
POJO Cache

User Documentation
Ben Wang

Jason Greene
ISBN:

Publication date: November 2008

POJO Cache

POJO Cache: User Documentation
Ben Wang

Jason Greene

POJO Cache

v

Preface .. vii

1. Terminology .. 1

1. Overview ... 1

2. Introduction ... 3

1. Overview ... 3

2. Features ... 5

3. Usage ... 6

4. Requirements .. 7

3. Architecture ... 9

1. POJO Cache interceptor stack ... 9

2. Field interception ... 11

3. Object relationship management ... 12

4. Object Inheritance .. 15

5. Physical object cache mapping model ... 15

6. Collection Mapping .. 19

6.1. Limitations .. 20

7. Array Mapping ... 21

4. API Overview .. 23

1. PojoCacheFactory Class .. 23

2. PojoCache Interface .. 24

2.1. Attachment ... 24

2.2. Detachment .. 25

2.3. Query ... 25

5. Configuration and Deployment .. 27

1. Cache configuration xml file ... 27

2. Passivation .. 27

3. AOP Configuration ... 28

4. Deployment Options .. 28

4.1. Programatic Deployment ... 29

4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x) 29

4.3. Via JBoss Microcontainer (JBoss AS 5.x) 30

5. POJO Cache MBeans .. 31

6. Registering the PojoCacheJmxWrapper .. 32

6.1. Programatic Registration ... 32

6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x) 33

6.3. Via JBoss Microcontainer (JBoss AS 5.x) 34

7. Runtime Statistics and JMX Notifications ... 36

6. Instrumentation .. 37

1. Load-time instrumentation .. 37

2. Compile-time instrumentation .. 38

3. Understanding the provided AOP descriptor .. 38

4. Annotation ... 39

4.1. POJO annotation for instrumentation .. 39

4.2. JDK5.0 field level annotations .. 39

POJO Cache

vi

5. Weaving .. 41

5.1. Ant target for running load-time instrumentation using

specialized class loader ... 41

5.2. Ant target for aopc .. 42

7. TroubleShooting .. 43

8. Appendix ... 45

1. Example POJO .. 45

2. Sample Cache configuration xml ... 46

3. PojoCache configuration xml .. 48

vii

Preface

POJO Cache is an in-memory, transactional, and clustered cache system that allows

users to operate on a POJO (Plain Old Java Object) transparently and without active

user management of either replication or persistence aspects. JBoss Cache, which

includes POJO Cache, is a 100% Java based library that can be run either as a

standalone program or inside an application server.

This document is meant to be a user and reference guide to explain the architecture,

api, configuration, and examples for POJO Cache. We assume the readers are

familiar with both JGroups and the core JBoss Cache usages.

If you have questions, use the user forum

[http://www.jboss.com/index.html?module=bb&op=viewforum&f=157] linked on the

JBoss Cache website. We also provide tracking links for tracking bug reports and

feature requests on JBoss Jira web site [http://jira.jboss.com] . If you are interested in

the development of POJO Cache, post a message on the forum. If you are interested

in translating this documentation into your language, contact us on the developer

mailing list.

JBoss Cache is an open source product, using the business and OEM-friendly

OSI-approved LGPL license. Commercial development support, production support

and training for JBoss Cache is available through JBoss, a division of Red Hat Inc.

[http://www.jboss.com]

In some of the example listings, what is meant to be displayed on one line does not

fit inside the available page width. These lines have been broken up. A '\' at the end

of a line means that a break has been introduced to fit in the page, with the following

lines indented. So:

 Let's pretend to have an extremely \

 long line that \

 does not fit

 This one is short

Is really:

 Let's pretend to have an extremely long line that does

 not fit

 This one is short

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://jira.jboss.com
http://jira.jboss.com
http://www.jboss.com
http://www.jboss.com

viii

Chapter 1.

1

Terminology

1. Overview

The section lists some basic terminology that will be used throughout this guide.

Aop

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to

organize and layer your software applications in ways that are impossible with

traditional object-oriented approaches. Aspects allow you to transparently glue

functionality together so that you can have a more layered design. AOP allows

you to intercept any event in a Java program and trigger functionality based on

those events.

JBoss Aop

JBoss Aop is an open-source Aop framework library developed by JBoss.

It is 100% Java based and can be run either as a standalone or inside an

application server environment. More details can be found at www.jboss.com.

