The Multiplex Subsystem of the JBoss
Remoting Project

Ron Sigal
July 4, 2006
Copyright © 2005 Ron Sigal

1. Introduction.

The Multiplex subsystem of the JBoss Remoting Project (referred to herein on occasion simply as “Muliplex”) sup-
ports the multiplexing of multiple data streams over a single network connection, based on a reimplementation of
the following classes from j ava. net :

1. Socket

2. Server Socket

3. Socket | nput St ream

4. Socket Qut put St ream

and the following classes from j avax. net :

1. SocketFactory
2. ServerSocket Fact ory

It is motivated by circumstances in which the number of available ports on a system is restricted by a firewall or
other considerations. Since the Remoting project is the principal client of Multiplex, we illustrate multiplexing
primarily in the context of a Remoting application. Remoting supports two modes of client-server communication:
(1) method calls from client to server, with a synchronous response, and (2) client requests for an asynchronous
callback from the server. The usual need for separate ports to support both synchronous and asynchronous modesis
obviated by the Multiplexing subsystem.

2. The Prime Scenario.

The typical application of multiplexing in the Remoting context is illustrated by the Prime Scenario, in which a
client requiring both synchronous and asynchronous responses from a server is behind a firewall and has only a
single port at its disposal. Without the restriction to a single port, we would have the situation in Figure 1, which
reguires no multiplexing. With the restriction, we have the Prime Scenario, asin Figure 2.

JBoss July 4, 2006 1

The Multiplex Subsystem of the JBoss Remoting Project

| key:
o - —@
]: callbacks + - port
o - =
| method calls @ - socket
client server

Figure 1. Method calls and callbacks with no port restrictions.

key:

client server

— | -method call stream
X, L -— cailbarks L.z -— - callback stream
/.;7 “mem_c:l;calls T \1\ + - port
® - socket
O

- virtual socket

Figure 2. Method calls and callbacks in the Prime Scenario.

Multiplexing is supported primarily by the concept of the virtual socket, implemented by the Vi rt ual Socket
class. Vi rt ual Socket isasubclass of j ava. i o. Socket , and supports the full socket API. Asis the case with actual
sockets, virtual sockets are created in one of two ways:

1. aconstructor (or factory) call onaclient, or
2. acdl totheaccept () method of aserver socket on a server.

Accordingly, the other principal Multiplex concept isthe virtual server socket, implemented by two classes:

1. MasterServer Socket, and
2. Virtual Server Socket .

These are both subclasses of j ava. i 0. Ser ver Socket , and both implement the full server socket API. Since virtual
sockets are implemented on the foundation of actual sockets, and the creation of actual sockets requires a server
socket, we need the support of actual server sockets in the creation of virtual sockets. It is the role of Mmas-

JBoss July 4, 2006 2

The Multiplex Subsystem of the JBoss Remoting Project

t er Ser ver Socket to provide that support. The accept () method of Mast er Ser ver Socket calls super. accept () to
create an actual socket which is then wrapped in a mechanism which supports one or more virtual sockets. Every
Muliplex application requires at least one Mast er Ser ver Socket , and the Prime Scenario requires exactly one. Fig-
ure 3 illustrates the process in which avirtual socket v1 connects to a Mast er Ser ver Socket , which creates and re-
turns areference to a new virtual socket v2.

- port

return v2
i T

L
T
i @ - socket

request conne ction | - virtual socket
] :—" -'-\c

. (®) - MasterServerSocket
client server

—p - cCreates

Figure 3. Setting up a synchronous connection.

In Figure 3 we have a connection between v1 and v2, which can support synchronous communication but which of-
fers nothing not provided by actual sockets. The support of multiplexed callbacks, however, requires the use of the
other virtual server socket class, Vi rt ual Ser ver Socket . Unlike Mast er Ser ver Socket , Vi rt ual Ser ver Socket does
not depend on superclass facilities, but rather it uses an ordinary client socket, with which implements its own ver-
sion of the accept () method, able to create any number of virtual sockets, all of which share a single port with the
Vi rt ual Server Socket . It isimportant to understand how its use of an actual socket determines the nature of avir -

t ual Server Socket . Unlike a server socket, a client socket must be connected to another socket to function, and a
Vi rt ual Server Socket has the same property. It follows that a Vi rt ual Server Socket Can process requests from
just one host, the host to which its actual socket is connected.

The role of the vi rtual Server Socket isillustrated in Figure 4. A constructor (or factory method, which calls a
constructor) is called on the server to create virtual socket v3 to support callbacks. The constructor sends a connec-
tion request to the Vi r t ual Ser ver Socket on the client, which creates new virtual socket v4 and sends back to v3 a
reference to v4. At this point the Prime Scenario is set up.

JBoss July 4, 2006 3

The Multiplex Subsystem of the JBoss Remoting Project

- port
re que st conne ction - real socket
“fa —Er—
_ — - virtual socket
refurn v4

- MasterServersSocket

- VirtualServersocket

client - creates

Figure 4. Adding an asynchronous connection to Figure 3.

3. Virtual socket groups.

In order to understand the creation of structures like the Prime Scenario and others described below, it isimportant
to understand the concept of avirtual socket group. A virtual socket group is a set of virtual sockets, and zero or
one Vi rt ual Server Socket S, sharing a single actual socket. We say that the socket group is based on its actual
socket. Depending on the state of its underlying actual socket and the nature of its peer socket group, if any, a sock-
et group may bein one of three states. Let G be a socket group based on actual socket S. Then G may be

1. bound: Sisbound but not connected, or

2. connected: Sis connected to socket S and the socket group based on S does not contain a Vi r t ual Ser ver -
Socket , Or

3. joinable: Sisconnected to socket S and the socket group based on S does contain a Vi rt ual Ser ver Socket .

