
 

 

 

 

 

 

 
 

The Architecture, Design and Implementation of 
ArjunaCore 
Version No. 0.2 

Revision Date: 26/03/2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 2 of 20 
 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 3 of 20 
 

 CONTENTS Page 

1 Introduction...................................................................................................................................... 4 

1.1 Scope .................................................................................................................................... 4 
1.2 History ................................................................................................................................... 4 
1.3 Terminology........................................................................................................................... 4 
1.4 References ............................................................................................................................ 4 

2 Design goals.................................................................................................................................... 5 

3 Failure Assumptions and Computation Model ................................................................................ 6 

3.1 Failure assumptions .............................................................................................................. 6 
3.2 Objects and transactions....................................................................................................... 6 

3.2.1 Commit protocol..................................................................................................... 6 
3.3 System Architecture .............................................................................................................. 7 

4 Implementing the System................................................................................................................ 8 

4.1 The Life Cycle of an ArjunaCore Object ............................................................................... 8 
4.2 Implementing Object Storage Services................................................................................. 9 

4.2.1 Saving object states............................................................................................... 9 
4.2.2 The Object Store.................................................................................................... 11 

4.3 Implementing Atomic Transaction Services.......................................................................... 11 
4.3.1 Overview................................................................................................................ 11 
4.3.2 Recovery and Persistence..................................................................................... 13 
4.3.3 The Concurrency Controller................................................................................... 15 
4.3.4 Locking Policy........................................................................................................ 15 
4.3.5 Co-ordinating Recovery, Persistence and Concurrency Control........................... 16 

4.4 Crash Recovery..................................................................................................................... 19 
 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 4 of 20 
 

1 Introduction 

1.1 Scope 

 

This document is a description of the Architecture, Design and Implementation of ArjunaCore 2.0, 2.1, 
2.2 and 3.0. 

The approved document forms a contract between the parties on the approvers’ list and defines the 
expectations of all parties on the reviewers’ list. 

1.2 History 

Date Ver No. Description Updated By 

18/3/2002 0.1 Draft Mark Little 

26/3/2002 0.2 Corrected document format and title Steve Caughey 

1.3 Terminology 

Term Description 

  

1.4 References 

References Description 

  

  



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 5 of 20 
 

2 Design goals 

ArjunaCore is an object-oriented programming system, implemented in 100% pure Java, that provides a 
set of tools for the construction of fault-tolerant applications using objects and transactions. ArjunaCore 
supports the computational model of nested atomic transactions controlling operations on persistent 
(long-lived) objects. Importantly, ArjunaCore is concerned solely with the use of local transactions, i.e., 
transactions that run on a single machine. If distributed transactions are required, ArjunaCore provides 
the necessary hooks to enable information about its local transactions (the transaction context) to be 
transmitted in a manner suitable for the environment in which it is running, e.g., CORBA IIOP or 
SOAP/XML. 

At the heart of every transaction processing system is a transaction manager (also known as a 
transaction coordinator). It is the transaction manager that is responsible for ensuring the atomicity and 
durability properties of the transactions under its control. The isolation and consistency are provided by 
transactional resources that participate in the transaction on behalf of applications and services. The 
coordinator must maintain a transaction log in case of failures and a recovery system to use this log to 
complete transactions that were in flight and caught by any failures (e.g., a machine or process crash). 
It is important to realize that this functionality if required by all transaction systems, whether or not they 
support distributed transactions. ArjunaCore provides this exact functionality in a highly optimized, 
configurable and extensible manner. It has an extremely small footprint (easily executable on mobile 
devices, for example) and deliberately knows nothing about distribution: it is concerned only with local 
(same process) transactions. However, importantly it has sufficient hooks to enable the transactions it 
creates to be distributed in a manner which makes sense for the environment in which it operates, e.g., 
CORBA IIOP or SOAP/XML. 

The design and implementation goal of ArjunaCore was to provide a state of the art programming 
system for constructing fault-tolerant distributed applications. In meeting this goal, three system 
properties were considered highly important: 

• Modularity. The system should be easy to install and run. In particular, it should be possible to 
replace a component of ArjunaCore by an equivalent component already present in the 
underlying system. 

• Integration of mechanisms. A fault-tolerant system requires a variety of system functions for 
concurrency control, error detection and recovery from failures, etc. These mechanisms must be 
provided in an integrated manner such that their use is easy and natural. 

• Flexibility. These mechanisms should also be flexible, permitting application specific 
enhancements, such as type-specific concurrency and recovery control, to be easily produced 
from the existing default ones. 

• Distribution. Most of the differences between different distributed transaction systems are 
typically in the way in which the transaction context is propagated: the core transaction engines 
vary little between these environments since they are all based on the same two-phase commit 
protocol. Therefore, is should be relatively easy to embed ArjunaCore in any environment and 
distribute context information appropriately. 

