
JBoss Cache Users' Guide

A clustered,

transactional cache
Release 3.0.0 Naga

iii

Preface .. vii

I. Introduction to JBoss Cache ... 1

1. Overview .. 3

1.1. What is JBoss Cache? .. 3

1.1.1. And what is POJO Cache? ... 3

1.2. Summary of Features ... 3

1.2.1. Caching objects ... 3

1.2.2. Local and clustered modes ... 4

1.2.3. Clustered caches and transactions .. 4

1.2.4. Thread safety .. 5

1.3. Requirements .. 5

1.4. License .. 5

2. User API .. 7

2.1. API Classes ... 7

2.2. Instantiating and Starting the Cache .. 9

2.3. Caching and Retrieving Data ... 10

2.3.1. Organizing Your Data and Using the Node Structure 11

2.4. The Fqn Class ... 11

2.5. Stopping and Destroying the Cache ... 12

2.6. Cache Modes ... 13

2.7. Adding a Cache Listener - registering for cache events 13

2.7.1. Synchronous and Asynchronous Notifications 16

2.8. Using Cache Loaders .. 16

2.9. Using Eviction Policies .. 17

3. Configuration ... 19

3.1. Configuration Overview ... 19

3.2. Creating a Configuration ... 19

3.2.1. Parsing an XML-based Configuration File .. 19

3.2.2. Validating Configuration Files .. 19

3.2.3. Programmatic Configuration .. 20

3.2.4. Using an IOC Framework ... 20

3.3. Composition of a Configuration Object ... 21

3.4. Dynamic Reconfiguration ... 22

3.4.1. Overriding the Configuration via the Option API 22

4. Batching API .. 25

4.1. Introduction ... 25

4.2. Configuring batching ... 25

4.3. Batching API .. 25

5. Deploying JBoss Cache .. 27

5.1. Standalone Use/Programatic Deployment ... 27

5.2. Via JBoss Microcontainer (JBoss AS 5.x) ... 27

5.3. Automatic binding to JNDI in JBoss AS .. 29

5.4. Runtime Management Information .. 29

5.4.1. JBoss Cache MBeans .. 29

JBoss Cache Users' Guide

iv

5.4.2. Registering the CacheJmxWrapper with the MBeanServer 30

5.4.3. JBoss Cache Statistics ... 33

5.4.4. Receiving JMX Notifications .. 34

5.4.5. Accessing Cache MBeans in a Standalone Environment using the

jconsole Utility ... 36

6. Version Compatibility and Interoperability ... 37

6.1. API compatibility ... 37

6.2. Wire-level interoperability ... 37

6.3. Compatibility Matrix ... 37

II. JBoss Cache Architecture .. 39

7. Architecture ... 41

7.1. Data Structures Within The Cache ... 41

7.2. SPI Interfaces ... 42

7.3. Method Invocations On Nodes ... 44

7.3.1. Interceptors .. 44

7.3.2. Commands and Visitors .. 45

7.3.3. InvocationContexts ... 45

7.4. Managers For Subsystems .. 46

7.4.1. RpcManager .. 46

7.4.2. BuddyManager ... 46

7.4.3. CacheLoaderManager .. 46

7.5. Marshalling And Wire Formats ... 46

7.5.1. The Marshaller Interface ... 47

7.5.2. VersionAwareMarshaller ... 48

7.6. Class Loading and Regions ... 48

8. Cache Modes and Clustering ... 49

8.1. Cache Replication Modes .. 49

8.1.1. Local Mode .. 49

8.1.2. Replicated Caches ... 49

8.2. Invalidation ... 53

8.3. State Transfer ... 53

8.3.1. State Transfer Types .. 53

8.3.2. Byte array and streaming based state transfer 53

8.3.3. Full and partial state transfer .. 54

8.3.4. Transient ("in-memory") and persistent state transfer 55

8.3.5. Configuring State Transfer .. 56

9. Cache Loaders ... 57

9.1. The CacheLoader Interface and Lifecycle ... 58

9.2. Configuration .. 59

9.2.1. Singleton Store Configuration .. 61

9.3. Shipped Implementations .. 62

9.3.1. File system based cache loaders .. 62

9.3.2. Cache loaders that delegate to other caches 63

9.3.3. JDBCCacheLoader ... 63

v

9.3.4. S3CacheLoader ... 67

9.3.5. TcpDelegatingCacheLoader .. 69

9.3.6. Transforming Cache Loaders .. 70

9.4. Cache Passivation .. 71

9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled 71

9.5. Strategies ... 72

9.5.1. Local Cache With Store .. 73

9.5.2. Replicated Caches With All Caches Sharing The Same Store 73

9.5.3. Replicated Caches With Only One Cache Having A Store 74

9.5.4. Replicated Caches With Each Cache Having Its Own Store 75

9.5.5. Hierarchical Caches ... 76

9.5.6. Multiple Cache Loaders .. 77

10. Eviction .. 81

10.1. Design .. 81

10.1.1. Collecting Statistics .. 81

10.1.2. Determining Which Nodes to Evict ... 81

10.1.3. How Nodes are Evicted .. 82

10.1.4. Eviction threads .. 82

10.2. Eviction Regions ... 82

10.2.1. Resident Nodes .. 82

10.3. Configuring Eviction .. 83

10.3.1. Basic Configuration .. 83

10.3.2. Programmatic Configuration .. 84

10.4. Shipped Eviction Policies ... 84

10.4.1. LRUAlgorithm - Least Recently Used ... 85

10.4.2. FIFOAlgorithm - First In, First Out ... 85

10.4.3. MRUAlgorithm - Most Recently Used ... 85

10.4.4. LFUAlgorithm - Least Frequently Used .. 86

10.4.5. ExpirationAlgorithm ... 86

10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs

in a node .. 87

11. Transactions and Concurrency .. 89

11.1. Concurrent Access .. 89

11.1.1. Multi-Version Concurrency Control (MVCC) 89

11.1.2. Pessimistic and Optimistic Locking Schemes 92

11.2. JTA Support ... 93

III. JBoss Cache Configuration References ... 95

12. Configuration References .. 97

12.1. Sample XML Configuration File .. 97

12.1.1. XML validation .. 102

12.2. Configuration File Quick Reference ... 102

13. JMX References ... 131

13.1. JBoss Cache Statistics .. 131

13.2. JMX MBean Notifications ... 134

vi

vii

Preface

This is the official JBoss Cache Users' Guide. Along with its accompanying documents (an FAQ,

a tutorial and a whole set of documents on POJO Cache), this is freely available on the JBoss

Cache documentation website [http://www.jboss.org/jbosscache].

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional

cache. POJO Cache, also a part of the JBoss Cache distribution, is documented separately.

(POJO Cache is a cache that deals with Plain Old Java Objects, complete with object relationships,

with the ability to cluster such POJOs while maintaining their relationships. Please see the POJO

Cache documentation for more information about this.)

This book is targeted at developers wishing to use JBoss Cache as either a standalone in-memory

cache, a distributed or replicated cache, a clustering library, or an in-memory database. It is

targeted at application developers who wish to use JBoss Cache in their code base, as well as

"OEM" developers who wish to build on and extend JBoss Cache features. As such, this book is

split into two major sections - one detailing the "User" API and the other going much deeper into

specialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation

and understanding of transactions and concurrent programming is necessary. No prior knowledge

of JBoss Application Server is expected or required.

For further discussion, use the user forum available on the JBoss Cache website. [http://

www.jboss.org/jbosscache] We also provide a mechanism for tracking bug reports and feature

requests on the JBoss Cache JIRA issue tracker [http://jira.jboss.com/jira/browse/JBCACHE].

If you are interested in the development of JBoss Cache or in translating this documentation

into other languages, we'd love to hear from you. Please post a message on the JBoss Cache

user forum [http://www.jboss.org/jbosscache] or contact us by using the JBoss Cache developer

mailing list [https://lists.jboss.org/mailman/listinfo/jbosscache-dev].

This book is specifically targeted at the JBoss Cache release of the same version number. It may

not apply to older or newer releases of JBoss Cache. It is important that you use the documentation

appropriate to the version of JBoss Cache you intend to use.

I always appreciate feedback, suggestions and corrections, and these should be directed to the

developer mailing list [https://lists.jboss.org/mailman/listinfo/jbosscache-dev] rather than direct

emails to any of the authors. We hope you find this book useful, and wish you happy reading!

Manik Surtani, October 2008

http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

viii

Part I. Introduction to JBoss Cache
This section covers what developers would need to quickly start using JBoss Cache in their

projects. It covers an overview of the concepts and API, configuration and deployment information.

Chapter 1.

3

Overview

1.1. What is JBoss Cache?

JBoss Cache is a tree-structured, clustered, transactional cache. It can be used in a standalone,

non-clustered environment, to cache frequently accessed data in memory thereby removing

data retrieval or calculation bottlenecks while providing "enterprise" features such as JTA [http://

java.sun.com/products/jta] compatibility, eviction and persistence.

JBoss Cache is also a clustered cache, and can be used in a cluster to replicate state providing

a high degree of failover. A variety of replication modes are supported, including invalidation and

buddy replication, and network communications can either be synchronous or asynchronous.

When used in a clustered mode, the cache is an effective mechanism of building high availability,

fault tolerance and even load balancing into custom applications and frameworks. For example,

the JBoss Application Server [http://www.jboss.org/projects/jbossas/] and Red Hat's Enterprise

Application Platform [http://www.jboss.com] make extensive use of JBoss Cache to cluster

services such as HTTP and EJB [http://java.sun.com/products/ejb/] sessions, as well as providing

a distributed entity cache for JPA [http://en.wikipedia.org/wiki/Java_Persistence_API].

JBoss Cache can - and often is - used outside of JBoss AS, in other Java EE environments such

as Spring, Tomcat, Glassfish, BEA WebLogic, IBM WebSphere, and even in standalone Java

programs thanks to its minimal dependency set.

1.1.1. And what is POJO Cache?

POJO Cache is an extension of the core JBoss Cache API. POJO Cache offers additional

functionality such as:

• maintaining object references even after replication or persistence.

• fine grained replication, where only modified object fields are replicated.

• "API-less" clustering model where POJOs are simply annotated as being clustered.

POJO Cache has a complete and separate set of documentation, including a Users' Guide,

FAQ and tutorial all available on the JBoss Cache documentation website [http://www.jboss.org/

jbosscache]. As such, POJO Cache will not be discussed further in this book.

1.2. Summary of Features

1.2.1. Caching objects

JBoss Cache offers a simple and straightforward API, where data - simple Java objects - can be

placed in the cache. Based on configuration options selected, this data may be one or all of:

http://java.sun.com/products/jta
http://java.sun.com/products/jta
http://java.sun.com/products/jta
http://www.jboss.org/projects/jbossas/
http://www.jboss.org/projects/jbossas/
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com
http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache

Chapter 1. Overview

4

• cached in-memory for efficient, thread-safe retrieval.

• replicated to some or all cache instances in a cluster.

• persisted to disk and/or a remote, in-memory cache cluster ("far-cache").

• garbage collected from memory when memory runs low, and passivated to disk so state isn't

lost.

In addition, JBoss Cache offers a rich set of enterprise-class features:

• being able to participate in JTA [http://java.sun.com/products/jta] transactions (works with most

Java EE compliant transaction managers).

• attach to JMX consoles and provide runtime statistics on the state of the cache.

• allow client code to attach listeners and receive notifications on cache events.

• allow grouping of cache operations into batches, for efficient replication

1.2.2. Local and clustered modes

The cache is organized as a tree, with a single root. Each node in the tree essentially contains a

map, which acts as a store for key/value pairs. The only requirement placed on objects that are

cached is that they implement java.io.Serializable.

JBoss Cache can be either local or replicated. Local caches exist only within the scope of the

JVM in which they are created, whereas replicated caches propagate any changes to some or all

other caches in the same cluster. A cluster may span different hosts on a network or just different

JVMs on a single host.

1.2.3. Clustered caches and transactions

When a change is made to an object in the cache and that change is done in the context of a

transaction, the replication of changes is deferred until the transaction completes successfully. All

modifications are kept in a list associated with the transaction of the caller. When the transaction

commits, changes are replicated. Otherwise, on a rollback, we simply undo the changes locally

and discard the modification list, resulting in zero network traffic and overhead. For example, if a

caller makes 100 modifications and then rolls back the transaction, nothing is replicated, resulting

in no network traffic.

If a caller has no transaction or batch associated with it, modifications are replicated immediately.

E.g. in the example used earlier, 100 messages would be broadcast for each modification. In this

sense, running without a batch or transaction can be thought of as analogous as running with

auto-commit switched on in JDBC terminology, where each operation is committed automatically

and immediately.

JBoss Cache works out of the box with most popular transaction managers, and even provides

an API where custom transaction manager lookups can be written.

http://java.sun.com/products/jta
http://java.sun.com/products/jta

Thread safety

5

All of the above holds true for batches as well, which has similar behavior.

1.2.4. Thread safety

The cache is completely thread-safe. It employs multi-versioned concurrency control (MVCC)

to ensure thread safety between readers and writers, while maintaining a high degree of

concurrency. The specific MVCC implementation used in JBoss Cache allows for reader threads to

be completely free of locks and synchronized blocks, ensuring a very high degree of performance

for read-heavy applications. It also uses custom, highly performant lock implementations that

employ modern compare-and-swap techniques for writer threads, which are tuned to multi-core

CPU architectures.

Multi-versioned concurrency control (MVCC) is the default locking scheme since JBoss Cache

3.x. Optimistic and pessimistic locking schemes from older versions of JBoss Cache are still

available but are deprecated in favor of MVCC, and will be removed in future releases. Use of

these deprecated locking schemes are strongly discouraged.

The JBoss Cache MVCC implementation only supports READ_COMMITTED and

REPEATABLE_READ isolation levels, corresponding to their database equivalents. See the

section on transactions and concurrency for details on MVCC.

1.3. Requirements

JBoss Cache requires a Java 5.0 (or newer) compatible virtual machine and set of libraries, and

is developed and tested on Sun's JDK 5.0 and JDK 6.

There is a way to build JBoss Cache as a Java 1.4.x compatible binary using JBossRetro [http://

www.jboss.org/community/docs/DOC-10738] to retroweave the Java 5.0 binaries. However, Red

Hat Inc. does not offer professional support around the retroweaved binary at this time and the

Java 1.4.x compatible binary is not in the binary distribution. See this wiki [http://www.jboss.org/

community/docs/DOC-10263] page for details on building the retroweaved binary for yourself.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies on JGroups [http://

www.jgroups.org], and Apache's commons-logging [http://jakarta.apache.org/commons/logging/].

JBoss Cache ships with all dependent libraries necessary to run out of the box, as well as several

optional jars for optional features.

1.4. License

JBoss Cache is an open source project, using the business and OEM-friendly OSI-approved

[http://www.opensource.org/] LGPL license. [http://www.gnu.org/copyleft/lesser.html] Commercial

development support, production support and training for JBoss Cache is available through JBoss,

a division of Red Hat Inc. [http://www.jboss.com]

http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jgroups.org
http://www.jgroups.org
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com

6

Chapter 2.

7

User API

2.1. API Classes

The Cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed

and optionally started using the CacheFactory. The CacheFactory allows you to create a Cache

either from a Configuration object or an XML file. The cache organizes data into a tree structure,

made up of nodes. Once you have a reference to a Cache, you can use it to look up Node objects

in the tree structure, and store data in the tree.

Chapter 2. User API

8

Instantiating and Starting the Cache

9

Note that the diagram above only depicts some of the more popular API methods. Reviewing the

javadoc for the above interfaces is the best way to learn the API. Below, we cover some of the

main points.

2.2. Instantiating and Starting the Cache

An instance of the Cache interface can only be created via a CacheFactory. This is unlike JBoss

Cache 1.x, where an instance of the old TreeCache class could be directly instantiated.

The CacheFactory provides a number of overloaded methods for creating a Cache, but they all

fundamentally do the same thing:

• Gain access to a Configuration, either by having one passed in as a method parameter or by

parsing XML content and constructing one. The XML content can come from a provided input

stream, from a classpath or filesystem location. See the chapter on Configuration for more on

obtaining a Configuration.

• Instantiate the Cache and provide it with a reference to the Configuration.

• Optionally invoke the cache's create() and start() methods.

Here is an example of the simplest mechanism for creating and starting a cache, using the default

configuration values:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache();

In this example, we tell the CacheFactory to find and parse a configuration file on the classpath:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache("cache-configuration.xml");

In this example, we configure the cache from a file, but want to programatically change a

configuration element. So, we tell the factory not to start the cache, and instead do it ourselves:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache("/opt/configurations/cache-configuration.xml", false);

 Configuration config = cache.getConfiguration();

Chapter 2. User API

10

 config.setClusterName(this.getClusterName());

 // Have to create and start cache before using it

 cache.create();

 cache.start();

2.3. Caching and Retrieving Data

Next, lets use the Cache API to access a Node in the cache and then do some simple reads and

writes to that node.

 // Let's get a hold of the root node.

 Node rootNode = cache.getRoot();

 // Remember, JBoss Cache stores data in a tree structure.

 // All nodes in the tree structure are identified by Fqn objects.

 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 // Create a new Node

 Node peterGriffin = rootNode.addChild(peterGriffinFqn);

 // let's store some data in the node

 peterGriffin.put("isCartoonCharacter", Boolean.TRUE);

 peterGriffin.put("favoriteDrink", new Beer());

 // some tests (just assume this code is in a JUnit test case)

 assertTrue(peterGriffin.get("isCartoonCharacter"));

 assertEquals(peterGriffinFqn, peterGriffin.getFqn());

 assertTrue(rootNode.hasChild(peterGriffinFqn));

 Set keys = new HashSet();

 keys.add("isCartoonCharacter");

 keys.add("favoriteDrink");

 assertEquals(keys, peterGriffin.getKeys());

 // let's remove some data from the node

 peterGriffin.remove("favoriteDrink");

 assertNull(peterGriffin.get("favoriteDrink");

Organizing Your Data and Using the Node

Structure

11

 // let's remove the node altogether

 rootNode.removeChild(peterGriffinFqn);

 assertFalse(rootNode.hasChild(peterGriffinFqn));

The Cache interface also exposes put/get/remove operations that take an Fqn as an argument,

for convenience:

 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 cache.put(peterGriffinFqn, "isCartoonCharacter", Boolean.TRUE);

 cache.put(peterGriffinFqn, "favoriteDrink", new Beer());

 assertTrue(peterGriffin.get(peterGriffinFqn, "isCartoonCharacter"));

 assertTrue(cache.getRootNode().hasChild(peterGriffinFqn));

 cache.remove(peterGriffinFqn, "favoriteDrink");

 assertNull(cache.get(peterGriffinFqn, "favoriteDrink");

 cache.removeNode(peterGriffinFqn);

 assertFalse(cache.getRootNode().hasChild(peterGriffinFqn));

2.3.1. Organizing Your Data and Using the Node Structure

A Node should be viewed as a named logical grouping of data. A node should be used to contain

data for a single data record, for example information about a particular person or account. It

should be kept in mind that all aspects of the cache - locking, cache loading, replication and

eviction - happen on a per-node basis. As such, anything grouped together by being stored in a

single node will be treated as a single atomic unit.

2.4. The Fqn Class

The previous section used the Fqn class in its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fqn) encapsulates a list of names which represent a path to a particular

location in the cache's tree structure. The elements in the list are typically Strings but can be

any Object or a mix of different types.

Chapter 2. User API

12

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache.

Reading the documentation on each API call that makes use of Fqn will tell you whether the API

expects a relative or absolute Fqn.

The Fqn class provides are variety of factory methods; see the javadoc for all the possibilities. The

following illustrates the most commonly used approaches to creating an Fqn:

 // Create an Fqn pointing to node 'Joe' under parent node 'Smith'

 // under the 'people' section of the tree

 // Parse it from a String

 Fqn abc = Fqn.fromString("/people/Smith/Joe/");

 // Here we want to use types other than String

 Fqn acctFqn = Fqn.fromElements("accounts", "NY", new Integer(12345));

Note that

Fqn f = Fqn.fromElements("a", "b", "c");

is the same as

Fqn f = Fqn.fromString("/a/b/c");

2.5. Stopping and Destroying the Cache

It is good practice to stop and destroy your cache when you are done using it, particularly if it is a

clustered cache and has thus used a JGroups channel. Stopping and destroying a cache ensures

resources like network sockets and maintenance threads are properly cleaned up.

 cache.stop();

 cache.destroy();

Cache Modes

13

Not also that a cache that has had stop() invoked on it can be started again with a new call to

start() . Similarly, a cache that has had destroy() invoked on it can be created again with a

new call to create() (and then started again with a start() call).

2.6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured to operate

affects the cluster-wide behavior of any put or remove operation, so we'll briefly mention the

various modes here.

JBoss Cache modes are denoted by the org.jboss.cache.config.Configuration.CacheMode

enumeration. They consist of:

• LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't communicate

with other caches in a cluster.

