java -cp=<cl asspath as descri bed above> -javaagent:jboss-aop.jar \
com bl ah. M\yMai nd ass

In the /bin folder of the distribution we have provided batch/script files to make this easier. It includes all the aop
libs for you, so you just have to worry about your files. The usage:

$ run-1oad cl asspath [-aoppath path_to_aop.xm] [-aopclasspath path_to_annotated] \
com bl ah. M\yMai nCl ass [args. ..]

The parameters have the same meaning as for the run-precompiled scripts.

If you invoke the previousj ava examples with ant, by using the ant j ava task, make sure that you set f or k="t r ue"
in the ant j ava task. Failure to do so, causes the j ava task to execute in the same VM as ant which is aready run-
ning. This means that the special classloader used to do the loadtime transformations does not replace the standard
one, so No instrumentation takes place.

10.2.2.1. Loadtime using JRockit

JRaockit 5+ supports the "normal” -javaagent switch.

10.2.2.2. Improving Loadtime Performance

JB0ss 2.0.0 73

Running Aspectized Applications

JBoss AOP needs to do the same kinds of things that any standard Java profiling product needs to do. It needs to be
able to process bytecode at runtime before a class is loaded. JBoss AOP has to do a lot of work before a class can
be loaded. This means that boot time can end up being significantly slowed down. Once al classes are |oaded
though, 10ad-time weaving has zero effect on the speed of your application.

Besides boottime, load-time weaving has to create a lot of Javassist datastructures that represent the bytecode of a
particular class. These datastructures consume a lot of memory. JBoss AOP does its best to flush and garbage col-
lect these datastructures, but some must be kept in memory. This section focuses on how you can improve the per-
formance of Loadtime weaving.

Increase the Java Heapspace

In Java, when your application is getting close to eating up all of its memory/heapspace, the Java Garbage Col-
lector starts to run more frequently and aggressively. When the GC starts running more often the performance
of your application will suffer. JBoss AOP does its best to balance bootup speed vs. memory consumption, but
it does require loading bytecode into Javassist datastructures so it can analyze and transform a class. For speed
purposes, the datastructures are cached thus leading to the extra memory consumption. Javassist structures of
non-transformed classes are placed a SoftReference cache, so they are GC'd when memory is running low.
Transformed classes, however, are locked in the cache. Transformed classes are help in memory, as they may
effect pointcut matching on classes that haven't been loaded yet.

To increase your Heap size, use the standard - xmx switch.

Filtering
Filtering probably has the greatest effect on overall boot-time speed. If you've ever worked with a Java profil-
ing product before, you probably noticed that it has an option to filter classes that you are not interested in pro-
filing. This can speed up performance of the tool. JBoss AOP has to analyze every class in the system to make
sure it does not need to be transformed. THis is one reason why load-time weaving can be so slow. You can
give JBoss AOP alot of help by specifying sets of classes that do not need to be transformed.

To enable filtering, you can use the j boss. aop. excl ude System Property. This System Property is a comma
delimited list. The strings in the list can be package names and/or classnames. Packages/classes within this list
will ignored by JBoss AOP. You can use the wildcard * in place of a classname, this will then exclude all
classes. No other wildcards are supported.

java -Dj boss. aop. excl ude=or g. j boss, org. apache ..

There is also a mirror opposite of exclude. The System Property j boss. aop. i ncl ude overrides any thing spe-
cified with exclude.

Include ignored annotations
To improve the startup time of JBoss AOP all invisible annotations (invisible annotations are all annotations
that are not annotated with @Ret ent i on(Ret ent i onPol i cy. RUNTI ME)) are ignored by default. To include them
use the system property j boss. aop. i nvi si bl e. annot at i ons t0 add packages that will be included, or add "*"
toinclude all.

java -Dj boss. aop. incl ude. annot ati ons=com f 0o. bar, or g. my. conpany

JBoss 2.0.0 74

Running Aspectized Applications

Toincludeall:

java -Djboss. aop. incl ude. annot ati ons=*

Turn off optimizations
To increase overall runtime performance, JBoss AOP has to dynamically create a lot of extra code. If you turn
off these optimizations, JBoss AOP can weave a bit quicker. There is a good chance, depending on your applic-
ation that you will not even notice that these optimizations are turned off. See Chapter 14 for how to switch
between weaving modes.

Turn off pruning
JBoss AOP tries to aggressive prune cached Javassist structures. This may, may not have a tiny effect on per-
formance. Thej boss. aop. prune System property can be set to turn off pruning.

java -Dj boss. aop. prune=fal se ...

-client/-server
Strangely enough, it seems that the -client VM switch is alittle faster for JBoss AOP |oadtime weaving that -
server. If you are using the -server VM, trying switching to -client (the default).

Ignore
A way to completely ignore classes from being instrumented. This overrides whatever you have set up using
the include/exclude filters. The system property isj boss. aop. i gnor e, and you can use wildcards in the class-
names. As for include/exclude you may specify a comma separated list of class name patterns. This following
example avoids instrumenting the cglib generated proxies for hibernate:

java -Dj boss. aop. i gnor e=*$$Enhancer By CGLI B$$*

10.2.3. HotSwap

The HotSwap feature allows bytecode of your classes to be weaved in runtime. This results in application flow con-
trol changes to your classes only when joinpoints become intercepted (to do this, use the dynamic aop funcionality
provided by JBoss AOP). Thisis amode to be considered when you want to assure the flow control of your classes
will be kept intact until a binding or ainterceptor is added.

This mode is currently provided through the j ava. | ang. i nstrument. | nstrument ati on hot swap functionality,
which is part of the VMTI (Java Virtual Machine Tool Interface). So, you cannot run JBoss AOP in this mode
when using a previous JDK version.

To enable HotSwap, you have to add an argument to the Java command line in avery similar way to the L oadtime
mode: -j avaagent : j boss- aop. j ar =- hot Swap. The difference is that the - hot Swap argument was added to the
agent parameter list.

Thisway, if your jboss-aop.xml fileis contained in ajar file, run:

JBoss 2.0.0 75

Running Aspectized Applications

$ java -cp=<cl asspath as descri bed above> -Dj boss. aop. pat h=<path to jboss-aop. xm > \
-j avaagent : j boss-aop. j ar =- hot Swap com bl ah. MyMai nCl ass

And if your jboss-aop.xml fileis contained in ajar, run the following command line:

$ java -cp=<cl asspath as descri bed above> -javaagent:jboss-aop.jar=-hot Swap \
com bl ah. \yMai nCl ass

The run- 1 oadHot Swap batch/script files contained in the /bin folder of the distribution are similar to the r un- 1 oad
ones, described in the previous subsection. All aop libs are included in these script files. To use them, run:

$ run-1oad classpath [-aoppath path_to_aop.xm] [-aopcl asspath path_to_annotated] \
com bl ah. MyMai nCl ass [args...]