Although it is possible for a socket to be neither bound nor connected, we do not consider a socket group to exist
until its underlying socket is at least bound to alocal address. A connected or joinable socket group is said to be
visible, and a bound socket group isinvisible. A socket group is characterized by the pair of addresses

(local Address, remoteAddress)

where these are the local and remote addresses of the actual socket underlying the socket group. local Address may
take the specia form (*, port), where the wildcard value “*” denotes any hostname by which the local host is
known. Depending on the state of the socket group, remoteAddress may have the specia value undefined, indicat-
ing that a connection has not yet been established.

There are two ways of creating a new virtual socket group or of joining an existing socket group: through a bind-
ing action or aconnecting action. A binding action is either

JBoss July 4, 2006 4

The Multiplex Subsystem of the JBoss Remoting Project

1. acal to any of the virtual Server Socket constructors other than the default constructor (i.e., those with a
port parameter), or

2. acdltoabind() methodinVirtual Socket Or Virtual Server Socket .

A connecting action belongs to one of five categories:

1. acal toany virtual Socket Of Virtual Server Socket constructor that requires a remote address (note that
unlikej ava. net . Server Socket , Vi rt ual Ser ver Socket has asuch a constructor),

2. acal toaconnect () method (again, Vi rt ual Ser ver Socket hasanonstandard connect () method),
3. acdltovirtual Server Socket . accept (),

4, acadl toMast er Server Socket . accept (), Of

5. acall to Mast er Ser ver Socket . accept Ser ver Socket Connecti on() .

Each binding action has an associated local address, and each connecting action has an associated remote address
and an optional local address. For binding actions, and connecting actions in the first two categories, the addresses
are given explicitly in the method call. For acall to Vi rt ual Ser ver Socket . accept () , the addresses are those of the
socket group to which the server socket belongs, and for the two Mast er Ser ver Socket methods, the addresses are
those of the actual socket they create.

Depending on their associated local and remote addresses and on the socket groups that exist at the time of the ac-
tion, abinding or connecting action may have the effect of creating a new socket group or adding a new member to
an existing socket group. The rules are straightforward, but there is one source of possible confusion, the accidental
connection problem discussed below, that must be guarded against. Let V be a virtual socket or virtual server sock-
et undergoing either abinding or connecting action.

1. binding action rule; If there are visible socket groups whose local address matches the action's local address,
then V joins one of them chosen at random. Otherwise, a new bound socket group is created and V joinsiit.

2. connecting action rule:

a. For actionsin the first two categories, where Visavi rt ual Socket (respectively, avirtual Server Sock-
et):

i. If the action has a remote address but no local address:

A. If there are any joinable (resp., connected) socket groups with a matching remote address, then
V joins one of them chosen at random.

B. If there are no such socket groups, an attempt is made to connect to a Mast er Ser ver Socket at
the remote address, and if the attempt succeeds, a new socket group is created and V joinsiit.

If the action has both alocal address and a remote address:

JBoss July 4, 2006 5

The Multiplex Subsystem of the JBoss Remoting Project

A. If thereisajoinable (resp., connected) socket group with matching addresses, then V joins it

B. Otherwise, if the local address (in particular, its port) is currently in use, the action resultsin a
| OExcepti on.

C. Otherwise, a new socket group G is created and bound to the local address. Then an attempt is
made to connect to a Mast er Ser ver Socket at the remote address, and if the attempt succeeds, V
joins G.

b. For virtual Server Socket . accept () calls, the new virtual socket joins the socket group to which the
server socket belongs.

Cc. For masterServer Socket . accept () cals, anew socket group is created with the new virtual socket asits
first member.

d. For mast er Server Socket . accept Ser ver Socket Connect i on() calls, a new socket group with zero mem-
bersis created.

NOTES:

A bound socket group is inaccessible to the connect action rules (which is why it is called "invisible"). The
reason is to avoid a situation in which one virtual socket "highjacks" another virtual socket's group. Suppose
that virtual socket vl binds itself to ("localhost”, 5555), but before it gets a chance to connect to
("www.jboss.com”, 6666), virtual socket v2 binds to ("localhost”, 5555) and then connects to
("www.ibm.com", 7777). Then when v1 tries to connect to ("www.jboss.com", 6666), the attempt fails. This
situation cannot occur because at the moment when v2 does its bind, v1's socket group is invisible and v2 is
forced to create it own socket group.

The connecting action rules are different for Vi rtual Socket and Virtual Server Socket (specifically, the
former can join only joinable socket groups, while the later can join connected socket groups) because Vi rt u-
al Socket needs a Virtual Server Socket tO create a peer virtual socket for it to connect to, and a Vvirtu-
al Server Socket does not need such a peer.

N.B. It is important to understand a possible side effect of a binding action. When V joins a socket group
through a binding action, it is possible that the group is already connected. In this case, a subsequent connect-
ing action (in particular, acall to connect ()) to any address other than the socket group's remote addressisin-
valid, leading to an | Oexcept i on with the message "socket is already connected.”. Thisis called the accident-
al connection problem, and it is avoidable. Both Vi rt ual Socket and Vi rt ual Server Socket have construct-
ors and nonstandard versions of the connect () which accept both local and remote addresses. These treat
binding and connecting as a single atomic process.

The socket group rules are illustrated in the following two sections.

4. Coding the Prime Scenario.

In order to set up the Prime Scenario, the following steps are necessary (the socket names conform to Figure 4):

JBoss July 4, 2006

The Multiplex Subsystem of the JBoss Remoting Project

1. Ontheserver, create aMast er Ser ver Socket and bind it to port P.
2. Ontheclient, create avirtual socket v1 and connect it to port P.

3. Let Q bethe port on the client to which v1 isbound. Create a Vi r t ual Ser ver Socket on the client, bind it to Q,
and connect it to P.

