
The Multiplex Subsystem of the JBoss
Remoting Project

Ron Sigal

July 4, 2006

Copyright © 2005 Ron Sigal

1. Introduction.

The Multiplex subsystem of the JBoss Remoting Project (referred to herein on occasion simply as “Muliplex”) sup-
ports the multiplexing of multiple data streams over a single network connection, based on a reimplementation of
the following classes from java.net:

1. Socket

2. ServerSocket

3. SocketInputStream

4. SocketOutputStream

and the following classes from javax.net:

1. SocketFactory

2. ServerSocketFactory

It is motivated by circumstances in which the number of available ports on a system is restricted by a firewall or
other considerations. Since the Remoting project is the principal client of Multiplex, we illustrate multiplexing
primarily in the context of a Remoting application. Remoting supports two modes of client-server communication:
(1) method calls from client to server, with a synchronous response, and (2) client requests for an asynchronous
callback from the server. The usual need for separate ports to support both synchronous and asynchronous modes is
obviated by the Multiplexing subsystem.

2. The Prime Scenario.

The typical application of multiplexing in the Remoting context is illustrated by the Prime Scenario, in which a
client requiring both synchronous and asynchronous responses from a server is behind a firewall and has only a
single port at its disposal. Without the restriction to a single port, we would have the situation in Figure 1, which
requires no multiplexing. With the restriction, we have the Prime Scenario, as in Figure 2.

JBoss July 4, 2006 1



Figure 1. Method calls and callbacks with no port restrictions.

Figure 2. Method calls and callbacks in the Prime Scenario.

Multiplexing is supported primarily by the concept of the virtual socket, implemented by the VirtualSocket

class. VirtualSocket is a subclass of java.io.Socket, and supports the full socket API. As is the case with actual
sockets, virtual sockets are created in one of two ways:

1. a constructor (or factory) call on a client, or

2. a call to the accept() method of a server socket on a server.

Accordingly, the other principal Multiplex concept is the virtual server socket, implemented by two classes:

1. MasterServerSocket, and

2. VirtualServerSocket.

These are both subclasses of java.io.ServerSocket, and both implement the full server socket API. Since virtual
sockets are implemented on the foundation of actual sockets, and the creation of actual sockets requires a server
socket, we need the support of actual server sockets in the creation of virtual sockets. It is the role of Mas-

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 2



terServerSocket to provide that support. The accept() method of MasterServerSocket calls super.accept() to
create an actual socket which is then wrapped in a mechanism which supports one or more virtual sockets. Every
Muliplex application requires at least one MasterServerSocket, and the Prime Scenario requires exactly one. Fig-
ure 3 illustrates the process in which a virtual socket v1 connects to a MasterServerSocket, which creates and re-
turns a reference to a new virtual socket v2.

Figure 3. Setting up a synchronous connection.

In Figure 3 we have a connection between v1 and v2, which can support synchronous communication but which of-
fers nothing not provided by actual sockets. The support of multiplexed callbacks, however, requires the use of the
other virtual server socket class, VirtualServerSocket. Unlike MasterServerSocket, VirtualServerSocket does
not depend on superclass facilities, but rather it uses an ordinary client socket, with which implements its own ver-
sion of the accept() method, able to create any number of virtual sockets, all of which share a single port with the
VirtualServerSocket. It is important to understand how its use of an actual socket determines the nature of a Vir-

tualServerSocket. Unlike a server socket, a client socket must be connected to another socket to function, and a
VirtualServerSocket has the same property. It follows that a VirtualServerSocket can process requests from
just one host, the host to which its actual socket is connected.

The role of the VirtualServerSocket is illustrated in Figure 4. A constructor (or factory method, which calls a
constructor) is called on the server to create virtual socket v3 to support callbacks. The constructor sends a connec-
tion request to the VirtualServerSocket on the client, which creates new virtual socket v4 and sends back to v3 a
reference to v4. At this point the Prime Scenario is set up.

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 3



Figure 4. Adding an asynchronous connection to Figure 3.

3. Virtual socket groups.

In order to understand the creation of structures like the Prime Scenario and others described below, it is important
to understand the concept of a virtual socket group. A virtual socket group is a set of virtual sockets, and zero or
one VirtualServerSockets, sharing a single actual socket. We say that the socket group is based on its actual
socket. Depending on the state of its underlying actual socket and the nature of its peer socket group, if any, a sock-
et group may be in one of three states. Let G be a socket group based on actual socket S. Then G may be

1. bound: S is bound but not connected, or

2. connected: S is connected to socket S' and the socket group based on S' does not contain a VirtualServer-

Socket, or

3. joinable: S is connected to socket S' and the socket group based on S' does contain a VirtualServerSocket.