When hotswap is enabled, the prunning of classes is turned off. Therefore, if you try to configure the
jboss.aop.prune option ast r ue, this setup will be ignored.

As with the Loadtime mode, the HotSwap mode results in a boot time delay. Besides this drawback, the execution
of some dynamic aop operations may be slower than in the other modes, when classes need to be hot swapped. The
available options to tune performance are the same as described in the "Improving L oadtime Performance” subsec-
tion, except the pruning of classes.

10.2.4. User-Defined ClassLoaders

In order to be compatible with JBoss AOP, the ClassL oader responsible for loading your application's classes must
be able to find class files as resources. This means that, given the name of a class that isin the classpath of your ap-
plication, the methods below must all return the URL(s) of the corresponding class file(s):

public URL get Resource(String nane)
public Enumerati on<URL> get Resources(String name) throws | OException
publ i ¢ Enunerati on<URL> get ResourceAsStrean(String nane) throws | OException

Usually, there is no need to be concerned about this, as the ClassL oader implementations of Sun's VM and JRockit
follow the requirement above. On the other hand, if the application is being run with a user-defined ClassLoader, it
is necessary to make sure the ClassL oader follows this important requirement.

10.3. JBoss Application Server

JBoss AOP is integrated with JBoss 4.0.1+ application server. The integration steps are different depending on
what version of JBoss AS you are using and what JDK version you are using. It is a'so dependent on whether you
want to use loadtime or compiletime instrumentation. JBoss 4.x comes with previous versions of JBoss AOP,
which can be upgraded to AOP 2.0.x by using the ant scripts as explained in Section 8.2. JBoss 5 comes with AOP
2.0.x builtin.

JB0ss 2.0.0 76

Running Aspectized Applications

Based on what JDK you are on and what 1oadtime weaving option you want to you, you must configure JBoss AS
differently.

10.3.1. Packaging AOP Applications

To deploy an AOP application in JBoss you need to package it. AOP is packaged similarly to SARs(MBeans). You
can either deploy an XML file directly in the deploy/ directory with the signature *-aop.xml aong with your pack-
age (thisis how the base-aop.xml, included in the j boss- aop. depl oyer file works) or you can include it in the jar
file containing your classes. If you include your xml file in your jar, it must have the file extension .aop and a
jboss-aop.xml file must be contained in a META-INF directory, i.e. META- | NF/ j boss- aop. xm .

Note that in JBoss 5, you MUST specify the schema used, otherwise your information will not be parsed correctly.
Y ou do this by adding the xm ns="ur n: j boss: aop- beans: 1: 0 atribute to the root aop element, as shown here:

<aop xm ns="urn:j boss: aop-beans: 1. 0" >

</ aop>

If you want to create anything more than a non-trivial example, using the .aop jar files, you can make any top-level
deployment contain a .aop file containing the xml binding configuration. That is you can have a .aop filein an .ear
file, or a .aop file in a war file etc. The bindings specified in the META- | NF/ j boss- aop. xm file contained in the
.aop file will affect all the classes in the whole war!

To pick up a .aop file in an .ear file, it must be listed in the . ear/ META- I NF/ appl i cati on. xni as a java module,
eg.:

<?xm version='1.0" encoding="UTF-8" ?>
<I DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DTD J2EE Application 1.2//EN
"http://java. sun.com j 2ee/ dtds/application_1 2.dtd" >

<appl i cati on>
<di spl ay- name>A0P i n JBoss exanpl e</ di spl ay- name>
<modul e>
<j ava>exanpl e. aop</j ava>
</ modul e>
<modul e>
<ej b>aopexanpl eej b. j ar </ ej b>
</ modul e>
<modul e>
<web>
<web- uri >aopexanpl e. war </ web- uri >
<cont ext - r oot >/ aopexanpl e</ cont ext - r oot >
</ web>
</ modul e>
</ application>

Note that in newer versions of JBoss (>= 4.0.5), the contents of the .ear file are deployed in the order they are listed
in the application.xml. When using loadtime weaving the bindings listed in the example.aop file must be deployed

JB0ss 2.0.0 77

Running Aspectized Applications

before the classes being advised are deployed, so that the bindings exist in the system before the gjb, servlet etc.
classes are loaded. This is acheived by listing the .aop file at the start of the application.xml. Older versions of
JBoss did not have this issue since the contained .aop files were deployed before anything else, and this still holds
true for other types of archives such as .sar and .war files.

10.3.2. The JBoss AspectManager Service

The AspectManager Service is installed in both JBoss 5 and JBoss 4.x. It can be managed at run time using the
JMX console which is found at http://1 ocal host: 8080/ j nx- consol e. It is registered under the ObjectName
j boss. aop: servi ce=Aspect Manager . If you want to configure it on startup you need to edit some configuration
files, which are different on JBoss 5 and JBoss 4.x, athough the concepts are the same.

10.3.2.1. JBoss 5 AspectManager Service

In JBoss 5 the AspectManager Service is configured using a JBoss Microcontainer bean. The configuration file is
j boss-5. x. x. GA/ server / xxx/ conf/ aop. xnl . The AspectManager Service is deployed with the following xml:

<bean nane="Aspect Manager" cl ass="org.jboss. aop. depl oyers. Aspect Manager JDK5" >

<property nanme="j bossl ntegration"><i nject bean="AOPJBossl ntegration"/></property>

<property nane="enabl eLoadti meWeavi ng" >f al se</ pr operty>
<I-- only rel evant when Enabl eLoadti mreWaving is true.
Wien transformer is on, every |oaded class gets
transforned. |If AOP can't find the class, then it
throws an exception. Sonetines, classes may not have
all the classes they reference. So, the Suppressing
is needed. (i.e. Jboss cache in the default configuration -->
<property nane="suppressTransformati onErrors">true</property>
<property nane="prune">true</property>
<property nane="include">org.jboss.test., org.jboss.injbossaop. </property>
<property nanme="excl ude">org.j boss. </ property>
<l-- This avoids instrunentation of hibernate cglib enhanced proxies
<property nanme="ignore">*$$Enhancer ByCGL|I B$$* </ property> -->
<property nane="optim zed">true</property>
<property nane="verbose" >f al se</ property>
<l--
Avai |l abl e choices for this attribute are:
org.j boss. aop.instrument. d assiclnstrumentor (default)
org.j boss. aop. i nstrunent. Gener at edAdvi sor | nst runent or
<property name="instrumentor">org.jboss. aop.instrunment. C assi cl nstrunentor </ property>
-->
<I--
By default the depl oynent of the aspects contained in
../ depl oyer s/ j boss- aop-j boss5. depl oyer/ base- aspect s. xn
are not deployed. To turn on depl oyment unconmment this property
<property nane="useBaseXm ">t rue</property>
-->
</ bean>

In later sections we will talk about changing the class of the AspectManager Service, to do this replace the contents
of thecl ass attribute of the bean element.