4. Onthe server, create avirtual socket v3 and connect it to port Q.

The Prime Scenario provides an example of creating socket groups. In step 2, a socket group G1 is created on the
client through the construction of v1. It enters the connected state, bound to an arbitrary port Q on the client and
connected to port P on the server. In step 3 a Vi rt ual Server Socket joins G1 by way of binding to Q on the client
and connecting to P on the server. In fact, the socket group rules imply that it is enough to bind the server socket to
port Q. Connecting it to P on the server occurs as a side effect of the binding action. Finaly, step 4 adds virtua
socket v4 to G1. While G1 is being built on the client, a socket group G2 is being built on the server. Step 2 results
in the creation of G2, along with its first member, anew virtual socket, v2, returned by the accept () method of the
Mast er Ser ver Socket . Step 4 adds a second member, v3, to G2.

See Listing 1 and Listing 2 for a simple example of coding these steps. Variants of these samples may be found in
the directory /org/jboss/remoting/samples/multiplex.

5. More general scenarios.

Although Multiplex was motivated by the Prime Scenario, it can also support other connection structures. We de-
scribe two alternativesin this section.

5.1. The N-socket scenario.

The N-socket scenario demonstrates that a socket group is not restricted to just two virtual sockets. It also demon-
strates that a Vi rt ual Server Socket does not depend on the prior existence of a connected virtual socket. Aslong
as it has access to a Mast er Server Socket ready to accept a connection, it can get started. In fact, the Mmas-
ter Server Socket . accept () method will silently accept a connection from a Vi rt ual Server Socket while it is
waiting for a connection request from a virtual socket, but the accept Ser ver Socket Connect i on() method is de-
signed specifically to accept a connection request from avi r t ual Ser ver Socket .

The connection structure of the N-socket scenario is depicted in Figure 5 (for N = 3), and the code for a simple cli-
ent and server is given in Listing 3 and Listing 4. In the example a socket group with 3 elements is constructed on
the server. It is created with the call

server Socket . accept Server Socket Connecti on()

which creates an actual socket and a socket group which, though it has no members, is connected to a virt u-
al Server Socket on the client. The next threelines,

JBoss July 4, 2006 7

The Multiplex Subsystem of the JBoss Remoting Project

Socket socketl
Socket socket 2
Socket socket 3

new Virtual Socket (“l ocal host”, 5555);
new Virtual Socket (“l ocal host”, 5555);
new Virtual Socket (“l ocal host”, 5555);

populate the socket group with three virtual sockets. On the client there is a socket group with four members, first
created with the call

server Socket . connect (connect Addr ess) ;

and then further populated by the three subsequent lines

Socket socket 1
Socket socket 2
Socket socket 3

server Socket . accept ();
server Socket . accept ();
server Socket . accept () ;

Variants of the N-Socket Scenario client and server may be found in the directory /
org/jboss/remoting/samples/multiplex.

- port

- virtual socket

- MasterServerSochket

1
T
@ - real socket

' - VirtualServerSocket

client server — g -creates

Figure 5. The connection structure in the N-Socket Scenario.

5.2. The Symmetric Scenario.

The connection structure in the Symmetric Scenario consists of socket groups on two hosts, each of which con-
tainsa Vi rt ual Server Socket and some number of virtual sockets. The scenario is not truly symmetric, since each

JBoss July 4, 2006 8

The Multiplex Subsystem of the JBoss Remoting Project

connection structure has to begin with a connection regquest to a Mast er Ser ver Socket , but once that happens the
“client” and “server” are identical, as depicted in Figure 6d. Once the line

server Socket . connect (addr ess) ;

on the client (see Listing 5) and the line

int port = nss. accept Server Socket Connection();

on the server (see Listing 6) are executed, the client has a socket group characterized by the address pair

((*, 5555), (“localhost*, 7777))

and consisting of a Vi rt ual Server Socket , and the server has a socket group with zero members characterized by
the address pair

((“localhogt*, 7777), (“localhost”, 5555)).

(See Figure 6a.) And once theline

vss. connect (address);

is executed on the server, the new Vi rt ual Server Socket joins the server's socket group, as shown in Figure 6b.
After thelines

Socket virtual Socketl = new Virtual Socket (“l ocal host”, port);

and

Socket virtual Socketl = vss. accept();

are executed on the client and server, respectively, each socket group has a new virtual socket (see Figure 6¢), and

JBoss July 4, 2006 9

The Multiplex Subsystem of the JBoss Remoting Project

finaly, after the lines
Socket virtual Socket2 = new Virtual Socket (“l ocal host”, 5555);
and

Socket virtual Socket2 = server Socket. accept();

are executed on the server and client, respectively, each socket group has a second virtual socket (see Figure 6d).

—L - port

@ - real socket

0 - virtual socket

: - MasterServerSocket

o]

A
A

{&) -VirtualServerSocket

client server —p» -creates

Figure 6a. The connection structure in the Symmetric Scenario: stage 1.

JBoss July 4, 2006

10

The Multiplex Subsystem of the JBoss Remoting Project

- port

- virtual socket

1
T
@ - real socket
o

:_* - MasterServerSocket
&;:' - VirtualServerSocket
client Server _pm -creates

Figure 6b. The connection structure in the Symmetric Scenario: stage 2.

- port

- real socket

- yirtual socket

- MasterServerSocket

(# | - VirtualServerSocket

client server — = -creates

Figure 6¢. The connection structure in the Symmetric Scenario: stage 3.

JBoss July 4, 2006

11

The Multiplex Subsystem of the JBoss Remoting Project

key:
ok 5 port
T
+ @ - real socket
T o - virtual socket
e =1 - MasterServerSocket
3! - VirtualServerSocket
client server - —p» -cCreates

Figure 6d. The connection structure in the Symmetric Scenario: stage 4.