PojoCache uses JBoss Aop library in two ways. It uses JBoss Aop firstly for

its own interceptor-based architecture and secondly to realize the fine-grained

replication aspects.

Dynamic Aop

Dynamic Aop is a feature of JBoss Aop that provides a hook so that a caller can

insert event interception on the POJO at runtime. PojoCache currently uses this

feature to perform field level interception.

JGroups

JGroups is a reliable Java group messaging library that is open-source and

LGPL. In addition to reliable messaging transport, it also performs group

membership management. It has been a de facto replication layer used by

numerous open-source projects for clustering purposes. It is also used by

JBossCache for replication layer.

Core Cache

Core Cache is a tree-structured, clustered, transactional cache. Simple and

Serializable java types are stored as key/value pairs on nodes within the tree

using a collection-like API. It also provides a number of configurable aspects

such as node locking strategies, data isolation, eviction, and so on. POJO Cache

leverages Core Cache as the underlying data-store in order to provide the same

capabilities.

POJO

Plain old Java object.

Chapter 1. Terminology

2

Annotation

Annotation is a new feature in JDK5.0. It introduces metadata along side the

Java code that can be accessed at runtime. PojoCache currently uses JDK50

annotation to support POJO instrumentation (JDK1.4 annotation has been

deprecated since release 2.0).

Prepare

Prepare is a keyword in JBoss Aop pointcut language used to specify which

POJO needs to be instrumented. It appears in a pojocache-aop.xml file.

However, if you can use annotation to specify the POJO instrumentation, there

is no need for a pojocache-aop.xml listing. Note that When a POJO is declared

properly either through the xml or annotation, we consider it "aspectized".

Instrumentation

Instrumentation is an Aop process that basically pre-processes (e.g., performing

byte-code weaving) on the POJO. There are two modes: compile- or load-time.

Compile-time weaving can be done with an Aop precompiler (aopc) while

load-time is done to specify a special classloader in the run script. This step is

necessary for an Aop system to intercept events that are interesting to users.

Chapter 2.

3

Introduction

1. Overview

JBoss Cache consists of two components, Core Cache, and POJO Cache. Core

Cache provides efficient memory storage, transactions, replication, eviction,

persistent storage, and many other "core" features you would expect from a

distributed cache. The Core Cache API is tree based. Data is arranged on the tree

using nodes that each offer a map of attributes. This map-like API is intuitive and

easy to use for caching data, but just like the Java Collection API, it operates only off

of simple and serializable types. Therefore, it has the following constraints:

• If replication or persistence is needed, the object will then need to implement the

Serializable interface. E.g.,

public Class Foo implements Serializable

• If the object is mutable, any field change will require a successive put operation on

the cache:

value = new Foo();

cache.put(fqn, key, value);

value.update(); // update value

cache.put(fqn, key, value); // Need to repeat this step again to

 ask cache to persist or replicate the changes

• Java serialization always writes the entire object, even if only one field was

changed. Therefore, large objects can have significant overhead, especially if they

are updated frequently:

thousand = new ThousandFieldObject();

cache.put(fqn, key, thousand);

thousand.setField1("blah"); // Only one field was modified

cache.put(fqn, key, thousand); // Replicates 1000 fields

• The object structure can not have a graph relationship. That is, the object can not

have references to objects that are shared (multiple referenced) or to itself (cyclic).

Otherwise, the relationship will be broken upon serialization (e.g., when replicate

each parent object separately). For example, Figure 1 illustrates this problem

during replication. If we have two Person instances that share the same Address ,

upon replication, it will be split into two separate Address instances (instead of just

one). The following is the code snippet using Cache that illustrates this problem:

Chapter 2. Introduction

4

joe = new Person("joe");

mary = new Person("mary");

addr = new Address("Taipei");

joe.setAddress(addr);

mary.setAddress(addr);

cache.put("/joe", "person", joe);

cache.put("/mary", "person", mary);

Figure 2.1. Illustration of shared objects problem during

replication

POJO Cache attempts to address these issues by building a layer on top of Core

Cache which transparently maps normal Java object model operations to individual

Node operations on the cache. This offers the following improvements:

• Objects do not need to implement Serializable interface. Instead they are

instrumented, allowing POJO Cache to intercept individual operations.

• Replication is fine-grained. Only modified fields are replicated, and they can be

optionally batched in a transaction.