JB0ss 2.0.0 78

Running Aspectized Applications

10.3.2.2. JBoss 4.x AspectManager Service

In JBoss 4.x the AspectManager Service is configured using a JBoss Microcontainer bean. The configuration fileis
j boss- 4. x. x. GA/ server/ def aul t/ depl oy/ j boss- aop- j dk50. depl oyer/ META- | NF/ j boss-servi ce. xm . The As
pectManager Service is deployed with the following xml:

<nbean code="org. | boss. aop. depl oynent . Aspect Manager Ser vi ceJDK5"
nanme="j boss. aop: servi ce=Aspect Manager " >
<attribute name="Enabl eLoadti meWeavi ng" >f al se</attri bute>
<I-- only rel evant when Enabl eLoadti mreWaving is true.
Wien transformer is on, every |oaded class gets
transfornmed. |If AOP can't find the class, then it
throws an exception. Sonetines, classes may not have
all the classes they reference. So, the Suppressing
is needed. (i.e. Jboss cache in the default configuration -->
<attribute name="SuppressTransformati onErrors">true</attri bute>
<attribute name="Prune">true</attribute>
<attribute name="Incl ude">org.jboss.test, org.jboss.injbossaop</attribute>
<attri bute name="Excl ude">org.jboss. </attri bute>
<l-- This avoids instrunentation of hibernate cglib enhanced proxies
<attribute name="Ignore">*$$Enhancer ByCG| B$$*</ attri bute> -->
<attribute name="Qpti m zed">true</attribute>
<attribute name="Verbose">fal se</attribute>
<depends optional -attribute-name="JBossl ntegrati onW apper" proxy-type="attribute">j boss. aop: ser Vi ce
<l--
Avai |l abl e choices for this attribute are:
org.j boss. aop.instrunment. d assi clnstrunentor (default)
org. j boss. aop. i nstrument . Gener at edAdvi sor | nstrunent or
<attribute name="Instrunentor">org.jboss. aop.instrunent. d assiclnstrunmentor</attribute>
caD
</ mbean>

In later sections we will talk about changing the class of the AspectManager Service, to do this replace the contents
of the code attribute of the nbean element.

10.3.3. Loadtime transformation in JBoss AS Using Sun JDK

JBoss AS has special integration with JDK (from version 5.0 on) to do loadtime transformations. This section ex-
plains how to useit.

If you want to do load-time transformations with JBoss 5 and Sun JDK, these are the steps you must take.
» Set the enabl eLoadt i neVeavi ng attribute/property to true. By default, JBoss application server will not do
load-time bytecode manipulation of AOP files unless this is set. If suppressTransformationErrors iStrue

failed bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss
deployment will not have all the classes a class references.

e Copy the pl uggabl e-i nstrunentor. jar fromthelib/ directory of your JBoss AOP distribution to the bi n/
directory of your JBoss AOP application server installation.

¢ Next edit run. sh or run. bat (depending on what OS you're on) and add the following to the JAVA_OPTS en-

JBoss 2.0.0 79

Running Aspectized Applications

vironment variable:

set JAVA OPTS=%AVA OPTS% - Dpr ogr am nane=%"ROGNAVE% - | avaagent : pl uggabl e-i nstrunentor. j ar

Note that the class of the AspectManager Service must be org. j boss. aop. depl oyers. Aspect Manager JDK5 0N
JBoss 5, or org. j boss. aop. depl oyment . Aspect Manager Ser vi ceJDK5 as these are what work with the -javaagent
weaver.

10.3.4. JBoss 5 and JRockit

JRockit also supports the -javaagent switch mentioned in Section 10.3.3. If you wish to use that, then the steps in
Section 10.3.3 are sufficient. However, JRockit also comes with its own framework for intercepting when classes
are loaded, which might be faster than the -javaagent switch. If you wish to use this, there are three steps you must
take.

If you want to do load-time transformations with JBoss 5 and JRockit using the special JRockit hooks, these are the
steps you must take.

e Set the enabl eLoadt i meVeavi ng attribute/property to true. By default, JBoss application server will not do
load-time bytecode manipulation of AOP files unless this is set. If suppressTransformationErrors iStrue
failed bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss
deployment will not have all the classes a class references.

e Copy the jrockit-pluggabl e-instrumentor.jar fromthelib/ directory of your JBoss AOP distribution to
the bi n/ directory of your JBoss AOP application server installation.

* Next editrun. sh or run. bat (depending on what OS you're on) and add the following to the JAVA_OPTS and
JBOSS CLASSPATH environment variables:

Setup JBoss sepecific properties
JAVA_OPTS="$JAVA_OPTS - Dpr ogr am name=$PROGNAME \

- Xmanagemnent : cl ass=or g. j boss. aop. hook. JRocki t Pl uggabl eC assPreProcessor"
JBOSS_CLASSPATH="$JBOSS_CLASSPATH: j r ocki t - pl uggabl e-i nstrunentor.jar"

» Set the class of the AspectManager Serviceto beor g. j boss. aop. depl oyers. Aspect Manager JRocki t 0n JBOSS
5, 0r org. j boss. aop. depl oyment . Aspect Manager Ser vi ce as these are what work with special hooks in JRock-
it.

10.3.5. Improving Loadtime Performance in a JBoss AS Environment

The same rules apply to JBoss AS for tuning loadtime weaving performance as standalone Java. See the previous
chapter on tips and hints. YOU CANNOT USE THE SAME SYSTEM PROPERTIES THOUGH! Switches like
pruning, optimized, and include/exclude are configured through the jboss-
aop.deployer/META-INF/jboss-service.xml file talked about earlier in this chapter. You should be able to figure
out how to turn the switches on/off from the above documentation.