In ArjunaCore, the first goal has been met by dividing the overall system functionality into a number of 
modules which interact with each other through well defined narrow interfaces. The remaining goals 
have been met primarily through the provision of a classes which have been organised into a class 
hierarchy in a manner that will be familiar to developers object-oriented systems. ArjunaCore assumes 
that every major entity in the application is an object. This philosophy also applies to the internal 
structure of ArjunaCore itself. Thus, ArjunaCore not only supports an object-oriented model of 
computation, but its internal structure is also object-oriented. This approach has permitted the use of 
the inheritance mechanisms of object-oriented systems for incorporating the properties of fault-
tolerance in a very flexible and integrated manner. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 6 of 20 
 

3 Failure Assumptions and Computation Model 

3.1 Failure assumptions 

It is assumed that the hardware components of the system are computers (nodes), connected by a 
communication subsystem. A node is assumed to work either as specified or simply to stop working 
(crash). After a crash, a node is repaired within a finite amount of time and made active again. A node 
may have both stable (crash-proof) and non-stable (volatile) storage or just non-stable storage. All of 
the data stored on volatile storage is assumed to be lost when a crash occurs; any data stored on 
stable storage remains unaffected by a crash. Faults in the underlying communication subsystem may 
result in failures such as lost, duplicated or corrupted messages. Well known network protocol 
techniques are available for coping with such failures, so their treatment will not be discussed further.  

3.2 Objects and transactions 

As indicated, we are considering a computation model in which application programs manipulate 
persistent (long-lived) objects under the control of atomic transactions. Each object is an instance of 
some class. The class defines the set of instance variables each object will contain and the operations 
or methods that determine the behaviour of the object. The operations of an object have access to the 
instance variables and can thus modify the internal state of that object. All operation invocations may be 
controlled by the use of atomic transactions which have the well known ACID properties of: 

• Atomic: if interrupted by failure, all effects are undone (rolled back). 

• Consistent: the effects of a transaction preserve invariant properties. 

• Isolated: a transaction’s intermediate states are not visible to other transactions. Transactions 
appear to execute serially, even if they are performed concurrently. 

• Durable: the effects of a completed transaction are persistent; they are never lost (except in a 
catastrophic failure). 

Atomic transactions can be nested. A commit protocol is used during the termination of an outermost 
atomic transaction (top-level transaction) to ensure that either all the objects updated within the 
transaction have their new states recorded on stable storage (committed), or, if the transaction aborts, 
no updates get recorded. Typical failures causing a computation to be aborted include node crashes 
and continued loss of messages caused by a partition. It is assumed that, in the absence of failures and 
concurrency, the invocation of an operation produces consistent (class specific) state changes to the 
object. Atomic transactions then ensure that only consistent state changes to objects take place despite 
concurrent access and any failures. 

The object and transaction model provides a natural framework for designing fault-tolerant systems with 
persistent objects. When not in use a persistent object is assumed to be held in a passive state in an 
object store (a stable object repository) and is activated on demand (i.e., when an invocation is made) 
by loading its state and methods from the persistent object store to the volatile store, and associating 
with it an object container.  

3.2.1 Commit protocol 

A two-phase commit protocol is required to guarantee that all of the transaction participants either 
commit or abort any changes made. Figure 1 illustrates the main aspects of the commit protocol: during 
phase 1, the transaction coordinator, C, attempts to communicate with all of the transaction participants, 
A and B, to determine whether they will commit or abort. An abort reply from any participant acts as a 
veto, causing the entire transaction to abort. Based upon these (lack of) responses, the coordinator 
arrives at the decision of whether to commit or abort the transaction. If the transaction will commit, the 
coordinator records this decision on stable storage, and the protocol enters phase 2, where the 
coordinator forces the participants to carry out the decision. The coordinator also informs the 
participants if the transaction aborts. 

When each participant receives the coordinator’s phase 1 message, they record sufficient information 
on stable storage to either commit or abort changes made during the transaction. After returning the 
phase 1 response, each participant which returned a commit response must remain blocked until it has 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 7 of 20 
 

received the coordinator’s phase 2 message. Until they receive this message, these resources are 
unavailable for use by other transactions. If the coordinator fails before delivery of this message, these 
resources remain blocked. However, if crashed machines eventually recover, crash recovery 
mechanisms can be employed to unblock the protocol and terminate the transaction. 

Commit?

Yes

Commit?

Yes

Phase 1

Commit

Commit

Phase 2

A

B

C

A

B

C

 

Figure 1: Two-phase commit protocol. 

3.3 System Architecture 

With the above discussion in mind, we will first present a simple client-server based model for 
accessing and manipulating persistent objects and then present the overall system architecture 
necessary for supporting the model. We will consider a system without any support for object 
replication, deferring the discussion on replication to a later section.  

We assume that each persistent object possesses a unique, system given identifier (UID). The passive 
representation of an object in the object store may differ from its volatile store representation. The 
ArjunaCore model assumes that an object is responsible for providing the relevant state transformation 
operations that enable its state to be stored and retrieved from the object store. Further, we assume 
that each object is responsible for performing appropriate concurrency control to ensure serialisability of 
atomic transactions. In effect this means that each object will have a concurrency control object 
associated with it. In the case of locking, each method will have an operation for acquiring, if necessary, 
an appropriate lock from the associated lock manager before accessing the object’s state; the locks are 
released when the commit/abort operations are executed. 