• Object identity is preserved, so graphs and cyclical references are allowed.

• Once attached to the cache, all subsequent object operationis will trigger a cache

operation (like replication) automatically:

POJO pojo = new POJO();

pojoCache.attach("id", pojo);

pojo.setName("some pojo"); // This will trigger replication

 automatically.

Features

5

In POJO Cache, these are the typical development and programming steps:

• Annotate your object with @Replicable

• Use attach() to put your POJO under cache management.

• Operate on the object directly. The cache will then manage the replication or

persistence automatically and transparently.

More details on these steps will be given in later chapters.

Since POJO Cache is a layer on-top of Core Cache, all features available in Core

Cache are also available in POJO Cache. Furthermore, you can obtain an instance

to the underlying Core Cache by calling PojoCache.getCache(). This is useful for

resusing the same cache instance to store custom data, along with the POJO model.

2. Features

Here are the current features and benefits of PojoCache:

• Fine-grained replication. The replication modes supported are the same as that

of Core Cache: LOCAL, REPL_SYNC, REPL_ASYNC, INVALIDATION_SYNC, and

INVALIDATION_ASYNC (see the main JBoss Cache reference documentation for

details). The replication level is fine-grained and is performed automatically once

the POJO is mapped into the internal cache store. When a POJO field is updated,

a replication request will be sent out only to the key corresponding to that modified

attribute (instead of the whole object). This can have a potential performance boost

during the replication process; e.g., updating a single key in a big HashMap will

only replicate the single field instead of the whole map!

• Transactions. All attached objects participate in a user transaction context. If a

rollback occurs, the previous internal field state of the object will be restored:

POJO p = new POJO();

p.setName("old value");

pojoCache.attach("id", p);

tx.begin(); // start a user transaction

p.setName("some pojo");

tx.rollback(); // this will cause the rollback

p.getName(); // is "old value"

In addition, operations under a transaction is batched. That is, the update is not

performed until the commit phase. Further, if replication is enabled, other nodes

will not see the changes until the transaction has completed successfully.

• Passivation. POJO Cache supports the same passivation provided by Core Cache.

When a node mapped by POJO Cache has reached a configured threshold,

Chapter 2. Introduction

6

it is evicted from memory and stored using a cache loader. When the node is

accessed again, it will be retrieved from the cache loader and put into memory.

The configuration parameters are the same as those of the Cache counterpart. To

configure the passivation, you will need to configure both the eviction policy and

cache loader.

• Object cache by reachability, i.e., recursive object mapping into the cache store.

On attach, POJO Cache will attach all referenced objects as well. This feature is

explained in more detail later.

• Natural Object Relationships. Java references are preserved as they were written.

That is, a user does not need to declare any object relationship (e.g., one-to-one,

or one-to-many) to use the cache.

• Object Identity. Object identity is preserved. Not only can a cached object be

compared using equals(), but the comparison operator, ==, can be used as

well. For example, an object such as Address may be multiple referenced by two

Persons (e.g., joe and mary). The objects retrieved from joe.getAddress() and

mary.getAddress() should be identicali, when when retrieved from a different

node in the cluster then that which attached them.

• Inheritance. POJO Cache preserves the inheritance hierarchy of any object in

the cache. For example, if a Student class inherits from a Person class, once a

Student object is mapped to POJO Cache (e.g., attach call), the fields in the

base class Person are mapped as well.

• Collections. Java Collection types (e.g. List, Set, and Map) are transparently

mapped using Java proxies. Details are described later.

• Annotation based. Starting from release 2.0, JDK 5 annotations are used to

indicate that an object should be instrumented for use under POJO Cache (once

attached).

• Transparent. Once a POJO is attached to the cache, subsequent object model

changes are transparently handled. No further API calls are required.

3. Usage

To use POJO Cache, you obtain the instance from the PojoCacheFactory by

supplying a config file that is used by the delegating Cache implementation. Once the

PojoCache instance is obtained, you can call the cache life cycle method to start the

cache. Below is a code snippet that creates and starts the cache:

String configFile = "replSync-service.xml";

boolean toStart = false;

PojoCache pcache = PojoCacheFactory.createCache(configFiel,

 toStart);

Requirements

7

pcache.start(); // if toStart above is true, it will starts the

 cache automatically.

pcache.attach(id, pojo);

// ...

pcache.stop(); // stop the cache. This will take PojoCache out of

 the clustering group, if any, e.g.