Although it is possible for a socket to be neither bound nor connected, we do not consider a socket group to exist
until its underlying socket is at least bound to a local address. A connected or joinable socket group is said to be
visible, and a bound socket group is invisible. A socket group is characterized by the pair of addresses

(localAddress, remoteAddress)

where these are the local and remote addresses of the actual socket underlying the socket group. localAddress may
take the special form (*, port), where the wildcard value “*” denotes any hostname by which the local host is
known. Depending on the state of the socket group, remoteAddress may have the special value undefined, indicat-
ing that a connection has not yet been established.

There are two ways of creating a new virtual socket group or of joining an existing socket group: through a bind-
ing action or a connecting action. A binding action is either

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 4



1. a call to any of the VirtualServerSocket constructors other than the default constructor (i.e., those with a
port parameter), or

2. a call to a bind() method in VirtualSocket or VirtualServerSocket.

A connecting action belongs to one of five categories:

1. a call to any VirtualSocket or VirtualServerSocket constructor that requires a remote address (note that
unlike java.net.ServerSocket, VirtualServerSocket has a such a constructor),

2. a call to a connect() method (again, VirtualServerSocket has a nonstandard connect() method),

3. a call to VirtualServerSocket.accept(),

4. a call to MasterServerSocket.accept(), or

5. a call to MasterServerSocket.acceptServerSocketConnection().

Each binding action has an associated local address, and each connecting action has an associated remote address
and an optional local address. For binding actions, and connecting actions in the first two categories, the addresses
are given explicitly in the method call. For a call to VirtualServerSocket.accept(), the addresses are those of the
socket group to which the server socket belongs, and for the two MasterServerSocket methods, the addresses are
those of the actual socket they create.

Depending on their associated local and remote addresses and on the socket groups that exist at the time of the ac-
tion, a binding or connecting action may have the effect of creating a new socket group or adding a new member to
an existing socket group. The rules are straightforward, but there is one source of possible confusion, the accidental
connection problem discussed below, that must be guarded against. Let V be a virtual socket or virtual server sock-
et undergoing either a binding or connecting action.

1. binding action rule: If there are visible socket groups whose local address matches the action's local address,
then V joins one of them chosen at random. Otherwise, a new bound socket group is created and V joins it.

2. connecting action rule:

a. For actions in the first two categories, where V is a VirtualSocket (respectively, a VirtualServerSock-

et):

i. If the action has a remote address but no local address:

A. If there are any joinable (resp., connected) socket groups with a matching remote address, then
V joins one of them chosen at random.

B. If there are no such socket groups, an attempt is made to connect to a MasterServerSocket at
the remote address, and if the attempt succeeds, a new socket group is created and V joins it.

ii.
If the action has both a local address and a remote address:

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 5



A. If there is a joinable (resp., connected) socket group with matching addresses, then V joins it

B. Otherwise, if the local address (in particular, its port) is currently in use, the action results in a
IOException.

C. Otherwise, a new socket group G is created and bound to the local address. Then an attempt is
made to connect to a MasterServerSocket at the remote address, and if the attempt succeeds, V
joins G.

b. For VirtualServerSocket.accept() calls, the new virtual socket joins the socket group to which the
server socket belongs.

c. For MasterServerSocket.accept() calls, a new socket group is created with the new virtual socket as its
first member.

d. For MasterServerSocket.acceptServerSocketConnection() calls, a new socket group with zero mem-
bers is created.

NOTES:

1. A bound socket group is inaccessible to the connect action rules (which is why it is called "invisible"). The
reason is to avoid a situation in which one virtual socket "highjacks" another virtual socket's group. Suppose
that virtual socket v1 binds itself to ("localhost", 5555), but before it gets a chance to connect to
("www.jboss.com", 6666), virtual socket v2 binds to ("localhost", 5555) and then connects to
("www.ibm.com", 7777). Then when v1 tries to connect to ("www.jboss.com", 6666), the attempt fails. This
situation cannot occur because at the moment when v2 does its bind, v1's socket group is invisible and v2 is
forced to create it own socket group.

2. The connecting action rules are different for VirtualSocket and VirtualServerSocket (specifically, the
former can join only joinable socket groups, while the later can join connected socket groups) because Virtu-

alSocket needs a VirtualServerSocket to create a peer virtual socket for it to connect to, and a Virtu-

alServerSocket does not need such a peer.

3. N.B. It is important to understand a possible side effect of a binding action. When V joins a socket group
through a binding action, it is possible that the group is already connected. In this case, a subsequent connect-
ing action (in particular, a call to connect()) to any address other than the socket group's remote address is in-
valid, leading to an IOException with the message "socket is already connected.". This is called the accident-
al connection problem, and it is avoidable. Both VirtualSocket and VirtualServerSocket have construct-
ors and nonstandard versions of the connect() which accept both local and remote addresses. These treat
binding and connecting as a single atomic process.

The socket group rules are illustrated in the following two sections.

4. Coding the Prime Scenario.

In order to set up the Prime Scenario, the following steps are necessary (the socket names conform to Figure 4):

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 6



1. On the server, create a MasterServerSocket and bind it to port P.

2. On the client, create a virtual socket v1 and connect it to port P.

3. Let Q be the port on the client to which v1 is bound. Create a VirtualServerSocket on the client, bind it to Q,
and connect it to P.