6. Factories.

In addition to virtual sockets and virtual server sockets, Multiplex also implements the two factories associated
with sockets: the socket factory and the server socket factory. Virtual SocketFactory —extends
javax. net. Socket Factory and reimplements al of its methods. Virtual ServerSocket Factory extends
j avax. net . Server Socket Fact ory and reimplements all of its methods (though the backlog parameter is ignored).
These two classes make it possible for a section of code to be completely unaware that it is using virtual sockets in-
stead of actual sockets. The only configuration involved in the use of these factories is the need to tell virtu-
al Ser ver Socket Fact ory Whether it is running on a client or a server, which tells it whether to create Vi rt u-
al Ser ver Socket SOr Mast er Ser ver Socket S, respectively. That notification is performed by the methods set ond i -
ent () and set OnServer () . See Listing 7 for an illustration of the idiomatic use of these classes, where the method
useFactori es() refersonly to the parent classes Socket Fact ory and Ser ver Socket Fact ory.

7. Configuration.

The Multiplex system may be used without any external configuration, but it exposes severa parameters which
may be set to adjust its behavior, and possibly performance. They affect the following classes:

M ultiplexingM anager : The central Multiplex class, mul ti pl exi ngManager
wraps a real socket. It is responsible for creating an
environment, including multiple threads, which allow
a single socket to be shared by multiple streams of
communication. Note that the mul ti pl exi ngManager
is the implementation of the concept of "virtual sock-
et group." A virtual socket group is supported by ex-
actly one mul ti pl exi ngManager, and each mul ti -
pl exi ngManager supports exactly one virtual socket

JBoss July 4, 2006 12

The Multiplex Subsystem of the JBoss Remoting Project

group.

OutputMultiplexor: Qut put Mul ti pl exor has two roles. (1) It is caled by
Mul ti pl exi ngQut put Stream to queue an array of
bytes to be sent to a virtual socket at the other end of
a connection. (2) It contains the inner class cut put -
Thread, which takes byte arrays from the queue and
writes them, along with appropriate header informa-
tion, to the actual socket.

InputMultiplexor: I nput Mul ti pl exor contains two inner classes, Mil -
ti Groupl nput Thread and Si ngl eGr oupl nput Thr ead,
which are responsible for demultiplexing the virtua
streams on the actual connection and directing the
bytes to the appropriate mul ti pl exi ngl nput St r eans.
Mul ti Groupl nput Thr ead can process all NIO sockets
inits WM. Since some socket factories, notably SSL
socket factories, do not create NIO sockets,
Si ngl eGr oupl nput Thread €Xists to process a single
non-NIO socket.

These parameters may be passed to the appropriate classes by putting them in a configuration HashmMap, using the
keys given in org. j boss. renoti ng. t ransport. mul ti pl ex. Ml ti pl ex, and passing the map to a Vi rt ual Socket ,
aMast er Ser ver Socket , Or @ Vi rtual Server Socket . It may be passed either through a constructor or a call to set -
Configuration(). Note, however, that the parameters have an effect only when a mul ti pl exi ngManager is first
created, or to say the same thing differently, when a binding or connecting action leads to the creation of a virtual
socket group. When a socket or server socket joins an existing socket group, or if set Confi guration() is caled
after a binding or connection action creates a new Ml ti pl exi ngManager , the configuration map will have no ef-
fect.

7.1. Configuring MultiplexingManager.

Two aspects of the behavior of Ml ti pl exi ngManager may be configured.

1. Whenawmltipl exi ngManager is created and it finds no other Mul ti pl exi ngManager Sinthe VM, it starts up
several static threads. One of these threads periodically wakes up and monitors the existence of mul ti pl ex-
i ngManager s in the VM. If it wakes up two times in arow and finds no mul ti pl exi ngManager s in the VM,
it shuts down the other static threads.

2. When the last virtual socket supported by a particular mul ti pl exi ngManager closes, the mul ti pl exi nghan-
ager Will negotiate with its peer at the other end of the connection for permission to shut down, which will be
withheld only if avirtual socket is being opened at the other end.

The following parameters affect the behavior of mul ti pl exi ngManager :

JBoss July 4, 2006 13

The Multiplex Subsystem of the JBoss Remoting Project

Name (in | Default value

org.jboss.remoting.transport.multip
lex.Multiplex)

Description

5000 msec
STAT- Determines how often the monitor
IC_THREADS MONITOR_PE thread wakes up to look for the ex-
RIOD: istence of Ml tipl exi ngManager S
in the VM.
5000 msec
SHUT- When a mul ti pl exi ngManager re-
DOWN_REQUEST TIMEOUT: guests permission from its remote
peer to shut down, it will time out
if it does not receive areply within
this period of time.
5
SHUT- When a Ml ti pl exi ngManager re-
DOWN_REFUSALS MAXIMU guests permission from its remote
M: peer to shut down, it will take "no"
for an answer this many times be-
fore it assumes something is wrong
and goes ahead and shuts down.
1000 msec
SHUT- When a Ml ti pl exi ngManager re-

DOWN_MONITOR_PERIOD: quests permission from its remote
peer to shut down, it creates a
Timer Task which periodically
wakes up to see if and how the re-
mote peer has responded. This

parameter determines the period.

7.2. Configuring OutputMultiplexor

When cut put Mul ti pl exor S passed some bytes by amul ti pl exi ngQut put St ream it storesthem in aMessage data
structure drawn from a pool of unused Messages and puts the Message on a queue. When the cut put Thr ead gets the
Message from the queue, it transmits some or all of its content, according to a set of fairness constraints. If the en-
tire contents are not exhausted, the Message is returned to the queue.