4. Requirements

POJO Cache is currently supported on JDK 5 (since release 2.0). It requires the

following libraries (in addition to jboss-cache.jar and the required libraries for Core

Cache) to start up:

• Library:

• pojocache.jar. Main POJO Cache library.

• jboss-aop-jdk50.jar. Main JBoss Aop library.

• javassist.jar. Java byte code manipulation library.

• trove.jar. High performance collections for Java.

8

Chapter 3.

9

Architecture
POJO Cache internally uses the JBoss Aop framework to both intercept object field

access, and to provide an internal interceptor stack for centralizing common behavior

(e.g. locking, transactions).

The following figure is a simple overview of the POJO Cache architecture. From the

top, it can be can seen that when a call comes in (e.g., attach or detach), it will go

through the POJO Cache interceptor stack first. After that, it will store the object's

fields into the underlying Core Cache, which will be replicated (if enabled) using

JGroups.

Figure 3.1. POJO Cache architecture overview

1. POJO Cache interceptor stack

As mentioned, the JBoss Aop framework is used to provide a configurable

interceptor stack. In the current implementation, the main POJO Cache

methods have their own independant stack. These are specified in

META-INF/pojocache-aop.xml In most cases, this file should be left alone, although

advanced users may wish to add their own interceptors. The Following is the default

configuration:

 <!-- Check id range validity -->

 <interceptor name="CheckId"

 class="org.jboss.cache.pojo.interceptors.CheckIdInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Track Tx undo operation -->

Chapter 3. Architecture

10

 <interceptor name="Undo"

 class="org.jboss.cache.pojo.interceptors.PojoTxUndoInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Begining of interceptor chain -->

 <interceptor name="Start"

 class="org.jboss.cache.pojo.interceptors.PojoBeginInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Check if we need a local tx for batch processing -->

 <interceptor name="Tx"

 class="org.jboss.cache.pojo.interceptors.PojoTxInterceptor"

 scope="PER_INSTANCE"/>

 <!--

 Mockup failed tx for testing. You will need to set

 PojoFailedTxMockupInterceptor.setRollback(true)

 to activate it.

 -->

 <interceptor name="MockupTx" class="org.jboss.cache.pojo.interceptors.PojoFailedTxMockupInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Perform parent level node locking -->

 <interceptor name="TxLock"

 class="org.jboss.cache.pojo.interceptors.PojoTxLockInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to perform Pojo level rollback -->

 <interceptor name="TxUndo"

 class="org.jboss.cache.pojo.interceptors.PojoTxUndoSynchronizationInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to used to check recursive field interception.

 -->

 <interceptor name="Reentrant" class="org.jboss.cache.pojo.interceptors.MethodReentrancyStopperInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Whether to allow non-serializable pojo. Default is false.

 -->

 <interceptor name="MarshallNonSerializable" class="org.jboss.cache.pojo.interceptors.CheckNonSerializableInterceptor"

 scope="PER_INSTANCE">

 <attribute

 name="marshallNonSerializable">false</attribute>

 </interceptor>

 <stack name="Attach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

Field interception

11

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Detach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Find">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 </stack>

The stack should be self-explanatory. For example, for the Attach stack, we

currently have Start, CheckId, Tx, TxLock, and TxUndo interceptors. The stack

always starts with a Start interceptor such that initialization can be done properly.

CheckId is to ensure the validity of the Id (e.g., it didn't use any internal Id string).

Finally, Tx, TxLock, and TxUndo are handling the the proper transaction locking and

rollback behavior (if needed).

2. Field interception

POJO Cache currently uses JBoss AOP to intercept field operations. If a class

has been properly instrumented (by either using the @Replicable annotation, or

if the object has already been advised by JBoss AOP), then a cache interceptor

is added during an attach() call. Afterward, any field modification will invoke the

corresponding CacheFieldInterceptor instance. Below is a schematic illustration

of this process.

Only fields, and not methods are intercepted, since this is the most efficient and

accurate way to gaurantee the same data is visible on all nodes in the cluster.

Further, this allows for objects that do not conform to the JavaBean specficiation to

be replicable. There are two important aspects of field interception:

• All access qualifiers are intercepted. In other words, all private, all protected, all

default, and all public fields will be intercepted.

• Any field with final, static, and/or transient qualifiers, will be skipped.