4. On the server, create a virtual socket v3 and connect it to port Q.

The Prime Scenario provides an example of creating socket groups. In step 2, a socket group G1 is created on the
client through the construction of v1. It enters the connected state, bound to an arbitrary port Q on the client and
connected to port P on the server. In step 3 a VirtualServerSocket joins G1 by way of binding to Q on the client
and connecting to P on the server. In fact, the socket group rules imply that it is enough to bind the server socket to
port Q. Connecting it to P on the server occurs as a side effect of the binding action. Finally, step 4 adds virtual
socket v4 to G1. While G1 is being built on the client, a socket group G2 is being built on the server. Step 2 results
in the creation of G2, along with its first member, a new virtual socket, v2, returned by the accept() method of the
MasterServerSocket. Step 4 adds a second member, v3, to G2.

See Listing 1 and Listing 2 for a simple example of coding these steps. Variants of these samples may be found in
the directory /org/jboss/remoting/samples/multiplex.

5. More general scenarios.

Although Multiplex was motivated by the Prime Scenario, it can also support other connection structures. We de-
scribe two alternatives in this section.

5.1. The N-socket scenario.

The N-socket scenario demonstrates that a socket group is not restricted to just two virtual sockets. It also demon-
strates that a VirtualServerSocket does not depend on the prior existence of a connected virtual socket. As long
as it has access to a MasterServerSocket ready to accept a connection, it can get started. In fact, the Mas-

terServerSocket.accept() method will silently accept a connection from a VirtualServerSocket while it is
waiting for a connection request from a virtual socket, but the acceptServerSocketConnection() method is de-
signed specifically to accept a connection request from a VirtualServerSocket.

The connection structure of the N-socket scenario is depicted in Figure 5 (for N = 3), and the code for a simple cli-
ent and server is given in Listing 3 and Listing 4. In the example a socket group with 3 elements is constructed on
the server. It is created with the call

serverSocket.acceptServerSocketConnection()

which creates an actual socket and a socket group which, though it has no members, is connected to a Virtu-

alServerSocket on the client. The next three lines,

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 7



Socket socket1 = new VirtualSocket(“localhost”, 5555);
Socket socket2 = new VirtualSocket(“localhost”, 5555);
Socket socket3 = new VirtualSocket(“localhost”, 5555);

populate the socket group with three virtual sockets. On the client there is a socket group with four members, first
created with the call

serverSocket.connect(connectAddress);

and then further populated by the three subsequent lines

Socket socket1 = serverSocket.accept();
Socket socket2 = serverSocket.accept();
Socket socket3 = serverSocket.accept();

Variants of the N-Socket Scenario client and server may be found in the directory /
org/jboss/remoting/samples/multiplex.

Figure 5. The connection structure in the N-Socket Scenario.

5.2. The Symmetric Scenario.

The connection structure in the Symmetric Scenario consists of socket groups on two hosts, each of which con-
tains a VirtualServerSocket and some number of virtual sockets. The scenario is not truly symmetric, since each

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 8



connection structure has to begin with a connection request to a MasterServerSocket, but once that happens the
“client” and “server” are identical, as depicted in Figure 6d. Once the line

serverSocket.connect(address);

on the client (see Listing 5) and the line

int port = mss.acceptServerSocketConnection();

on the server (see Listing 6) are executed, the client has a socket group characterized by the address pair

((*, 5555), (“localhost“, 7777))

and consisting of a VirtualServerSocket, and the server has a socket group with zero members characterized by
the address pair

((“localhost“, 7777), (“localhost”, 5555)).

(See Figure 6a.) And once the line

vss.connect(address);

is executed on the server, the new VirtualServerSocket joins the server's socket group, as shown in Figure 6b.
After the lines

Socket virtualSocket1 = new VirtualSocket(“localhost”, port);

and

Socket virtualSocket1 = vss.accept();

are executed on the client and server, respectively, each socket group has a new virtual socket (see Figure 6c), and

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 9



finally, after the lines

Socket virtualSocket2 = new VirtualSocket(“localhost”, 5555);

and

Socket virtualSocket2 = serverSocket.accept();

are executed on the server and client, respectively, each socket group has a second virtual socket (see Figure 6d).

Figure 6a. The connection structure in the Symmetric Scenario: stage 1.

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 10



Figure 6b. The connection structure in the Symmetric Scenario: stage 2.

Figure 6c. The connection structure in the Symmetric Scenario: stage 3.

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 11



Figure 6d. The connection structure in the Symmetric Scenario: stage 4.