JBoss 2.0.0 80

Running Aspectized Applications

10.4. Scoping aop to the classloader

By default all deploymentsin JBoss are global to the whole application server. That means that any ear, sar, jar etc.
that is put in the deploy directory can see the classes from any other deployed archive. Similarly, aop bindings are
global to the whole virtual machine. This"global" visibility can be turned off per top-level deployment.

10.4.1. Deploying as part of a scoped classloader

How the following works may be changed in future versions of jboss-aop. If you deploy a .aop file as part of a
scoped archive, the bindings etc. applied within the .aop/META-INF/jboss-aop.xml file will only apply to the
classes within the scoped archive and not to anything else in the application server. Another alternative is to deploy
-aop.xml files as part of a service archive (SAR). Again if the SAR is scoped, the bindings contained in the -
aop.xml files will only apply to the contents of the SAR file. It is not currently possible to deploy a standalone -
aop.xml file and have that attach to a scoped deployment. Standalone -aop.xml files will apply to classes in the
whole application server.

10.4.2. Attaching to a scoped deployment

If you have an application using classloader isolation, as long as you have "prepared your classes' you can later at-
tach a .aop file to that deployment. If we have a .ear file scoped using a jboss-app.xml file, with the scoped loader
repository j boss. t est : ser vi ce=scoped:

<j boss- app>
<l oader - reposi tory>
j boss. test: servi ce=scoped
</ | oader - reposi t ory>
</j boss- app>

We can later deploy a .aop file containing aspects and configuration to attach that deployment to the scoped .ear.
Thisisdone using thel oader - r eposi t ory tag in the .aop files META- | NF/ j boss- aop. xni file.

<?xm version="1.0" encodi ng="UTF-8"?>
<aop>
<l oader -reposi tory>j boss. test: servi ce=scoped</| oader - reposi tory>

<I'-- Aspects and bindings -->
</ aop>

This has the same effect as deploying the .aop file as part of the .ear as we saw previoudly, but allows you to hot
deploy aspects into your scoped application.

JB0ss 2.0.0 81

11

Building JBoss AOP with Maven2

Since JBoss AOP requires either loadtime or compiletime weaving we need to customize maven a bit to make it do
what we want. JBoss AOP provides plugins to make this weaving as easy as possible.

The JBoss AOP plugin is named jbossaop and is provided under the maven2 jboss.org repository. For the fina re-
leases use:

<r eposi tory>

<i d>maven. j boss. or g</i d>

<name>JBoss Maven Repository</name>

<url >http://repository.jboss. conf maven2</url >
</repository>

If you want to use the snapshot releases use:

<reposi tory>
<i d>snapshot s. j boss. org</i d>
<nanme>JBoss Maven Snhapshot Repository</ name>
<url >http://snapshots.jboss. org/ mven2</url >
</repository>

The jbossaop maven plugin will provide all the aop dependencies needed to weave and run. There isno need to in-
clude aop dependencies other than the plugin. NOTE: The version used in these examples may be obsolete, please
check the latest release for the reference version instead of using the version in these examples.

11.1. AOP Compile with Maven2

The aop compile plugin is configured to run after the default maven compile phase has ended. By default it will try
to find the jboss-aop.xml file in src/ main/ resour ces/j boss-aop. xm . It will also try to weave every class in
$proj ect . bui | d. out put Di rect ory (usually target/classes). List of options:

* aoppat hs - an array of possible jboss-aop.xml files. Default issr c/ mai n/ r esour ces/ j boss- aop. xm
e verhose - if set totrueit will provide debug information during the aop weaving. ' Default set to true.

e suppress - suppress when a class cannot be found that a class references. This may happen if code in a class
references something and the class is not in the classpath. Default set to true.

* noopt - do not optimize the weaving. Default set to false.
e report - storetheoutput to afile (aop-report. xm). Default set to false.

* includeProject Dependency - if set to true al project dependencies will also be included to the aop classpath.

JB0ss 2.0.0 82

Building JBoss AOP with Maven2

Only needed if a class inherits a class thats not defined in the current module. Default set to false.

e classPath - classpath, by default set to null. If its set to null it will use the plugin dependencies (and add
project dependencies if i ncl udePr oj ect Dependency is set) + the output build path. Do not change this if you
are not sure.

e aopd assPat h - load xml files that adds aspects to the manager. Do not change this if you are not sure. By de-
fault set to null.

e includes - an array of classes that will be weaved. Note that if thisis specified just the classes thats specified
here will be weaved. Default set to null.

e properties - alist of properties (name, value objects) that will be added as VM properties. A small example:

<properties>

<property>
<name>| og4j . confi gur ati on</ nane>
<val ue>l og4j . properti es</val ue>

</ property>

</ properties>

Thiswill add log4j.configuration as VM properties like: -Dlogdj.configuration=log4j.properties.
There are alot of options that can be set, but noone are mandatory (if they are mandatory they have a default value
set). The average user would most likely only change aoppat hs. A more compl ete example would ook like:

<pl ugi n>
<gr oupl d>or g. j boss. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-j bossaop- pl ugi n</artifact! d>
<versi on>1. 0</ ver si on>
<executi ons>
<executi on>
<i d>conpi |l e</i d>
<confi guration>
<l-- if you want to include dependencies fromthe current nodul e
(only needed if a class inherits a class thats not defined in this nodule
-->
<i ncl udePr oj ect Dependency>t r ue</i ncl udePr oj ect Dependency>
<aoppat hs>
<aoppat h>src/ mai n/ r esour ces/ j boss-aop_t est 2. xm </ aoppat h>
<l-- for a second jboss-aop.xm file
<aoppat h>src/ mai n/ resour ces/ j boss- aop. xnl </ aoppat h>
-->
</ aoppat hs>
<l-- You can specify to only aopc a specific set of classes
<i ncl udes>
<i ncl ude>PQJ0. cl ass</i ncl ude>
</incl udes>
-->
</ confi guration>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

11.2. AOP Compile tests with Maven?2

JB0ss 2.0.0 83

Building JBoss AOP with Maven2

The only difference between aop compiling tests and non-tests are the name of the plugin. The options are the same
for tests and non-tests. A quick example:

<pl ugi n>
<groupl d>or g. j boss. maven. pl ugi ns</ groupl d>
<artifactld>maven-j bossaop-pl ugi n</artifactld>
<ver si on>1. 0</ ver si on>
<executions>
<executi on>
<i d>conpi l e-test</id>
<configuration>
<aoppat hs>
<aoppat h>src/ mai n/ resour ces/ j boss-aop_t est case. xnl </ aoppat h>
</ aoppat hs>
</ confi guration>
<goal s>
<goal >conpi | e-t est </ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