• REPL_SYNC - synchronous replication. Replicated caches replicate all changes to the other

caches in the cluster. Synchronous replication means that changes are replicated and the caller

blocks until replication acknowledgements are received.

• REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above, replicated caches

replicate all changes to the other caches in the cluster. Being asynchronous, the caller does not

block until replication acknowledgements are received.

• INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every

time data is changed in a cache other caches in the cluster receive a message informing

them that their data is now stale and should be evicted from memory. This reduces replication

overhead while still being able to invalidate stale data on remote caches.

• INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation

messages to be broadcast asynchronously.

See the chapter on Clustering for more details on how cache mode affects behavior. See the

chapter on Configuration for info on how to configure things like cache mode.

2.7. Adding a Cache Listener - registering for cache

events

JBoss Cache provides a convenient mechanism for registering notifications on cache events.

 Object myListener = new MyCacheListener();

 cache.addCacheListener(myListener);

Chapter 2. User API

14

Similar methods exist for removing or querying registered listeners. See the javadocs on the Cache

interface for more details.

Basically any public class can be used as a listener, provided it is annotated with the

@CacheListener annotation. In addition, the class needs to have one or more methods annotated

with one of the method-level annotations (in the org.jboss.cache.notifications.annotation

package). Methods annotated as such need to be public, have a void return type, and accept a

single parameter of type org.jboss.cache.notifications.event.Event or one of its subtypes.

• @CacheStarted - methods annotated such receive a notification when the cache is started.

Methods need to accept a parameter type which is assignable from CacheStartedEvent .

• @CacheStopped - methods annotated such receive a notification when the cache is stopped.

Methods need to accept a parameter type which is assignable from CacheStoppedEvent .

• @NodeCreated - methods annotated such receive a notification when a node is created. Methods

need to accept a parameter type which is assignable from NodeCreatedEvent .

• @NodeRemoved - methods annotated such receive a notification when a node is removed.

Methods need to accept a parameter type which is assignable from NodeRemovedEvent .

• @NodeModified - methods annotated such receive a notification when a node is modified.

Methods need to accept a parameter type which is assignable from NodeModifiedEvent .

• @NodeMoved - methods annotated such receive a notification when a node is moved. Methods

need to accept a parameter type which is assignable from NodeMovedEvent .

• @NodeVisited - methods annotated such receive a notification when a node is started. Methods

need to accept a parameter type which is assignable from NodeVisitedEvent .

• @NodeLoaded - methods annotated such receive a notification when a node is loaded from

a CacheLoader . Methods need to accept a parameter type which is assignable from

NodeLoadedEvent .

• @NodeEvicted - methods annotated such receive a notification when a node is evicted

from memory. Methods need to accept a parameter type which is assignable from

NodeEvictedEvent .

• @NodeInvalidated - methods annotated such receive a notification when a node is evicted

from memory due to a remote invalidation event. Methods need to accept a parameter type

which is assignable from NodeInvalidatedEvent .

• @NodeActivated - methods annotated such receive a notification when a node is activated.

Methods need to accept a parameter type which is assignable from NodeActivatedEvent .

• @NodePassivated - methods annotated such receive a notification when a node is passivated.

Methods need to accept a parameter type which is assignable from NodePassivatedEvent .

• @TransactionRegistered - methods annotated such receive a notification when the

cache registers a javax.transaction.Synchronization with a registered transaction

Adding a Cache Listener - registering for cache

events

15

manager. Methods need to accept a parameter type which is assignable from

TransactionRegisteredEvent .

• @TransactionCompleted - methods annotated such receive a notification when the cache

receives a commit or rollback call from a registered transaction manager. Methods need to

accept a parameter type which is assignable from TransactionCompletedEvent .

• @ViewChanged - methods annotated such receive a notification when the group structure of

the cluster changes. Methods need to accept a parameter type which is assignable from

ViewChangedEvent .

• @CacheBlocked - methods annotated such receive a notification when the cluster requests that

cache operations are blocked for a state transfer event. Methods need to accept a parameter

type which is assignable from CacheBlockedEvent .

• @CacheUnblocked - methods annotated such receive a notification when the cluster requests

that cache operations are unblocked after a state transfer event. Methods need to accept a

parameter type which is assignable from CacheUnblockedEvent .

• @BuddyGroupChanged - methods annotated such receive a notification when a node changes its

buddy group, perhaps due to a buddy falling out of the cluster or a newer, closer buddy joining.

Methods need to accept a parameter type which is assignable from BuddyGroupChangedEvent.

Refer to the javadocs on the annotations as well as the Event subtypes for details of what is

passed in to your method, and when.

Example:

 @CacheListener

 public class MyListener

 {

 @CacheStarted

 @CacheStopped

 public void cacheStartStopEvent(Event e)

 {

 switch (e.getType())

 {

 case CACHE_STARTED:

 System.out.println("Cache has started");

 break;

 case CACHE_STOPPED:

 System.out.println("Cache has stopped");

 break;

 }

Chapter 2. User API

16

 }

 @NodeCreated

 @NodeRemoved

 @NodeVisited

 @NodeModified

 @NodeMoved

 public void logNodeEvent(NodeEvent ne)

 {

 log("An event on node " + ne.getFqn() + " has occured");

 }

 }

2.7.1. Synchronous and Asynchronous Notifications

By default, all notifications are synchronous, in that they happen on the thread of the caller which

generated the event. As such, it is good practise to ensure cache listener implementations don't

hold up the thread in long-running tasks. Alternatively, you could set the CacheListener.sync()

attribute to false, in which case you will not be notified in the caller's thread. See the configuration

reference on tuning this thread pool and size of blocking queue.

2.8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of nodes to disk

or to remote cache clusters, and allow for passivation when caches run out of memory. In

addition, cache loaders allow JBoss Cache to perform 'warm starts', where in-memory state

can be preloaded from persistent storage. JBoss Cache ships with a number of cache loader

implementations.

• org.jboss.cache.loader.FileCacheLoader - a basic, filesystem based cache loader that

persists data to disk. Non-transactional and not very performant, but a very simple solution.

Used mainly for testing and not recommended for production use.

• org.jboss.cache.loader.JDBCCacheLoader - uses a JDBC connection to store data.

Connections could be created and maintained in an internal pool (uses the c3p0 pooling library)

or from a configured DataSource. The database this CacheLoader connects to could be local

or remotely located.

• org.jboss.cache.loader.BdbjeCacheLoader - uses Oracle's BerkeleyDB file-based

transactional database to persist data. Transactional and very performant, but potentially

restrictive license.

• org.jboss.cache.loader.JdbmCacheLoader - an open source alternative to the BerkeleyDB.

Using Eviction Policies

17

• org.jboss.cache.loader.tcp.TcpCacheLoader - uses a TCP socket to "persist" data to a

remote cluster, using a "far cache" pattern [http://www.jboss.org/community/docs/DOC-10292].

• org.jboss.cache.loader.ClusteredCacheLoader - used as a "read-only" cache loader,

where other nodes in the cluster are queried for state. Useful when full state transfer is too

expensive and it is preferred that state is lazily loaded.

These cache loaders, along with advanced aspects and tuning issues, are discussed in the

chapter dedicated to cache loaders.

2.9. Using Eviction Policies

Eviction policies are the counterpart to cache loaders. They are necessary to make sure the cache

does not run out of memory and when the cache starts to fill, an eviction algorithm running in a

separate thread evicts in-memory state and frees up memory. If configured with a cache loader,

the state can then be retrieved from the cache loader if needed.

Eviction policies can be configured on a per-region basis, so different subtrees in the cache could

have different eviction preferences. JBoss Cache ships with several eviction policies:

• org.jboss.cache.eviction.LRUPolicy - an eviction policy that evicts the least recently used

nodes when thresholds are hit.

• org.jboss.cache.eviction.LFUPolicy - an eviction policy that evicts the least frequently

used nodes when thresholds are hit.

• org.jboss.cache.eviction.MRUPolicy - an eviction policy that evicts the most recently used

nodes when thresholds are hit.

• org.jboss.cache.eviction.FIFOPolicy - an eviction policy that creates a first-in-first-out

queue and evicts the oldest nodes when thresholds are hit.

• org.jboss.cache.eviction.ExpirationPolicy - an eviction policy that selects nodes for

eviction based on an expiry time each node is configured with.

• org.jboss.cache.eviction.ElementSizePolicy - an eviction policy that selects nodes for

eviction based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the chapter

dedicated to eviction policies.

http://www.jboss.org/community/docs/DOC-10292
http://www.jboss.org/community/docs/DOC-10292

18

Chapter 3.

19

Configuration

3.1. Configuration Overview

The org.jboss.cache.config.Configuration class (along with its component parts) is a Java

Bean that encapsulates the configuration of the Cache and all of its architectural elements (cache

loaders, evictions policies, etc.)

The Configuration exposes numerous properties which are summarized in the configuration

reference section of this book and many of which are discussed in later chapters. Any time you

see a configuration option discussed in this book, you can assume that the Configuration class

or one of its component parts exposes a simple property setter/getter for that configuration option.

3.2. Creating a Configuration

As discussed in the User API section, before a Cache can be created, the CacheFactory must

be provided with a Configuration object or with a file name or input stream to use to parse a

Configuration from XML. The following sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cache is via an XML file. The JBoss Cache

distribution ships with a number of configuration files for common use cases. It is recommended

that these files be used as a starting point, and tweaked to meet specific needs.

The simplest example of a configuration XML file, a cache configured to run in LOCAL mode,

looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:jboss:jbosscache-core:config:3.1">

</jbosscache>

This file uses sensible defaults for isolation levels, lock acquisition timeouts, locking modes, etc.

Another, more complete, sample XML file is included in the configuration reference section of this

book, along with a handy look-up table explaining the various options.

3.2.2. Validating Configuration Files

By default JBoss Cache will validate your XML configuration file against an XML schema

and throw an exception if the configuration is invalid. This can be overridden with the -

Chapter 3. Configuration

20

Djbosscache.config.validate=false JVM parameter. Alternately, you could specify your own

schema to validate against, using the -Djbosscache.config.schemaLocation=url parameter.

By default though, configuration files are validated against the JBoss Cache configuration schema,

which is included in the jbosscache-core.jar or on http://www.jboss.org/jbosscache/

jbosscache-config-3.0.xsd. Most XML editing tools can be used with this schema to ensure

the configuration file you create is correct and valid.

3.2.3. Programmatic Configuration

In addition to the XML-based configuration above, the Configuration can be built up

programatically, using the simple property mutators exposed by Configuration and its

components. When constructed, the Configuration object is preset with JBoss Cache defaults

and can even be used as-is for a quick start.

 Configuration config = new Configuration();

 config.setTransactionManagerLookupClass(

 GenericTransactionManagerLookup.class.getName());

 config.setIsolationLevel(IsolationLevel.READ_COMMITTED);

 config.setCacheMode(CacheMode.LOCAL);

 config.setLockAcquisitionTimeout(15000);

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use

of XML-based configuration. However, if your application requires it, there is no reason not to use

XML-based configuration for most of the attributes, and then access the Configuration object

to programatically change a few items from the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running,

except those annotated as @Dynamic . Dynamic properties are also marked as such in the

configuration reference table. Attempting to change a non-dynamic property will result in a

ConfigurationException .

3.2.4. Using an IOC Framework

The Configuration class and its component parts are all Java Beans that expose all config

elements via simple setters and getters. Therefore, any good IOC framework such as Spring,

Google Guice, JBoss Microcontainer, etc. should be able to build up a Configuration from an

XML file in the framework's own format. See the deployment via the JBoss micrcontainer section

for an example of this.

Composition of a Configuration Object

21

3.3. Composition of a Configuration Object

A Configuration is composed of a number of subobjects:

Following is a brief overview of the components of a Configuration . See the javadoc and the

linked chapters in this book for a more complete explanation of the configurations associated with

each component.

• Configuration : top level object in the hierarchy; exposes the configuration properties listed

in the configuration reference section of this book.

• BuddyReplicationConfig : only relevant if buddy replication is used. General buddy replication

configuration options. Must include a:

• BuddyLocatorConfig : implementation-specific configuration object for the BuddyLocator

implementation being used. What configuration elements are exposed depends on the needs

of the BuddyLocator implementation.

• EvictionConfig : only relevant if eviction is used. General eviction configuration options. Must

include at least one:

• EvictionRegionConfig : one for each eviction region; names the region, etc. Must include a:

Chapter 3. Configuration

22

• EvictionAlgorithmConfig : implementation-specific configuration object for the

EvictionAlgorithm implementation being used. What configuration elements are exposed

depends on the needs of the EvictionAlgorithm implementation.

• CacheLoaderConfig : only relevant if a cache loader is used. General cache loader

configuration options. Must include at least one:

• IndividualCacheLoaderConfig : implementation-specific configuration object for the

CacheLoader implementation being used. What configuration elements are exposed depends

on the needs of the CacheLoader implementation.

• RuntimeConfig : exposes to cache clients certain information about the cache's runtime

environment (e.g. membership in buddy replication groups if buddy replication is used.)

Also allows direct injection into the cache of needed external services like a JTA

TransactionManager or a JGroups ChannelFactory .

3.4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running is supported,

by programmatically obtaining the Configuration object from the running cache and changing

values. E.g.,

 Configuration liveConfig = cache.getConfiguration();

 liveConfig.setLockAcquisitionTimeout(2000);

A complete listing of which options may be changed dynamically is in the configuration reference

section. An org.jboss.cache.config.ConfigurationException will be thrown if you attempt

to change a setting that is not dynamic.

3.4.1. Overriding the Configuration via the Option API

The Option API allows you to override certain behaviours of the cache on a per invocation basis.

This involves creating an instance of org.jboss.cache.config.Option , setting the options you

wish to override on the Option object and passing it in the InvocationContext before invoking

your method on the cache.

E.g., to force a write lock when reading data (when used in a transaction, this provides semantics

similar to SELECT FOR UPDATE in a database)

 // first start a transaction

 cache.getInvocationContext().getOptionOverrides().setForceWriteLock(true);

Overriding the Configuration via the Option API

23

 Node n = cache.getNode(Fqn.fromString("/a/b/c"));

 // make changes to the node

 // commit transaction

E.g., to suppress replication of a put call in a REPL_SYNC cache:

 Node node = cache.getChild(Fqn.fromString("/a/b/c"));

 cache.getInvocationContext().getOptionOverrides().setLocalOnly(true);

 node.put("localCounter", new Integer(2));

See the javadocs on the Option class for details on the options available.

24

Chapter 4.

25

Batching API

4.1. Introduction

The batching API, introduced in JBoss Cache 3.x, is intended as a mechanism to batch the way

calls are replicated independent of JTA transactions.

This is useful when you want to batch up replication calls within a scope finer than that of any

ongoing JTA transactions.

4.2. Configuring batching

To use batching, you need to enable invocation batching in your cache configuration, either on

the Configuration object:

 Configuration.setInvocationBatchingEnabled(true);

or in your XML file:

 <invocationBatching enabled="true"/>

By default, invocation batching is disabled. Note that you do not have to have a transaction

manager defined to use batching.

4.3. Batching API

Once you have configured your cache to use batching, you use it by calling startBatch() and

endBatch() on Cache. E.g.,

 Cache cache = getCache();

 // not using a batch

 cache.put("/a", "key", "value"); // will replicate immediately

 // using a batch

 cache.startBatch();

Chapter 4. Batching API

26

 cache.put("/a", "key", "value");

 cache.put("/b", "key", "value");

 cache.put("/c", "key", "value");

 cache.endBatch(true); // This will now replicate the modifications since the batch was started.

 cache.startBatch();

 cache.put("/a", "key", "value");

 cache.put("/b", "key", "value");

 cache.put("/c", "key", "value");

 cache.endBatch(false); // This will "discard" changes made in the batch

Chapter 5.

27

Deploying JBoss Cache

5.1. Standalone Use/Programatic Deployment

When used in a standalone Java program, all that needs to be done is to instantiate the cache

using the CacheFactory and a Configuration instance or an XML file, as discussed in the User

API and Configuration chapters.

The same techniques can be used when an application running in an application server

wishes to programatically deploy a cache rather than relying on an application server's

deployment features. An example of this would be a webapp deploying a cache via a

javax.servlet.ServletContextListener.

After creation, you could share your cache instance among different application components either

by using an IOC container such as Spring, JBoss Microcontainer, etc., or by binding it to JNDI,

or simply holding a static reference to the cache.

If, after deploying your cache you wish to expose a management interface to it in JMX, see the

section on Programatic Registration in JMX.

5.2. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS supports deployment of POJO services via deployment of a

file whose name ends with -beans.xml. A POJO service is one whose implementation is via a

"Plain Old Java Object", meaning a simple java bean that isn't required to implement any special

interfaces or extend any particular superclass. A Cache is a POJO service, and all the components

in a Configuration are also POJOs, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss

AS. JBoss Microcontainer is a sophisticated IOC framework similar to Spring. A -beans.xml file is

basically a descriptor that tells the IOC framework how to assemble the various beans that make

up a POJO service.

For each configurable option exposed by the Configuration components, a getter/setter must

be defined in the configuration class. This is required so that JBoss Microcontainer can, in typical

IOC way, call these methods when the corresponding properties have been configured.

You need to ensure that the jbosscache-core.jar and jgroups.jar libraries are in your server's

lib directory. This is usually the case when you use JBoss AS in its all configuration. Note that

you will have to bring in any optional jars you require, such as jdbm.jar based on your cache

configuration.

The following is an example -beans.xml file. If you look in the server/all/deploy directory of

a JBoss AS 5 installation, you can find several more examples.

Chapter 5. Deploying JBoss Cache

28

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 <!-- Externally injected services -->

 <property name="runtimeConfig">

 <bean class="org.jboss.cache.config.RuntimeConfig">

 <property name="transactionManager">

 <inject bean="jboss:service=TransactionManager"

 property="TransactionManager"/>

 </property>

 <property name="muxChannelFactory"><inject bean="JChannelFactory"/></property>

 </bean>

 </property>

 <property name="multiplexerStack">udp</property>

 <property name="clusterName">Example-EntityCache</property>

 <property name="isolationLevel">REPEATABLE_READ</property>

 <property name="cacheMode">REPL_SYNC</property>

 <property name="stateRetrievalTimeout">15000</property>

 <property name="syncReplTimeout">20000</property>

 <property name="lockAcquisitionTimeout">15000</property>

 <property name="exposeManagementStatistics">true</property>

 </bean>

 <!-- Factory to build the Cache. -->

 <bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">

 <constructor factoryClass="org.jboss.cache.DefaultCacheFactory"

 factoryMethod="getInstance" />

 </bean>

 <!-- The cache itself -->

 <bean name="ExampleCache" class="org.jboss.cache.Cache">

Automatic binding to JNDI in JBoss AS

29

 <constructor factoryMethod="createCache">

 <factory bean="DefaultCacheFactory"/>

 <parameter class="org.jboss.cache.config.Configuration"><inject

 bean="ExampleCacheConfig"/></parameter>

 <parameter class="boolean">false</parameter>

 </constructor>

 </bean>

</deployment>

See the JBoss Microcontainer documentation [http://www.jboss.org/jbossmc/docs] for details on

the above syntax. Basically, each bean element represents an object and is used to create a

Configuration and its constituent parts The DefaultCacheFactory bean constructs the cache,

conceptually doing the same thing as is shown in the User API chapter.

An interesting thing to note in the above example is the use of the RuntimeConfig object. External

resources like a TransactionManager and a JGroups ChannelFactory that are visible to the

microcontainer are dependency injected into the RuntimeConfig. The assumption here is that in

some other deployment descriptor in the AS, the referenced beans have already been described.

5.3. Automatic binding to JNDI in JBoss AS

This feature is not available as of the time of this writing. We will add a wiki page describing how

to use it once it becomes available.

5.4. Runtime Management Information

JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that can

be used to analyze cache operations. JBoss Cache can also broadcast cache events as MBean

notifications for handling via JMX monitoring tools.

5.4.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments

JMX server to allow access to the cache instance via JMX. This MBean is the

org.jboss.cache.jmx.CacheJmxWrapper. It is a StandardMBean, so its MBean interface is

org.jboss.cache.jmx.CacheJmxWrapperMBean. This MBean can be used to:

• Get a reference to the underlying Cache.

• Invoke create/start/stop/destroy lifecycle operations on the underlying Cache.

• Inspect various details about the cache's current state (number of nodes, lock information, etc.)

http://www.jboss.org/jbossmc/docs
http://www.jboss.org/jbossmc/docs

Chapter 5. Deploying JBoss Cache

30

• See numerous details about the cache's configuration, and change those configuration items

that can be changed when the cache has already been started.

See the CacheJmxWrapperMBean javadoc for more details.