The following parameters affect the behavior of cut put Mul ti pl exor:

Name (in Default value Description
org.jboss.remoting.transport.multip
lex.Multiplex)
1024
OuUT- This determines the maximum size

JBoss July 4, 2006 14

The Multiplex Subsystem of the JBoss Remoting Project

PUT_MESSAGE_POOL_SIZE:

OUTPUT_MESSAGE_SIZE:

ouT-
PUT_MAX_CHUNK_SIZE:

OUTPUT_MAX_TIME_SLICE:

256 bytes

2048 bytes

500 msec

of the pool of Messages. If the pool
is empty when a transmission re-
guest is received, a new Message
will be created, but when a mes-
sage has been emptied, it will be
returned to the pool only if the
pool has fewer than the maximum
number of elements. Otherwise,
the Message will be discarded.

This is the initial capacity of the
Byt eAr r ayQut put St r eam that
holds the contents of a Message.

This determines the number of
bytes transmitted by the cut put -
Thread with asinglew i te() call.

Qut put Thr ead Will process asingle
virtual stream for this long before
moving on to another stream.

ouT-
PUT_MAX_DATA_SLICE:

2048 * 8 bytes

7.3. Configuring InputMultiplexor.

The following parameters affect the behavior of | nput Mul ti pl exor :

Name (in
org.jboss.remoting.transport.multip
lex.Multiplex)

INPUT_BUFFER_SIZE:

INPUT_MAX_ERRORS:

Default value

4096 bytes

Qut put Thread will transmit this
many bytes for a single virtua
stream before moving on to anoth-
er stream.

Description

Determines the size of the structure
that holds bytes read from the real
socket. The structure is a Byt eBuf -

fer for NIO sockets and a byte ar-
ray for non-NIO sockets.

Both Mul ti Groupl nput Thread and

Si ngl eG oupl nput Thread count

JBoss July 4, 2006

15

The Multiplex Subsystem of the JBoss Remoting Project

the number of non-fatal errors ex-
perienced on the socket(s) they
manage. When this limit has been
exceeded for a given socket, they
will close the socket and throw an
exception.

8. Performance.

It should come as no surprise that the classes in Muliplex perform more slowly than their non-virtual counterparts,
since the multiplexing of data streams requires extra work. Multiplex uses two classes to perform input and output
multiplexing: Ml ti pl exi ngl nput Stream and Ml ti pl exi ngQut put St ream which are returned by the Vvirtu-
al Socket methods getlInputStrean() and getQutputStrean(), respectively. These classes subclass
java.io. | nputStreamand j ava. i 0. Qut put St ream and reimplement all of their methods. Tests show that input/
output by these classes is roughly four to five times slower than input/output by their counterpart classes used by
actual sockets, j ava. net . Socket | nput St ream and j ava. net . Socket Qut put St ream This information is gathered
from multiple runs of three tests:

bareinput: compares the transmission of bytes from a Sock-
etQutputStream tO a MiltiplexinglnputStream
with the transmission of bytes from a Socket Qut put -
St reamto a Socket | nput St ream

bare output: compares the transmission of bytes from a mul ti -
pl exi ngQut put St r eamto a Socket | nput St r eam With
the transmission of bytes from a Socket Qut put -
St reamto a Socket | nput St r eam

socket input/output: compares the transmission of bytes from a mul ti -
pl exi ngQut put Stream tO a Ml ti pl exingl nput -
St r eam With the transmission of bytes from a Sock-
et Qut put St r eamtO a Socket | nput St r eam

Each of these tests was run 10 times, transmitting 100,000 bytes each time. Table 1 gives the factor by which the
virtual socket version of each test was slower than the actual socket version.

Table 1. Factors by which virtual socket input/output is slower than actual socket input/output.

bareinput bar e output socket input/output

2.25 1.63 3.19
minimum;

JBoss July 4, 2006 16

The Multiplex Subsystem of the JBoss Remoting Project

bareinput bar e output socket input/output
3.50 2.80 4.77
mean:
4.42 4.67 8.58
maximum:
9. APIs

One of the design goals of Multiplex isto make virtual sockets and their related classes as indistinguishable as pos-
sible from their real counterparts. There are two areas in which Multiplex is detectibly different.

1. The use of the two types of virtual server sockets entails an extra degree of complexity in setting up a multi-
plexed connection.

2. There are performance differences.

On the other hand, the virtual classes implement complete APIs, so that once a connection is established, a vi r t u-
al Socket , for example, can be passed to a method in place of a Socket and will demonstrate the same behavior.
Similarly, Mul ti pl exi ngl nput St reans and Ml ti pl exi ngQut put St reans are functionally indistinguishable from
Socket I nput St r eans and Socket Qut put St r eans.

It may be useful, however, to be aware of some implementational differences between the two sets of classes. The
public methods in the virtual classes can be placed in five categories.

1. methodsimplemented directly by the class
2. methods inherited from the real superclass
3. methods implemented by delegation to the underlying real socket

4. methods whose behavior is essentialy null (though they may throw an | Cexcepti on if called on a closed vir-
tual socket)

5. methods which have no counterpart in the real class

Categories 3, 4, and 5 are particularly informative. Methods in category 3 can be used to fine tune a multiplexed
connection by, for example, adjusting buffer sizes. Note that a method such as set Recei veBuf f er Si ze() may be
called on any virtual socket in a socket group with the same effect as calling it on any other virtual socket in the
same group. Methods in category 4 represent behavior that is not relevant to virtual sockets, and methods in cat-
egory 5 represent behavior that is specific to the specia nature of multiplexed connections. The category 5 version
of Vi rtual Socket . connect (),

connect (Socket Addr ess renpt eAddress, Socket Address | ocal Address, int tineout)

JBoss July 4, 2006 17

The Multiplex Subsystem of the JBoss Remoting Project

exists to effect an atomic binding/connecting action to avoid the accidental connection problem discussed in the
section on virtual socket groups. The notion of connection is irrelevant to ordinary server sockets, but virt u-
al Server Socket has methods

connect (Socket Addr ess renpt eAddr ess, Socket Address | ocal Address, int tinmeout)

and i sConnect ed() because a connection must be established before accept () can function.