6. Factories.

In addition to virtual sockets and virtual server sockets, Multiplex also implements the two factories associated
with sockets: the socket factory and the server socket factory. VirtualSocketFactory extends
javax.net.SocketFactory and reimplements all of its methods. VirtualServerSocketFactory extends
javax.net.ServerSocketFactory and reimplements all of its methods (though the backlog parameter is ignored).
These two classes make it possible for a section of code to be completely unaware that it is using virtual sockets in-
stead of actual sockets. The only configuration involved in the use of these factories is the need to tell Virtu-
alServerSocketFactory whether it is running on a client or a server, which tells it whether to create Virtu-

alServerSockets or MasterServerSockets, respectively. That notification is performed by the methods setOnCli-
ent() and setOnServer(). See Listing 7 for an illustration of the idiomatic use of these classes, where the method
useFactories() refers only to the parent classes SocketFactory and ServerSocketFactory.

7. Configuration.

The Multiplex system may be used without any external configuration, but it exposes several parameters which
may be set to adjust its behavior, and possibly performance. They affect the following classes:

MultiplexingManager: The central Multiplex class, MultiplexingManager

wraps a real socket. It is responsible for creating an
environment, including multiple threads, which allow
a single socket to be shared by multiple streams of
communication. Note that the MultiplexingManager

is the implementation of the concept of "virtual sock-
et group." A virtual socket group is supported by ex-
actly one MultiplexingManager, and each Multi-

plexingManager supports exactly one virtual socket

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 12



group.

OutputMultiplexor: OutputMultiplexor has two roles. (1) It is called by
MultiplexingOutputStream to queue an array of
bytes to be sent to a virtual socket at the other end of
a connection. (2) It contains the inner class Output-

Thread, which takes byte arrays from the queue and
writes them, along with appropriate header informa-
tion, to the actual socket.

InputMultiplexor: InputMultiplexor contains two inner classes, Mul-

tiGroupInputThread and SingleGroupInputThread,
which are responsible for demultiplexing the virtual
streams on the actual connection and directing the
bytes to the appropriate MultiplexingInputStreams.
MultiGroupInputThread can process all NIO sockets
in its JVM. Since some socket factories, notably SSL
socket factories, do not create NIO sockets,
SingleGroupInputThread exists to process a single
non-NIO socket.

These parameters may be passed to the appropriate classes by putting them in a configuration HashMap, using the
keys given in org.jboss.remoting.transport.multiplex.Multiplex, and passing the map to a VirtualSocket,
a MasterServerSocket, or a VirtualServerSocket. It may be passed either through a constructor or a call to set-

Configuration(). Note, however, that the parameters have an effect only when a MultiplexingManager is first
created, or to say the same thing differently, when a binding or connecting action leads to the creation of a virtual
socket group. When a socket or server socket joins an existing socket group, or if setConfiguration() is called
after a binding or connection action creates a new MultiplexingManager, the configuration map will have no ef-
fect.

7.1. Configuring MultiplexingManager.

Two aspects of the behavior of MultiplexingManager may be configured.

1. When a MultiplexingManager is created and it finds no other MultiplexingManagers in the JVM, it starts up
several static threads. One of these threads periodically wakes up and monitors the existence of Multiplex-

ingManagers in the JVM. If it wakes up two times in a row and finds no MultiplexingManagers in the JVM,
it shuts down the other static threads.

2. When the last virtual socket supported by a particular MultiplexingManager closes, the MultiplexingMan-

ager will negotiate with its peer at the other end of the connection for permission to shut down, which will be
withheld only if a virtual socket is being opened at the other end.

The following parameters affect the behavior of MultiplexingManager:

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 13



Name (in
org.jboss.remoting.transport.multip
lex.Multiplex)

Default value Description

STAT-
IC_THREADS_MONITOR_PE
RIOD:

5000 msec
Determines how often the monitor
thread wakes up to look for the ex-
istence of MultiplexingManagers
in the JVM.

SHUT-
DOWN_REQUEST_TIMEOUT:

5000 msec
When a MultiplexingManager re-
quests permission from its remote
peer to shut down, it will time out
if it does not receive a reply within
this period of time.

SHUT-
DOWN_REFUSALS_MAXIMU
M:

5
When a MultiplexingManager re-
quests permission from its remote
peer to shut down, it will take "no"
for an answer this many times be-
fore it assumes something is wrong
and goes ahead and shuts down.

SHUT-
DOWN_MONITOR_PERIOD:

1000 msec
When a MultiplexingManager re-
quests permission from its remote
peer to shut down, it creates a
TimerTask which periodically
wakes up to see if and how the re-
mote peer has responded. This
parameter determines the period.

7.2. Configuring OutputMultiplexor

When OutputMultiplexor is passed some bytes by a MultiplexingOutputStream, it stores them in a Message data
structure drawn from a pool of unused Messages and puts the Message on a queue. When the OutputThread gets the
Message from the queue, it transmits some or all of its content, according to a set of fairness constraints. If the en-
tire contents are not exhausted, the Message is returned to the queue.