If a CacheJmxWrapper is registered, JBoss Cache also provides MBeans for several other internal

components and subsystems. These MBeans are used to capture and expose statistics related

to the subsystems they represent. They are hierarchically associated with the CacheJmxWrapper

MBean and have service names that reflect this relationship. For example, a replication interceptor

MBean for the jboss.cache:service=TomcatClusteringCache instance will be accessible

through the service named jboss.cache:service=TomcatClusteringCache,cache-

interceptor=ReplicationInterceptor.

5.4.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxWrapper is registered in JMX depends on how you are

deploying your cache.

5.4.2.1. Programatic Registration

5.4.2.1.1. With a Cache instance

Simplest way to do this is to create your Cache and pass it to the JmxRegistrationManager

constructor.

 CacheFactory factory = new DefaultCacheFactory();

 // Build but don't start the cache

 // (although it would work OK if we started it)

 Cache cache = factory.createCache("cache-configuration.xml");

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=Cache");

 JmxRegistrationManager jmxManager = new JmxRegistrationManager(server, cache, on);

 jmxManager.registerAllMBeans();

 ... use the cache

 ... on application shutdown

 jmxManager.unregisterAllMBeans();

 cache.stop();

Registering the CacheJmxWrapper with the

MBeanServer

31

5.4.2.1.2. With a Configuration instance

Alternatively, build a Configuration object and pass it to the CacheJmxWrapper. The wrapper

will construct the Cache on your behalf.

 Configuration config = buildConfiguration(); // whatever it does

 CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(config);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");

 server.registerMBean(wrapper, on);

 // Call to wrapper.create() will build the Cache if one wasn't injected

 wrapper.create();

 wrapper.start();

 // Now that it's built, created and started, get the cache from the wrapper

 Cache cache = wrapper.getCache();

 ... use the cache

 ... on application shutdown

 wrapper.stop();

 wrapper.destroy();

5.4.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)

CacheJmxWrapper is a POJO, so the microcontainer has no problem creating one. The

trick is getting it to register your bean in JMX. This can be done by specifying the

org.jboss.aop.microcontainer.aspects.jmx.JMX annotation on the CacheJmxWrapper bean:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

Chapter 5. Deploying JBoss Cache

32

 ... build up the Configuration

 </bean>

 <!-- Factory to build the Cache. -->

 <bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">

 <constructor factoryClass="org.jboss.cache.DefaultCacheFactory"

 factoryMethod="getInstance" />

 </bean>

 <!-- The cache itself -->

 <bean name="ExampleCache" class="org.jboss.cache.CacheImpl">

 <constructor factoryMethod="createnewInstance">

 <factory bean="DefaultCacheFactory"/>

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 <parameter>false</parameter>

 </constructor>

 </bean>

 <!-- JMX Management -->

 <bean name="ExampleCacheJmxWrapper" class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.cache:service=ExampleTreeCache",

 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,

 registerDirectly=true)</annotation>

 <constructor>

 <parameter><inject bean="ExampleCache"/></parameter>

 </constructor>

 </bean>

</deployment>

As discussed in the Programatic Registration section, CacheJmxWrapper can do the work of

building, creating and starting the Cache if it is provided with a Configuration. With the

microcontainer, this is the preferred approach, as it saves the boilerplate XML needed to create

the CacheFactory.

JBoss Cache Statistics

33

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <bean name="ExampleCache" class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.cache:service=ExampleTreeCache",

 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,

 registerDirectly=true)</annotation>

 <constructor>

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 </constructor>

 </bean>

</deployment>

5.4.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and various other components,

and exposes these statistics through a set of MBeans. Gathering of statistics is

enabled by default; this can be disabled for a specific cache instance through the

Configuration.setExposeManagementStatistics() setter. Note that the majority of the

statistics are provided by the CacheMgmtInterceptor, so this MBean is the most

significant in this regard. If you want to disable all statistics for performance reasons,

you set Configuration.setExposeManagementStatistics(false) and this will prevent the

CacheMgmtInterceptor from being included in the cache's interceptor stack when the cache is

started.

Chapter 5. Deploying JBoss Cache

34

If a CacheJmxWrapper is registered with JMX, the wrapper also ensures that an MBean is

registered in JMX for each interceptor and component that exposes statistics. 1. Management tools

can then access those MBeans to examine the statistics. See the section in the JMX Reference

chapter pertaining to the statistics that are made available via JMX.

5.4.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier in the User

API chapter. Users can alternatively utilize the cache's management information infrastructure

to receive these events via JMX notifications. Cache events are accessible as notifications by

registering a NotificationListener for the CacheJmxWrapper.

See the section in the JMX Reference chapter pertaining to JMX notifications for a list of

notifications that can be received through the CacheJmxWrapper.

The following is an example of how to programmatically receive cache notifications when running

in a JBoss AS environment. In this example, the client uses a filter to specify which events are

of interest.

 MyListener listener = new MyListener();

 NotificationFilterSupport filter = null;

 // get reference to MBean server

 Context ic = new InitialContext();

 MBeanServerConnection server = (MBeanServerConnection)ic.lookup("jmx/invoker/

RMIAdaptor");

 // get reference to CacheMgmtInterceptor MBean

 String cache_service = "jboss.cache:service=TomcatClusteringCache";

 ObjectName mgmt_name = new ObjectName(cache_service);

 // configure a filter to only receive node created and removed events

 filter = new NotificationFilterSupport();

 filter.disableAllTypes();

 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_CREATED);

 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_REMOVED);

 // register the listener with a filter

 // leave the filter null to receive all cache events

1 Note that if the CacheJmxWrapper is not registered in JMX, the interceptor MBeans will not be registered either.

The JBoss Cache 1.4 releases included code that would try to "discover" an MBeanServer and automatically register

the interceptor MBeans with it. For JBoss Cache 2.x we decided that this sort of "discovery" of the JMX environment was

beyond the proper scope of a caching library, so we removed this functionality.

Receiving JMX Notifications

35

 server.addNotificationListener(mgmt_name, listener, filter, null);

 // ...

 // on completion of processing, unregister the listener

 server.removeNotificationListener(mgmt_name, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

 private class MyListener implements NotificationListener, Serializable

 {

 public void handleNotification(Notification notification, Object handback)

 {

 String message = notification.getMessage();

 String type = notification.getType();

 Object userData = notification.getUserData();

 System.out.println(type + ": " + message);

 if (userData == null)

 {

 System.out.println("notification data is null");

 }

 else if (userData instanceof String)

 {

 System.out.println("notification data: " + (String) userData);

 }

 else if (userData instanceof Object[])

 {

 Object[] ud = (Object[]) userData;

 for (Object data : ud)

 {

 System.out.println("notification data: " + data.toString());

 }

 }

 else

 {

 System.out.println("notification data class: " + userData.getClass().getName());

 }

 }

 }

Chapter 5. Deploying JBoss Cache

36

Note that the JBoss Cache management implementation only listens to cache events after a client

registers to receive MBean notifications. As soon as no clients are registered for notifications, the

MBean will remove itself as a cache listener.

5.4.5. Accessing Cache MBeans in a Standalone Environment

using the jconsole Utility

JBoss Cache MBeans are easily accessed when running cache instances in an application server

that provides an MBean server interface such as JBoss JMX Console. Refer to your server

documentation for instructions on how to access MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a non-server

environment using your JDK's jconsole tool. When running a standalone cache outside of an

application server, you can access the cache's MBeans as follows.

1. Set the system property -Dcom.sun.management.jmxremote when starting the JVM where the

cache will run.

2. Once the JVM is running, start the jconsole utility, located in your JDK's /bin directory.

3. When the utility loads, you will be able to select your running JVM and connect to it. The JBoss

Cache MBeans will be available on the MBeans panel.

Note that the jconsole utility will automatically register as a listener for cache notifications when

connected to a JVM running JBoss Cache instances.

Chapter 6.

37

Version Compatibility and

Interoperability

6.1. API compatibility

Within a major version, releases of JBoss Cache are meant to be compatible and interoperable.

Compatible in the sense that it should be possible to upgrade an application from one version to

another by simply replacing jars. Interoperable in the sense that if two different versions of JBoss

Cache are used in the same cluster, they should be able to exchange replication and state transfer

messages. Note however that interoperability requires use of the same JGroups version in all

nodes in the cluster. In most cases, the version of JGroups used by a version of JBoss Cache

can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. On the other

hand, JBoss Cache 2.1.x will be API and binary compatible with 2.0.x.

We have made best efforts, however, to keep JBoss Cache 3.x both binary and API compatible

with 2.x. Still, it is recommended that client code is updated not to use deprecated methods,

classes and configuration files.

6.2. Wire-level interoperability

A configuration parameter, Configuration.setReplicationVersion(), is available and is used

to control the wire format of inter-cache communications. They can be wound back from more

efficient and newer protocols to "compatible" versions when talking to older releases. This

mechanism allows us to improve JBoss Cache by using more efficient wire formats while still

providing a means to preserve interoperability.

6.3. Compatibility Matrix

A compatibility matrix [http://www.jboss.org/jbosscache/compatibility/index.html] is maintained on

the JBoss Cache website, which contains information on different versions of JBoss Cache,

JGroups and JBoss Application Server.

http://www.jboss.org/jbosscache/compatibility/index.html
http://www.jboss.org/jbosscache/compatibility/index.html

38

Part II. JBoss Cache Architecture
This section digs deeper into the JBoss Cache architecture, and is meant for developers wishing

to use the more advanced cache features,extend or enhance the cache, write plugins, or are just

looking for detailed knowledge of how things work under the hood.

Chapter 7.

41

Architecture

7.1. Data Structures Within The Cache

A Cache consists of a collection of Node instances, organised in a tree structure. Each Node

contains a Map which holds the data objects to be cached. It is important to note that the structure

is a mathematical tree, and not a graph; each Node has one and only one parent, and the root

node is denoted by the constant fully qualified name, Fqn.ROOT.

Figure 7.1. Data structured as a tree

In the diagram above, each box represents a JVM. You see 2 caches in separate JVMs, replicating

data to each other.

Any modifications (see API chapter) in one cache instance will be replicated to the other cache.

Naturally, you can have more than 2 caches in a cluster. Depending on the transactional settings,

this replication will occur either after each modification or at the end of a transaction, at commit

time. When a new cache is created, it can optionally acquire the contents from one of the existing

caches on startup.

Chapter 7. Architecture

42

7.2. SPI Interfaces

In addition to Cache and Node interfaces, JBoss Cache exposes more powerful CacheSPI and

NodeSPI interfaces, which offer more control over the internals of JBoss Cache. These interfaces

are not intended for general use, but are designed for people who wish to extend and enhance

JBoss Cache, or write custom Interceptor or CacheLoader instances.

SPI Interfaces

43

Figure 7.2. SPI Interfaces

Chapter 7. Architecture

44

The CacheSPI interface cannot be created, but is injected into Interceptor and CacheLoader

implementations by the setCache(CacheSPI cache) methods on these interfaces. CacheSPI

extends Cache so all the functionality of the basic API is also available.

Similarly, a NodeSPI interface cannot be created. Instead, one is obtained by performing

operations on CacheSPI, obtained as above. For example, Cache.getRoot() : Node is

overridden as CacheSPI.getRoot() : NodeSPI.

It is important to note that directly casting a Cache or Node to its SPI counterpart is not

recommended and is bad practice, since the inheritace of interfaces it is not a contract that

is guaranteed to be upheld moving forward. The exposed public APIs, on the other hand, is

guaranteed to be upheld.

7.3. Method Invocations On Nodes

Since the cache is essentially a collection of nodes, aspects such as clustering, persistence,

eviction, etc. need to be applied to these nodes when operations are invoked on the cache as

a whole or on individual nodes. To achieve this in a clean, modular and extensible manner, an

interceptor chain is used. The chain is built up of a series of interceptors, each one adding an

aspect or particular functionality. The chain is built when the cache is created, based on the

configuration used.

It is important to note that the NodeSPI offers some methods (such as the xxxDirect() method

family) that operate on a node directly without passing through the interceptor stack. Plugin authors

should note that using such methods will affect the aspects of the cache that may need to be

applied, such as locking, replication, etc. To put it simply, don't use such methods unless you

really know what you're doing!

7.3.1. Interceptors

JBoss Cache essentially is a core data structure - an implementation of DataContainer -

and aspects and features are implemented using interceptors in front of this data structure. A

CommandInterceptor is an abstract class, interceptor implementations extend this.

CommandInterceptor implements the Visitor interface so it is able to alter commands in a

strongly typed manner as the command makes its way to the data structure. More on visitors and

commands in the next section.

Interceptor implementations are chained together in the InterceptorChain class, which

dispatches a command across the chain of interceptors. A special interceptor, the

CallInterceptor, always sits at the end of this chain to invoke the command being passed up

the chain by calling the command's process() method.

JBoss Cache ships with several interceptors, representing different behavioral aspects, some of

which are:

• TxInterceptor - looks for ongoing transactions and registers with transaction managers to

participate in synchronization events

Commands and Visitors

45

• ReplicationInterceptor - replicates state across a cluster using the RpcManager class

• CacheLoaderInterceptor - loads data from a persistent store if the data requested is not

available in memory

The interceptor chain configured for your cache instance can be obtained and inspected by calling

CacheSPI.getInterceptorChain(), which returns an ordered List of interceptors in the order

in which they would be encountered by a command.

7.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending

CommandInterceptor and overriding the relevant visitXXX() methods based on the commands

you are interested in intercepting. There are other abstract interceptors you could extend instead,

such as the PrePostProcessingCommandInterceptor and the SkipCheckChainedInterceptor.

Please see their respective javadocs for details on the extra features provided.

The custom interceptor will need to be added to the interceptor chain by using the

Cache.addInterceptor() methods. See the javadocs on these methods for details.

Adding custom interceptors via XML is also supported, please see the XML configuration

reference for details.

7.3.2. Commands and Visitors

Internally, JBoss Cache uses a command/visitor pattern to execute API calls. Whenever a

method is called on the cache interface, the CacheInvocationDelegate, which implements the

Cache interface, creates an instance of VisitableCommand and dispatches this command up a

chain of interceptors. Interceptors, which implement the Visitor interface, are able to handle

VisitableCommands they are interested in, and add behavior to the command.

Each command contains all knowledge of the command being executed such as parameters

used and processing behavior, encapsulated in a process() method. For example, the

RemoveNodeCommand is created and passed up the interceptor chain when Cache.removeNode()

is called, and RemoveNodeCommand.process() has the necessary knowledge of how to remove

a node from the data structure.

In addition to being visitable, commands are also replicable. The JBoss Cache marshallers know

how to efficiently marshall commands and invoke them on remote cache instances using an

internal RPC mechanism based on JGroups.

7.3.3. InvocationContexts

InvocationContext holds intermediate state for the duration of a single invocation, and is set up

and destroyed by the InvocationContextInterceptor which sits at the start of the interceptor

chain.

InvocationContext , as its name implies, holds contextual information associated

with a single cache method invocation. Contextual information includes associated

Chapter 7. Architecture

46

javax.transaction.Transaction or org.jboss.cache.transaction.GlobalTransaction ,

method invocation origin (InvocationContext.isOriginLocal()) as well as Option overrides

, and information around which nodes have been locked, etc.

The InvocationContext can be obtained by calling Cache.getInvocationContext().

7.4. Managers For Subsystems

Some aspects and functionality is shared by more than a single interceptor. Some of these have

been encapsulated into managers, for use by various interceptors, and are made available by the

CacheSPI interface.

7.4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches,

and encapsulates the JGroups channel used.

7.4.2. BuddyManager

This class manages buddy groups and invokes group organization remote calls to organize a

cluster of caches into smaller sub-groups.

7.4.3. CacheLoaderManager

Sets up and configures cache loaders. This class wraps individual CacheLoader instances in

delegating classes, such as SingletonStoreCacheLoader or AsyncCacheLoader , or may add

the CacheLoader to a chain using the ChainingCacheLoader .

7.5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing to an

ObjectOutputStream during replication. Over various releases in the JBoss Cache 1.x.x series

this approach was gradually deprecated in favor of a more mature marshalling framework. In the

JBoss Cache 2.x.x series, this is the only officially supported and recommended mechanism for

writing objects to datastreams.

The Marshaller Interface

47

Figure 7.3. The Marshaller interface

7.5.1. The Marshaller Interface

The Marshaller interface extends RpcDispatcher.Marshaller from JGroups. This interface

has two main implementations - a delegating VersionAwareMarshaller and a concrete

CacheMarshaller300 .

The marshaller can be obtained by calling CacheSPI.getMarshaller(), and defaults to the

VersionAwareMarshaller. Users may also write their own marshallers by implementing the

Chapter 7. Architecture

48

Marshaller interface or extending the AbstractMarshaller class, and adding it to their

configuration by using the Configuration.setMarshallerClass() setter.

7.5.2. VersionAwareMarshaller

As the name suggests, this marshaller adds a version short to the start of any stream

when writing, enabling similar VersionAwareMarshaller instances to read the version short

and know which specific marshaller implementation to delegate the call to. For example,

CacheMarshaller200 is the marshaller for JBoss Cache 2.0.x. JBoss Cache 3.0.x ships with

CacheMarshaller300 with an improved wire protocol. Using a VersionAwareMarshaller helps

achieve wire protocol compatibility between minor releases but still affords us the flexibility to

tweak and improve the wire protocol between minor or micro releases.

7.6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the application tend

to put instances of objects specific to their application in the cache (or in an HttpSession

object) which would require replication. It is common for application servers to assign separate

ClassLoader instances to each application deployed, but have JBoss Cache libraries referenced

by the application server's ClassLoader.

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a

concept called regions. A region is a portion of the cache which share a common class loader (a

region also has other uses - see eviction policies).

A region is created by using the Cache.getRegion(Fqn fqn, boolean createIfNotExists)

method, and returns an implementation of the Region interface. Once a region is obtained, a class

loader for the region can be set or unset, and the region can be activated/deactivated. By default,

regions are active unless the InactiveOnStartup configuration attribute is set to true.

Chapter 8.

49

Cache Modes and Clustering
This chapter talks about aspects around clustering JBoss Cache.

8.1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the

cache can be configured to replicate changes, or to invalidate changes. A detailed discussion on

this follows.

8.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. The

dependency on the JGroups library is still there, although a JGroups channel is not started.

8.1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in the cluster.

Replication can either happen after each modification (no transactions or batches), or at the end

of a transaction or batch.

Replication can be synchronous or asynchronous. Use of either one of the options is application

dependent. Synchronous replication blocks the caller (e.g. on a put()) until the modifications

have been replicated successfully to all nodes in a cluster. Asynchronous replication performs

replication in the background (the put() returns immediately). JBoss Cache also offers a

replication queue, where modifications are replicated periodically (i.e. interval-based), or when

the queue size exceeds a number of elements, or a combination thereof. A replication queue can

therefore offer much higher performance as the actual replication is performed by a background

thread.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires

acknowledgments from all nodes in a cluster that they received and applied the modification

successfully (round-trip time). However, when a synchronous replication returns successfully, the

caller knows for sure that all modifications have been applied to all cache instances, whereas this

is not be the case with asynchronous replication. With asynchronous replication, errors are simply

written to a log. Even when using transactions, a transaction may succeed but replication may

not succeed on all cache instances.

8.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a

transaction commits. This results in minimizing replication traffic since a single modification is

broadcast rather than a series of individual modifications, and can be a lot more efficient than

not using transactions. Another effect of this is that if a transaction were to roll back, nothing is

broadcast across a cluster.

Chapter 8. Cache Modes and Cl...

50

Depending on whether you are running your cluster in asynchronous or synchronous mode,

JBoss Cache will use either a single phase or two phase commit [http://en.wikipedia.org/wiki/

Two-phase_commit_protocol] protocol, respectively.

8.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call,

which instructs remote caches to apply the changes to their local in-memory state and commit

locally. Remote errors/rollbacks are never fed back to the originator of the transaction since the

communication is asynchronous.

8.1.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache

broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote

caches then acquire local locks on their in-memory state and apply the modifications. Once all

remote caches respond to the prepare call, the originator of the transaction broadcasts a commit.

This instructs all remote caches to commit their data. If any of the caches fail to respond to the

prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are

asynchronous. This is because Sun's JTA specification [http://java.sun.com/products/jta/] does

not specify how transactional resources should deal with failures at this stage of a transaction; and

other resources participating in the transaction may have indeterminate state anyway. As such, we

do away with the overhead of synchronous communication for this phase of the transaction. That

said, they can be forced to be synchronous using the SyncCommitPhase and SyncRollbackPhase

configuration attributes.

8.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster. Instead,

each instance picks one or more 'buddies' in the cluster, and only replicates to these specific

buddies. This greatly helps scalability as there is no longer a memory and network traffic impact

every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used

by a servlet container to store HTTP session data. One of the pre-requisites to buddy replication

working well and being a real benefit is the use of session affinity , more casually known as sticky

sessions in HTTP session replication speak. What this means is that if certain data is frequently

accessed, it is desirable that this is always accessed on one instance rather than in a round-robin

fashion as this helps the cache cluster optimize how it chooses buddies, where it stores data, and

minimizes replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Replicated Caches

51

8.1.2.2.1. Selecting Buddies

Figure 8.1. BuddyLocator

Buddy Replication uses an instance of a BuddyLocator which contains the logic used to

select buddies in a network. JBoss Cache currently ships with a single implementation,

NextMemberBuddyLocator , which is used as a default if no implementation is provided. The

NextMemberBuddyLocator selects the next member in the cluster, as the name suggests, and

guarantees an even spread of buddies for each instance.