We can now identify the main modules of ArjunaCore and the services they provide for supporting 
persistent objects.  

• (i) Atomic Transaction module. Provides atomic transaction support to application programs 
in the form of operations for starting, committing and aborting transactions; 

• (ii) Object Store module. Provides a stable storage repository for objects; these objects are 
assigned unique identifiers (UIDs) for naming them.  

The ArjunaCore structure is highly modular: by encapsulating the properties of persistence, 
recoverability, shareability, serialisability and failure atomicity in an Atomic Transaction module and 
defining narrow, well-defined interfaces to the supporting environment, ArjunaCore achieves a 
significant degree of modularity as well as portability. 

We will now use a simple program to illustrate how these modules interact. The program shown below 
is accessing two existing persistent objects, A, an instance of class O1 and B, an instance of class O2.  



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 8 of 20 
 

{ 

 O1 objct1(UidA);    /* bind to A */ 

 O2 objct2(UidB);    /* bind to B */ 

 AtomicAction act; 

 act.begin();    /* start of atomic action act */  

 objct1.op(...);   

 objct2.op(...);   /* invocations ....*/ 

 ....... 

 act.commit();    /* act commits */ 

 }       /* break bindings to A and B */ 

Program 1: Outline transaction example. 

Thus, to bind to A, a local instance of O1 called objct1 is created, passing to its constructor an instance 
of the UID representing its persistent state. The Object Store module of ArjunaCore enables the object 
(or container) to load the latest (committed) state of the object from the object store of a node. The state 
is loaded, where necessary, as a side effect of locking the object. To manipulate objects under the 
control of an atomic action, the application creates a new instance of an transaction (act) and invokes 

its begin operation. The commit operation is responsible for committing the transaction (using a two-
phase commit protocol). 

4 Implementing the System  

The following sub-sections describe in detail how the architecture outlined in the previous sections has 
been implemented in ArjunaCore. We start by concentrating on object storage, retrieval, and the atomic 
transaction system. 

4.1 The Life Cycle of an ArjunaCore Object  

A persistent object not in use is assumed to be held in a passive state with its state residing in an object 
store (in ArjunaCore this is implemented by the class ObjectStore) and activated on demand. Passive 

representations of an object are held as instances of the class ObjectState. Such instances are 
compacted machine and architecture independent forms of arbitrary user-defined objects. As such they 
can be stored in the object store for persistence purposes; held in memory for recovery purposes; or 
transmitted over a communications medium for distribution purposes. The class 
Input/OutputObjectState is responsible for maintaining a buffer into which the instance variables 
that constitute the state of an object may be contiguously saved and provides a full set of operations 
that allows the runtime representation of a Java object to be converted to and from an 
Input/OutputObjectState instance. The fundamental life cycle of a persistent object in ArjunaCore is 
shown in Figure 3. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 9 of 20 
 

 
UserObject::restore_state 

Active 

UserObject::save_state 

Volatile 

Storage Passive 

ObjectStore::read_committed 

ObjectStore::write_committed 

ObjectStore::commit_state 

Non-volatile 

Storage 

User object ObjectState 

in memory 

ObjectState 

in object 
 

Figure 3: The lifecycle of a persistent object. 

• The object is initially passive, and is stored in the object store as an instance of the class 
OutputObjectState. 

• When required by an application the object is automatically activated by reading it from the store 
using a read_committed operation and is then converted from an InputObjectState instance into a 
fully-fledged object by the restore_state operation of the object. 

• When the application has finished with the object it is deactivated by converting it back into an 
OutputObjectState instance using the save_state operation, and is then stored back into the 
object store as a shadow copy using write_uncommitted. This shadow copy can be committed, 
overwriting the previous version, using the commit_state operation. The existence of shadow 
copies is normally hidden from the programmer by the atomic action system. Object de-activation 
normally only occurs when the top-level action within which the object was activated commits. 

During its life time, a persistent object may be made active then many times. 

The operations save_state and restore_state are fundamental operations that form part of the 

interface provided by the class StateManager. Their definition and use are described in a later section. 