The following parameters affect the behavior of OutputMultiplexor:

Name (in
org.jboss.remoting.transport.multip
lex.Multiplex)

Default value Description

OUT-
1024

This determines the maximum size

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 14



PUT_MESSAGE_POOL_SIZE: of the pool of Messages. If the pool
is empty when a transmission re-
quest is received, a new Message

will be created, but when a Mes-

sage has been emptied, it will be
returned to the pool only if the
pool has fewer than the maximum
number of elements. Otherwise,
the Message will be discarded.

OUTPUT_MESSAGE_SIZE:
256 bytes

This is the initial capacity of the
ByteArrayOutputStream that
holds the contents of a Message.

OUT-
PUT_MAX_CHUNK_SIZE:

2048 bytes
This determines the number of
bytes transmitted by the Output-

Thread with a single write() call.

OUTPUT_MAX_TIME_SLICE:
500 msec

OutputThread will process a single
virtual stream for this long before
moving on to another stream.

OUT-
PUT_MAX_DATA_SLICE:

2048 * 8 bytes
OutputThread will transmit this
many bytes for a single virtual
stream before moving on to anoth-
er stream.

7.3. Configuring InputMultiplexor.

The following parameters affect the behavior of InputMultiplexor:

Name (in
org.jboss.remoting.transport.multip
lex.Multiplex)

Default value Description

INPUT_BUFFER_SIZE:
4096 bytes

Determines the size of the structure
that holds bytes read from the real
socket. The structure is a ByteBuf-

fer for NIO sockets and a byte ar-
ray for non-NIO sockets.

INPUT_MAX_ERRORS:
3

Both MultiGroupInputThread and
SingleGroupInputThread count

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 15



the number of non-fatal errors ex-
perienced on the socket(s) they
manage. When this limit has been
exceeded for a given socket, they
will close the socket and throw an
exception.

8. Performance.

It should come as no surprise that the classes in Muliplex perform more slowly than their non-virtual counterparts,
since the multiplexing of data streams requires extra work. Multiplex uses two classes to perform input and output
multiplexing: MultiplexingInputStream and MultiplexingOutputStream, which are returned by the Virtu-

alSocket methods getInputStream() and getOutputStream(), respectively. These classes subclass
java.io.InputStream and java.io.OutputStream and reimplement all of their methods. Tests show that input/
output by these classes is roughly four to five times slower than input/output by their counterpart classes used by
actual sockets, java.net.SocketInputStream and java.net.SocketOutputStream. This information is gathered
from multiple runs of three tests:

bare input: compares the transmission of bytes from a Sock-

etOutputStream to a MultiplexingInputStream

with the transmission of bytes from a SocketOutput-

Stream to a SocketInputStream

bare output: compares the transmission of bytes from a Multi-

plexingOutputStream to a SocketInputStream with
the transmission of bytes from a SocketOutput-

Stream to a SocketInputStream

socket input/output: compares the transmission of bytes from a Multi-

plexingOutputStream to a MultiplexingInput-

Stream with the transmission of bytes from a Sock-

etOutputStream to a SocketInputStream

Each of these tests was run 10 times, transmitting 100,000 bytes each time. Table 1 gives the factor by which the
virtual socket version of each test was slower than the actual socket version.

Table 1. Factors by which virtual socket input/output is slower than actual socket input/output.

bare input bare output socket input/output

minimum:
2.25 1.63 3.19

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 16



bare input bare output socket input/output

mean:
3.50 2.80 4.77

maximum:
4.42 4.67 8.58

9. APIs

One of the design goals of Multiplex is to make virtual sockets and their related classes as indistinguishable as pos-
sible from their real counterparts. There are two areas in which Multiplex is detectibly different.

1. The use of the two types of virtual server sockets entails an extra degree of complexity in setting up a multi-
plexed connection.

2. There are performance differences.

On the other hand, the virtual classes implement complete APIs, so that once a connection is established, a Virtu-

alSocket, for example, can be passed to a method in place of a Socket and will demonstrate the same behavior.
Similarly, MultiplexingInputStreams and MultiplexingOutputStreams are functionally indistinguishable from
SocketInputStreams and SocketOutputStreams.

It may be useful, however, to be aware of some implementational differences between the two sets of classes. The
public methods in the virtual classes can be placed in five categories.

1. methods implemented directly by the class

2. methods inherited from the real superclass

3. methods implemented by delegation to the underlying real socket

4. methods whose behavior is essentially null (though they may throw an IOException if called on a closed vir-
tual socket)

5. methods which have no counterpart in the real class

Categories 3, 4, and 5 are particularly informative. Methods in category 3 can be used to fine tune a multiplexed
connection by, for example, adjusting buffer sizes. Note that a method such as setReceiveBufferSize() may be
called on any virtual socket in a socket group with the same effect as calling it on any other virtual socket in the
same group. Methods in category 4 represent behavior that is not relevant to virtual sockets, and methods in cat-
egory 5 represent behavior that is specific to the special nature of multiplexed connections. The category 5 version
of VirtualSocket.connect(),

connect(SocketAddress remoteAddress, SocketAddress localAddress, int timeout)

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 17



exists to effect an atomic binding/connecting action to avoid the accidental connection problem discussed in the
section on virtual socket groups. The notion of connection is irrelevant to ordinary server sockets, but Virtu-

alServerSocket has methods

connect(SocketAddress remoteAddress, SocketAddress localAddress, int timeout)

and isConnected() because a connection must be established before accept() can function.