The NextMemberBuddyLocator takes in 2 parameters, both optional.

• numBuddies - specifies how many buddies each instance should pick to back its data onto. This

defaults to 1.

• ignoreColocatedBuddies - means that each instance will try to select a buddy on a different

physical host. If not able to do so though, it will fall back to co-located instances. This defaults

to true .

8.1.2.2.2. BuddyPools

Also known as replication groups , a buddy pool is an optional construct where each instance

in a cluster may be configured with a buddy pool name. Think of this as an 'exclusive club

membership' where when selecting buddies, BuddyLocator s that support buddy pools would

try and select buddies sharing the same buddy pool name. This allows system administrators a

degree of flexibility and control over how buddies are selected. For example, a sysadmin may put

two instances on two separate physical servers that may be on two separate physical racks in

Chapter 8. Cache Modes and Cl...

52

the same buddy pool. So rather than picking an instance on a different host on the same rack,

BuddyLocator s would rather pick the instance in the same buddy pool, on a separate rack which

may add a degree of redundancy.

8.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the

cache (directly or indirectly, via some other service such as HTTP session replication) is able to

redirect the request to any other random cache instance in the cluster. This is where a concept

of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache

does not contain this information, it asks other instances in the cluster for the data. In other words,

data is lazily transferred, migrating only when other nodes ask for it. This strategy prevents a

network storm effect where lots of data is pushed around healthy nodes because only one (or a

few) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances

to check in the backup data they store for other caches. This means that even if a cache containing

your session dies, other instances will still be able to access this data by asking the cluster to

search through their backups for this data.

Once located, this data is transferred to the instance which requested it and is added to this

instance's data tree. The data is then (optionally) removed from all other instances (and backups)

so that if session affinity is used, the affinity should now be to this new cache instance which has

just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration

properties pertain to data gravitation.

• dataGravitationRemoveOnFind - forces all remote caches that own the data or hold backups

for the data to remove that data, thereby making the requesting cache the new data owner. This

removal, of course, only happens after the new owner finishes replicating data to its buddy. If

set to false an evict is broadcast instead of a remove, so any state persisted in cache loaders

will remain. This is useful if you have a shared cache loader configured. Defaults to true .

• dataGravitationSearchBackupTrees - Asks remote instances to search through their

backups as well as main data trees. Defaults to true . The resulting effect is that if this is true

then backup nodes can respond to data gravitation requests in addition to data owners.

• autoDataGravitation - Whether data gravitation occurs for every cache miss. By default this

is set to false to prevent unnecessary network calls. Most use cases will know when it may

need to gravitate data and will pass in an Option to enable data gravitation on a per-invocation

basis. If autoDataGravitation is true this Option is unnecessary.

8.1.2.2.4. Configuration
See the configuration reference section for details on configuring buddy replication.

Invalidation

53

8.2. Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a

cache other caches in the cluster receive a message informing them that their data is now stale

and should be evicted from memory. Invalidation, when used with a shared cache loader (see

chapter on cache loaders) would cause remote caches to refer to the shared cache loader to

retrieve modified data. The benefit of this is twofold: network traffic is minimized as invalidation

messages are very small compared to replicating updated data, and also that other caches in the

cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions or batches), or at the end

of a transaction or batch, upon successful commit. This is usually more efficient as invalidation

messages can be optimized for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication,

synchronous invalidation blocks until all caches in the cluster receive invalidation messages and

have evicted stale data while asynchronous invalidation works in a 'fire-and-forget' mode, where

invalidation messages are broadcast but doesn't block and wait for responses.

8.3. State Transfer

State Transfer refers to the process by which a JBoss Cache instance prepares itself to begin

providing a service by acquiring the current state from another cache instance and integrating

that state into its own state.

8.3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related to state

transfer. First, in the context of particular state transfer implementation, the underlying plumbing,

there are two starkly different state transfer types: byte array and streaming based state transfer.

Second, state transfer can be full or partial state transfer depending on a subtree being transferred.

Entire cache tree transfer represents full transfer while transfer of a particular subtree represents

partial state transfer. And finally state transfer can be "in-memory" and "persistent" transfer

depending on a particular use of cache.

8.3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache in all previous

releases up to 2.0. Byte array based transfer loads entire state transferred into a byte array and

sends it to a state receiving member. Major limitation of this approach is that the state transfer

that is very large (>1GB) would likely result in OutOfMemoryException. Streaming state transfer

provides an InputStream to a state reader and an OutputStream to a state writer. OutputStream

and InputStream abstractions enable state transfer in byte chunks thus resulting in smaller

memory requirements. For example, if application state is represented as a tree whose aggregate

size is 1GB, rather than having to provide a 1GB byte array streaming state transfer transfers the

state in chunks of N bytes where N is user configurable.

Chapter 8. Cache Modes and Cl...

54

Byte array and streaming based state transfer are completely API transparent, interchangeable,

and statically configured through a standard cache configuration XML file. Refer to JGroups

documentation on how to change from one type of transfer to another.

8.3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be

done at various times, depending on how the cache is used. "Full" state transfer refers to the

transfer of the state related to the entire tree -- i.e. the root node and all nodes below it. A "partial"

state transfer is one where just a portion of the tree is transferred -- i.e. a node at a given Fqn

and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following

times:

1. Initial state transfer. This occurs when the cache is first started (as part of the processing of the

start() method). This is a full state transfer. The state is retrieved from the cache instance

that has been operational the longest. 1 If there is any problem receiving or integrating the state,

the cache will not start.

Initial state transfer will occur unless:

a. The cache's InactiveOnStartup property is true . This property is used in conjunction with

region-based marshalling.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. When region-based marshalling is used, the

application needs to register a specific class loader with the cache. This class loader is used

to unmarshall the state for a specific region (subtree) of the cache.

After registration, the application calls cache.getRegion(fqn, true).activate() , which

initiates a partial state transfer of the relevant subtree's state. The request is first made to the

oldest cache instance in the cluster. However, if that instance responds with no state, it is then

requested from each instance in turn until one either provides state or all instances have been

queried.

Typically when region-based marshalling is used, the cache's InactiveOnStartup property

is set to true . This suppresses initial state transfer, which would fail due to the inability to

deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,

when a cache instance joins the cluster, it becomes the buddy of one or more other instances,

and one or more other instances become its buddy. Each time an instance determines it has a

new buddy providing backup for it, it pushes its current state to the new buddy. This "pushing" of

state to the new buddy is slightly different from other forms of state transfer, which are based on

a "pull" approach (i.e. recipient asks for and receives state). However, the process of preparing

and integrating the state is the same.

Transient ("in-memory") and persistent state

transfer

55

This "push" of state upon buddy group formation only occurs if the InactiveOnStartup

property is set to false . If it is true , state transfer amongst the buddies only occurs when the

application activates the region on the various members of the group.

Partial state transfer following a region activation call is slightly different in the buddy replication

case as well. Instead of requesting the partial state from one cache instance, and trying all

instances until one responds, with buddy replication the instance that is activating a region will

request partial state from each instance for which it is serving as a backup.

8.3.4. Transient ("in-memory") and persistent state transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state of another cache

instance - the contents of the various in-memory nodes in the cache that is providing state are

serialized and transferred; the recipient deserializes the data, creates corresponding nodes in

its own in-memory tree, and populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's FetchInMemoryState

configuration attribute to true .

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in the

state-provider cache's persistent store is deserialized and transferred; the recipient passes the

data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's fetchPersistentState

attribute to true . If multiple cache loaders are configured in a chain, only one can have this

property set to true; otherwise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same

persistent store that provides the data will just end up receiving it. Therefore, if a shared cache

loader is used, the cache will not allow a persistent state transfer even if a cache loader has

fetchPersistentState set to true .

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If a write-through cache loader is used, the current cache state is fully represented by the

persistent state. Data may have been evicted from the in-memory state, but it will still be in the

persistent store. In this case, if the cache loader is not shared, persistent state transfer is used

to ensure the new cache has the correct state. In-memory state can be transferred as well if

the desire is to have a "hot" cache -- one that has all relevant data in memory when the cache

begins providing service. (Note that the <preload> element in the <loaders> configuration

element can be used as well to provide a "warm" or "hot" cache without requiring an in-memory

state transfer. This approach somewhat reduces the burden on the cache instance providing

state, but increases the load on the persistent store on the recipient side.)

Chapter 8. Cache Modes and Cl...

56

2. If a cache loader is used with passivation, the full representation of the state can only be

obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)

states. Therefore an in-memory state transfer is necessary. A persistent state transfer is

necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used

to cache data that can also be found in a persistent store, e.g. a database), whether or not

in-memory state should be transferred depends on whether or not a "hot" cache is desired.

8.3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are

configured with the same settings for persistent and transient state. This is because byte array

based transfers, when requested, rely only on the requester's configuration while stream based

transfers rely on both the requester and sender's configuration, and this is expected to be identical.

Chapter 9.

57

Cache Loaders
JBoss Cache can use a CacheLoader to back up the in-memory cache to a backend datastore. If

JBoss Cache is configured with a cache loader, then the following features are provided:

• Whenever a cache element is accessed, and that element is not in the cache (e.g. due to eviction

or due to server restart), then the cache loader transparently loads the element into the cache

if found in the backend store.

• Whenever an element is modified, added or removed, then that modification is persisted in the

backend store via the cache loader. If transactions are used, all modifications created within

a transaction are persisted. To this end, the CacheLoader takes part in the two phase commit

protocol run by the transaction manager, although it does not do so explicitly.

Chapter 9. Cache Loaders

58

9.1. The CacheLoader Interface and Lifecycle

Figure 9.1. The CacheLoader interface

The interaction between JBoss Cache and a CacheLoader implementation is as follows.

When CacheLoaderConfiguration (see below) is non-null, an instance of each configured

CacheLoader is created when the cache is created, and started when the cache is started.

CacheLoader.create() and CacheLoader.start() are called when the cache is started.

Correspondingly, stop() and destroy() are called when the cache is stopped.

Next, setConfig() and setCache() are called. The latter can be used to store a reference to the

cache, the former is used to configure this instance of the CacheLoader . For example, here a

database cache loader could establish a connection to the database.

The CacheLoader interface has a set of methods that are called when no transactions are used:

get() , put() , remove() and removeData() : they get/set/remove the value immediately. These

methods are described as javadoc comments in the interface.

Configuration

59

Then there are three methods that are used with transactions: prepare() , commit() and

rollback() . The prepare() method is called when a transaction is to be committed. It has a

transaction object and a list of modfications as argument. The transaction object can be used

as a key into a hashmap of transactions, where the values are the lists of modifications. Each

modification list has a number of Modification elements, which represent the changes made

to a cache for a given transaction. When prepare() returns successfully, then the cache loader

must be able to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the

right time.

The commit() method tells the cache loader to commit the transaction, and the rollback()

method tells the cache loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract

implementations would need to fulfill.

9.2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define

several cache loaders, in a chain. The impact is that the cache will look at all of the cache loaders in

the order they've been configured, until it finds a valid, non-null element of data. When performing

writes, all cache loaders are written to (except if the ignoreModifications element has been set

to true for a specific cache loader. See the configuration section below for details.

...

<!-- Cache loader config block -->

<!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

<loaders passivation="false" shared="false">

 <preload>

 <!-- Fqns to preload -->

 <node fqn="/some/stuff"/>

 </preload>

 <!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"

 fetchPersistentState="true"

 ignoreModifications="false" purgeOnStartup="false">

 <properties>

 cache.jdbc.driver=com.mysql.jdbc.Driver

 cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb

 cache.jdbc.user=root

 cache.jdbc.password=

 </properties>

Chapter 9. Cache Loaders

60

 </loader>

 </loaders>

The class element defines the class of the cache loader implementation. (Note that, because of

a bug in the properties editor in JBoss AS, backslashes in variables for Windows filenames might

not get expanded correctly, so replace="false" may be necessary). Note that an implementation

of cache loader has to have an empty constructor.

The properties element defines a configuration specific to the given implementation. The

filesystem-based implementation for example defines the root directory to be used, whereas

a database implementation might define the database URL, name and password to establish

a database connection. This configuration is passed to the cache loader implementation via

CacheLoader.setConfig(Properties) . Note that backspaces may have to be escaped.

preload allows us to define a list of nodes, or even entire subtrees, that are visited by the cache

on startup, in order to preload the data associated with those nodes. The default ("/") loads the

entire data available in the backend store into the cache, which is probably not a good idea given

that the data in the backend store might be large. As an example, /a, /product/catalogue

loads the subtrees /a and /product/catalogue into the cache, but nothing else. Anything else

is loaded lazily when accessed. Preloading makes sense when one anticipates using elements

under a given subtree frequently. .

fetchPersistentState determines whether or not to fetch the persistent state of a cache when

joining a cluster. Only one configured cache loader may set this property to true; if more than one

cache loader does so, a configuration exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run

on a separate thread so writes return immediately. If this is set to true, an instance of

org.jboss.cache.loader.AsyncCacheLoader is constructed with an instance of the actual

cache loader to be used. The AsyncCacheLoader then delegates all requests to the underlying

cache loader, using a separate thread if necessary. See the Javadocs on AsyncCacheLoader for

more details. If unspecified, the async element defaults to false .

Note on using the async element: there is always the possibility of dirty reads since all writes

are performed asynchronously, and it is thus impossible to guarantee when (and even if) a write

succeeds. This needs to be kept in mind when setting the async element to true.

ignoreModifications determines whether write methods are pushed down to the specific cache

loader. Situations may arise where transient application data should only reside in a file based

cache loader on the same server as the in-memory cache, for example, with a further shared

JDBCCacheLoader used by all servers in the network. This feature allows you to write to the 'local'

file cache loader but not the shared JDBCCacheLoader . This property defaults to false , so writes

are propagated to all cache loaders configured.

purgeOnStatup empties the specified cache loader (if ignoreModifications is false) when

the cache loader starts up.

Singleton Store Configuration

61

shared indicates that the cache loader is shared among different cache instances, for example

where all instances in a cluster use the same JDBC settings t talk to the same remote, shared

database. Setting this to true prevents repeated and unnecessary writes of the same data to the

cache loader by different cache instances. Default value is false .

9.2.1. Singleton Store Configuration

 <loaders passivation="false" shared="true">

 <preload>

 <node fqn="/a/b/c"/>

 <node fqn="/f/r/s"/>

 </preload>

 <!-- we can now have multiple cache loaders, which get chained -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"

 fetchPersistentState="false"

 ignoreModifications="false" purgeOnStartup="false">

 <properties>

 cache.jdbc.datasource=java:/DefaultDS

 </properties>

 <singletonStore enabled="true"

 class="org.jboss.cache.loader.SingletonStoreCacheLoader">

 <properties>

 pushStateWhenCoordinator=true

 pushStateWhenCoordinatorTimeout=20000

 </properties>

 </singletonStore>

 </loader>

 </loaders>

singletonStore element enables modifications to be stored by only one node in the cluster, the

coordinator. Essentially, whenever any data comes in to some node it is always replicated so as

to keep the caches' in-memory states in sync; the coordinator, though, has the sole responsibility

of pushing that state to disk. This functionality can be activated setting the enabled subelement

to true in all nodes, but again only the coordinator of the cluster will store the modifications in

the underlying cache loader as defined in loader element. You cannot define a cache loader as

shared and with singletonStore enabled at the same time. Default value for enabled is false .

Optionally, within the singletonStore element, you can define a class element that specifies

the implementation class that provides the singleton store functionality. This class must extend

org.jboss.cache.loader.AbstractDelegatingCacheLoader , and if absent, it defaults to

org.jboss.cache.loader.SingletonStoreCacheLoader .

Chapter 9. Cache Loaders

62

The properties subelement defines properties that allow changing the behavior of the

class providing the singleton store functionality. By default, pushStateWhenCoordinator and

pushStateWhenCoordinatorTimeout properties have been defined, but more could be added as

required by the user-defined class providing singleton store functionality.

pushStateWhenCoordinator allows the in-memory state to be pushed to the cache store when

a node becomes the coordinator, as a result of the new election of coordinator due to a cluster

topology change. This can be very useful in situations where the coordinator crashes and there's

a gap in time until the new coordinator is elected. During this time, if this property was set to

false and the cache was updated, these changes would never be persisted. Setting this property

to true would ensure that any changes during this process also get stored in the cache loader.

You would also want to set this property to true if each node's cache loader is configured with

a different location. Default value is true .

pushStateWhenCoordinatorTimeout is only relevant if pushStateWhenCoordinator is true in

which case, sets the maximum number of milliseconds that the process of pushing the in-memory

state to the underlying cache loader should take, reporting a PushStateException if exceeded.

Default value is 20000.

Note on using the singletonStore element: setting up a cache loader as a singleton and using

cache passivation (via evictions) can lead to undesired effects. If a node is to be passivated as a

result of an eviction, while the cluster is in the process of electing a new coordinator, the data will

be lost. This is because no coordinator is active at that time and therefore, none of the nodes in

the cluster will store the passivated node. A new coordinator is elected in the cluster when either,

the coordinator leaves the cluster, the coordinator crashes or stops responding.

9.3. Shipped Implementations

The currently available implementations shipped with JBoss Cache are as follows.

9.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilize the file system as a data store. They

all require that the <loader><properties> configuration element contains a location property,

which maps to a directory to be used as a persistent store. (e.g., location=/tmp/myDataStore

). Used mainly for testing and not recommended for production use.

• FileCacheLoader , which is a simple filesystem-based implementation. By default, this cache

loader checks for any potential character portability issues in the location or tree node names,

for example invalid characters, producing warning messages. These checks can be disabled

adding check.character.portability property to the <properties> element and setting it

to false (e.g., check.character.portability=false).

The FileCacheLoader has some severe limitations which restrict its use in a production

environment, or if used in such an environment, it should be used with due care and sufficient

understanding of these limitations.

Cache loaders that delegate to other caches

63

• Due to the way the FileCacheLoader represents a tree structure on disk (directories and files)

traversal is inefficient for deep trees.

• Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do

not implement proper file locking and can cause data corruption.

• Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt

to write to the same file.

• File systems are inherently not transactional, so when attempting to use your cache in a

transactional context, failures when writing to the file (which happens during the commit

phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCacheLoader not be used in a highly

concurrent, transactional or stressful environment, and its use is restricted to testing.

• BdbjeCacheLoader , which is a cache loader implementation based on the Oracle/Sleepycat's

BerkeleyDB Java Edition [http://www.oracle.com/database/berkeley-db/index.html] .

• JdbmCacheLoader , which is a cache loader implementation based on the JDBM engine [http:/

/jdbm.sourceforge.net/] , a fast and free alternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based

implementation, and provides transactional guarantees, but requires a commercial license if

distributed with an application (see http://www.oracle.com/database/berkeley-db/index.html for

details).

9.3.2. Cache loaders that delegate to other caches

• LocalDelegatingCacheLoader , which enables loading from and storing to another local (same

JVM) cache.

• ClusteredCacheLoader , which allows querying of other caches in the same cluster for in-

memory data via the same clustering protocols used to replicate data. Writes are not 'stored'

though, as replication would take care of any updates needed. You need to specify a property

called timeout , a long value telling the cache loader how many milliseconds to wait for

responses from the cluster before assuming a null value. For example, timeout = 3000 would

use a timeout value of 3 seconds.

9.3.3. JDBCCacheLoader

JBossCache is distributed with a JDBC-based cache loader implementation that

stores/loads nodes' state into a relational database. The implementing class is

org.jboss.cache.loader.JDBCCacheLoader .

The current implementation uses just one table. Each row in the table represents one node and

contains three columns:

• column for Fqn (which is also a primary key column)

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/

Chapter 9. Cache Loaders

64

• column for node contents (attribute/value pairs)

• column for parent Fqn

Fqns are stored as strings. Node content is stored as a BLOB. WARNING: JBoss Cache does not

impose any limitations on the types of objects used in Fqn but this implementation of cache loader

requires Fqn to contain only objects of type java.lang.String . Another limitation for Fqn is its

length. Since Fqn is a primary key, its default column type is VARCHAR which can store text values

up to some maximum length determined by the database in use.

See this wiki page [http://www.jboss.org/community/docs/DOC-10864] for configuration tips with

specific database systems.

9.3.3.1. JDBCCacheLoader configuration

9.3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

• cache.jdbc.table.name - the name of the table. Can be prepended with schema name for the

given table: {schema_name}.{table_name}. The default value is 'jbosscache'.

• cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is

'jbosscache_pk'.