4.2 Implementing Object Storage Services 

4.2.1 Saving object states 

ArjunaCore needs to be able to remember the state of an object for several purposes, including 
recovery (the state represents some past state of the object), persistence (the state represents the final 
state of an object at application termination), and for distribution purposes (the state represents the 
current state of an object that must be shipped to a remote site). Since all of these requirements require 
common functionality they are all implemented using the same mechanism - the classes 
Input/OutputObjectState and Input/OutputBuffer. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 10 of 20 
 

public class OutputBuffer 

{ 

public OutputBuffer (); 

 

public final synchronized boolean valid (); 

public synchronized byte[] buffer(); 

public synchronized int length (); 

 

 /* pack operations for standard Java types */ 

 

public synchronized void packByte (byte b) throws IOException; 

public synchronized void packBytes (byte[] b) throws IOException; 

public synchronized void packBoolean (boolean b) throws IOException; 

public synchronized void packChar (char c) throws IOException; 

public synchronized void packShort (short s) throws IOException; 

public synchronized void packInt (int i) throws IOException; 

public synchronized void packLong (long l) throws IOException; 

public synchronized void packFloat (float f) throws IOException; 

public synchronized void packDouble (double d) throws IOException; 

public synchronized void packString (String s) throws IOException; 

}; 

public class InputBuffer 

{ 

public InputBuffer (); 

 

public final synchronized boolean valid (); 

public synchronized byte[] buffer(); 

public synchronized int length (); 

 

 /* unpack operations for standard Java types */ 

 

public synchronized byte unpackByte () throws IOException; 

public synchronized byte[] unpackBytes () throws IOException; 

public synchronized boolean unpackBoolean () throws IOException; 

public synchronized char unpackChar () throws IOException; 

public synchronized short unpackShort () throws IOException; 

public synchronized int unpackInt () throws IOException; 

public synchronized long unpackLong () throws IOException; 

public synchronized float unpackFloat () throws IOException; 

public synchronized double unpackDouble () throws IOException; 

public synchronized String unpackString () throws IOException; 

}; 

The Input/OutputBuffer class maintains an internal array into which instances of the standard 

Java types can be contiguously packed (unpacked) using the pack (unpack) operations. This buffer 

is automatically resized as required should it have insufficient space. The instances are all stored in the 
buffer in a standard form (so-called network byte order) to make them machine independent. 

class OutputObjectState extends OutputBuffer 

{ 

public OutputObjectState (Uid newUid, String typeName); 

 

public boolean notempty (); 

public int size (); 

public Uid stateUid (); 

public String type (); 

}; 

class InputObjectState extends InputBuffer 
{ 

public OutputObjectState (Uid newUid, String typeName, byte[] b); 

 

public boolean notempty (); 

public int size (); 

public Uid stateUid (); 

public String type (); 

}; 

The class Input/OutputObjectState provides all the functionality of Input/OutputBuffer 

(through inheritance) but adds two additional instance variables that signify the Uid and type of the 

object for which the Input/OutputObjectState instance is a compressed image. These are used 

when accessing the object store during storage and retrieval of the object state. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 11 of 20 
 

4.2.2 The Object Store 

The object store provided with ArjunaCore deliberately has a fairly restricted interface so that it can be 
implemented in a variety of ways. For example, object stores are implemented in shared memory; on 
the Unix file system (in several different forms); and as a remotely accessible store. Note: as with all 
ArjunaCore classes the default object stores are pure Java implementations; to access the shared 
memory and other more complex object store implementations it is necessary to use native methods. 

All of the object stores hold and retrieves instances of the class Input/OutputObjectState. These 

instances are named by the Uid and Type of the object that they represent. States are read using the 

read_committed operation and written by the system using the write_uncommitted operation. 

Under normal operation new object states do not overwrite old object states but are written to the store 
as shadow copies. These shadows replace the original only when the commit_state operation is 

invoked. Normally all interaction with the object store is performed by ArjunaCore system components 
as appropriate thus the existence of any shadow versions of objects in the store are hidden from the 
programmer. 

public class ObjectStore 

{ 

public static final int OS_COMMITTED; 

public static final int OS_UNCOMMITTED; 

public static final int OS_COMMITTED_HIDDEN; 

public static final int OS_UNCOMMITTED_HIDDEN; 

public static final int OS_UNKNOWN; 

 

 /* The abstract interface */ 

public abstract boolean commit_state (Uid u, String name) 

                                              throws ObjectStoreException; 

public abstract InputObjectState read_committed (Uid u, String name) 

              throws ObjectStoreException; 

public abstract boolean write_uncommitted (Uid u, String name, 

    OutputObjectState os) throws ObjectStoreException; 

 . . . 

}; 

When a transactional object is committing it is necessary for it to make certain state changes 
persistent in order that it can recover in the event of a failure and either continue to commit, or 
rollback. To guarantee ACID properties, these state changes must be flushed to the persistence 
store implementation before the transaction can proceed to commit; if they are not, the application 
may assume that the transaction has committed when in fact the state changes may still reside 
within an operating system cache, and may be lost by a subsequent machine failure. By default, 
ArjunaCore ensures that such state changes are flushed. However, doing so can impose a 
significant performance penalty on the application. 
In order to improve the performance of the store several optimisations are implemented. The first is 
an open file cache that keeps files containing object states open as long as possible. This is to 
reduce the considerable overhead UNIX imposes for file system opens. Files are automatically 
added to this cache when first used and remain in it until they are explicitly removed or the cache 
needs compacting. The cache size is configurable and is initially set to use 50% of the available file 
descriptors for a process. The second optimisation overcomes read latency introduced by the use 
of a header. When a shadow copy is committed the store determines if the object is small enough 
to fit into the disk block reserved for the header. If it will then it is written to that block immediately 
after the control information as part of the same write system call that replaces the header block. 
Thus when the header is later read the last committed state may also be implicitly read and is 
immediately available without the need to read either of the object storage areas. 