11.3. Running precompiled with Maven2

JBoss aop run plugin is configured to run after the package phase. There are less options here than for the compile
step and they are very similar.

e aoppat hs - an array of possible jboss-aop.xml files. Default issrc/ mai n/ resour ces/ j boss- aop. xni

e includeProject Dependency - if set to true al project dependencies will also be included to the aop classpath.
Only needed if a class inherits a class thats not defined in the current module. Default set to false.

e classPath - classpath, by default set to null. If its set to null it will use the plugin dependencies (and add
project dependencies if i ncl udePr oj ect Dependency is set) + the output build path. Do not change this if you
are not sure.

e execut abl e - the java class that will be executed
e properties - alist of properties (name, value objects) that will be added as VM properties. A small example:

<properties>
<property>
<name>| og4j . conf i gur ati on</ nane>
<val ue>l og4j . properti es</val ue>
</ property>
</ properties>

Thiswill add log4j.configuration as VM properties like: -Dlogdj.configuration=log4j.properties.
A small example using default jboss-aop.xml:

<pl ugi n>
<gr oupl d>or g. j boss. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-j bossaop- pl ugi n</artifact! d>
<versi on>1. 0. CR1</ ver si on>
<executi ons>

JB0ss 2.0.0 84

Building JBoss AOP with Maven2

<execution>
<i d>run</id>
<confi guration>
<execut abl e>Foo</ execut abl e>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
</ execut i ons>
</ pl ugi n>

11.4. Running loadtime weaving with Maven?2

Running a java application in loadtime weaving is ailmost identical to compile time (except that you dont need to
precompileit first). The only changeis that we need an option to say that we want to run it loadtime.

* loadtime - Setittotrueif you want loadtime weaving. Default is set to false.
A small example:

<pl ugi n>
<groupl d>or g. j boss. maven. pl ugi ns</ groupl d>
<artifactld>maven-j bossaop-pl ugi n</artifactld>
<versi on>1. 0. CR1</ ver si on>
<executi ons>
<executi on>
<i d>run</id>
<confi guration>
<aoppat hs>
<aoppat h>src/ mai n/ r esour ces/ j boss- aop_t est case. xm </ aoppat h>
</ aoppat hs>
<l oadti me>true</| oadti me>
<execut abl e>Test </ execut abl e>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

11.5. Running tests with Maven2

Running tests with aop is a different matter since the maven tests plugin is rather complex. But we can add the
hooks we need to run it both compiletime and loadtime with the maven tests too. An example on how to run atest

thats been aop compiled:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<ver si on>2. 4</ ver si on>
<confi guration>
<f or kMbde>al ways</ f or kMbde>
<useSyst enCl assLoader >t r ue</ useSyst enCl assLoader >

JB0ss 2.0.0 85

Building JBoss AOP with Maven2

<ar gLi ne>- Dj boss. aop. pat h=sr ¢/ mai n/ r esour ces/ j boss- aop_t est case. xm </ ar gLi ne>
</ confi guration>
</ pl ugi n>

Torun it loadtime we only need to add the javaagent option to argLine. Like this:

<ar gLi ne>-j avaagent : ${setti ngs. | ocal Reposi tory}/org/j boss/jboss-aop/2.0.0. CR3/\

j boss-aop-2.0.0. CR3.jar \

- D boss. aop. pat h=src/ mai n/ resour ces/ j boss-aop_t est case. xm </ ar gLi ne>
- big thanks to henrik and finn for figuring out how to do this :) Note again that the versions used here are just for a
reference and to provide as examples. Check the JBoss AOP homepage for the up-to-date versions.

JBoss 2.0.0 86

12

Reflection and AOP

While AOP works fine for normal access to fields, methods and constructors, there are some problems with using
the Reflection API for this using JBoss. The problems are:

« Intereptors/aspects bound to execution pointcuts for fields and constructors don't get invoked.
* Intereptors/aspects bound to caller pointcuts for methods and constructors don't get invoked.

» Reflection Methods such as d ass. get Met hods() and d ass. get Fi el d() return extra JBoss AOP "plumbing"
information.

12.1. Force interception via reflection

To address the issues with interceptors not being invoked when you use reflection, we have provided a reflection
aspect. You bind it to a set of caller pointcuts, and it mounts the pre-defined interceptor/aspect chains. The jboss-
aop.xml entries are:

<aspect cl ass="org.|boss. aop.reflection.ReflectionAspect" scope="PER VM'/>

<bi nd poi ntcut="call (* java.lang. d ass->new nstance())">
<advi ce nanme="i nt er cept New nst ance" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >
</ bi nd>

<bi nd pointcut="call (* java.lang.refl ect.Constructor->new nstance(java.lang. Qvject[]))">
<advi ce nane="i nt er cept Newl nst ance" \
aspect ="org. j boss. aop. refl ection. Refl ecti onAspect"/>
</ bi nd>

<bi nd pointcut="call (* java.lang.reflect.Method->i nvoke(java.lang. Object, java.lang. Object[]))">
<advi ce name="i nt er cept Met hodl nvoke" \
aspect ="org. j boss. aop. refl ection. Refl ecti onAspect"/ >
</ bi nd>

<bi nd poi ntcut="call (* java.lang.reflect.Field->get*(..))">
<advi ce nanme="interceptFieldGet" \
aspect ="org. j boss. aop.refl ecti on. Refl ecti onAspect"/>
</ bi nd>

<bi nd pointcut="call (* java.lang.reflect.Field->set*(..))">
<advi ce name="interceptFiel dSet" \
aspect ="org. j boss. aop. refl ection. Refl ecti onAspect"/>
</ bi nd>

JB0ss 2.0.0 87

Reflection and AOP

The Refl ecti onAspect class provides a few hooks for you to override from a subclass if you like. These methods
described below.

protected Obj ect interceptConstructor(
I nvocati on i nvocati on,
Constructor constructor,
bj ect[] args)
throws Throwabl e;

Cdlls to d ass. newi nstance() and Constructor. newi nstance() end up here. The default behavior is to mount
any constructor execution or caller interceptor chains. If you want to override the behaviour, the parameters are:

e invocation - Theinvocation driving the chain of advices.

e constructor - Theconstructor being called

e args - the arguments being passed in to the constructor (in the case of Class.newlnstance(), a zero-length array
since it takes no parameters)

protected Object interceptFiel dRead(
| nvocati on i nvocati on,
Field field,
bj ect instance)
t hrows Throwabl e;

Cdlls to Fi el d. get Xxx() end up here. The default behavior is to mount any field read interceptor chains. If you
want to override the behaviour, the parameters are:

e invocation - Theinvocation driving the chain of advices.
e field-Thefield being read

* instance - Theinstance from which we are reading a non-static field.

protected bject interceptFiel dWite(
I nvocation invocati on,

Field field,
Cbj ect instance,
bj ect arg)

t hrows Thr owabl e;

Cdllsto Fi el d. set xxX() end up here. The default behavior is to mount any field write interceptor chains. If you
want to override the behaviour, the parameters are:

e invocation - Theinvocation driving the chain of advices.