We also include in category 5 one of VirtualServerSocket's nonstandard constructors, with the signature

VirtualServerSocket(InetSocketAddress remoteAddress, InetSocketAddress localAddress, int timeout)

which calls the two-address form of connect().

The public methods of the main Multiplex classes are categorized in Table 2 and Table 3. The only inherited meth-
ods among the classes listed in Table 2 are found in MasterServerSocket, and we omit an explicit listing of them.

Note. The constructors of VirtualServerSocket that take a backlog parameter ignore its value. The same is true
for methods of VirtualServerSocketFactory.

Table 2. Categories of public methods in the primary public Multiplex classes

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 18



VirtualSocket VirtualServerSocket MasterServerSocket

category 1

bind() accept() accept()

close() bind() toString()

connect() close()

getInputStream() getSoTimeout()

getOutputStream() isBound()

getSoTimeout() isClosed()

isClosed() setSoTimeout()

isConnected() toString()

isInputShutdown()

isOutputShutdown()

setSoTimeout()

shutdownInput()

shutdownOutput()

toString()

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 19



VirtualSocket VirtualServerSocket MasterServerSocket

category 3

getInetAddress() getInetAddress()

getKeepAlive()/ set-

KeepAlive()

getLocalPort()

getLocalAddress() getLocalSocketAd-

dress()

getLocalPort() getReceiveBuffer-

Size() / setReceiveBuf-
ferSize()

getLocalSocketAd-

dress()

getReuseAddress()/
setReuseAddress()

getPort()

getReceiveBuffer-

Size() / setReceiveBuf-
ferSize()

getRemoteSocketAd-

dress()

getReuseAddress()/
setReuseAddress()

getSendBufferSize()/
setSendBufferSize()

getSOLinger()/ set-

SOLinger()

getTCPNoDelay()/
setTCPNoDelay()

getTrafficClass()/
setTrafficClass()

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 20



VirtualSocket VirtualServerSocket MasterServerSocket

category 4

getChannel() getChannel()

getOOBInline()/
setOOBInline()

sendUrgentData()

category 5

connect()
a

connect() acceptServerSocket-

Connection()

isConnected()

VirtualServerSocket()

b

aThis version of connect() is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote ad-
dress in a single atomic action.
bThis constructor is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote address in a
single atomic action.

Table 3. Categories of public methods in the other public Multiplex classes

MultiplexingIn-

putStream

MultiplexingOut-

putStream

VirtualServer-

SocketFactory

VirtualSocket-

Factory

category 1

available() close() createServerSock-

et()

createSocket()

close() write() getDefault() getDefault()

skip()

read()

category 2

mark()

markSupported()

reset()

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 21



MultiplexingIn-

putStream

MultiplexingOut-

putStream

VirtualServer-

SocketFactory

VirtualSocket-

Factory

category 4 flush()

category 5

isOnClient()

isOnServer()

setOnClient()

setOnServer()

10. Issues.

Please post issues and bugs to http://jira.jboss.com/jira/browse/JBREM-91.

11. Listings.

Listing 1. Client for Prime Scenario example.

public class PrimeScenarioExampleClient
{

public void runPrimeScenario()
{

try {
// Create a VirtualSocket and connect it to MasterServerSocket.
Socket v1 = new VirtualSocket("localhost", 5555);

// Do some asynchronous input in a separate thread.
new AsynchronousThread(v1).start();

// Do some synchronous communication.
ObjectOutputStream oos = new ObjectOutputStream(v1.getOutputStream());
ObjectInputStream ois = new ObjectInputStream(v1.getInputStream());
oos.writeObject(new Integer(3));
Integer i1 = (Integer) ois.readObject();
v1.close();

}
catch (Exception e) {}

}

class AsynchronousThread extends Thread
{

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 22



private Socket virtualSocket;

AsynchronousThread(Socket virtualSocket)
{

this.virtualSocket = virtualSocket;
}

public void run()
{

try {
// Create a VirtualServerSocket that shares a port with virtualSocket.
// (Note that it will be connected by virtue of joining a connected socket group.)
ServerSocket serverSocket = new VirtualServerSocket(virtualSocket.getLocalPort());

// Create a VirtualSocket that shares a port with virtualSocket.
serverSocket.setSoTimeout(10000);
Socket v4 = serverSocket.accept();

// Get an object from the server.
v4.setSoTimeout(10000);
ObjectInputStream ois = new ObjectInputStream(v4.getInputStream());
Object o = ois.readObject();
serverSocket.close();
v4.close();