4.3 Implementing Atomic Transaction Services 

4.3.1 Overview 

The principal classes which make up the class hierarchy of the ArjunaCore Atomic Transaction module 
are depicted below. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 12 of 20 
 

StateManager    // Basic naming, persistence and recovery control 

 LockManager   // Basic two-phase locking concurrency control 

  User-Defined Classes 

 Lock     // Standard lock type for multiple readers/single writer 

  User-Defined Lock Classes 

 AtomicAction   // Implements atomic transaction control abstraction 

 AbstractRecord   // Important utility class 

  RecoveryRecord // handles object recovery 

  LockRecord  // handles object locking 

  RecordList  // Intentions list 

  other management record types 

 

StateManager 

LockManager 
Atomic 

Action 
Lock 

User classes User classes 

 

Figure 2: ArjunaCore class hierarchy 

To make use of atomic transactions in an application, instances of the class AtomicAction must be 
declared by the programmer in the application as illustrated earlier. The operations this class provides 
(begin, abort, commit) can then be used to start and manipulate atomic transactions (including nested 
transactions). The only objects controlled by the resulting transactions are those objects which are 
either instances of ArjunaCore classes or are user-defined classes derived from LockManager and 
hence are members of the hierarchy shown above. 

Most ArjunaCore system classes are derived from the base class StateManager, which provides 
primitive facilities necessary for managing persistent and recoverable objects. These facilities include 
support for the activation and de-activation of objects, and state-based object recovery. Thus, instances 
of the class StateManager are the principal users of the object store service. The class LockManager 

uses the facilities of StateManager and provides the concurrency control (two-phase locking in the 
current implementation) required for implementing the serialisability property of atomic transactions. 
The implementation of transaction facilities for recovery, persistence management and concurrency 
control is supported by a collection of object classes derived from the class AbstractRecord which is in 

turn derived from StateManager. For example, instances of LockRecord and RecoveryRecord record 

recovery information for Lock and user-defined objects respectively. The AtomicAction class manages 

instances of these classes (using an instance of the class RecordList which corresponds to the 
intentions list used in traditional transaction systems) and is responsible for performing aborts and 
commits. 

Consider a simple example. Assume that Example is a user-defined persistent class suitably derived 

from the ArjunaCore class LockManager. An application containing a transaction Trans accesses an 

object (called O) of type Example by invoking the operation op1 which involves state changes to O. The 

serialisability property requires that a write lock must be acquired on O before it is modified; thus the 

body of op1 should contain a call to the setlock operation of the concurrency controller: 

Boolean Example::op1 (...) 

{  

 if (setlock (new Lock(WRITE)) == GRANTED) 

 { 

  // actual state change operations follow  

  ... 

 } 

} 

Program 4: Simple concurrency control 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 13 of 20 
 

The operation setlock, provided by the LockManager class, performs the following functions in this 
case: 

• Check write lock compatibility with the currently held locks, and if allowed: 

• Call the StateManager operation activate that will load, if not done already, the latest 

persistent state of O from the object store. Then call the StateManager operation modified 

which has the effect of creating an instance of either RecoveryRecord or PersistenceRecord for 

O depending upon whether O was persistent or not (the Lock is a WRITE lock so the old state of 

the object must be retained prior to modification) and inserting it into the RecordList of Trans. 

• Create and insert a LockRecord instance in the RecordList of Trans. 

Now suppose that transaction Trans is aborted sometime after the lock has been acquired. Then the 

abort operation of AtomicAction will process the RecordList instance associated with Trans by 

invoking an appropriate abort operation on the various records. The implementation of this operation 

by the LockRecord class will release the WRITE lock while that of 

RecoveryRecord/PersistenceRecord  will restore the prior state of O. 

Each of these classes and their relationships with each other will be described in greater detail in the 
following sections.  

4.3.2 Recovery and Persistence 

At the root of the class hierarchy in ArjunaCore is the class StateManager. As indicated before, this 
class is responsible for object activation and deactivation, object recovery and also maintains object 
names (in the form of object UIDs). 

public class ObjectStatus 

{ 

public static final int PASSIVE; 

public static final int PASSIVE_NEW; 

public static final int ACTIVE; 

public static final int ACTIVE_NEW; 

public static final int UNKNOWN_STATUS; 

}; 

 

public class ObjectType 

{ 

public static final int RECOVERABLE; 

public static final int ANDPERSISTENT; 

public static final int NEITHER; 

}; 

 

public abstract class StateManager 

{ 

public synchronized boolean activate (); 

public synchronized boolean activate (String storeRoot); 

public synchronized boolean deactivate (); 

public synchronized boolean deactivate (String storeRoot, boolean commit); 

 

public synchronized void destroy (); 

  

public final Uid get_uid (); 

 

public boolean restore_state (InputObjectState, int ObjectType); 

public boolean save_state (OutputObjectState, int ObjectType); 

public String type (); 

 . . . 