Therefore, they will not be replicated, passivated, or manipulated in any way by

POJO Cache.

The figure below illustrates both field read and write operations. Once an POJO

is managed by POJO Cache (i.e., after an attach() method has been called),

Chapter 3. Architecture

12

JBoss Aop will invoke the CacheFieldInterceptor every time a class operates

on a field. The cache is always consulted, since it is in control of the mapped data

(i.e. it gaurantess the state changes made by other nodes in the cluster are visible).

Afterwords, the in-memmory copy is updated. This is mainly to allow transaction

rollbacks to restore the previous state of the object.

Figure 3.2. POJO Cache field interception

3. Object relationship management

As previously mentioned, unlike a traditional cache system, POJO Cache preserves

object identity. This allows for any type of object relationship available in the Java

language to be transparently handled.

During the mapping process, all object references are checked to see if they are

already stored in the cache. If already stored, instead of duplicating the data, a

reference to the original object is written in the cache. All referenced objects are

reference counted, so they will be removed once they are no longer referenced.

To look at one example, let's say that multiple Persons ("joe" and "mary") objects

can own the same Address (e.g., a household). The following diagram is a graphical

representation of the pysical cache data. As can be seen, the "San Jose" address is

only stored once.

Object relationship management

13

Figure 3.3. Schematic illustration of object relationship mapping

In the following code snippet, we show programmatically the object sharing example.

import org.jboss.cache.pojo.PojoCache;

import org.jboss.cache.pojo.PojoCacheFactory;

import org.jboss.test.cache.test.standAloneAop.Person;

import org.jboss.test.cache.test.standAloneAop.Address;

String configFile = "META-INF/replSync-service.xml";

PojoCache cache = PojoCacheFactory.createCache(configFile); // This

 will start PojoCache automatically

Person joe = new Person(); // instantiate a Person object named joe

joe.setName("Joe Black");

joe.setAge(41);

Person mary = new Person(); // instantiate a Person object named

 mary

mary.setName("Mary White");

mary.setAge(30);

Address addr = new Address(); // instantiate a Address object named

 addr

addr.setCity("Sunnyvale");

addr.setStreet("123 Albert Ave");

addr.setZip(94086);

joe.setAddress(addr); // set the address reference

Chapter 3. Architecture

14

mary.setAddress(addr); // set the address reference

cache.attach("pojo/joe", joe); // add aop sanctioned object (and

 sub-objects) into cache.

cache.attach("pojo/mary", mary); // add aop sanctioned object (and

 sub-objects) into cache.

Address joeAddr = joe.getAddress();

Address maryAddr = mary.getAddress(); // joeAddr and maryAddr

 should be the same instance

cache.detach("pojo/joe");

maryAddr = mary.getAddress(); // Should still have the address.

If joe is removed from the cache, mary should still have reference the same Address

object in the cache store.

To further illustrate this relationship management, let's examine the Java code under

a replicated environment. Imagine two separate cache instances in the cluster now

(cache1 and cache2). On the first cache instance, both joe and mary are attached

as above. Then, the application fails over to cache2. Here is the code snippet for

cache2 (assume the objects were already attached):

/**

 * Code snippet on cache2 during fail-over

 */

import org.jboss.cache.PropertyConfigurator;

import org.jboss.cache.pojo.PojoCache;

import org.jboss.test.cache.test.standAloneAop.Person;

import org.jboss.test.cache.test.standAloneAop.Address;

String configFile = "META-INF/replSync-service.xml";

PojoCache cache2 = PojoCacheFactory.createCache(configFile); //

 This will start PojoCache automatically

Person joe = cache2.find("pojo/joe"); // retrieve the POJO

 reference.

Person mary = cache2.find("pojo/mary"); // retrieve the POJO

 reference.

Address joeAddr = joe.getAddress();

Address maryAddr = mary.getAddress(); // joeAddr and maryAddr

 should be the same instance!!!

maryAddr = mary.getAddress().setZip(95123);

int zip = joeAddr.getAddress().getZip(); // Should be 95123 as well

 instead of 94086!

Object Inheritance

15

4. Object Inheritance

POJO Cache preserves the inheritance hierarchy of all attached objects. For

example, if a Student extends Person with an additional field year, then once

Student is put into the cache, all the class attributes of Person are mapped to the

cache as well.