• cache.jdbc.table.create - can be true or false. Indicates whether to create the table during

startup. If true, the table is created if it doesn't already exist. The default value is true.

• cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown.

The default value is true.

• cache.jdbc.fqn.column - FQN column name. The default value is 'fqn'.

• cache.jdbc.fqn.type - FQN column type. The default value is 'varchar(255)'.

• cache.jdbc.node.column - node contents column name. The default value is 'node'.

• cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must

specify a valid binary data type for the database being used.

9.3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can

specify the JNDI name of the DataSource you want to use.

• cache.jdbc.datasource - JNDI name of the DataSource. The default value is java:/DefaultDS .

9.3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access

using a JDBC driver.

http://www.jboss.org/community/docs/DOC-10864
http://www.jboss.org/community/docs/DOC-10864

JDBCCacheLoader

65

• cache.jdbc.driver - fully qualified JDBC driver name.

• cache.jdbc.url - URL to connect to the database.

• cache.jdbc.user - user name to connect to the database.

• cache.jdbc.password - password to connect to the database.

9.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server

standalone using the c3p0:JDBC DataSources/Resource Pools library. In order to enable it, just

edit the following property:

• cache.jdbc.connection.factory - Connection factory class name. If not set, it defaults to standard

non-pooled implementation. To enable c3p0 pooling, just set the connection factory class for

c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties section but don't

forget to start the property name with 'c3p0.'. To find a list of available properties, please check the

c3p0 documentation for the c3p0 library version distributed in c3p0:JDBC DataSources/Resource

Pools [http://sourceforge.net/projects/c3p0] . Also, in order to provide quick and easy way to try out

different pooling parameters, any of these properties can be set via a System property overriding

any values these properties might have in the JBoss Cache XML configuration file, for example:

-Dc3p0.maxPoolSize=20 . If a c3p0 property is not defined in either the configuration file or as a

System property, default value, as indicated in the c3p0 documentation, will apply.

9.3.3.1.5. Configuration example

Below is an example of a JDBCCacheLoader using Oracle as database. The

CacheLoaderConfiguration XML element contains an arbitrary set of properties which define the

database-related configuration.

<loaders passivation="false" shared="false">

 <preload>

 <node fqn="/some/stuff"/>

 </preload>

 <!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"

 fetchPersistentState="true"

 ignoreModifications="false" purgeOnStartup="false">

 <properties>

 cache.jdbc.table.name=jbosscache

 cache.jdbc.table.create=true

 cache.jdbc.table.drop=true

 cache.jdbc.table.primarykey=jbosscache_pk

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0

Chapter 9. Cache Loaders

66

 cache.jdbc.fqn.column=fqn

 cache.jdbc.fqn.type=VARCHAR(255)

 cache.jdbc.node.column=node

 cache.jdbc.node.type=BLOB

 cache.jdbc.parent.column=parent

 cache.jdbc.driver=oracle.jdbc.OracleDriver

 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB

 cache.jdbc.user=SCOTT

 cache.jdbc.password=TIGER

 </properties>

 </loader>

 </loaders>

As an alternative to configuring the entire JDBC connection, the name of an existing data source

can be given:

 <loaders passivation="false" shared="false">

 <preload>

 <node fqn="/some/stuff"/>

 </preload>

 <!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"

 fetchPersistentState="true"

 ignoreModifications="false" purgeOnStartup="false">

 <properties>

 cache.jdbc.datasource=java:/DefaultDS

 </properties>

 </loader>

 </loaders>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

 <loaders passivation="false" shared="false">

 <preload>

 <node fqn="/some/stuff"/>

 </preload>

 <!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"

 fetchPersistentState="true"

 ignoreModifications="false" purgeOnStartup="false">

S3CacheLoader

67

 <properties>

 cache.jdbc.table.name=jbosscache

 cache.jdbc.table.create=true

 cache.jdbc.table.drop=true

 cache.jdbc.table.primarykey=jbosscache_pk

 cache.jdbc.fqn.column=fqn

 cache.jdbc.fqn.type=VARCHAR(255)

 cache.jdbc.node.column=node

 cache.jdbc.node.type=BLOB

 cache.jdbc.parent.column=parent

 cache.jdbc.driver=oracle.jdbc.OracleDriver

 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB

 cache.jdbc.user=SCOTT

 cache.jdbc.password=TIGER

 cache.jdbc.connection.factory=org.jboss.cache.loader.C3p0ConnectionFactory

 c3p0.maxPoolSize=20

 c3p0.checkoutTimeout=5000

 </properties>

 </loader>

 </loaders>

9.3.4. S3CacheLoader

The S3CacheLoader uses the Amazon S3 [http://aws.amazon.com/] (Simple Storage Solution) for

storing cache data. Since Amazon S3 is remote network storage and has fairly high latency, it is

really best for caches that store large pieces of data, such as media or files. But consider this cache

loader over the JDBC or file system based cache loaders if you want remotely managed, highly

reliable storage. Or, use it for applications running on Amazon's EC2 (Elastic Compute Cloud).

If you're planning to use Amazon S3 for storage, consider using it with JBoss Cache. JBoss Cache

itself provides in-memory caching for your data to minimize the amount of remote access calls,

thus reducing the latency and cost of fetching your Amazon S3 data. With cache replication, you

are also able to load data from your local cluster without having to remotely access it every time.

Note that Amazon S3 does not support transactions. If transactions are used in your application

then there is some possibility of state inconsistency when using this cache loader. However, writes

are atomic, in that if a write fails nothing is considered written and data is never corrupted.

Data is stored in keys based on the Fqn of the Node and Node data is serialized as a java.util.Map

using the CacheSPI.getMarshaller() instance. Read the javadoc on how data is structured and

stored. Data is stored using Java serialization. Be aware this means data is not readily accessible

over HTTP to non-JBoss Cache clients. Your feedback and help would be appreciated to extend

this cache loader for that purpose.

With this cache loader, single-key operations such as Node.remove(Object) and

Node.put(Object, Object) are the slowest as data is stored in a single Map instance. Use bulk

http://aws.amazon.com/
http://aws.amazon.com/

Chapter 9. Cache Loaders

68

operations such as Node.replaceAll(Map) and Node.clearData() for more efficiency. Try the

cache.s3.optimize option as well.

9.3.4.1. Amazon S3 Library

The S3 cache loader is provided with the default distribution but requires a library to access the

service at runtime. This runtime library may be obtained through a Sourceforge Maven Repository.

Include the following sections in your pom.xml file:

 <repository>

 <id>e-xml.sourceforge.net</id>

 <url>http://e-xml.sourceforge.net/maven2/repository</url>

 </repository>

 ...

 <dependency>

 <groupId>net.noderunner</groupId>

 <artifactId>amazon-s3</artifactId>

 <version>1.0.0.0</version>

 <scope>runtime</scope>

 </dependency>

If you do not use Maven, you can still download the amazon-s3 library by navigating the repository

or through this URL [http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/

1.0.0.0/amazon-s3-1.0.0.0.jar].

9.3.4.2. Configuration

At a minimum, you must configure your Amazon S3 access key and secret access key. The

following configuration keys are listed in general order of utility.

• cache.s3.accessKeyId - Amazon S3 Access Key, available from your account profile.

• cache.s3.secretAccessKey - Amazon S3 Secret Access Key, available from your account

profile. As this is a password, be careful not to distribute it or include this secret key in built

software.

• cache.s3.secure - The default isfalse: Traffic is sent unencrypted over the public Internet.

Set to true to use HTTPS. Note that unencrypted uploads and downloads use less CPU.

• cache.s3.bucket - Name of the bucket to store data. For different caches using the same

access key, use a different bucket name. Read the S3 documentation on the definition of a

bucket. The default value isjboss-cache.

http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar

TcpDelegatingCacheLoader

69

• cache.s3.callingFormat - One ofPATH,SUBDOMAIN, or VANITY. Read the S3 documentation

on the use of calling domains. The default value isSUBDOMAIN.

• cache.s3.optimize - The default isfalse. If true, put(Map) operations replace the data stored

at an Fqn rather than attempt to fetch and merge. (This option is fairly experimental at the

moment.)

• cache.s3.parentCache - The default istrue. Set this value to false if you are using multiple

caches sharing the same S3 bucket, that remove parent nodes of nodes being created in other

caches. (This is not a common use case.)

JBoss Cache stores nodes in a tree format and automatically creates intermediate parent nodes

as necessary. The S3 cache loader must also create these parent nodes as well to allow for

operations such as getChildrenNames to work properly. Checking if all parent nodes exists for

every put operation is fairly expensive, so by default the cache loader caches the existence

of these parent nodes.

• cache.s3.location - This choses a primary storage location for your data to reduce loading

and retrieval latency. Set to EU to store data in Europe. The default isnull, to store data in the

United States.

9.3.5. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which

could reside (a) in the same address space, (b) in a different process on the same host, or (c) in

a different process on a different host.

A TcpDelegatingCacheLoader talks to a remote

org.jboss.cache.loader.tcp.TcpCacheServer , which can be a standalone process started

on the command line, or embedded as an MBean inside JBoss AS. The TcpCacheServer has a

reference to another JBoss Cache instance, which it can create itself, or which is given to it (e.g.

by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDelegatingCacheLoader transparently handles reconnects if

the connection to the TcpCacheServer is lost.

The TcpDelegatingCacheLoader is configured with the host and port of the remote

TcpCacheServer, and uses this to communicate to it. In addition, 2 new optional parameters are

used to control transparent reconnecting to the TcpCacheServer. The timeout property (defaults

to 5000) specifies the length of time the cache loader must continue retrying to connect to the

TcpCacheServer before giving up and throwing an exception. The reconnectWaitTime (defaults

to 500) is how long the cache loader should wait before attempting a reconnect if it detects a

communication failure. The last two parameters can be used to add a level of fault tolerance to

the cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

Chapter 9. Cache Loaders

70

 <loaders passivation="false" shared="false">

 <preload>

 <node fqn="/"/>

 </preload>

 <!-- if passivation is true, only the first cache loader is used; the rest are ignored -->

 <loader class="org.jboss.cache.loader.TcpDelegatingCacheLoader">

 <properties>

 host=myRemoteServer

 port=7500

 timeout=10000

 reconnectWaitTime=250

 </properties>

 </loader>

 </loaders>

This means this instance of JBoss Cache will delegate all load and store requests to the remote

TcpCacheServer running on myRemoteServer:7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all

delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to

a database via JDBCCacheLoader, but the point here is that - if we have 5 nodes all accessing

the same dataset - they will load the data from the TcpCacheServer, which has do execute one

SQL statement per unloaded data set. If the nodes went directly to the database, then we'd have

the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in front of

the DB (assuming that a network round trip is faster than a DB access (which usually also include

a network round trip)).

To alleviate single point of failure, we could configure several cache loaders. The first cache

loader is a ClusteredCacheLoader, the second a TcpDelegatingCacheLoader, and the last a

JDBCacheLoader, effectively defining our cost of access to a cache in increasing order.

9.3.6. Transforming Cache Loaders

The way cached data is written to FileCacheLoader and JDBCCacheLoader based cache stores

has changed in JBoss Cache 2.0 in such way that these cache loaders now write and read data

using the same marhalling framework used to replicate data across the network. Such change is

trivial for replication purposes as it just requires the rest of the nodes to understand this format.

However, changing the format of the data in cache stores brings up a new problem: how do users,

which have their data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss Cache

2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader

implementations called org.jboss.cache.loader.TransformingFileCacheLoader and

org.jboss.cache.loader.TransformingJDBCCacheLoader located within the optional

jbosscache-cacheloader-migration.jar file. These are one-off cache loaders that read data from

Cache Passivation

71

the cache store in JBoss Cache 1.x.x format and write data to cache stores in JBoss Cache 2.0

format.

The idea is for users to modify their existing cache configuration file(s) momentarily to use these

cache loaders and for them to create a small Java application that creates an instance of this

cache, recursively reads the entire cache and writes the data read back into the cache. Once the

data is transformed, users can revert back to their original cache configuration file(s). In order

to help the users with this task, a cache loader migration example has been constructed which

can be located under the examples/cacheloader-migration directory within the JBoss Cache

distribution. This example, called examples.TransformStore , is independent of the actual data

stored in the cache as it writes back whatever it was read recursively. It is highly recommended

that anyone interested in porting their data run this example first, which contains a readme.txt file

with detailed information about the example itself, and also use it as base for their own application.

9.4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to

a secondary data store (e.g., file system, database) on eviction. Cache Activation is the process

of restoring an object from the data store into the in-memory cache when it's needed to be used.

In both cases, the configured cache loader will be used to read from the data store and write to

the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a

notification that the node is being passivated will be emitted to the cache listeners and the node

and its children will be stored in the cache loader store. When a user attempts to retrieve a node

that was evicted earlier, the node is loaded (lazy loaded) from the cache loader store into memory.

When the node and its children have been loaded, they're removed from the cache loader and a

notification is emitted to the cache listeners that the node has been activated.

To enable cache passivation/activation, you can set passivation to true. The default is false .

When passivation is used, only the first cache loader configured is used and all others are ignored.

9.4.1. Cache Loader Behavior with Passivation Disabled vs.

Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that

modification is persisted in the backend store via the cache loader. There is no direct relationship

between eviction and cache loading. If you don't use eviction, what's in the persistent store is

basically a copy of what's in memory. If you do use eviction, what's in the persistent store is

basically a superset of what's in memory (i.e. it includes nodes that have been evicted from

memory).

When passivation is enabled, there is a direct relationship between eviction and the cache loader.

Writes to the persistent store via the cache loader only occur as part of the eviction process. Data

is deleted from the persistent store when the application reads it back into memory. In this case,

Chapter 9. Cache Loaders

72

what's in memory and what's in the persistent store are two subsets of the total information set,

with no intersection between the subsets.

Following is a simple example, showing what state is in RAM and in the persistent store after each

step of a 6 step process:

1. Insert /A

2. Insert /B

3. Eviction thread runs, evicts /A

4. Read /A

5. Eviction thread runs, evicts /B

6. Remove /B

When passivation is disabled:

 1) Memory: /A Disk: /A

 2) Memory: /A, /B Disk: /A, /B

 3) Memory: /B Disk: /A, /B

 4) Memory: /A, /B Disk: /A, /B

 5) Memory: /A Disk: /A, /B

 6) Memory: /A Disk: /A

When passivation is enabled:

 1) Memory: /A Disk:

 2) Memory: /A, /B Disk:

 3) Memory: /B Disk: /A

 4) Memory: /A, /B Disk:

 5) Memory: /A Disk: /B

 6) Memory: /A Disk:

9.5. Strategies

This section discusses different patterns of combining different cache loader types and

configuration options to achieve specific outcomes.

Local Cache With Store

73

9.5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode is LOCAL ,

therefore no replication is going on. The cache loader simply loads non-existing elements from

the store and stores modifications back to the store. When the cache is started, depending on the

preload element, certain data can be preloaded, so that the cache is partly warmed up.

9.5.2. Replicated Caches With All Caches Sharing The Same

Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

Figure 9.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store. This could for

example be a shared filesystem (using the FileCacheLoader), or a shared database. Because

both nodes access the same store, they don't necessarily need state transfer on startup. 1 Rather,

the FetchInMemoryState attribute could be set to false, resulting in a 'cold' cache, that gradually

warms up as elements are accessed and loaded for the first time. This would mean that individual

caches in a cluster might have different in-memory state at any given time (largely depending on

their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For

example, if node1 made change C1 and node2 C2, then node1 would tell its cache loader to store

C1, and node2 would tell its cache loader to store C2.

1Of course they can enable state transfer, if they want to have a warm or hot cache after startup.

Chapter 9. Cache Loaders

74

9.5.3. Replicated Caches With Only One Cache Having A Store

Figure 9.3. 2 nodes but only one accesses the backend store

This is a similar case to the previous one, but here only one node in the cluster interacts with a

backend store via its cache loader. All other nodes perform in-memory replication. The idea here is

all application state is kept in memory in each node, with the existence of multiple caches making

the data highly available. (This assumes that a client that needs the data is able to somehow fail

over from one cache to another.) The single persistent backend store then provides a backup

copy of the data in case all caches in the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronously, that

is not on the caller's thread, in order not to slow down the cluster by accessing (for example) a

database. This is a non-issue when using asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a

single point of failure. Furthermore, if the cluster is restarted, the cache with the cache loader must

be started first (easy to forget). A solution to the first problem is to configure a cache loader on each

node, but set the singletonStore configuration to true. With this kind of setup, one but only one

node will always be writing to a persistent store. However, this complicates the restart problem,

as before restarting you need to determine which cache was writing before the shutdown/failure

and then start that cache first.

Replicated Caches With Each Cache Having Its

Own Store

75

9.5.4. Replicated Caches With Each Cache Having Its Own

Store

Figure 9.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the

cluster and (b) persisted using the cache loader. This means that all datastores have exactly the

same state. When replicating changes synchronously and in a transaction, the two phase commit

protocol takes care that all modifications are replicated and persisted in each datastore, or none

is replicated and persisted (atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement recovery. When

used with a transaction manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is always a full state

transfer, overwriting any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed. During this

time, it will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using loadEntireState() . It

then sends back that state to the new node.

Chapter 9. Cache Loaders

76

4. The new node then tells its cache loader to store that state in its store, overwriting the old state.

This is the CacheLoader.storeEntireState() method

5. As an option, the transient (in-memory) state can be transferred as well during the state transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster, and

modifications received from other nodes will now be persisted using the local cache loader.

9.5.5. Hierarchical Caches

If you need to set up a hierarchy within a single JVM, you can use the

LocalDelegatingCacheLoader . This type of hierarchy can currently only be set up

programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server, using the

TcpDelegatingCacheLoader .

Multiple Cache Loaders

77

Figure 9.5. TCP delegating cache loader

9.5.6. Multiple Cache Loaders

You can set up more than one cache loader in a chain. Internally, a delegating

ChainingCacheLoader is used, with references to each cache loader you have configured. Use

cases vary depending on the type of cache loaders used in the chain. One example is using a

Chapter 9. Cache Loaders

78

filesystem based cache loader, co-located on the same host as the JVM, used as an overflow for

memory. This ensures data is available relatively easily and with low cost. An additional remote

cache loader, such as a TcpDelegatingCacheLoader provides resilience between server restarts.

Multiple Cache Loaders

79

Figure 9.6. Multiple cache loaders in a chain

80

Chapter 10.

81

Eviction
Eviction controls JBoss Cache's memory management by restricting how many nodes are allowed

to be stored in memory, and for how long. Memory constraints on servers mean caches cannot

grow indefinitely, so eviction needs to occur to prevent out of memory errors. Eviction is most

often used alongside cache loaders.

10.1. Design

Eviction in JBoss Cache is designed around four concepts:

• 1. Collecting statistics

• 2. Determining which nodes to evict

• 3. How nodes are evicted

• 4. Eviction threads.

In addition, Regions play a key role in eviction, as eviction is always configured on a per-region

basis so that different subtrees in the cache can have different eviction characteristics.

10.1.1. Collecting Statistics

This is done on the caller's thread whenever anyone interacts with the cache. If eviction is enabled,

an EvictionInterceptor is added to the interceptor chain and events are recorded in an event

queue. Events are denoted by the EvictionEvent class. Event queues are held on specific

Regions so each region has its own event queue.

This aspect of eviction is not configurable, except that the EvictionInterceptor is either added

to the interceptor chain or not, depending on whether eviction is enabled.

10.1.2. Determining Which Nodes to Evict

An EvictionAlgorithm implementation processes the eviction queue to decide which

nodes to evict. JBoss Cache ships with a number of implementations, including

FIFOAlgorithm, LRUAlgorithm, LFUAlgorithm, etc. Each implementation has a corresponding

EvictionAlgorithmConfig implementation with configuration details for the algorithm.

Custom EvictionAlgorithm implementations can be provided by implementing the interface or

extending one of the provided implementations.

Algorithms are executed by calling its process() method and passing in the event queue to

process. This is typically done by calling Region.processEvictionQueues(), which will locate

the Algorithm assigned to the region.

Chapter 10. Eviction

82

10.1.3. How Nodes are Evicted

Once the EvictionAlgorithm decides which nodes to evict, it uses an implementation of

EvictionActionPolicy to determine how to evict nodes. This is configurable on a per-region

basis, and defaults to DefaultEvictionActionPolicy, which invokes Cache.evict() for each

node that needs to be evicted.

JBoss Cache also ships with RemoveOnEvictActionPolicy, which calls Cache.removeNode()

for each node that needs to be evicted, instead of Cache.evict().

Custom EvictionActionPolicy implementations can be used as well.

10.1.4. Eviction threads

By default, a single cache-wide eviction thread is used to periodically iterate through registered

regions and call Region.processEvictionQueues() on each region. The frequency with which

this thread runs can be configured using the wakeUpInterval attribute in the eviction

configuration element, and defaults to 5000 milliseconds if not specified.