 

protected StateManager (); 

protected StateManager (int ObjectType, ObjectName attr); 

protected StateManager (Uid uid); 

protected StateManager (Uid uid, ObjectName attr); 

 . . . 

 

protected final void modified (); 

 . . . 

}; 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 14 of 20 
 

Program 5: class StateManager 

Objects are assumed to be of three possible basic flavours. They may simply be recoverable (signified 
by the constructor argument RECOVERABLE), in which case StateManager will attempt to generate and 
maintain appropriate recovery information for the object (as instances of the class 
Input/OutputObjectState as mentioned earlier). Such objects have lifetimes that do not exceed the 
application program that creates them. Objects may be recoverable and persistent (signified by 
ANDPERSISTENT), in which case the lifetime of the object is assumed to be greater than that of the 

creating or accessing application so that in addition to maintaining recovery information StateManager 
will attempt to automatically load (unload) any existing persistent state for the object by calling the 
activate (deactivate) operation at appropriate times. Finally, objects may possess none of these 
capabilities (signified by NEITHER) in which case no recovery information is ever kept nor is object 
activation/deactivation ever automatically attempted. This object property is selected at object 
construction time and cannot be changed thereafter. Thus an object cannot gain (or lose) recovery 
capabilities at some arbitrary point during its lifetime. This restriction simplifies some aspects of the 
overall object management. 

If an object is recoverable (or persistent) then StateManager will invoke the operations save_state 

(while performing deactivation), restore_state (while performing activate) and type at various 
points during the execution of the application. These operations must be implemented by the 
programmer. However, the capabilities provided by Input/OutputObjectState make the writing of 

these routines fairly simple. For example, the save_state implementation for a class Example that had 

member variables called A, B and C could simply be the following: 

public boolean save_state ( OutputObjectState os, int ObjectType ) 

{ 

    if (!super.save_state(os, ObjectType)) 

        return false; 

 

    try 

    { 

       os.packInt(A); 

       os.packString(B); 

       os.packFloat(C); 

 

       return true; 

    } 

    catch (IOException e) 

    { 

       return false; 

    } 

} 

Program 6: Example save_state Code 

Since StateManager cannot detect user level state changes, it also exports an operation called 

modified. It is the responsibility of the programmer to call this operation prior to making any changes in 
the state of an object (as discussed before, this is normally automatically done via the concurrency 
controller). 

The get_uid operation provides read only access to an object’s internal system name for whatever 
purpose the programmer requires (such as registration of the name in a name server). The value of the 
internal system name can only be set when an object is initially constructed - either by the provision of 
an explicit parameter (for existing objects) or by generating a new identifier when the object is created. 

Since object recovery and persistence essentially have complimentary requirements (the only 
difference being where state information is stored and for what purpose) StateManager effectively 
combines the management of these two properties into a single mechanism. That is, it uses instances 
of the class Input/OutputObjectState both for recovery and persistence purposes. An additional 

argument passed to the save_state and restore_state operations allows the programmer to 
determine the purpose for which any given invocation is being made thus allowing different information 
to be saved for recovery and persistence purposes. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 15 of 20 
 

4.3.3 The Concurrency Controller 

The concurrency controller is implemented by the class LockManager (Program 7) which provides 
sensible default behaviour while allowing the programmer to override it if deemed necessary by the 
particular semantics of the class being programmed. The primary programmer interface to the 
concurrency controller is via the setlock operation. By default, the ArjunaCore runtime system 
enforces strict two-phase locking following a multiple reader, single writer policy on a per object basis. 
Lock acquisition is (of necessity) under programmer control, since just as StateManager cannot 

determine if an operation modifies an object, LockManager cannot determine if an operation requires a 
read or write lock. Lock release, however, is under control of the system and requires no further 
intervention by the programmer. This ensures that the two-phase property can be correctly maintained. 

public class LockResult 

{ 

public static final int GRANTED; 

public static final int REFUSED; 

public static final int RELEASED; 

}; 

 

public class ConflictType 

{ 

public static final int CONFLICT; 

public static final int COMPATIBLE; 

public static final int PRESENT; 

}; 

 

public abstract class LockManager extends StateManager 

{ 

public static final int defaultTimeout; 

public static final int defaultRetry; 

public static final int waitTotalTimeout; 

 

public synchronized int setlock (Lock l); 

public synchronized int setlock (Lock l, int retry); 

public synchronized int setlock (Lock l, int retry, int sleepTime); 

public synchronized boolean releaselock (Uid uid); 

  

 /* abstract methods inherited from StateManager */ 

 

public boolean restore_state (InputObjectState os, int ObjectType); 

public boolean save_state (OutputObjectState os, int ObjectType); 

public String type (); 

 

protected LockManager (); 

protected LockManager (int ObjectType, ObjectName attr); 

protected LockManager (Uid storeUid); 

protected LockManager (Uid storeUid, int ObjectType, ObjectName attr); 

 . . . 