Following is a code snippet that illustrates how the inheritance behavior of a POJO is

maintained. Again, no special configuration is needed.

import org.jboss.test.cache.test.standAloneAop.Student;

Student joe = new Student(); // Student extends Person class

joe.setName("Joe Black"); // This is base class attributes

joe.setAge(22); // This is also base class attributes

joe.setYear("Senior"); // This is Student class attribute

cache.attach("pojo/student/joe", joe);

//...

joe = (Student)cache.attach("pojo/student/joe");

Person person = (Person)joe; // it will be correct here

joe.setYear("Junior"); // will be intercepted by the cache

joe.setName("Joe Black II"); // also intercepted by the cache

5. Physical object cache mapping model

The previous sections describe the logical object mapping model. In this section,

we will explain the physical mapping model, that is, how do we map the POJO into

Core Cache for transactional state replication. However, it should be noted that the

physical structure of the cache is purely an internal implementation detail, it should

not be treated as an API as it may change in future releases. This information is

provided solely to aid in better understanding the mapping process in POJO Cache.

When an object is first attached in POJO Cache, the Core Cache node

representation is created in a special internal area. The Id fqn that is passed to

attach() is used to create an empty node that references the internal node. Future

references to the same object will point to the same internal node location, and that

node will remain until all such references have been removed (detached).

The example below demonstrates the mapping of the Person object under id

"pojo/joe" and "pojo/mary" as metioned in previous sections. It is created from a two

node replication group where one node is a Beanshell window and the other node

is a Swing Gui window (shown here). For clarity, multiple snapshots were taken to

highlight the mapping process.

Chapter 3. Architecture

16

The first figure illustrates the first step of the mapping approach.

From the bottom of the figure, it can be seen that the PojoReference

field under pojo/joe is pointing to an internal location,

/__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49n5o-2. That is, under

the user-specified Id string, we store only an indirect reference to the internal area.

Please note that Mary has a similar reference.

Figure 3.4. Object cache mapping for Joe

Figure 3.5. Object cache mapping for Mary

Then by clicking on the referenced internal node (from the following figure), it can

seen that the primitive fields for Joe are stored there. E.g., Age is 41 and Name is Joe

Black. And similarly for Mary as well.

Physical object cache mapping model

17

Figure 3.6. Object cache mapping for internal node Joe

Figure 3.7. Object cache mapping for internal node Mary

Under the /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49n5o-2,

it can be seen that there is an Address node. Clicking on the

Address node shows that it references another internal location:

/__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49ngs-3 as shown

in the following figure. Then by the same token, the Address node under

/__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49na0-4 points to the same

address reference. That is, both Joe and Mary share the same Address reference.

Chapter 3. Architecture

18

Figure 3.8. Object cache mapping: Joe's internal address

Figure 3.9. Object cache mapping: Mary's internal address

Finally, the /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49ngs-3 node

contains the various various primitive fields of Address, e.g., Street, Zip, and City.

This is illustrated in the following figure.

Collection Mapping

19

Figure 3.10. Object cache mapping: Address fields

6. Collection Mapping

Due to current Java limitations, Collection classes that implement Set, List, and Map

are substituted with a Java proxy. That is, whenever POJO Cache encounters any

Collection instance, it will:

• Create a Collection proxy instance and place it in the cache (instead of the

original reference). The mapping of the Collection elements will still be carried out

recursively as expected.

• If the Collection instance is referenced from another object, POJO Cache will swap

out the original reference with the new proxy, so that operations performed by the

refering object will be picked up by the cache.

The drawback to this approach is that the calling application must re-get any

collection references that were attached. Otherwise, the cache will not be aware of

future changes. If the collection is referenced from another object, then the calling

app can obtain the proxy by using the publishing mechanism provided by the object

(e.g. Person.getHobbies()). If, however, the collection is directly attached to the

cache, then a subsequent find() call will need to be made to retrieve the proxy.

The following code snippet illustrates obtaining a direct Collection proxy reference:

List list = new ArrayList();

list.add("ONE");

list.add("TWO");

cache.attach("pojo/list", list);

list.add("THREE"); // This won't be intercepted by the cache!