}
catch (Exception e) {}

}
}

public static void main(String[] args)
{

new PrimeScenarioExampleClient().runPrimeScenario();
}

}

Listing 2. Server for Prime Scenario example.

public class PrimeScenarioExampleServer
{

public void runPrimeScenario()
{

try {
// Create a MasterServerSocket and get a VirtualSocket.
ServerSocket serverSocket = new MasterServerSocket(5555);
serverSocket.setSoTimeout(10000);
Socket v2 = serverSocket.accept();

// Do some asynchronous communication in a separate thread.
Thread asynchronousThread = new AsynchronousThread(v2);
asynchronousThread.start();

// Do some synchronous communication.
ObjectInputStream ois = new ObjectInputStream(v2.getInputStream());
ObjectOutputStream oos = new ObjectOutputStream(v2.getOutputStream());
v2.setSoTimeout(10000);
Object o = ois.readObject();
oos.writeObject(o);

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 23



serverSocket.close();
v2.close();

}
catch (Exception e) { }

}

class AsynchronousThread extends Thread
{

private Socket virtualSocket;

public AsynchronousThread(Socket socket) throws IOException
{this.virtualSocket = socket;}

public void run()
{

try {
// Connect to VirtualServerSocket.
Thread.sleep(2000);
String hostName = virtualSocket.getInetAddress().getHostName();
int port = virtualSocket.getPort();
Socket v3 = new VirtualSocket(hostName, port);

// Send an object to the client.
ObjectOutputStream oos = new ObjectOutputStream(v3.getOutputStream());
oos.writeObject(new Integer(7));

oos.flush();
v3.close();

}
catch (Exception e) {}

}
}

public static void main(String[] args)
{

new PrimeScenarioExampleServer().runPrimeScenario();
}

}

Listing 3. Sample client for N-socket scenario.

public class N_SocketScenarioClient
{

public void runN_SocketScenario()
{

try
{

// Create a VirtualServerSocket and connect it to the server.
VirtualServerSocket serverSocket = new VirtualServerSocket(5555);
InetSocketAddress connectAddress = new InetSocketAddress(“localhost”, 6666);
serverSocket.setSoTimeout(10000);
serverSocket.connect(connectAddress);

// Accept connection requests for 3 virtual sockets.
Socket socket1 = serverSocket.accept();
Socket socket2 = serverSocket.accept();
Socket socket3 = serverSocket.accept();

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 24



// Do some i/o.
InputStream is1 = socket1.getInputStream();
OutputStream os1 = socket1.getOutputStream();
InputStream is2 = socket2.getInputStream();
OutputStream os2 = socket2.getOutputStream();
InputStream is3 = socket3.getInputStream();
OutputStream os3 = socket3.getOutputStream();
os1.write(3);
os2.write(7);
os3.write(11);
System.out.println(is1.read());
System.out.println(is2.read());
System.out.println(is3.read());

socket1.close();
socket2.close();
socket3.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new N_SocketScenarioClient().runN_SocketScenario();
}

}

Listing 4. Sample server for N-socket scenario.

public class N_SocketScenarioServer
{

public void runN_SocketScenario()
{

try
{

// Create and bind a MasterServerSocket.
MasterServerSocket serverSocket = new MasterServerSocket(6666);

// Accept connection request from VirtualServerSocket.
serverSocket.setSoTimeout(10000);
serverSocket.acceptServerSocketConnection();

// Create 3 virtual sockets
Thread.sleep(2000);
Socket socket1 = new VirtualSocket("localhost", 5555);
Socket socket2 = new VirtualSocket("localhost", 5555);
Socket socket3 = new VirtualSocket("localhost", 5555);

// Do some i/o.
InputStream is1 = socket1.getInputStream();
OutputStream os1 = socket1.getOutputStream();
InputStream is2 = socket2.getInputStream();
OutputStream os2 = socket2.getOutputStream();
InputStream is3 = socket3.getInputStream();
OutputStream os3 = socket3.getOutputStream();
os1.write(is1.read());
os2.write(is2.read());

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 25



os3.write(is3.read());

socket1.close();
socket2.close();
socket3.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new N_SocketScenarioServer().runN_SocketScenario();
}

}

Listing 5. Symmetric Scenario client.

public class SymmetricScenarioClient
{

public void runSymmetricScenario()
{

try {
// Get a virtual socket to use for synchronizing client and server.
Socket syncSocket = new Socket("localhost", 6666);
InputStream is_sync = syncSocket.getInputStream();
OutputStream os_sync = syncSocket.getOutputStream();

// Create a VirtualServerSocket and connect
// it to MasterServerSocket running on the server.
VirtualServerSocket serverSocket = new VirtualServerSocket(5555);
InetSocketAddress address = new InetSocketAddress("localhost", 7777);
is_sync.read();
serverSocket.setSoTimeout(10000);
serverSocket.connect(address);