}; 

Program 7: class LockManager 

The LockManager class is primarily responsible for managing requests to set a lock on an object or to 

release a lock as appropriate. However, since it is derived from StateManager, it can also control when 
some of the inherited facilities are invoked. For example, if a request to set a write lock is granted, then 
LockManager invokes modified directly assuming that the setting of a write lock implies that the 
invoking operation must be about to modify the object. This may in turn cause recovery information to 
be saved if the object is recoverable. In a similar fashion, successful lock acquisition causes activate 
to be invoked. 

4.3.4 Locking Policy 

Unlike many other systems, locks in ArjunaCore are not special system types. Instead they are simply 
instances of other ArjunaCore objects (the class Lock which is also derived from StateManager so that 
locks may be made persistent if required and can also be named in a simple fashion). Furthermore, 
LockManager deliberately has no knowledge of the semantics of the actual policy by which lock 

requests are granted. Such information is maintained by the Lock class instances which provide 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 16 of 20 
 

operations (the conflictsWith operation) by which LockManager can determine if two locks conflict or 
not.  

public class LockMode 

{ 

public static final int READ; 

public static final int WRITE; 

}; 

 

public class LockStatus 

{ 

public static final int LOCKFREE; 

public static final int LOCKHELD; 

public static final int LOCKRETAINED; 

}; 

 

public class Lock extends StateManager 

{ 

public Lock (int lockMode); 

 

public boolean conflictsWith  (Lock otherLock); 

public boolean modifiesObject (); 

 

public boolean restore_state (InputObjectState os, int ObjectType); 

public boolean save_state (OutputObjectState os, int ObjectType); 

public String type (); 

 . . . 

}; 

Program 8: class Lock 

This separation is important in that it allows the programmer to derive new lock types from the basic 
Lock class and by providing appropriate definitions of the conflict operations enhanced levels of 

concurrency may be possible. The Lock class provides a modifiesObject operation which 

LockManager uses to determine if granting this locking request requires a call on modified. This 
operation is provided so that locking modes other than simple read and write can be supported. The 
default Lock class supports the traditional multiple reader/single writer policy. 

4.3.5 Co-ordinating Recovery, Persistence and Concurrency Control 

Since objects are assumed to be encapsulated entities then they must be responsible for implementing 
the properties required by atomic actions themselves (with appropriate system support). This enables 
differing objects to have differing recovery and concurrency control strategies. Given this proviso then 
any atomic action implementation need only control the invocation of the operations providing these 
properties at the appropriate time and need not know how the properties themselves are actually 
implemented. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 17 of 20 
 

public class BasicAction extends StateManager 

{ 

public BasicAction (); 

public BasicAction (Uid objUid); 

 

public final int status (); 

 

public final boolean preventCommit (); 

 

public final synchronized int add (AbstractRecord rec); 

 

public final BasicAction parent (); 

 

public final int typeOfAction (); 

 

public final Uid topLevelActionUid (); 

public final BasicAction topLevelAction (); 

 

public final synchronized CheckedAction setCheckedAction (CheckedAction act); 

 

public static BasicAction Current (); 

 

protected synchronized int Begin (BasicAction parent); 

protected synchronized int End (boolean report_heuristics); 

protected synchronized int Abort (); 

 

protected synchronized final int prepare (boolean report_heuristics); 

 

protected synchronized final void phase2Commit (boolean report_heuristics); 

protected synchronized final void phase2Abort (boolean report_heuristics); 

 

protected RecordList pendingList; 

protected RecordList preparedList; 

protected RecordList readonlyList; 

protected RecordList failedList; 

protected RecordList heuristicList; 

}; 

class BasicAction 

public class AtomicAction extends BasicAction 

{ 

public AtomicAction (); 

public AtomicAction (Uid objUid); 

 

public synchronized int begin (); 

public int commit (); 

public synchronized int commit (boolean report_heuristics); 

public synchronized int abort (); 

 

public String type (); 

 

public boolean addThread (); 

public synchronized boolean addThread (Thread t); 

public boolean removeThread (); 

public synchronized boolean removeThread (Thread t); 

}; 

Program 9: class AtomicAction 

In order to accomplish this AtomicAction instances maintain a list of instances of classes derived from 

a special abstract management class called AbstractRecord. Each of these classes manages a 

certain property, thus RecoveryRecords manage object recovery; LockRecords manage concurrency 
control information, etc. Instances of these management records are automatically added to the 
pendingList of the current atomic action as appropriate during execution of the application. Given this 

list of management records then it is thus sufficient for the operations of AtomicAction to run down the 
list invoking an appropriate operation on each record instance. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 18 of 20 
 

public abstract class AbstractRecord extends StateManager 

{ 

public abstract int typeIs (); 

 

public abstract Object value (); 

public abstract void setValue (Object o); 

 

public ClassName className (); 

 

public abstract int nestedAbort (); 

public abstract int nestedCommit (); 

public abstract int nestedPrepare (); 

 

public abstract int topLevelAbort () 

public abstract int topLevelCommit (); 

public abstract int topLevelPrepare (); 