JB0ss 2.0.0 88

Reflection and AOP

e field- Thefield being written
e instance - Theinstance on which we are writing a non-static field.

e arg - Thevauewe are setting the field to

protected Object interceptMethod(
I nvocation invocation,
Met hod net hod,
Cbj ect instance,
oj ect[] args)
throws Throwabl e;

Calls to Met hod. i nvoke() end up here. The default behavior is to mount any method caler interceptor chains
(method execution chains are handled correctly by default). If you want to override the behaviour, the parameters
are:

* invocation - Theinvocation driving the chain of advices.
* et hod - The method being invoked
* instance - Theinstance on which we are invoking a non-static method.

e args - Valuesfor the method arguments.

12.2. Clean results from reflection info methods

The Ref I ect i onAspect also helps with getting rid of the JBoss AOP "plumbing” information. You bind it to a set
of caller pointcuts, using the followingjboss-aop.xml entries :

<bi nd pointcut="call (* java.lang.d ass->getlnterfaces())">
<advi ce nane="interceptGetlnterfaces" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.l ang. d ass->get Decl ar edMet hods()) ">
<advi ce name="i nt er cept Get Decl ar edMet hods" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="call (* java.lang. d ass->get Decl aredMet hod(..))">
<advi ce nanme="i nt er cept Get Decl ar edMet hod" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="call (* java.lang. C ass->get Met hods())">
<advi ce nane="int er cept Get Met hods" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.lang.d ass->get Method(..))">

JB0ss 2.0.0 89

Reflection and AOP

<advi ce nane="i nt er cept Get Met hod" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="call (* java.lang. Cl ass->get Decl aredFi el ds())">
<advi ce name="i nt er cept Get Decl ar edFi el ds" \
aspect="org.j boss.test.aop.refl ecti on. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="call (* java.lang. d ass->get Decl aredC asses())">
<advi ce nanme="i nt er cept Get Decl ar edCl asses" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.lang.d ass->getDeclaredField(..))">
<advi ce name="int er cept Get Decl ar edFi el d" \
aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

Thisway the callsto d ass. get Met hods() etc. only return information that is present in the "raw" class, by filter-
ing out the stuff added to the class by JBoss AOP.

JBoss 2.0.0 90

13

Interception of Array Element Access

This chapter will show you how to intercept access to the individual elements of an array. The concepts are similar
to the interception we have seen previously, but a few configuration options are introduced. Array interception can
currently only be configured viaxml. There are three steps involved.

« Specifying which classes we want to replace access to arraysin
e Preparing the array fieldsin the target class

* Binding advicesto array access

13.1. Replacing Array Access

To achieve array interception we need to replace all access to arrays within a selected set of classes. The arr ayre-
pl acenent element is used for this. You can either specify a particular class using the cl ass attribute or a class ex-
pression using the expr attribute:

<arrayrepl acement class="org. acne. PQOON t hArray"/ >
<arrayrepl acement expr="cl ass(org.acne.*)"/>

13.2. Preparing Array Fields

If we want to intercept an array's elements, that array field needs to be woven, using either apr epar e or abi nd ex-
pression. If that field is within a class picked out by an arr ayr epl acenent expression it gets all the hooks for ar-
rayreplacement to take place. The following xml aong with the previous arrayrepl acenent weaves
org.acme. PQION t hArray. i nts for array element interception.

<prepare expr="field(int[] org.acne. PQOONthArray->ints)"/>

13.3. Binding Advices to array element access

JB0ss 2.0.0 91

Interception of Array Element Access

To bind advices to the access of array elements, you use aar r aybi nd element. It binds advicesto al arrays woven
for array access. You can use the t ype attribute to specify if you want the interception to take place when setting
elements in the array, getting elements from the array, or both. Valid values for the t ype attribute are: READ WRI TE,
READ_ONLY and WRI TE_ONLY. An example is shown below:

<interceptor class="org.acne. Testlnterceptor"/>
<arraybi nd type="READ_ONLY">

<interceptor-ref name="org.acne. Testlnterceptor"/>
</ arraybi nd>

arraybi nd currently only supportsi nt er cept or-ref and advi ce as child elements. bef ore, after, t hrowi ng and
final |y are not yet supported for array interception. for arrays.

13.4. Invocation types for array element access interception

Writing aspects for array element interception is more or less the same as for any other joinpoint. However, array
element interception comes with its own hierarchy of | nvocati on clases. Which one of these is used depends on
what is being itercepted. The hierarchy is shown below (all the classesliveintheor g. j boss. aop. arr ay package):

ArrayEl enent | nvocati on
- ArrayEl ement Readl nvocati on

- - Bool eanArrayEl enent Readl nvocation -Elenent read from a bool ean[]

- - Byt eArrayEl ement Readl nvocati on -Element read froma byte[]

- - Char Arr ayEl ement Readl nvocati on -El ement read froma char[]

- - Doubl eAr r ayEl enent Readl nvocat i on -El ement read from a doubl e[]

- - Fl oat Arr ayEl enent Readl nvocati on -Element read froma float[]

-- I nt ArrayEl enent Readl nvocat i on -Elenent read froma int[]

--LongArrayEl ement Readl nvocati on -El ement read froma |ong[]

- - Cbj ect Arr ayEl ement Readl nvocati on -Elenent read froma Qoject[], String[] etc.
--Short ArrayEl enent Readl nvocati on -El ement read froma shore[]

-ArrayEl ement Witel nvocation

- - Bool eanArrayEl ement Witel nvocation -Elenment witten to a bool ean[]
--ByteArrayEl ement Wi tel nvocati on -Elenent witten to a byte[]

--Char ArrayEl ement Wi tel nvocati on -Element witten to a char[]

- - Doubl eArrayEl ement Witel nvocation -Elenent witten to a doubl e[]

--Fl oat ArrayEl enent Wi t el nvocati on -Element witten to a float[]