// Call constructor to create a virtual socket and make a connection
// request to the port on the server to which the local VirtualServerSocket
// is connected, i.e., to the remote VirtualServerSocket.
os_sync.write(5);
is_sync.read();
int port = serverSocket.getRemotePort();
Socket virtualSocket1 = new VirtualSocket("localhost", port);
InputStream is1 = virtualSocket1.getInputStream();
OutputStream os1 = virtualSocket1.getOutputStream();

// Create a virtual socket with VirtualServerSocket.accept().
Socket virtualSocket2 = serverSocket.accept();
InputStream is2 = virtualSocket2.getInputStream();
OutputStream os2 = virtualSocket2.getOutputStream();

// Do some i/o and close sockets.
os1.write(9);
System.out.println(is1.read());
os2.write(11);
System.out.println(is2.read());
virtualSocket1.close();
virtualSocket2.close();

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 26



syncSocket.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new SymmetricScenarioClient().runSymmetricScenario();
}

}

Listing 6. Symmetric Scenario server.

public class SymmetricScenarioServer
{

public void runSymmetricScenario()
{

try {
// Create ServerSocket and get synchronizing socket.
ServerSocket ss = new ServerSocket(6666);
Socket syncSocket = ss.accept();
ss.close();
InputStream is_sync = syncSocket.getInputStream();
OutputStream os_sync = syncSocket.getOutputStream();

// Create MasterServerSocket, accept connection request from remote
// VirtualServerSocket, and get the bind port of the local actual
// socket to which the VirtualServerSocket is connected.
MasterServerSocket mss = new MasterServerSocket(7777);
os_sync.write(3);
mss.setSoTimeout(10000);
int port = mss.acceptServerSocketConnection();
mss.close();

// Wait until remote VirtualServerSocket is running, then create local
// VirtualServerSocket, bind it to the local port to which the remote
// VirtualServerSocket is connected, and connect it to the remote
// VirtualServerSocket.
is_sync.read();
VirtualServerSocket vss = new VirtualServerSocket(port);
InetSocketAddress address = new InetSocketAddress("localhost", 5555);
vss.setSoTimeout(5000);
vss.connect(address);

// Indicate that the local VirtualServerSocket is running.
os_sync.write(7);

// Create a virtual socket by way of VirtualServerSocket.accept();
serverSocket.setSoTimeout(10000);
Socket virtualSocket1 = vss.accept();
InputStream is1 = virtualSocket1.getInputStream();
OutputStream os1 = virtualSocket1.getOutputStream();

// Call constructor to create a virtual socket and make a connection
// request to the remote VirtualServerSocket.
Socket virtualSocket2 = new VirtualSocket("localhost", 5555);
InputStream is2 = virtualSocket2.getInputStream();

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 27



OutputStream os2 = virtualSocket2.getOutputStream();

// Do some i/o and close sockets.
os1.write(is1.read());
os2.write(is2.read());
virtualSocket1.close();
virtualSocket2.close();
syncSocket.close();
vss.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new SymmetricScenarioServer().runSymmetricScenario();
}

}

Listing 7. Sample use of VirtualServerSocketFactory and VirtualSocketFactory.

public class FactoryExample
{

void runFactoryExample()
{

ServerSocketFactory serverSocketFactory = VirtualServerSocketFactory.getDefault();
((VirtualServerSocketFactory) serverSocketFactory).setOnServer();
SocketFactory socketFactory = VirtualSocketFactory.getDefault();
useServerSocketFactory(serverSocketFactory);
useSocketFactory(socketFactory);

}

void useServerSocketFactory(final ServerSocketFactory serverSocketFactory)
{

new Thread()
{

public void run()
{

try
{

ServerSocket serverSocket = serverSocketFactory.createServerSocket(5555);
Socket socket = serverSocket.accept();
int b = socket.getInputStream().read();
socket.getOutputStream().write(b);
socket.close();
serverSocket.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}
}.start();

}

public void useSocketFactory(SocketFactory socketFactory)
{

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 28



try
{

Thread.sleep(1000);
Socket socket = socketFactory.createSocket("localhost", 5555);
socket.getOutputStream().write(7);
System.out.println(socket.getInputStream().read());
socket.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}

public static void main(String[] args)
{

new FactoryExample().runFactoryExample();
}

}

The Multiplex Subsystem of the JBoss Remoting Project

JBoss July 4, 2006 29


	The Multiplex Subsystem of the JBoss Remoting Project
	1. Introduction.
	2. The Prime Scenario.
	3. Virtual socket groups.
	4. Coding the Prime Scenario.
	5. More general scenarios.
	5.1. The N-socket scenario.
	5.2. The Symmetric Scenario.

	6. Factories.
	7. Configuration.
	7.1. Configuring MultiplexingManager.
	7.2. Configuring OutputMultiplexor
	7.3. Configuring InputMultiplexor.

	8. Performance.
	9. APIs
	10. Issues.
	11. Listings.