The eviction thread can be disabled by setting wakeUpInterval to 0. This can be useful if you

have your own periodic maintenance thread running and would like to iterate through regions and

call Region.processEvictionQueues() yourself.

10.2. Eviction Regions

The concept of regions and the Region class were visited earlier when talking about marshalling.

Regions are also used to define the eviction behavior for nodes within that region. In addition to

using a region-specific configuration, you can also configure default, cache-wide eviction behavior

for nodes that do not fall into predefined regions or if you do not wish to define specific regions.

It is important to note that when defining regions using the configuration XML file, all elements of

the Fqn that defines the region are String objects.

For each region, you can define eviction parameters.

It's possible to define regions that overlap. In other words, one region can be defined for /a/b/

c, and another defined for /a/b/c/d (which is just the d subtree of the /a/b/c sub-tree). The

algorithm, in order to handle scenarios like this consistently, will always choose the first region

it encounters. In this way, if the algorithm needed to decide how to handle node /a/b/c/d/e, it

would start from there and work its way up the tree until it hits the first defined region - in this

case /a/b/c/d.

10.2.1. Resident Nodes

Nodes marked as resident (using Node.setResident() API) will be ignored by the eviction

policies both when checking whether to trigger the eviction and when proceeding with the actual

eviction of nodes. E.g. if a region is configured to have a maximum of 10 nodes, resident nodes

won't be counted when deciding whether to evict nodes in that region. In addition, resident nodes

will not be considered for eviction when the region's eviction threshold is reached.

Configuring Eviction

83

In order to mark a node as resident the Node.setResident() API should be used. By default,

the newly created nodes are not resident. The resident attribute of a node is neither replicated,

persisted nor transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add "noise" to an

eviction policy. E.g.,:

...

 Map lotsOfData = generateData();

 cache.put("/a/b/c", lotsOfData);

 cache.getRoot().getChild("/a").setResident(true);

 cache.getRoot().getChild("/a/b").setResident(true);

...

In this example, the nodes /a and /a/b are paths which exist solely to support the existence of

node /a/b/c and don't hold any data themselves. As such, they are good candidates for being

marked as resident. This would lead to better memory management as no eviction events would

be generated when accessing /a and/a/b.

N.B. when adding attributes to a resident node, e.g. cache.put("/a", "k", "v") in the above

example, it would make sense to mark the nodes as non-resident again and let them be considered

for eviction..

10.3. Configuring Eviction

10.3.1. Basic Configuration

The basic eviction configuration element looks like:

 ...

 <eviction wakeUpInterval="500" eventQueueSize="100000">

 <default algorithmClass="org.jboss.cache.eviction.LRUAlgorithm">

 <property name="maxNodes" value="5000" />

 <property name="timeToLive" value="1000" />

 </default>

 </eviction>

 ...

• wakeUpInterval - this required parameter defines how often the eviction thread runs, in

milliseconds.

Chapter 10. Eviction

84

• eventQueueSize - this optional parameter defines the size of the bounded queue which holds

eviction events. If your eviction thread does not run often enough, you may find that the event

queue fills up. It may then be necessary to get your eviction thread to run more frequently, or

increase the size of your event queue. This configuration is just the default event queue size,

and can be overridden in specific eviction regions. If not specified, this defaults to 200000.

• algorithmClass - this is required, unless you set individual algorithmClass attributes on each

and every region. This defines the default eviction algorithm to use if one is not defined for a

region.

• Algorithm configuration attributes - these are specific to the algorithm specified in

algorithmClass. See the section specific to the algorithm you are interested in for details.

10.3.2. Programmatic Configuration

Configuring eviction using the Configuration object entails the use of

the org.jboss.cache.config.EvictionConfig bean, which is passed into

Configuration.setEvictionConfig(). See the chapter on Configuration for more on building

a Configuration programatically.

The use of simple POJO beans to represent all elements in a cache's configuration also makes it

fairly easy to programatically add eviction regions after the cache is started. For example, assume

we had an existing cache configured via XML with the EvictionConfig element shown above. Now

at runtime we wished to add a new eviction region named "/org/jboss/fifo", using LRUAlgorithm

but a different number of maxNodes:

 Fqn fqn = Fqn.fromString("/org/jboss/fifo");

 // Create a configuration for an LRUPolicy

 LRUAlgorithmConfig lruc = new LRUAlgorithmConfig();

 lruc.setMaxNodes(10000);

 // Create an eviction region config

 EvictionRegionConfig erc = new EvictionRegionConfig(fqn, lruc);

 // Create the region and set the config

 Region region = cache.getRegion(fqn, true);

 region.setEvictionRegionConfig(erc);

10.4. Shipped Eviction Policies
This section details the different algorithms shipped with JBoss Cache, and the various

configuration parameters used for each algorithm.

LRUAlgorithm - Least Recently Used

85

10.4.1. LRUAlgorithm - Least Recently Used

org.jboss.cache.eviction.LRUAlgorithm controls both the node lifetime and age. This policy

guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following

configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

• timeToLive - The amount of time a node is not written to or read (in milliseconds) before the

node is swept away. 0 denotes immediate expiry, -1 denotes no limit.

• maxAge - Lifespan of a node (in milliseconds) regardless of idle time before the node is swept

away. 0 denotes immediate expiry, -1 denotes no limit.

• minTimeToLive - the minimum amount of time a node must be allowed to live after being

accessed before it is allowed to be considered for eviction. 0 denotes that this feature is disabled,

which is the default value.

10.4.2. FIFOAlgorithm - First In, First Out

org.jboss.cache.eviction.FIFOAlgorithm controls the eviction in a proper first in first out

order. This policy guarantees a constant order (O (1)) for adds, removals and lookups (visits).

It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

• minTimeToLive - the minimum amount of time a node must be allowed to live after being

accessed before it is allowed to be considered for eviction. 0 denotes that this feature is disabled,

which is the default value.

10.4.3. MRUAlgorithm - Most Recently Used

org.jboss.cache.eviction.MRUAlgorithm controls the eviction in based on most recently used

algorithm. The most recently used nodes will be the first to evict with this policy. This policy

guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following

configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

• minTimeToLive - the minimum amount of time a node must be allowed to live after being

accessed before it is allowed to be considered for eviction. 0 denotes that this feature is disabled,

which is the default value.

Chapter 10. Eviction

86

10.4.4. LFUAlgorithm - Least Frequently Used

org.jboss.cache.eviction.LFUAlgorithm controls the eviction in based on least frequently

used algorithm. The least frequently used nodes will be the first to evict with this policy. Node

usage starts at 1 when a node is first added. Each time it is visited, the node usage counter

increments by 1. This number is used to determine which nodes are least frequently used. LFU

is also a sorted eviction algorithm. The underlying EvictionQueue implementation and algorithm

is sorted in ascending order of the node visits counter. This class guarantees a constant order (

O (1)) for adds, removal and searches. However, when any number of nodes are added/visited

to the queue for a given processing pass, a single quasilinear (O (n * log n)) operation is

used to resort the queue in proper LFU order. Similarly if any nodes are removed or evicted, a

single linear (O (n)) pruning operation is necessary to clean up the EvictionQueue. LFU has

the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

• minNodes - This is the minimum number of nodes allowed in this region. This value determines

what the eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache

grows to 100 nodes, the cache is pruned down to the 10 most frequently used nodes when the

eviction timer makes a pass through the eviction algorithm.

• minTimeToLive - the minimum amount of time a node must be allowed to live after being

accessed before it is allowed to be considered for eviction. 0 denotes that this feature is disabled,

which is the default value.

10.4.5. ExpirationAlgorithm

org.jboss.cache.eviction.ExpirationAlgorithm is a policy that evicts nodes based

on an absolute expiration time. The expiration time is indicated using the

org.jboss.cache.Node.put() method, using a String key expiration and the absolute time as

a java.lang.Long object, with a value indicated as milliseconds past midnight January 1st, 1970

UTC (the same relative time as provided by java.lang.System.currentTimeMillis()).

This policy guarantees a constant order (O (1)) for adds and removals. Internally, a sorted

set (TreeSet) containing the expiration time and Fqn of the nodes is stored, which essentially

functions as a heap.

This policy has the following configuration parameters:

• expirationKeyName - This is the Node key name used in the eviction algorithm. The

configuration default is expiration .

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

The following listing shows how the expiration date is indicated and how the policy is applied:

ElementSizeAlgorithm - Eviction based on

number of key/value pairs in a node

87

 Cache cache = DefaultCacheFactory.createCache();

 Fqn fqn1 = Fqn.fromString("/node/1");

 Long future = new Long(System.currentTimeMillis() + 2000);

 // sets the expiry time for a node

 cache.getRoot().addChild(fqn1).put(ExpirationConfiguration.EXPIRATION_KEY, future);

 assertTrue(cache.getRoot().hasChild(fqn1));

 Thread.sleep(5000);

 // after 5 seconds, expiration completes

 assertFalse(cache.getRoot().hasChild(fqn1));

Note that the expiration time of nodes is only checked when the region manager wakes up every

wakeUpIntervalSeconds , so eviction may happen a few seconds later than indicated.

10.4.6. ElementSizeAlgorithm - Eviction based on number of

key/value pairs in a node

org.jboss.cache.eviction.ElementSizeAlgorithm controls the eviction in based on the

number of key/value pairs in the node. Nodes The most recently used nodes will be the first to

evict with this policy. It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate

expiry, -1 denotes no limit.

• maxElementsPerNode - This is the trigger number of attributes per node for the node to be

selected for eviction. 0 denotes immediate expiry, -1 denotes no limit.

• minTimeToLive - the minimum amount of time a node must be allowed to live after being

accessed before it is allowed to be considered for eviction. 0 denotes that this feature is disabled,

which is the default value.

88

Chapter 11.

89

Transactions and Concurrency

11.1. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling

concurrent access. It uses an innovative implementation of multi-versioned concurrency control

(MVCC [http://en.wikipedia.org/wiki/Multiversion_concurrency_control]) as the default locking

scheme. Versions of JBoss Cache prior to 3.x offered Optimistic and Pessimistic Locking

schemes, both of which are now deprecated in favor of MVCC.

11.1.1. Multi-Version Concurrency Control (MVCC)

MVCC [http://en.wikipedia.org/wiki/Multiversion_concurrency_control] is a locking scheme

commonly used by modern database implementations to control fast, safe concurrent access to

shared data.

11.1.1.1. MVCC Concepts

MVCC is designed to provide the following features for concurrent access:

• Readers that don't block writers

• Writers that fail fast

and achieves this by using data versioning and copying for concurrent writers. The theory is that

readers continue reading shared state, while writers copy the shared state, increment a version id,

and write that shared state back after verifying that the version is still valid (i.e., another concurrent

writer has not changed this state first).

This allows readers to continue reading while not preventing writers from writing, and repeatable

read semantics are maintained by allowing readers to read off the old version of the state.

11.1.1.2. MVCC Implementation

JBoss Cache's implementation of MVCC is based on a few features:

• Readers don't acquire any locks

• Only one additional version is maintained for shared state, for a single writer

• All writes happen sequentially, to provide fail-fast semantics

The extremely high performance of JBoss Cache's MVCC implementation for reading threads is

achieved by not requiring any synchronization or locking for readers. For each reader thread, the

MVCCLockingInterceptor wraps state in a lightweight container object, which is placed in the

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Chapter 11. Transactions and ...

90

thread's InvocationContext (or TransactionContext if running in a transaction). All subsequent

operations on the state happens via the container object. This use of Java references allows for

repeatable read semantics even if the actual state changes simultaneously.

Writer threads, on the other hand, need to acquire a lock before any writing can commence.

Currently, we use lock striping to improve the memory performance of the cache, and the size of

the shared lock pool can be tuned using the concurrencyLevel attribute of the locking element.

See the configuration reference for details. After acquiring an exclusive lock on an Fqn, the writer

thread then wraps the state to be modified in a container as well, just like with reader threads,

and then copies this state for writing. When copying, a reference to the original version is still

maintained in the container (for rollbacks). Changes are then made to the copy and the copy is

finally written to the data structure when the write completes.

This way, subsequent readers see the new version while existing readers still hold a reference

to the original version in their context.

If a writer is unable to acquire the write lock after some time, a TimeoutException is

thrown. This lock acquisition timeout defaults to 10000 millis and can be configured using the

lockAcquisitionTimeout attribute of the locking element. See the configuration reference for

details.

11.1.1.2.1. Isolation Levels

JBoss Cache 3.x supports two isolation levels: REPEATABLE_READ and READ_COMMITTED,

which correspond in semantic to database-style isolation levels [http://en.wikipedia.org/wiki/

Isolation_level]. Previous versions of JBoss Cache supported all 5 database isolation levels, and

if an unsupported isolation level is configured, it is either upgraded or downgraded to the closest

supported level.

REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions

of JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant

performance benefit over REPEATABLE_READ.

11.1.1.2.2. Concurrent Writers and Write-Skews

Although MVCC forces writers to obtain a write lock, a phenomenon known as write skews may

occur when using REPEATABLE_READ:

http://en.wikipedia.org/wiki/Isolation_level
http://en.wikipedia.org/wiki/Isolation_level
http://en.wikipedia.org/wiki/Isolation_level

Multi-Version Concurrency Control (MVCC)

91

This happens when concurrent transactions performing a read and then a write, based on the

value that was read. Since reads involve holding on to the reference to the state in the transaction

context, a subsequent write would work off that original state read, which may now be stale.

Chapter 11. Transactions and ...

92

The default behavior with dealing with a write skew is to throw a DataVersioningException,

when it is detected when copying state for writing. However, in most applications, a write skew

may not be an issue (for example, if the state written has no relationship to the state originally read)

and should be allowed. If your application does not care about write skews, you can allow them

to happen by setting the writeSkewCheck configuration attribute to false. See the configuration

reference for details.

Note that write skews cannot happen when using READ_COMMITTED since threads always work

off committed state.

11.1.1.3. Configuring Locking

Configuring MVCC involves using the <locking /> configuration tag, as follows:

 <locking

 isolationLevel="REPEATABLE_READ"

 lockAcquisitionTimeout="10234"

 nodeLockingScheme="mvcc"

 writeSkewCheck="false"

 concurrencyLevel="1000" />

• nodeLockingScheme - the node locking scheme used. Defaults to MVCC if not provided,

deprecated schemes such as pessimistic or optimistic may be used but is not encouraged.

• isolationLevel - transaction isolation level. Defaults to REPEATABLE_READ if not provided.

• writeSkewCheck - defaults to true if not provided.

• concurrencyLevel - defaults to 500 if not provided.

• lockAcquisitionTimeout - only applies to writers when using MVCC. Defaults to 10000 if not

provided.

11.1.2. Pessimistic and Optimistic Locking Schemes

From JBoss Cache 3.x onwards, pessimistic and optimistic locking schemes are deprecated

in favor of MVCC. It is recommended that existing applications move off these legacy locking

schemes as support for them will eventually be dropped altogether in future releases.

Documentation for legacy locking schemes are not included in this user guide, and if necessary,

can be referenced in previous versions of this document, which can be found on the JBoss Cache

website [http://www.jboss.org/jbosscache].

http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache

JTA Support

93

11.2. JTA Support

JBoss Cache can be configured to use and participate in JTA [http://java.sun.com/javaee/

technologies/jta/] compliant transactions. Alternatively, if transaction support is disabled, it is

equivalent to using autocommit in JDBC calls, where modifications are potentially replicated after

every change (if replication is enabled).

What JBoss Cache does on every incoming call is:

1. Retrieve the current javax.transaction.Transaction associated with the thread

2. If not already done, register a javax.transaction.Synchronization with the transaction

manager to be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's

javax.transaction.TransactionManager. This is usually done by configuring the cache with

the class name of an implementation of the TransactionManagerLookup interface. When the

cache starts, it will create an instance of this class and invoke its getTransactionManager()

method, which returns a reference to the TransactionManager.

JBoss Cache ships with JBossTransactionManagerLookup and

GenericTransactionManagerLookup. The JBossTransactionManagerLookup is able to

http://java.sun.com/javaee/technologies/jta/
http://java.sun.com/javaee/technologies/jta/
http://java.sun.com/javaee/technologies/jta/

Chapter 11. Transactions and ...

94

bind to a running JBoss AS instance and retrieve a TransactionManager while

the GenericTransactionManagerLookup is able to bind to most popular Java EE

application servers and provide the same functionality. A dummy implementation -

DummyTransactionManagerLookup - is also provided for unit tests. Being a dummy, this is

not recommended for production use a it has some severe limitations to do with concurrent

transactions and recovery.

An alternative to configuring a TransactionManagerLookup is to programatically inject a

reference to the TransactionManager into the Configuration object's RuntimeConfig element:

 TransactionManager tm = getTransactionManager(); // magic method

 cache.getConfiguration().getRuntimeConfig().setTransactionManager(tm);

Injecting the TransactionManager is the recommended approach when the Configuration is

built by some sort of IOC container that already has a reference to the TransactionManager.

When the transaction commits, we initiate either a one- two-phase commit protocol. See replicated

caches and transactions for details.

Part III. JBoss Cache

Configuration References
This section contains technical references for easy looking up.

Chapter 12.

97

Configuration References

12.1. Sample XML Configuration File

This is what a typical XML configuration file looks like. It is recommended that you use one of

the configurations shipped with the JBoss Cache distribution and tweak according to your needs

rather than write one from scratch.

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:jboss:jbosscache-core:config:3.1">

 <!--

 isolation levels supported: READ_COMMITTED and REPEATABLE_READ

 nodeLockingSchemes: mvcc, pessimistic (deprecated), optimistic (deprecated)

 -->

 <locking

 isolationLevel="REPEATABLE_READ"

 lockParentForChildInsertRemove="false"

 lockAcquisitionTimeout="20000"

 nodeLockingScheme="mvcc"

 writeSkewCheck="false"

 concurrencyLevel="500"/>

 <!--

 Used to register a transaction manager and participate in ongoing transactions.

 -->

 <transaction

 transactionManagerLookupClass="org.jboss.cache.transaction.GenericTransactionManagerLookup"

 syncRollbackPhase="false"

 syncCommitPhase="false"/>

 <!--

 Used to register JMX statistics in any available MBean server

 -->

 <jmxStatistics

 enabled="false"/>

 <!--

Chapter 12. Configuration Ref...

98

 If region based marshalling is used, defines whether new regions are inactive on startup.

 -->

 <startup

 regionsInactiveOnStartup="true"/>

 <!--

 Used to register JVM shutdown hooks.

 hookBehavior: DEFAULT, REGISTER, DONT_REGISTER

 -->

 <shutdown

 hookBehavior="DEFAULT"/>

 <!--

 Used to define async listener notification thread pool size

 -->

 <listeners

 asyncPoolSize="1"

 asyncQueueSize="100000"/>

 <!--

 Used to enable invocation batching and allow the use of Cache.startBatch()/endBatch()

 methods.

 -->

 <invocationBatching

 enabled="false"/>

 <!--

 serialization related configuration, used for replication and cache loading

 -->

 <serialization

 objectInputStreamPoolSize="12"

 objectOutputStreamPoolSize="14"

 version="3.0.0"

 marshallerClass="org.jboss.cache.marshall.VersionAwareMarshaller"

 useLazyDeserialization="false"

 useRegionBasedMarshalling="false"/>

 <!--

 This element specifies that the cache is clustered.

 modes supported: replication (r) or invalidation (i).

 -->

 <clustering mode="replication" clusterName="JBossCache-cluster">

 <!--

Sample XML Configuration File

99

 Defines whether to retrieve state on startup

 -->

 <stateRetrieval timeout="20000" fetchInMemoryState="false"/>

 <!--

 Network calls are synchronous.

 -->

 <sync replTimeout="20000"/>

 <!--

 Uncomment this for async replication.

 -->

 <!--<async useReplQueue="true" replQueueInterval="10000" replQueueMaxElements="500"

 serializationExecutorPoolSize="20" serializationExecutorQueueSize="5000000"/>-->

 <!-- Uncomment to use Buddy Replication -->

 <!--

 <buddy enabled="true" poolName="myBuddyPoolReplicationGroup"

 communicationTimeout="2000">

 <dataGravitation auto="true" removeOnFind="true" searchBackupTrees="true"/>

 <locator class="org.jboss.cache.buddyreplication.NextMemberBuddyLocator">

 <properties>

 numBuddies = 1

 ignoreColocatedBuddies = true

 </properties>

 </locator>

 </buddy>

 -->

 <!--

 Configures the JGroups channel. Looks up a JGroups config file on the classpath or

 filesystem. udp.xml

 ships with jgroups.jar and will be picked up by the class loader.

 -->

 <jgroupsConfig configFile="udp.xml">

 <!-- uncomment to define a JGroups stack here

 <PING timeout="2000" num_initial_members="3"/>

 <MERGE2 max_interval="30000" min_interval="10000"/>

 <FD_SOCK/>

 <FD timeout="10000" max_tries="5" shun="true"/>

 <VERIFY_SUSPECT timeout="1500"/>

 <pbcast.NAKACK use_mcast_xmit="false" gc_lag="0"

 retransmit_timeout="300,600,1200,2400,4800"

 discard_delivered_msgs="true"/>

Chapter 12. Configuration Ref...