We also include in category 5 one of Vi rt ual Ser ver Socket 's nonstandard constructors, with the signature

Vi rtual Server Socket (| net Socket Addr ess renopt eAddr ess, | net Socket Address | ocal Address, int t

which calls the two-address form of connect ().

The public methods of the main Multiplex classes are categorized in Table 2 and Table 3. The only inherited meth-
ods among the classes listed in Table 2 are found in Mast er Ser ver Socket , and we omit an explicit listing of them.

Note. The constructors of Vi rt ual Server Socket that take a backlog parameter ignore its value. The same is true
for methods of Vi r t ual Ser ver Socket Factory.

Table 2. Categories of public methodsin the primary public Multiplex classes

JBoss July 4, 2006 18

The Multiplex Subsystem of the JBoss Remoting Project

category 1

Vi rt ual Socket Vi rtual Server Socket Mast er Ser ver Socket
bi nd() accept () accept ()

cl ose() bi nd() toString()

connect () cl ose()

get | nput St ream()

get Qut put St ream()

get SoTi meout ()

get SoTi meout ()

i sBound()

i sC osed()

i sC osed()

i sConnect ed()

set SoTi meout ()

toString()

i sl nput Shut down()

i sQut put Shut down()

set SoTi meout ()

shut downl nput ()

shut downCut put ()

toString()

JBoss July 4, 2006

19

The Multiplex Subsystem of the JBoss Remoting Project

category 3

Vi r t ual Socket Vi rt ual Server Socket

get | net Addr ess() get | net Addr ess()

Mast er Ser ver Socket

get KeepAl i ve()/ set- getlLocal Port()
KeepAl i ve()

get Local Address() get Local Socket Ad-
dress()

get Local Port () get Recei veBuf f er -
Si ze() / set Recei veBuf -
ferSize()

get Local Socket Ad- get ReuseAddr ess()/

dress() set ReuseAddr ess()

get Port ()

get Recei veBuf f er -
Si ze() / set Recei veBuf -
ferSize()

get Renot eSocket Ad-
dress()

get ReuseAddress()/
set ReuseAddr ess()

get SendBuf f er Si ze()/
set SendBuf f er Si ze()

get SOLi nger ()/ set -
SCLi nger ()

get TCPNoDel ay()/
set TCPNoDel ay()

getTrafficdass()/
set Trafficd ass()

JBoss July 4, 2006

20

The Multiplex Subsystem of the JBoss Remoting Project

Vi rt ual Socket

get Channel ()

Vi rt ual Server Socket Mast er Ser ver Socket

get Channel ()

get OOBI nl i ne()/

ry 4
category set OOBI nl i ne()
sendUr gent Dat a()
connect () a
category 5

connect () accept Ser ver Socket -

Connecti on()

i sConnect ed()

Vi rtual Server Socket ()
b

8This version of connect () is nonstandard in that it has both alocal and remote address. It binds to alocal address and connects to a remote ad-

dressin asingle atomic action.

his constructor is nonstandard in that it has both a local and remote address. It binds to alocal address and connects to a remote address in a

single atomic action.

Table 3. Categories of public methodsin the other public Multiplex classes

Mul ti pl exi ngl n- Mul ti pl exi ngQut - Vi rtual Server - Vi rt ual Socket -

put St ream put St ream Socket Fact ory Factory

avai | abl e() cl ose() creat eServer Sock- | createSocket ()

et()

cl ose() wite() get Def aul t () get Def aul t ()
category 1

skip()

read()

mar k()
category 2 mar kSuppor t ed()

reset()

JBoss July 4, 2006

21

The Multiplex Subsystem of the JBoss Remoting Project

Ml ti pl exi ngl n- Mul ti pl exi ngQut - Vi rtual Server - Vi rt ual Socket -
put St ream put St ream Socket Fact ory Factory
category 4 flush()
isOndient()

i sOnServer ()
category 5
setOnd i ent ()

set OnServer ()

10. Issues.

Please post issuesand bugstohttp: //jira.jboss. comjiral browse/ JBREM 91.
11. Listings.

Listing 1. Client for Prime Scenario example.

public class PrinmeScenari oExanpl ed i ent
{

public void runPrinmeScenario()

{

try {
/1l Create a Virtual Socket and connect it to MasterServer Socket .

Socket v1 = new Virtual Socket ("I ocal host", 5555);

/1 Do sonme asynchronous input in a separate thread.
new AsynchronousThread(vl).start();

/1 Do sonme synchronous conmuni cati on.
(bj ect Qut put St ream oos = new Cbj ect Qut put St ream(v1. get Qut put Strean());
Cbj ect | nput Stream oi s = new Cbj ect | nput Stream(vl. getlnputStrean());
00s. Wi teObj ect(new I nteger(3));
Integer i1l = (Integer) ois.readObject();
vl. close();

}

catch (Exception e) {}

}

cl ass AsynchronousThread extends Thread

{

JBoss July 4, 2006 22

The Multiplex Subsystem of the JBoss Remoting Project

private Socket virtual Socket;

Asynchr onousThr ead(Socket virtual Socket)

{
}

this.virtual Socket = virtual Socket ;

public void run()

{

try {
/Il Create a Virtual Server Socket that shares a port with virtual Socket.

/1l (Note that it will be connected by virtue of joining a connected socket grec
Server Socket server Socket = new Virtual Server Socket (virtual Socket. get Local Port

I/l Create a Virtual Socket that shares a port with virtual Socket.
server Socket . set SoTi meout (10000) ;
Socket v4 = server Socket.accept();

/1 Get an object fromthe server

v4. set SoTi neout (10000) ;

bj ect | nput Stream oi s = new Cbj ect | nput St reanm(v4. get | nput Strean());
Cbject o = ois.readObject();

server Socket . cl ose();

v4. cl ose();

catch (Exception e) {}

}

public static void main(String[] args)

{
}

new Pri nmeScenari oExanpl eCient (). runPrinmeScenario();

Listing 2. Server for Prime Scenario example.

public class PrineScenari oExanpl eServer

{
public void runPrimeScenario()
{
try {
/1 Create a MasterServer Socket and get a Virtual Socket .