--IntArrayEl ement Witel nvocati on -Elenent witten to a int[]

--LongArrayEl ement Wi tel nvocati on -Element witten to a |long[]

--Cbject ArrayEl enent Witelnvocation -Element witten to a Cbject[], String[] etc.
--Short ArrayEl enent Wi t el nvocati on -Element witten to a short[]

The write invocation classes allow you access to the value the element is being set to. Arr ayEl enent Readl nvoca-
ti on defines a method to get hold of the value being set:

public abstract Object getVal ue();

JB0ss 2.0.0 92

Interception of Array Element Access

The sub-classes override this value, and aso define a more fine-grained value to avoid using the wrapper classes
where appropriate, as shown in the following methods from Doubl eAr r ayEl ement Wi t el nvocati on:

public Object getVal ue()
{

}

publ i c doubl e get Doubl eVal ue()
{

}

return new Doubl e(val ue);

return val ue;

When reading an array element the invocation's return value contains the value read. For all array invocations you
can get the index of the element being accessed by calling Ar r ayEl enent | nvocat i on. get | ndex() .

JBoss 2.0.0 93

14

Instrumentation Modes

Since it's inception JBoss AOP has introduced different modes of weaving. While the base functionality is the
same, the weaving mode introduced in JBoss AOP 2.0.0 allows for more functionality. This chapter will explain a
bit about the pros and cons of the different weaving modes, and what functionalities are offered.

14.1. Classic Weaving

This original weaving mode offers the full basic functionality, and comes in two flavours: 'non-optimized' and 'op-
timized'.

14.1.1. Non-optimized

Thisis the original weaving mode. It generates a minimum amount of woven code, only modyfying the target join-
points. However, the the invocation classes end up calling the target joinpoint using reflection. Hence it will have
minimum overhead at weaving time, but incur the extra cost of calling viareflection at runtime.

To use not-optimized classic weaving at compile-time, you need to specify the following parameters to the aopc ant
task.

* optinzed-fase

* jboss. aop.instrumentor - org.jboss.aop.instrument.Classiclnstrumentor

An exampleis shown in the following build.xml snippet. Only the relevant parts are shown.

<aopc optim zed="fal se" conpilerclasspathref="...">
<sysproperty key="jboss. aop.instrumentor" \
val ue="org. j boss. aop. i nstrunent. Cl assi cl nstrunentor"/>

</ aopc>

To turn this weaving mode on when using load-time weaving, you need to specify the same flags as system proper-
ties when running your woven application. Here is an example:

java -Djboss. aop. optim zed=fal se \
- Dj boss. aop. i nstrunent or =or g. j boss. aop. i nstrunment. d assi cl nstrunmentor \
[other aop and cl asspath settings] M/C ass

JB0ss 2.0.0 94

I nstrumentation Modes

14.1.2. Optimized

This is a development of the original weaving mode. Like the non-optimized flavour, it modifies the target join-
points, but in addition it generates an invocation class per woven joinpoint, which calls the target joinpoint nor-
mally, avoiding the cost of calling viareflection.

To use optimized classic weaving at compile-time, you need to specify the following parameters to the aopc ant
task.

e optinmzed-true

* jboss. aop.instrumentor - org.jboss.aop.instrument.Classiclnstrumentor

An exampleis shown in the following build.xml snippet. Only the relevant parts are shown.

<aopc optim zed="true" conpilerclasspathref="...">
<sysproperty key="jboss.aop.instrumentor" \
val ue="org. j boss. aop. i nstrunment. d assi cl nstrunentor"/>

</ aopc>

To turn this weaving mode on when using load-time weaving, you need to specify the same flags as system proper-
ties when running your woven application. Here is an example:

java -Djboss. aop. optim zed=true \
- Dj boss. aop. i nstrunent or =or g. j boss. aop. i nstrunment. d assi cl nstrunmentor \
[other aop and cl asspath settings] Myd ass

14.2. Generated Advisor Weaving

This is the weaving mode that is used by default in JBoss AOP 2.0.x. In addition to generating the invocation
classes, it dso generates the ‘advisors. These contain the internal book-keeping code that keeps track of the advice
chains for the varoius woven joinpoints). At runtime, this means that there is less overhead of looking things up.
This mode aso alows for some new featuresin JBoss AOP 2.0.x.

This weaving mode is used by default, so you don't have to specify any extra parameters. This may change in fu-
ture, so for completeness the parameter you would to passin to the aopc ant task is.

* jboss. aop.instrumentor - org.jboss.aop.instrument.GeneratedAdvisorl nstrumentor

An exampleis shown in the following build.xml snippet. Only the relevant parts are shown.

<aopc optim zed="true" conpilerclasspathref="...">
<sysproperty key="jboss.aop.instrumentor" \
val ue="org. j boss. aop. i nst runment . Gener at edAdvi sor | nstrumentor"/ >

JB0ss 2.0.0 95

I nstrumentation Modes

</ aopc>

Similarly, for load-time weaving, the default is to use this weaving mode. If you were to need to turn it one you
would pass in the Gener at edAdvi sor | nst r ument or When starting the JVM:

java -Dj boss. aop.instrunmentor=org.jboss. aop. i nstrunent. Gener at edAdvi sor | nst runent or \
[other aop and cl asspath settings] Myd ass

Now we will look at some of the features that are available using this weaving maode.

14.2.1. Lightweight Aspects

The use of the before, after, after-throwing and finally advices as mentioned in Section 4.2 is only supported in this
weaving mode.

14.2.2. Improved Instance API

The improved instance api mentioned in Section 7.4 is only available in this weaving mode.

14.2.3. Chain Overriding of Inherited Methods

Thiswill be explained with an example. Consider the following case:

public class Base{
void test(){}
}

public class Child{
}

public class ChildTest{
void test(){}

}
<aop>
<prepare expr="execution(* PQIO>test())"/>
<bi nd poi nt cut ="execution(* Base->test())">
<interceptor class="Baselnterceptor"/>
</ bi nd>
<bi nd poi ntcut ="execution(* Child*->test())">
<interceptor class="Childlnterceptor"/>
</ bi nd>
</ aop>

JB0ss 2.0.0 96

I nstrumentation Modes

Base base = new Base(); /111
Child child = new Child(); /12
Chi | dTest chil dTest = new Chil dTest(); /13
base. test(); /14
child.test(); /15
chil dTest.test(); /16

With the "old" weaving we needed an exact match on methods for advices to get bound, meaning that:

e Cadl 4 would get intercepted by Basel nterceptor
e Cadl 5would get intercepted by Basel nterceptor

» Call 6 would get intercepted by Childlnterceptor

The discrepancy is between calls 5 and 6, we get different behaviour depending on if we have overridden the meth-
od or are just inheriting it, which in turn means we have to have some in-depth knowledge about our hierarchy of
classes and who overrides/inherits what in order to have predictable interception.