100

 <UNICAST timeout="300,600,1200,2400,3600"/>

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="400000"/>

 <pbcast.GMS print_local_addr="true" join_timeout="5000" shun="false"

 view_bundling="true" view_ack_collection_timeout="5000"/>

 <FRAG2 frag_size="60000"/>

 <pbcast.STREAMING_STATE_TRANSFER use_reading_thread="true"/>

 <pbcast.FLUSH timeout="0"/>

 -->

 </jgroupsConfig>

 </clustering>

 <!--

 Eviction configuration. WakeupInterval defines how often the eviction thread runs, in

 milliseconds. 0 means

 the eviction thread will never run.

 -->

 <eviction wakeUpInterval="500">

 <default algorithmClass="org.jboss.cache.eviction.LRUAlgorithm"

 eventQueueSize="200000">

 <property name="maxNodes" value="5000" />

 <property name="timeToLive" value="1000" />

 </default>

 <region name="/org/jboss/data1">

 <property name="timeToLive" value="2000" />

 </region>

 <region name="/org/jboss/data2" algorithmClass="org.jboss.cache.eviction.FIFOAlgorithm"

 eventQueueSize="100000">

 <property name="maxNodes" value="3000" />

 <property name="minTimeToLive" value="4000" />

 </region>

 </eviction>

 <!--

 Cache loaders.

 If passivation is enabled, state is offloaded to the cache loaders ONLY when evicted. Similarly,

 when the state

 is accessed again, it is removed from the cache loader and loaded into memory.

 Otherwise, state is always maintained in the cache loader as well as in memory.

 Set 'shared' to true if all instances in the cluster use the same cache loader instance, e.g.,

 are talking to the

Sample XML Configuration File

101

 same database.

 -->

 <loaders passivation="false" shared="false">

 <preload>

 <node fqn="/org/jboss"/>

 <node fqn="/org/tempdata"/>

 </preload>

 <!--

 we can have multiple cache loaders, which get chained

 -->

 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="true"

 fetchPersistentState="true"

 ignoreModifications="true" purgeOnStartup="true">

 <properties>

 cache.jdbc.table.name=jbosscache

 cache.jdbc.table.create=true

 cache.jdbc.table.drop=true

 </properties>

 <singletonStore enabled="true"

 class="org.jboss.cache.loader.SingletonStoreCacheLoader">

 <properties>

 pushStateWhenCoordinator=true

 pushStateWhenCoordinatorTimeout=20000

 </properties>

 </singletonStore>

 </loader>

 </loaders>

 <!--

 Define custom interceptors. All custom interceptors need to extend

 org.jboss.cache.interceptors.base.CommandInterceptor

 -->

 <!--

 <customInterceptors>

 <interceptor position="first"

 class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomInterceptor">

 <property name="attrOne" value="value1" />

 <property name="attrTwo" value="value2" />

 </interceptor>

 <interceptor position="last"

 class="org.jboss.cache.config.parsing.custominterceptors.BbbCustomInterceptor"/>

 <interceptor index="3"

 class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomInterceptor"/>

Chapter 12. Configuration Ref...

102

 <interceptor before="org.jboss.cache.interceptors.CallInterceptor"

 class="org.jboss.cache.config.parsing.custominterceptors.BbbCustomInterceptor"/>

 <interceptor after="org.jboss.cache.interceptors.CallInterceptor"

 class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomInterceptor"/>

 </customInterceptors>

 -->

</jbosscache>

12.1.1. XML validation

Configuration XML files are validated using an XSD schema. This schema is included in

jbosscache-core.jar and is also available online: http://www.jboss.org/jbosscache/

jbosscache-config-3.0.xsd. Most IDEs and XML authoring tools will be able to use this schema

to validate your configuration file as you write it.

JBoss Cache also validates your configuration file when you start up, and will throw

an exception if it encounters an invalid file. You can suppress this behavior by

passing in -Djbosscache.config.validate=false to your JVM when you start up.

Alternatively, you can point the validator to a different schema by passing in -

Djbosscache.config.schemaLocation=url.

12.2. Configuration File Quick Reference

A list of definitions of each of the XML elements attributes used above, and their bean counterparts

for programmatic configuration. If the description of an attribute states that it is dynamic, that

means it can be changed after the cache is created and started.

Table 12.1. The <jbosscache /> Element

The <jbosscache /> Element

Description This is the root element for the JBoss Cache

configuration file. This is the only mandatory

element in a valid JBoss Cache configuration

file.

Parent none (is root element)

Children <clustering />, <customInterceptors /

>, <eviction />, <invocationBatching

/>, <jmxStatistics />, <listeners

/>, <loaders />, <locking />,

<serialization />, <shutdown />,

<startup />, <transaction />

Bean Equivalent Configuration

Configuration File Quick Reference

103

Table 12.2. <jbosscache /> Attributes

<jbosscache /> Attributes

Attribute Bean Field Allowed Default Description

xmlns - urn:jboss:jbosscache-

core:config:3.1

urn:jboss:jbosscache-

core:config:3.1

Defines the XML

namespace for

all configuration

entries.

xmlns:xsi - http://

www.w3.org/

2001/

XMLSchema-

instance

http://

www.w3.org/

2001/

XMLSchema-

instance

Defines the

XML schema

instance for the

configuration.

Table 12.3. The <locking /> Element

The <locking /> Element

Description This element specifies locking behavior on the

cache.

Parent <jbosscache />

Children

Bean equivalent Configuration

Table 12.4. <locking /> Attributes

<locking /> Attributes

Attribute Bean Field Allowed Default Description

isolationLevel isolationLevel READ_COMMITTED,

REPEATABLE_READ

REPEATABLE_READThe isolation

level used for

transactions.

lockParentForChildInsertRemovelockParentForChildInsertRemovetrue, false false Specifies

whether parent

nodes are locked

when inserting

or removing

children. This

can also be

configured on a

per-node basis

(see Node.setLockForChildInsertRemove()

lockAcquisitionTimeoutlockAcquisitionTimeout

(dynamic)

Any positive long

value

10000 Length of time,

in milliseconds,

Chapter 12. Configuration Ref...

104

<locking /> Attributes

Attribute Bean Field Allowed Default Description

that a thread will

try and acquire

a lock. A TimeoutException

is usually thrown

if a lock cannot

be acquired

in this given

timeframe. Can

be overridden on

a per-invocation

basis using Option.setLockAcquisitionTimeout()

nodeLockingScheme

(deprecated)

nodeLockingSchememvcc,

pessimistic,

optimistic

mvcc Specifies the

node locking

scheme to be

used.

writeSkewCheck writeSkewCheck true, false true Specifies

whether to check

for write skews.

Only used if nodeLockingScheme

is mvcc and

isolationLevel

is REPEATABLE_READ.

See the section

on write

skews for a

more detailed

discussion.

concurrencyLevelconcurrencyLevel Any positive

integer; 0 not

allowed.

500 Specifies the

number of

shared locks

to use for write

locks acquired.

Only used if nodeLockingScheme

is mvcc. See the

section on JBoss

Cache's MVCC

implementation

for a more

detailed

discussion.

Configuration File Quick Reference

105

Table 12.5. The <transaction /> Element

The <transaction /> Element

Description This element specifies transactional behavior

on the cache.

Parent <jbosscache />

Children

Bean equivalent Configuration

Table 12.6. <transaction /> Attributes

<transaction /> Attributes

Attribute Bean Field Allowed Default Description

transactionManagerLookupClasstransactionManagerLookupClassA valid class that

is available on

the classpath

none Specifies the TransactionManagerLookupClass

implementation

to use to obtain

a transaction

manager. If not

specified (and a TransactionManager

is not injected

using RuntimeConfig.setTransactionManager(),

the cache will

not be able to

participate in any

transactions.

syncCommitPhasesyncCommitPhase

(dynamic)

true, false false If enabled,

commit

messages that

are broadcast

around a cluster

are done so

synchronously.

This is usually

of little value

since detecting

a failure in

broadcasting a

commit means

little else can

be done except

log a message,

since some

nodes in a

Chapter 12. Configuration Ref...

106

<transaction /> Attributes

Attribute Bean Field Allowed Default Description

cluster may

have already

committed and

cannot rollback.

syncRollbackPhasesyncRollbackPhase

(dynamic)

true, false false If enabled,

rollback

messages that

are broadcast

around a cluster

are done so

synchronously.

This is usually

of little value

since detecting

a failure in

broadcasting a

rollback means

little else can

be done except

log a message,

since some

nodes in a

cluster may

have already

committed and

cannot rollback.

Table 12.7. The <jmxStatistics /> Element

The <jmxStatistics /> Element

Description This element specifies whether cache

statistics are gathered and reported via JMX.

Parent <jbosscache />

Children

Bean equivalent Configuration

Table 12.8. <jmxStatistics /> Attributes

<jmxStatistics /> Attributes

Attribute Bean Field Allowed Default Description

enabled exposeManagementStatisticstrue, false true

Configuration File Quick Reference

107

<jmxStatistics /> Attributes

Attribute Bean Field Allowed Default Description

Controls whether

cache statistics

are gathered

and exposed via

JMX.

Table 12.9. The <startup /> Element

The <startup /> Element

Description This element specifies behavior when the

cache starts up.

Parent <jbosscache />

Children

Bean equivalent Configuration

Table 12.10. <startup /> Attributes

<startup /> Attributes

Attribute Bean Field Allowed Default Description

regionsInactiveOnStartupinactiveOnStartup true, false false If region-based

marshalling is

enabled, this

attribute controls

whether new

regions created

are inactive on

startup.

Table 12.11. The <shutdown /> Element

The <shutdown /> Element

Description This element specifies behavior when the

cache shuts down.

Parent <jbosscache />

Children

Bean equivalent Configuration

Chapter 12. Configuration Ref...

108

Table 12.12. <shutdown /> Attributes

<shutdown /> Attributes

Attribute Bean Field Allowed Default Description

hookBehavior shutdownHookBehaviorDEFAULT, DONT_REGISTER,

REGISTER

DEFAULT This attribute

determines

whether the

cache registers

a JVM shutdown

hook so that it

can clean up

resources if the

JVM is receives

a shutdown

signal. By default

a shutdown hook

is registered if no

MBean server

(apart from the

JDK default)

is detected.

REGSTER

forces the cache

to register

a shutdown

hook even if an

MBean server

is detected, and DONT_REGISTER

forces the cache

NOT to register

a shutdown

hook, even if no

MBean server is

detected.

Table 12.13. The <listeners /> Element

The <listeners /> Element

Description This element specifies behavior of registered

cache listeners.

Parent <jbosscache />

Children

Bean equivalent Configuration

Configuration File Quick Reference

109

Table 12.14. <listeners /> Attributes

<listeners /> Attributes

Attribute Bean Field Allowed Default Description

asyncPoolSize listenerAsyncPoolSizeinteger 1 The size of

the threadpool

used to dispatch

events to cache

listeners that

have registered

as asynchronous

listeners. If

this number is

less than 1, all

asynchronous

listeners will

be treated as

synchronous

listeners

and notified

synchronously.

asyncQueueSize listenerAsyncQueueSizepositive integer 50000 The size of the

bounded queue

used by the

async listener

threadpool. Only

considered if

asyncPoolSize

is greater than 0.

Increase this if

you see a lot of

threads blocking

trying to add

events to this

queue.

Table 12.15. The <invocationBatching /> Element

The <invocationBatching /> Element

Description This element specifies behavior of invocation

batching.

Parent <jbosscache />

Children

Chapter 12. Configuration Ref...

110

The <invocationBatching /> Element

Bean equivalent Configuration

Table 12.16. <invocationBatching /> Attributes

<invocationBatching /> Attributes

Attribute Bean Field Allowed Default Description

enabled invocationBatchingEnabledtrue, false false Whether

invocation

batching is

enabled or not.

See the chapter

on invocation

batching for

details.

Table 12.17. The <serialization /> Element

The <serialization /> Element

Description This element specifies behavior of object

serialization in JBoss Cache.

Parent <jbosscache />

Children

Bean equivalent Configuration

Table 12.18. <serialization /> Attributes

<serialization /> Attributes

Attribute Bean Field Allowed Default Description

marshallerClass marshallerClass A valid class that

is available on

the classpath

VersionAwareMarshallerSpecifies the

marshaller to use

when serializing

and deserializing

objects, either

for replication or

persistence.

useLazyDeserializationuseLazyDeserializationtrue, false false A mechanism

by which

serialization and

deserialization

of objects is

deferred till

the point in

Configuration File Quick Reference

111

<serialization /> Attributes

Attribute Bean Field Allowed Default Description

time in which

they are used

and needed.

This typically

means that any

deserialization

happens using

the thread

context class

loader of the

invocation

that requires

deserialization,

and is an

effective

mechanism

to provide

classloader

isolation.

useRegionBasedMarshalling

(deprecated)

useRegionBasedMarshallingtrue, false false An older

mechanism

by which

classloader

isolation was

achieved, by

registering

classloaders on

specific regions.

version replicationVersion Valid JBoss

Cache version

string

Current version Used by the VersionAwareMarshaller

in determining

which version

stream parser to

use by default

when initiating

communications

in a cluster.

Useful when you

need to run a

newer version

of JBoss Cache

in a cluster

Chapter 12. Configuration Ref...

112

<serialization /> Attributes

Attribute Bean Field Allowed Default Description

containing older

versions, and

can be used to

perform rolling

upgrades.

objectInputStreamPoolSizeobjectInputStreamPoolSizePositive integer 50 Not used at the

moment.

objectOutputStreamPoolSizeobjectOutputStreamPoolSizePositive integer 50 Not used at the

moment.

Table 12.19. The <eviction /> Element

The <eviction /> Element

Description This element controls how eviction works in

the cache.

Parent <jbosscache />

Children <default />, <region />

Bean equivalent EvictionConfig

Table 12.20. <eviction /> Attributes

<eviction /> Attributes

Attribute Bean Field Allowed Default Description

wakeUpInterval wakeupInterval integer 5000 The frequency

with which

the eviction

thread runs, in

milliseconds.

If set to less

than 1, the

eviction thread

never runs and

is effectively

disabled.

Table 12.21. The <default /> Element

The <default /> Element

Description This element defines the default eviction

region.

Parent <eviction />

Configuration File Quick Reference

113

The <default /> Element

Children <property />

Bean equivalent EvictionRegionConfig

Table 12.22. <default /> Attributes

<default /> Attributes

Attribute Bean Field Allowed Default Description

algorithmClass evictionAlgorithmConfigA valid class that

is available on

the classpath

none This attribute

needs to be

specified if this

tag is being

used. Note that if

being configured programmatically,

the eviction

algorithm's

corresponding EvictionAlgorithmConfig

file should be

used instead.

E.g., where

you would use

LRUAlgorithm in

XML, you would

use an instance

of LRUAlgorithmConfig

programmatically.

actionPolicyClassevictionActionPolicyClassNameA valid class that

is available on

the classpath

DefaultEvictionActionPolicyThe eviction

action policy

class, defining

what happens

when a node

needs to be

evicted.

eventQueueSize eventQueueSize

(dynamic

integer 200000 The size of the

bounded eviction

event queue.

Table 12.23. The <region /> Element

The <region /> Element

Description This element defines an eviction region.

Multiple instances of this tag can exist

provided they have unique name attributes.

Chapter 12. Configuration Ref...

114

The <region /> Element

Parent <eviction />

Children <property />

Bean equivalent EvictionRegionConfig

Table 12.24. <region /> Attributes

<region /> Attributes

Attribute Bean Field Allowed Default Description

name regionFqn A String that

could be

parsed using

Fqn.fromString()

none This should be

a unique name

that defines

this region. See

the chapter

on eviction for

details of eviction

regions.

algorithmClass evictionAlgorithmConfigA valid class that

is available on

the classpath

none This attribute

needs to be

specified if this

tag is being

used. Note that if

being configured programmatically,

the eviction

algorithm's

corresponding EvictionAlgorithmConfig

file should be

used instead.

E.g., where

you would use

LRUAlgorithm in

XML, you would

use an instance

of LRUAlgorithmConfig

programmatically.

actionPolicyClassevictionActionPolicyClassNameA valid class that

is available on

the classpath

DefaultEvictionActionPolicyThe eviction

action policy

class, defining

what happens

when a node

needs to be

evicted.

Configuration File Quick Reference

115

<region /> Attributes

Attribute Bean Field Allowed Default Description

eventQueueSize eventQueueSize

(dynamic

integer 200000 The size of the

bounded eviction

event queue.

Table 12.25. The <property /> Element

The <property /> Element

Description A mechanism of passing in name-value

properties to the enclosing configuration

element.

Parent <default />, <region />, <interceptor /

>

Children

Bean equivalent Either direct setters or setProperties()

enclosing bean

Table 12.26. <property /> Attributes

<property /> Attributes

Attribute Bean Field Allowed Default Description

name Either direct

setters or setProperties()

enclosing bean

String none Property name

value Either direct

setters or setProperties()

enclosing bean

String none Property value

Table 12.27. The <loaders /> Element

The <loaders /> Element

Description Defines any cache loaders.

Parent <jbosscache />

Children <preload />, <loader />

Bean equivalent CacheLoaderConfig

Table 12.28. <loaders /> Attributes

<loaders /> Attributes

Attribute Bean Field Allowed Default Description

passivation passivation true, false false

Chapter 12. Configuration Ref...

116

<loaders /> Attributes

Attribute Bean Field Allowed Default Description

If true, cache

loaders are used

in passivation

mode. See

the chapter on

cache loaders

for a detailed

discussion on

this.

shared shared true, false false If true, cache

loaders are used

in shared mode.

See the chapter

on cache loaders

for a detailed

discussion on

this.

Table 12.29. The <preload /> Element

The <preload /> Element

Description Defines preloading of Fqn subtrees when

a cache starts up. This element has no

attributes.

Parent <loaders />

Children <node />

Bean equivalent CacheLoaderConfig

Table 12.30. The <node /> Element

The <node /> Element

Description This element defines a subtree under which

all content will be preloaded from the cache

loaders when the cache starts. Multiple

subtrees can be preloaded, although it only

makes sense to define more than one subtree

if they do not overlap.

Parent <preload />

Children

Bean equivalent CacheLoaderConfig

Configuration File Quick Reference

117

Table 12.31. <node /> Attributes

<node /> Attributes

Attribute Bean Field Allowed Default Description

fqn preload String none An Fqn to

preload. This

should be a

String that can

be parsed with

Fqn.fromString().

When doing this programmatically,

you should

create a single

String containing

all of the Fqns

you wish

to preload,

separated by

spaces, and

pass that into CacheLoaderConfig.setPreload().

Table 12.32. The <loader /> Element

The <loader /> Element

Description This element defines a cache loader. Multiple

elements may be used to create cache loader

chains.

Parent <loaders />

Children <properties />, <singletonStore />

Bean equivalent IndividualCacheLoaderConfig

Table 12.33. <loader /> Attributes

<loader /> Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that

is available on

the classpath

none A cache loader

implementation

to use.

async async true, false false All modifications

to this cache

loader happen

asynchronously,

Chapter 12. Configuration Ref...

118

<loader /> Attributes

Attribute Bean Field Allowed Default Description

on a separate

thread.

fetchPersistentStatefetchPersistentStatetrue, false false When a

cache starts

up, retrieve

persistent state

from the cache

loaders in other

caches in the

cluster. Only one

loader element

may set this to

true. Also, only

makes sense if

the <clustering

/> tag is present.

purgeOnStartup purgeOnStartup true, false false Purges this

cache loader

when it starts up.

Table 12.34. The <properties /> Element

The <properties /> Element

Description This element contains a set of properties that

can be read by a java.util.Properties

instance. This tag has no attributes, and

the contents of this tag will be parsed by

Properties.load().

Parent <loader />, <singletonStore />,

<locator />

Children

Bean equivalent IndividualCacheLoaderConfig.setProperties()

Table 12.35. The <singletonStore /> Element

The <singletonStore /> Element

Description This element configures the enclosing cache

loader as a singleton store cache loader.

Parent <loader />

Children <properties />

Configuration File Quick Reference

119

The <singletonStore /> Element

Bean equivalent SingletonStoreConfig

Table 12.36. <singletonStore /> Attributes

<singletonStore /> Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that

is available on

the classpath

SingletonStoreCacheLoaderA singleton

store wrapper

implementation

to use.

enabled enabled true, false false If true, the

singleton store

cache loader is

enabled.

Table 12.37. The <customInterceptors /> Element

The <customInterceptors /> Element

Description This element allows you to define custom

interceptors for the cache. This tag has no

attributes.

Parent <jbosscache />

Children <interceptor />

Bean equivalent None. At runtime, instantiate your own

interceptor and pass it in to the cache using

Cache.addInterceptor().