Server Socket server Socket = new Mast er Server Socket (5555) ;
server Socket . set SoTi meout (10000) ;
Socket v2 = server Socket. accept();

/1 Do sone asynchronous conmmuni cation in a separate thread.
Thread asynchronousThread = new AsynchronousThread(v2);
asynchronousThread. start ();

/1 Do sonme synchronous conmunication

Cbj ect | nput Stream oi s = new Cbj ect | nput St ream(v2. get | nput Strean());
Cbj ect Qut put St ream oos = new Cbj ect Qut put St ream(v2. get Qut put Strean());
v2. set SoTi neout (10000) ;

Cbject o = ois.readObject();

00s. WwiteCbject(0);

JBoss July 4, 2006

23

The Multiplex Subsystem of the JBoss Remoting Project

server Socket . cl ose();
v2.close();

catch (Exception e) { }

}
cl ass AsynchronousThread extends Thread
{
private Socket virtual Socket;
publ i c AsynchronousThr ead(Socket socket) throws | OException
{this.virtual Socket = socket;}
public void run()
{
try {
/1 Connect to Virtual Server Socket .
Thr ead. sl eep(2000) ;
String host Nane = virtual Socket. get | net Address() . get Host Nanme() ;
int port = virtual Socket. getPort ();
Socket v3 = new Virtual Socket (host Name, port);
/1 Send an object to the client.
Obj ect Qut put St ream oos = new Cbj ect Qut put St ream(v3. get Qut put Strean());
00s. Wi teCbject(new Integer(7));
oos. flush();
v3. close();
catch (Exception e) {}
}
}
public static void main(String[] args)
{
new Pri meScenari oExanpl eServer (). runPrinmeScenari o();
}

Listing 3. Sampleclient for N-socket scenario.

public class N_Socket Scenari od i ent

{
public void runN_Socket Scenari o()
{
try
{
/1l Create a Virtual Server Socket and connect it to the server
Vi rtual Server Socket server Socket = new Virtual Server Socket (5555) ;
I net Socket Addr ess connect Address = new | net Socket Addr ess(“l ocal host”, 6666);
server Socket . set SoTi meout (10000) ;
server Socket . connect (connect Addr ess) ;

/'l Accept connection requests for 3 virtual sockets.
Socket socketl server Socket . accept ();
Socket socket 2 server Socket . accept () ;
Socket socket 3 server Socket . accept ();

JBoss July 4, 2006 24

The Multiplex Subsystem of the JBoss Remoting Project

/1 Do sone i/o.

I nput Stream i sl = socketl.getlnputStrean();
Qut put St ream os1 = socket 1. get Qut put Strean();
I nput Stream i s2 = socket 2. get |l nput Strean();
Qut put St ream 0s2 = socket 2. get Qut put Strean();
I nput Stream i s3 = socket 3. get | nput Strean();
Qut put St ream 0s3 = socket 3. get Qut put Strean() ;
osl.wite(3);

os2.wite(7);

0s3. wite(1l1);

Systemout.println(isl.read());
Systemout.println(is2.read());

Systemout. println(is3.read());

socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();

catch (Exception e) {}

}

public static void main(String[] args)

{

new N _Socket Scenari ol ient().runN _Socket Scenari o();

}

Listing 4. Sample server for N-socket scenario.

public class N _Socket Scenari oServer

{

public void runN_Socket Scenari o()

{

try

{

/Il Create and bind a Master Server Socket .
Mast er Ser ver Socket server Socket = new Mast er Server Socket (6666) ;

/'l Accept connection request from Virtual Server Socket .
server Socket . set SoTi meout (10000) ;
server Socket . accept Ser ver Socket Connecti on();

/1l Create 3 virtual sockets

Thr ead. sl eep(2000) ;

Socket socketl = new Virtual Socket ("I ocal host", 5555);
Socket socket 2 new Virtual Socket ("l ocal host", 5555);
Socket socket 3 new Virtual Socket ("I ocal host", 5555);

/1 Do sone i/o.

I nput Stream i sl = socketl.getlnputStrean();
CQut put Stream os1l = socket 1. get Qut put St reamn() ;
I nput Stream i s2 = socket 2. get | nput Strean();
CQut put St ream 0s2 = socket 2. get Qut put St ream() ;
I nput Stream i s3 = socket 3. get | nput Strean();
CQut put St ream 0s3 = socket 3. get Qut put St ream() ;
osl.wite(isl.read());

os2.wite(is2.read());

JBoss July 4, 2006

25

The Multiplex Subsystem of the JBoss Remoting Project

0os3.wite(is3.read());

socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();

catch (Exception e) {}

}
public static void nain(String[] args)
{
new N_Socket Scenari oServer ().runN_Socket Scenari o();
}

Listing 5. Symmetric Scenario client.

public class SymmetricScenari od i ent
{
public void runSymretricScenari o()
{

try {
/] Get a virtual socket to use for synchronizing client and server.