The new weaving model matches differently, and treats inherited methods the same as overridden methods, so:

e Cadl 4 would get intercepted by Basel nterceptor
e Cadl 5would get intercepted by Childinterceptor
e Cadl 6 would get intercepted by Childlnterceptor

Note that for this to work, the parent method MUST be woven. In the previous example Base. t est () has been pre-
pared.

JBoss 2.0.0 97

	JBoss AOP - Aspect-Oriented Framework for Java
	Table of Contents
	Preface
	Chapter 1. Terms
	1.1. Overview

	Chapter 2. Implementing Aspects
	2.1. Overview
	2.2. Aspect Class
	2.3. Advice Methods
	2.4. Interceptors
	2.5. Resolving Annotations
	2.6. Metadata
	2.6.1. Resolving XML Metadata
	2.6.2. Attaching Metadata

	2.7. Mixin Definition
	2.8. Dynamic CFlow

	Chapter 3. Joinpoint and Pointcut Expressions
	3.1. Wildcards
	3.2. Type Patterns
	3.3. Method Patterns
	3.4. Constructor Patterns
	3.5. Field Patterns
	3.6. Pointcuts
	3.7. Pointcut Composition
	3.8. Pointcut References
	3.9. Typedef Expressions
	3.10. Joinpoints
	3.10.1. Joinpoint Beans
	3.10.2. Context Values

	Chapter 4. Advices
	4.1. Around Advices
	4.2. Before/After/After-Throwing/Finally Advices
	4.2.1. Before Advice Signature
	4.2.2. After Advice Signature
	4.2.3. After-Throwing Advice Signature
	4.2.4. Finally Advice Signature

	4.3. Annotated Advice Parameters
	4.3.1. @Thrown annotated parameter
	4.3.2. JoinPoint Arguments

	4.4. Overloaded Advices
	4.4.1. Annotated-parameter Signature
	4.4.1.1. Presence priority
	4.4.1.2. Assignability Degree
	4.4.1.3. Return Types
	4.4.1.4. A Match
	4.4.1.5. Lowest Priority

	4.4.2. Default Signature
	4.4.3. Mixing Different Signatures

	4.5. Common Mistakes

	Chapter 5. XML Bindings
	5.1. Intro
	5.2. Resolving XML
	5.2.1. Standalone XML Resolving
	5.2.2. Application Server XML Resolving

	5.3. XML Schema
	5.4. aspect
	5.4.1. Basic Definition
	5.4.2. Scope
	5.4.3. Configuration
	5.4.3.1. Names
	5.4.3.2. Example configuration

	5.4.4. Aspect Factories

	5.5. interceptor
	5.6. bind
	5.7. stack
	5.8. pointcut
	5.9. introduction
	5.9.1. Interface introductions
	5.9.2. Mixins

	5.10. annotation-introduction
	5.11. cflow-stack
	5.12. typedef
	5.13. dynamic-cflow
	5.14. prepare
	5.15. metadata
	5.16. metadata-loader
	5.17. precedence
	5.18. declare
	5.18.1. declare-warning
	5.18.2. declare-error

	Chapter 6. Annotation Bindings
	6.1. @Aspect
	6.2. @InterceptorDef
	6.2.1. Interceptor Example
	6.2.2. AspectFactory Example

	6.3. @PointcutDef
	6.4. @Bind
	6.5. @Introduction
	6.6. @Mixin
	6.7. @Prepare
	6.7.1. @Prepare POJO

	6.8. @TypeDef
	6.9. @CFlowDef
	6.10. @DynamicCFlowDef
	6.11. @AnnotationIntroductionDef
	6.12. @Precedence
	6.13. @DeclareError and @DeclareWarning

	Chapter 7. Dynamic AOP
	7.1. Hot Deployment
	7.2. Per Instance AOP
	7.3. Preparation
	7.4. Improved Instance API
	7.5. DynamicAOP with HotSwap

	Chapter 8. Installing
	8.1. Installing Standalone
	8.2. Installing with JBoss 4.0.x and JBoss 4.2.x Application Server for JDK 5
	8.3. Installing with JBoss Application Server 5

	Chapter 9. Building and Compiling Aspectized Java
	9.1. Instrumentation modes
	9.2. Ant Integration
	9.3. Command Line

	Chapter 10. Running Aspectized Applications
	10.1. Loadtime, Compiletime and HotSwap Modes
	10.2. Regular Java Applications
	10.2.1. Precompiled instrumentation
	10.2.2. Loadtime
	10.2.2.1. Loadtime using JRockit
	10.2.2.2. Improving Loadtime Performance

	10.2.3. HotSwap
	10.2.4. User-Defined ClassLoaders

	10.3. JBoss Application Server
	10.3.1. Packaging AOP Applications
	10.3.2. The JBoss AspectManager Service
	10.3.2.1. JBoss 5 AspectManager Service
	10.3.2.2. JBoss 4.x AspectManager Service

	10.3.3. Loadtime transformation in JBoss AS Using Sun JDK
	10.3.4. JBoss 5 and JRockit
	10.3.5. Improving Loadtime Performance in a JBoss AS Environment

	10.4. Scoping aop to the classloader
	10.4.1. Deploying as part of a scoped classloader
	10.4.2. Attaching to a scoped deployment

	Chapter 11. Building JBoss AOP with Maven2
	11.1. AOP Compile with Maven2
	11.2. AOP Compile tests with Maven2
	11.3. Running precompiled with Maven2
	11.4. Running loadtime weaving with Maven2
	11.5. Running tests with Maven2

	Chapter 12. Reflection and AOP
	12.1. Force interception via reflection
	12.2. Clean results from reflection info methods

	Chapter 13. Interception of Array Element Access
	13.1. Replacing Array Access
	13.2. Preparing Array Fields
	13.3. Binding Advices to array element access
	13.4. Invocation types for array element access interception

	Chapter 14. Instrumentation Modes
	14.1. Classic Weaving
	14.1.1. Non-optimized
	14.1.2. Optimized

	14.2. Generated Advisor Weaving
	14.2.1. Lightweight Aspects
	14.2.2. Improved Instance API
	14.2.3. Chain Overriding of Inherited Methods