Table 12.38. The <interceptor /> Element

The <interceptor /> Element

Description This element allows you configure a custom

interceptor. This tag may appear multiple

times.

Parent <customInterceptor />

Children <property />

Bean equivalent None. At runtime, instantiate your own

interceptor and pass it in to the cache using

Cache.addInterceptor().

Chapter 12. Configuration Ref...

120

Table 12.39. <interceptor /> Attributes

<interceptor /> Attributes

Attribute Bean Field Allowed Default Description

class - A valid class that

is available on

the classpath

none An

implementation

of CommandInterceptor.

position - first, last A position at

which to place

this interceptor

in the chain.

First is the first

interceptor

encountered

when an

invocation is

made on the

cache, last is the

last interceptor

before the call

is passed on

to the data

structure. Note

that this attribute

is mutually

exclusive with

before, after

and index.

before - Fully qualified

class name of an

interceptor

 Will place the

new interceptor

directly before

the instance

of the named

interceptor. Note

that this attribute

is mutually

exclusive with

position, after

and index.

after - Fully qualified

class name of an

interceptor

 Will place the

new interceptor

directly after

the instance

Configuration File Quick Reference

121

<interceptor /> Attributes

Attribute Bean Field Allowed Default Description

of the named

interceptor. Note

that this attribute

is mutually

exclusive with

position,

before and

index.

index - Positive integers A position at

which to place

this interceptor

in the chain, with

0 being the first

position. Note

that this attribute

is mutually

exclusive with

position,

before and

after.

Table 12.40. The <clustering /> Element

The <clustering /> Element

Description If this element is present, the cache is started

in clustered mode. Attributes and child

elements define clustering characteristics.

Parent <jbosscache />

Children <stateRetrieval />, <sync />, <async />,

<buddy />, <jgroupsConfig />

Bean equivalent Configuration

Table 12.41. <clustering /> Attributes

<clustering /> Attributes

Attribute Bean Field Allowed Default Description

mode cacheMode replication,

invalidation, r, i

replication See the chapter

on clustering for

the differences

between

replication and

Chapter 12. Configuration Ref...

122

<clustering /> Attributes

Attribute Bean Field Allowed Default Description

invalidation.

When using

the bean,

synchronous and

asynchronous

communication

is combined with

clustering mode

to give you the

enumberation Configuration.CacheMode.

clusterName clusterName String JBossCache-

cluster

A cluster name

which is used

to identify the

cluster to join.

Table 12.42. The <sync /> Element

The <sync /> Element

Description If this element is present, all communications

are synchronous, in that whenever a thread

sends a message sent over the wire, it blocks

until it receives an acknowledgement from the

recipient. This element is mutually exclusive

with the <async /> element.

Parent <clustering />

Children

Bean equivalent Configuration.setCacheMode()

Table 12.43. <sync /> Attributes

<sync /> Attributes

Attribute Bean Field Allowed Default Description

replTimeout syncReplTimeout

(dynamic)

positive integer 15000 This is the

timeout used

to wait for an acknowledgement

when making

a remote call,

after which an

exception is

thrown.

Configuration File Quick Reference

123

Table 12.44. The <async /> Element

The <async /> Element

Description If this element is present, all communications

are asynchronous, in that whenever a thread

sends a message sent over the wire, it does

not wait for an acknowledgement before

returning. This element is mutually exclusive

with the <sync /> element.

Parent <clustering />

Children

Bean equivalent Configuration.setCacheMode()

Table 12.45. <async /> Attributes

<async /> Attributes

Attribute Bean Field Allowed Default Description

serializationExecutorPoolSizeserializationExecutorPoolSizepositive integer 25 In addition

to replication

happening

asynchronously,

even

serialization

of contents

for replication

happens in a

separate thread

to allow the

caller to return

as quickly as

possible. This

setting controls

the size of the

serializer thread

pool. Setting this

to any value less

than 1 means

serialization

does not happen

asynchronously.

serializationExecutorQueueSizeserializationExecutorQueueSizepositive integer 50000 This is used to

define the size

of the bounded

Chapter 12. Configuration Ref...

124

<async /> Attributes

Attribute Bean Field Allowed Default Description

queue that holds

tasks for the

serialization

executor. This

is ignored if a

serialization

executor is not

used, such as

when serializationExecutorPoolSize

is less than 1.

useReplQueue useReplQueue true, false false If true, this

forces all async

communications

to be queued

up and sent out

periodically as a

batch.

replQueueIntervalreplQueueInterval positive integer 5000 If useReplQueue

is set to true, this

attribute controls

how often the

asynchronous

thread used

to flush the

replication queue

runs. This should

be a positive

integer which

represents

thread wakeup

time in

milliseconds.

replQueueMaxElementsreplQueueMaxElementspositive integer 1000 If useReplQueue

is set to true,

this attribute

can be used to

trigger flushing

of the queue

when it reaches

a specific

threshold.

Configuration File Quick Reference

125

Table 12.46. The <stateRetrieval /> Element

The <stateRetrieval /> Element

Description This tag controls ho state is retrieved from

neighboring caches when this cache instance

starts.

Parent <clustering />

Children

Bean equivalent Configuration

Table 12.47. <stateRetrieval /> Attributes

<stateRetrieval /> Attributes

Attribute Bean Field Allowed Default Description

fetchInMemoryStatefetchInMemoryStatetrue, false true If true, this

will cause the

cache to ask

neighboring

caches for state

when it starts

up, so the cache

starts "warm".

timeout stateRetrievalTimeoutpositive integer 10000 This is the

maximum

amount of time -

in milliseconds -

to wait for state

from neighboring

caches, before

throwing an

exception and

aborting startup.

Table 12.48. The <buddy /> Element

The <buddy /> Element

Description If this tag is present, then state is not

replicated across the entire cluster. Instead,

buddy replication is used to select cache

instances to maintain backups on. See this

section on buddy replication for details. Note

that this is only used if the clustering mode is

replication, and not if it is invalidation.

Chapter 12. Configuration Ref...

126

The <buddy /> Element

Parent <clustering />

Children <dataGravitation />, <locator />,

Bean equivalent BuddyReplicationConfig

Table 12.49. <buddy /> Attributes

<buddy /> Attributes

Attribute Bean Field Allowed Default Description

enabled enabled true, false false If true, buddy

replication is

enabled.

communicationTimeoutbuddyCommunicationTimeoutpositive integer 10000 This is the

maximum

amount of time

- in milliseconds

- to wait for

buddy group

organization

communications

from buddy

caches.

poolName buddyPoolName String This is used as a

means to identify

cache instances

and provide

hints to the

buddy selection

algorithms. More

information

on the section

on buddy

replication.

Table 12.50. The <dataGravitation /> Element

The <dataGravitation /> Element

Description This tag configures how data gravitation

is conducted. See this section on buddy

replication for details.

Parent <buddy />

Children

Configuration File Quick Reference

127

The <dataGravitation /> Element

Bean equivalent BuddyReplicationConfig

Table 12.51. <dataGravitation /> Attributes

<dataGravitation /> Attributes

Attribute Bean Field Allowed Default Description

auto autoDataGravitationtrue, false true If true, when

a get() is

performed on

a cache and

nothing is found,

a gravitation

from neighboring

caches is

attempted. If this

is false, then

gravitations can

only occur if the Option.setForceDataGravitation()

option is

provided.

removeOnFind dataGravitationRemoveOnFindtrue, false true If true, when

gravitation

occurs, the

instance that

requests the

gravitation takes

ownership of

the state and

requests that all

other instances

remove the

gravitated state

from memory.

searchBackupTreesdataGravitationSearchBackupTreestrue, false true If true, incoming

gravitation

requests will

cause the cache

to search not just

its primary data

structure but its

backup structure

as well.

Chapter 12. Configuration Ref...

128

Table 12.52. The <locator /> Element

The <locator /> Element

Description This tag provides a pluggable mechanism for

providing buddy location algorithms.

Parent <buddy />

Children <properties />

Bean equivalent BuddyLocatorConfig

Table 12.53. <locator /> Attributes

<locator /> Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that

is available on

the classpath

NextMemberBuddyLocatorA BuddyLocator

implementation

to use when

selecting

buddies from

the cluster.

Please refer to

BuddyLocator

javadocs for

details.

Table 12.54. The <jgroupsConfig /> Element

The <jgroupsConfig /> Element

Description This tag provides a configuration which

is used with JGroups to create a network

communication channel.

Parent <clustering />

Children A series of elements representing JGroups

protocols (see JGroups documentation

[http://www.jgroups.org/javagroupsnew/

docs/ug.html]). Note that there are no child

elements if any of the element attributes are

used instead. See section on attributes.

Bean equivalent Configuration

http://www.jgroups.org/javagroupsnew/docs/ug.html
http://www.jgroups.org/javagroupsnew/docs/ug.html
http://www.jgroups.org/javagroupsnew/docs/ug.html

Configuration File Quick Reference

129

Table 12.55. <jgroupsConfig /> Attributes

<jgroupsConfig /> Attributes

Attribute Bean Field Allowed Default Description

configFile clusterConfig A JGroups

configuration file

on the classpath

udp.xml If this attribute

is used, then

any JGroups

elements

representing

protocols within

this tag are

ignored. Instead,

JGroups settings

are read from

the file specified.

Note that this

cannot be used

with the multiplexerStack

attribute.

multiplexerStack muxStackName A valid

multiplexer

stack name that

exists in the

channel factory

passed in to the

RuntimeConfig

 This can only be

used with the

RuntimeConfig,

where you pass

in a JGroups

ChannelFactory

instance using RuntimeConfig.setMuxChannelFactory().

If this attribute

is used, then

any JGroups

elements

representing

protocols within

this tag are

ignored. Instead,

the JGroups

channel is

created using the

factory passed

in. Note that

this cannot be

used with the

configFile

attribute.

130

Chapter 13.

131

JMX References

13.1. JBoss Cache Statistics

There is a whole wealth of information being gathered and exposed on to JMX for monitoring the

cache. Some of these are detailed below:

Table 13.1. JBoss Cache JMX MBeans

MBean Attribute/Operation Name Description

DataContainerImpl getNumberOfAttributes() Returns the number of

attributes in all nodes in the

data container

getNumberOfNodes() Returns the number of nodes

in the data container

printDetails() Prints details of the data

container

RPCManagerImpl localAddressString String representation of the

local address

membersString String representation of the

cluster view

statisticsEnabled Whether RPC statistics are

being gathered

replicationCount Number of successful

replications

replicationFailures Number of failed replications

successRatio RPC call success ratio

RegionManagerImpl dumpRegions() Dumps a String representation

of all registered regions,

including eviction regions

depicting their event queue

sizes

numRegions Number of registered regions

BuddyManager buddyGroup A String representation of the

cache's buddy group

buddyGroupsIParticipateIn String representations of all

buddy groups the cache

participates in

TransactionTable numberOfRegisteredTransactionsThe number of registered,

ongoing transactions

Chapter 13. JMX References

132

MBean Attribute/Operation Name Description

transactionMap A String representation

of all currently registered

transactions mapped to

internal GlobalTransaction

instances

MVCCLockManager concurrencyLevel The configured concurrency

level

numberOfLocksAvailable Number of locks in the shared

lock pool that are not used

numberOfLocksHeld Number of locks in the shared

lock pool that are in use

testHashing(String fqn) Tests the spreading of locks

across Fqns. For a given

(String based) Fqn, this

method returns the index in the

lock array that it maps to.

ActivationInterceptor Activations Number of passivated nodes

that have been activated.

CacheLoaderInterceptor CacheLoaderLoads Number of nodes loaded

through a cache loader.

CacheLoaderMisses Number of unsuccessful

attempts to load a node

through a cache loader.

CacheMgmtInterceptor Hits Number of successful attribute

retrievals.

Misses Number of unsuccessful

attribute retrievals.

Stores Number of attribute store

operations.

Evictions Number of node evictions.

NumberOfAttributes Number of attributes currently

cached.

NumberOfNodes Number of nodes currently

cached.

ElapsedTime Number of seconds that the

cache has been running.

TimeSinceReset Number of seconds since the

cache statistics have been

reset.

JBoss Cache Statistics

133

MBean Attribute/Operation Name Description

AverageReadTime Average time in milliseconds

to retrieve a cache attribute,

including unsuccessful

attribute retrievals.

AverageWriteTime Average time in milliseconds

to write a cache attribute.

HitMissRatio Ratio of hits to hits and misses.

A hit is a get attribute operation

that results in an object being

returned to the client. The

retrieval may be from a cache

loader if the entry isn't in the

local cache.

ReadWriteRatio Ratio of read operations to

write operations. This is the

ratio of cache hits and misses

to cache stores.

CacheStoreInterceptor CacheLoaderStores Number of nodes written to the

cache loader.

InvalidationInterceptor Invalidations Number of cached nodes that

have been invalidated.

PassivationInterceptor Passivations Number of cached nodes that

have been passivated.

TxInterceptor Prepares Number of transaction prepare

operations performed by this

interceptor.

Commits Number of transaction commit

operations performed by this

interceptor.

Rollbacks Number of transaction

rollbacks operations

performed by this interceptor.

numberOfSyncsRegistered Number of synchronizations

registered with the transaction

manager pending completion

and removal.

Chapter 13. JMX References

134

13.2. JMX MBean Notifications

The following table depicts the JMX notifications available for JBoss Cache as well as the cache

events to which they correspond. These are the notifications that can be received through the

CacheJmxWrapper MBean. Each notification represents a single event published by JBoss Cache

and provides user data corresponding to the parameters of the event.

Table 13.2. JBoss Cache MBean Notifications

Notification Type Notification Data CacheListener Event

org.jboss.cache.CacheStarted String: cache service name @CacheStarted

org.jboss.cache.CacheStopped String: cache service name @CacheStopped

org.jboss.cache.NodeCreated String: fqn, boolean: isPre,

boolean: isOriginLocal

@NodeCreated

org.jboss.cache.NodeEvicted String: fqn, boolean: isPre,

boolean: isOriginLocal

@NodeEvicted

org.jboss.cache.NodeLoaded String: fqn, boolean: isPre @NodeLoaded

org.jboss.cache.NodeModifed String: fqn, boolean: isPre,

boolean: isOriginLocal

@NodeModifed

org.jboss.cache.NodeRemoved String: fqn, boolean: isPre,

boolean: isOriginLocal

@NodeRemoved

org.jboss.cache.NodeVisited String: fqn, boolean: isPre @NodeVisited

org.jboss.cache.ViewChanged String: view @ViewChanged

org.jboss.cache.NodeActivated String: fqn @NodeActivated

org.jboss.cache.NodeMoved String: fromFqn, String: toFqn,

boolean: isPre

@NodeMoved

org.jboss.cache.NodePassivatedString: fqn @NodePassivated

	JBoss Cache Users' Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1.1. What is JBoss Cache?
	1.1.1. And what is POJO Cache?

	1.2. Summary of Features
	1.2.1. Caching objects
	1.2.2. Local and clustered modes
	1.2.3. Clustered caches and transactions
	1.2.4. Thread safety

	1.3. Requirements
	1.4. License

	Chapter 2. User API
	2.1. API Classes
	2.2. Instantiating and Starting the Cache
	2.3. Caching and Retrieving Data
	2.3.1. Organizing Your Data and Using the Node Structure

	2.4. The Fqn Class
	2.5. Stopping and Destroying the Cache
	2.6. Cache Modes
	2.7. Adding a Cache Listener - registering for cache events
	2.7.1. Synchronous and Asynchronous Notifications

	2.8. Using Cache Loaders
	2.9. Using Eviction Policies

	Chapter 3. Configuration
	3.1. Configuration Overview
	3.2. Creating a Configuration
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Validating Configuration Files
	3.2.3. Programmatic Configuration
	3.2.4. Using an IOC Framework

	3.3. Composition of a Configuration Object
	3.4. Dynamic Reconfiguration
	3.4.1. Overriding the Configuration via the Option API

	Chapter 4. Batching API
	4.1. Introduction
	4.2. Configuring batching
	4.3. Batching API

	Chapter 5. Deploying JBoss Cache
	5.1. Standalone Use/Programatic Deployment
	5.2. Via JBoss Microcontainer (JBoss AS 5.x)
	5.3. Automatic binding to JNDI in JBoss AS
	5.4. Runtime Management Information
	5.4.1. JBoss Cache MBeans
	5.4.2. Registering the CacheJmxWrapper with the MBeanServer
	5.4.2.1. Programatic Registration
	5.4.2.1.1. With a Cache instance
	5.4.2.1.2. With a Configuration instance

	5.4.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)

	5.4.3. JBoss Cache Statistics
	5.4.4. Receiving JMX Notifications
	5.4.5. Accessing Cache MBeans in a Standalone Environment using the jconsole Utility

	Chapter 6. Version Compatibility and Interoperability
	6.1. API compatibility
	6.2. Wire-level interoperability
	6.3. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 7. Architecture
	7.1. Data Structures Within The Cache
	7.2. SPI Interfaces
	7.3. Method Invocations On Nodes
	7.3.1. Interceptors
	7.3.1.1. Writing Custom Interceptors

	7.3.2. Commands and Visitors
	7.3.3. InvocationContexts

	7.4. Managers For Subsystems
	7.4.1. RpcManager
	7.4.2. BuddyManager
	7.4.3. CacheLoaderManager

	7.5. Marshalling And Wire Formats
	7.5.1. The Marshaller Interface
	7.5.2. VersionAwareMarshaller

	7.6. Class Loading and Regions

	Chapter 8. Cache Modes and Clustering
	8.1. Cache Replication Modes
	8.1.1. Local Mode
	8.1.2. Replicated Caches
	8.1.2.1. Replicated Caches and Transactions
	8.1.2.1.1. One Phase Commits
	8.1.2.1.2. Two Phase Commits

	8.1.2.2. Buddy Replication
	8.1.2.2.1. Selecting Buddies
	8.1.2.2.2. BuddyPools
	8.1.2.2.3. Failover
	8.1.2.2.4. Configuration

	8.2. Invalidation
	8.3. State Transfer
	8.3.1. State Transfer Types
	8.3.2. Byte array and streaming based state transfer
	8.3.3. Full and partial state transfer
	8.3.4. Transient ("in-memory") and persistent state transfer
	8.3.5. Configuring State Transfer

	Chapter 9. Cache Loaders
	9.1. The CacheLoader Interface and Lifecycle
	9.2. Configuration
	9.2.1. Singleton Store Configuration

	9.3. Shipped Implementations
	9.3.1. File system based cache loaders
	9.3.2. Cache loaders that delegate to other caches
	9.3.3. JDBCCacheLoader
	9.3.3.1. JDBCCacheLoader configuration
	9.3.3.1.1. Table configuration
	9.3.3.1.2. DataSource
	9.3.3.1.3. JDBC driver
	9.3.3.1.4. c3p0 connection pooling
	9.3.3.1.5. Configuration example

	9.3.4. S3CacheLoader
	9.3.4.1. Amazon S3 Library
	9.3.4.2. Configuration

	9.3.5. TcpDelegatingCacheLoader
	9.3.6. Transforming Cache Loaders

	9.4. Cache Passivation
	9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	9.5. Strategies
	9.5.1. Local Cache With Store
	9.5.2. Replicated Caches With All Caches Sharing The Same Store
	9.5.3. Replicated Caches With Only One Cache Having A Store
	9.5.4. Replicated Caches With Each Cache Having Its Own Store
	9.5.5. Hierarchical Caches
	9.5.6. Multiple Cache Loaders

	Chapter 10. Eviction
	10.1. Design
	10.1.1. Collecting Statistics
	10.1.2. Determining Which Nodes to Evict
	10.1.3. How Nodes are Evicted
	10.1.4. Eviction threads

	10.2. Eviction Regions
	10.2.1. Resident Nodes

	10.3. Configuring Eviction
	10.3.1. Basic Configuration
	10.3.2. Programmatic Configuration

	10.4. Shipped Eviction Policies
	10.4.1. LRUAlgorithm - Least Recently Used
	10.4.2. FIFOAlgorithm - First In, First Out
	10.4.3. MRUAlgorithm - Most Recently Used
	10.4.4. LFUAlgorithm - Least Frequently Used
	10.4.5. ExpirationAlgorithm
	10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs in a node

	Chapter 11. Transactions and Concurrency
	11.1. Concurrent Access
	11.1.1. Multi-Version Concurrency Control (MVCC)
	11.1.1.1. MVCC Concepts
	11.1.1.2. MVCC Implementation
	11.1.1.2.1. Isolation Levels
	11.1.1.2.2. Concurrent Writers and Write-Skews

	11.1.1.3. Configuring Locking

	11.1.2. Pessimistic and Optimistic Locking Schemes

	11.2. JTA Support

	Part III. JBoss Cache Configuration References
	Chapter 12. Configuration References
	12.1. Sample XML Configuration File
	12.1.1. XML validation

	12.2. Configuration File Quick Reference

	Chapter 13. JMX References
	13.1. JBoss Cache Statistics
	13.2. JMX MBean Notifications