Socket syncSocket = new Socket ("l ocal host", 6666);
I nput Stream i s_sync = syncSocket . getl nput Strean();
CQut put St ream os_sync = syncSocket . get Qut put St ream() ;

/1l Create a Virtual Server Socket and connect
/1 it to MasterServerSocket running on the server.
Virtual Server Socket server Socket = new Virtual Server Socket (5555) ;

I net Socket Addr ess address = new | net Socket Address("I ocal host", 7777);

i s_sync.read();
server Socket . set SoTi meout (10000) ;
server Socket . connect (addr ess) ;

/] Call constructor to create a virtual socket and nake a connection
/'l request to the port on the server to which the |ocal Virtual Server Socket

// is connected, i.e., to the renpte Virtual Server Socket .
os_sync.wite(5);

i s_sync.read();

int port = server Socket. get Renot ePort();

Socket virtual Socketl = new Virtual Socket ("l ocal host", port);
I nput Stream i sl = virtual Socket 1. getlnput Strean();

Qut put Stream os1 = virtual Socket 1. get Qut put Strean();

/1 Create a virtual socket w th Virtual Server Socket. accept ().
Socket virtual Socket2 = server Socket. accept();

I nput Stream i s2 = virtual Socket 2. get | nput Strean();

CQut put Stream os2 = virtual Socket 2. get Qut put St reamn() ;

/1 Do sone i/o and cl ose sockets.
osl.wite(9);

Systemout. println(isl.read());
0s2. wite(1l1);

Systemout. println(is2.read());
vi rtual Socket 1. cl ose();

vi rtual Socket 2. cl ose();

JBoss July 4, 2006

The Multiplex Subsystem of the JBoss Remoting Project

syncSocket . cl ose();
server Socket . cl ose();

catch (Exception e) {}

public static void nain(String[] args)

new Symmetri cScenari oCient().runSynmetricScenario();

Listing 6. Symmetric Scenario server.

public class SymmetricScenari oServer
public void runSynmretricScenari o()

try {

/| Create ServerSocket and get synchroni zi ng socket.
Server Socket ss = new Server Socket (6666) ;

Socket syncSocket = ss.accept();

ss.cl ose();

I nput Stream i s_sync = syncSocket. getl nput Strean();
CQut put St ream os_sync = syncSocket . get Qut put St ream() ;

/| Create MasterServer Socket, accept connection request fromrenote
/'l Virtual Server Socket, and get the bind port of the |ocal actual
/1 socket to which the Virtual Server Socket is connected.

Mast er Server Socket nss = new Mast er Server Socket (7777) ;
os_sync.wite(3);

nes. set SoTi meout (10000) ;

int port = nsSs.accept Server Socket Connection();

nes. cl ose();

/1 Wait until renote Virtual ServerSocket is running, then create |ocal
/1 Virtual Server Socket, bind it to the local port to which the renote
/1 Virtual Server Socket is connected, and connect it to the renote

/'l Virtual Server Socket .

i s_sync.read();

Virtual Server Socket vss = new Virtual Server Socket (port);

I net Socket Addr ess address = new | net Socket Address("I ocal host", 5555);

vss. set SoTi meout (5000) ;

Vss. connect (address);

/1 Indicate that the |ocal Virtual ServerSocket is running.
os_sync.wite(7);

/l Create a virtual socket by way of Virtual Server Socket. accept();
server Socket . set SoTi neout (10000) ;

Socket virtual Socketl = vss. accept();

I nput Stream i sl = virtual Socket 1. getl nput Strean();

Qut put Stream os1l = virtual Socket 1. get Qut put Strean();

/1 Call constructor to create a virtual socket and nmake a connection
/'l request to the renote Virtual Server Socket .

Socket virtual Socket2 = new Virtual Socket ("l ocal host", 5555);

I nput Stream i s2 = virtual Socket 2. get | nput Strean();

JBoss July 4, 2006

27

The Multiplex Subsystem of the JBoss Remoting Project

Cut put Stream os2 = virtual Socket 2. get Qut put St ream() ;

// Do some i/o and cl ose sockets.
osl.wite(isl.read());
os2.wite(is2.read());

vi rtual Socket 1. cl ose();

vi rtual Socket 2. cl ose();
syncSocket . cl ose();

vss. cl ose();

}
catch (Exception e) {}
}
public static void main(String[] args)
{
new Synmetri cScenari oServer().runSymretricScenario();
}

Listing 7. Sample use of Virtual Server SocketFactory and Virtual SocketFactory.

public class FactoryExanpl e
{

voi d runFact or yExanpl e()
{
Server Socket Fact ory server Socket Factory = Virtual Server Socket Factory. get Defaul t();
((Virtual Server Socket Factory) server Socket Factory).set OnServer();
Socket Factory socket Factory = Virtual Socket Factory. get Defaul t();
useSer ver Socket Fact ory(server Socket Factory);
useSocket Fact or y(socket Fact ory);

}

voi d useServer Socket Factory(fi nal Server Socket Factory server Socket Fact ory)
{
new Thread()
{
public void run()
{
try
{

Server Socket server Socket = server Socket Factory. creat eServer Socket (5555) ;
Socket socket = server Socket.accept();
int b = socket.getlnputStreamn().read();
socket . get Qut put Strean().wite(b);
socket . cl ose();
server Socket . cl ose();
}
catch (Exception e)

{

}
}
}.start();

e.printStackTrace();

}

public void useSocket Fact ory(Socket Factory socket Factory)

{

JBoss July 4, 2006 28

The Multiplex Subsystem of the JBoss Remoting Project

try

Thr ead. sl eep(1000) ;

Socket socket = socketFactory. createSocket ("l ocal host"

socket . getQut put Strean().wite(7);
System out . println(socket. getlnputStrean().read());
socket. cl ose();

E:atch (Exception e)
{ e.printStackTrace();
}
}
public static void main(String[] args)
i new Fact or yExanpl e() . runFact or yExanpl e();

5555) ;

JBoss July 4, 2006

29

	The Multiplex Subsystem of the JBoss Remoting Project
	1. Introduction.
	2. The Prime Scenario.
	3. Virtual socket groups.
	4. Coding the Prime Scenario.
	5. More general scenarios.
	5.1. The N-socket scenario.
	5.2. The Symmetric Scenario.

	6. Factories.
	7. Configuration.
	7.1. Configuring MultiplexingManager.
	7.2. Configuring OutputMultiplexor
	7.3. Configuring InputMultiplexor.

	8. Performance.
	9. APIs
	10. Issues.
	11. Listings.