 

public Uid order (); 

public String getTypeOfObject (); 

 

public boolean propagateOnAbort (): 

public boolean propaagteOnCommit (); 

 

public boolean equals (AbstractRecord rec); 

public boolean lessThan (AbstractRecord rec); 

public boolean greaterThan (AbstractRecord rec); 

}; 

Program 10: class AbstractRecord 

Thus, when an action is committed by the user (using the commit operation) then the two phase 

protocol implemented by AtomicAction is performed. This consists of firstly invoking the appropriate 

prepare phase operation (topLevelPrepare or nestedPrepare) on each of the records held in the 

pendingList. As each record is processed it is moved from the pendingList to either the 

preparedList or the readonlyList depending upon whether the record needs take part in phase two 
of the commit protocol. Each such invocation returns a status indicating whether the operation 
succeeded or not. If any failures are detected the prepare phase is terminated and the action will be 
aborted in phase two of the protocol. 

Once the prepare phase has terminated AtomicAction will either invoke phase2commit or 

phase2Abort depending upon the result of the prepare phase. If the prepare phase for a top level 
action completes successfully (indicating that the action should be committed) then the state of the 
atomic action is written to the object store (using the same persistence mechanisms described 
previously) to ensure that the commit will succeed even if a node crash occurs during phase two of the 
protocol. Both of these operations are essentially identical in that they process the records held on all of 
the lists and invoke the appropriate management operation (topLevelCommit, topLevelAbort, 

nestedCommit, or nestedAbort). At this point the records may either be discarded (if the action aborts 
or is top level) or propagated to the parent action for possibly further processing. For top level actions 
successful completion of phase two cause the state saved in the object store at the end of the prepare 
phase to be deleted. 

 This record based approach provides complete flexibility in that new record types can be created as 
required (other record types currently handle persistence (PersistenceRecord) and object lifetime 

(ActivationRecord)). 

As a demonstration of the simplicity of using actions in ArjunaCore, the following class represents the 
interface to a simple distributed diary system: 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 19 of 20 
 

public class Diary extends LockManager 

{ 

public Diary (Uid objUid); 

 

public String WhereIs (int time, String user); 

 

public AnAppointment GetNextAppointment (int now); 

public int AddAppointment (AnAppointment entry); 

public int DelAppointment (int when); 

 

public boolean save_state (OutputObjectState os, int objectType); 

public boolean restore_state (InputObjectState os, int objectType); 

public String type (); 

 

private String user_name; 

private AppointmentList appts; 

}; 

Program 11: class Diary 

The GetNextAppointment operation of this class could be written as shown in Program 12. The 
ArjunaCore additions to this code consist simply of the declaration and use of an instance of the 
AtomicAction class and the insertion of a call to the inherited setlock operation. The remainder of the 
code is exactly as it would be had ArjunaCore not been used. In this case read locks are set to ensure 
that the list of appointments is not modified during the search for the next valid appointment. These 
locks are automatically released (or propagated to a parent action if one exists) if the action commits or 
they will be released regardless if the action aborts. 

public AnAppointment GetNextAppointment( int time ) 

{ 

 AtomicAction A = new AtomicAction(); 

 AnAppointment entry = null; 

  

 A.begin(); 

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED) 

 { 

  AppointmentList tmp = appts; 

 

  entry.start = 0; 

  entry.end = 0; 

  entry.description = ""; 

  

  while (tmp != null) 

  { 

   if (tmp.entry.start <= time) 

    tmp = tmp.next; 

   else 

   { // found first appointment starting after given time 

    entry = tmp.entry; 

    break; 

   } 

  } 

  A.commit(); 

 } 

 else 

  A.abort(); 

 return entry; 

} 

Program 12: Example User Code. 

4.4 Crash Recovery 

The ArjunaCore  crash recovery mechanism is built around the fact that when a top level transaction 
that has modified the states of some objects prepares successfully it saves its state in the object store 
(pure read-only actions do not need to do this). Thus, by examining the contents of the object store the 
crash recovery mechanisms can determine those actions that had prepared but not fully committed. 

The crash recovery process consists of scanning the object store for saved transaction states (that is 
transactions that had prepared but not committed or aborted). Once the commit or abort decision has 
been completed the transaction entry is deleted from the object store. 



The Architecture, Design and Implementation of 
ArjunaCore 

Version No. 0.2 000061 23/01/2006 

 The Architecture, Design and Implementation of ArjunaCore Page 20 of 20 
 

The query process at the co-ordinating node uses the presence (or absence) of a corresponding atomic 
transaction entry in the object store to determine whether the transaction committed or aborted. The 
system works in a presumed abort mode, that is, if no record exists then the transaction is aborted. This 
arises from the fact that the record is written only at the end of a successful prepare phase implying that 
all participants have agreed to commit. If any cannot commit then the record will not be written. 
Similarly, the record is deleted only when phase two has been successfully completed, in which case 
there cannot be any transactions whose state is unknown. 

 