Chapter 3. Architecture

20

List proxyList = cache.find("pojo/list"; // Note that list is a

 proxy reference

proxyList.add("FOUR"); // This will be intercepted by the cache

This snippet illustrates obtaining the proxy reference from a refering object:

Person joe = new Person();

joe.setName("Joe Black"); // This is base class attributes

List lang = new ArrayList();

lang.add("English");

lang.add("Mandarin");

joe.setLanguages(lang);

// This will map the languages List automatically and swap it out

 with the proxy reference.

cache.attach("pojo/student/joe", joe);

lang = joe.getLanguages(); // Note that lang is now a proxy

 reference

lang.add("French"); // This will be intercepted by the cache

Finally, when a Collection is removed from the cache (e.g., via detach), you still can

use the proxy reference. POJO Cache will just redirect the call back to the in-memory

copy. See below:

List list = new ArrayList();

list.add("ONE");

list.add("TWO");

cache.attach("pojo/list", list);

List proxyList = cache.find("pojo/list"); // Note that list is a

 proxy reference

proxyList.add("THREE"); // This will be intercepted by the cache

cache.detach("pojo/list"); // detach from the cache

proxyList.add("FOUR"); // proxyList has 4 elements still.

6.1. Limitations

The current implementation has the following limitations with collections:

• Only List, Set and Map are supported. Also it should be noted that the Java

Collection API does not fully describe the behavior of implementations, so the

cache versions may differ slightly from the common Java implementations (e.g.

handling of NULL)

Array Mapping

21

• As of PojoCache 2.0, HashMap keys must be serializable. Prior to PojoCache 2.0,

HashMap keys were converted to String. This was fixed as you couldn't get the key

back in its original form. See issue JBCACHE-399 for more details.

7. Array Mapping

As of 2.2, array fields of any attached object are updated transparently, provided that

the array is written/read from a class marked with @Replicable. If this is the case,

only the indexes of the array that are modified are replicated. However, if the array

is passed externally to a class that is not marked as @Replicable, then the changes

will not be noticed. For this reason, it is recommended to abstract access to the array

where possible (i.e. setItem(item, index)). If an external, non-replicable class needs

access to the array, then it is recommended to pass a copy, and add a method to the

container object that reapplies the changes. Also, due to JVM limitations, an array

can not be monitored if it is directly attached to the cache (i.e. a first class object).

POJO Cache still allows this, but they are treated as a serializable type. As with other

serializable type, they must be reattached after every change.

The following code snippet illustrates accessing a replicated array through

abstraction:

@Replicable public class Team

{

 private String[] members = new String[10];

 public String getMember(int index)

 {

 return members[index];

 }

 public void setMember(int index, String member)

 {

 members[index] = member;

 }

}

public class SomeExternalClass

{

 ...

 public void someMethod()

 {

 Team team = new Team();

 cache.attach("/team/1", team);

 team.setMember(0, "John");

 team.setMember(1, "Joe");

 }

Chapter 3. Architecture

22

}

Chapter 4.

23

API Overview
This section provides a brief overview of the POJO Cache APIs. Please consult the

javadoc for the full API.

1. PojoCacheFactory Class

PojoCacheFactory provides a couple of static methods to instantiate and obtain a

PojoCache instance.

/**

 * Create a PojoCache instance. Note that this will start the cache

 life cycle automatically.

 * @param config A configuration string that represents the file

 name that is used to

 * configure the underlying Cache instance.

 * @return PojoCache

 */

public static PojoCache createInstance(String config);

/**

 * Create a PojoCache instance.

 * @param config A configuration string that represents the file

 name that is used to

 * configure the underlying Cache instance.

 * @param start If true, it will start the cache life cycle.

 * @return PojoCache

 */

public static PojoCache createInstance(String config, boolean

 start);

/**

 * Create a PojoCache instance.

 * @param config A configuration object that is used to configure

 the underlying Cache instance.

 * @param start If true, it will start the cache life cycle.

 * @return PojoCache

 */

public static PojoCache createInstance(Configuration config,

 boolean start);

For example, to obtain a PojoCache instance and start the cache lifestyle

automatically, we can do:

 String configFile = "META-INF/replSync-service.xml";

Chapter 4. API Overview

24

 PojoCache cache = PojoCacheFactory.createInstance(configFile);

2. PojoCache Interface

PojoCache is the main interface for POJO Cache operations. Since most of the

cache interaction is performed against the application domain model, there are only a

few methods on this interface.

2.1. Attachment

 /**

 * Attach a POJO into PojoCache. It will also recursively put

 any sub-POJO into

 * the cache system. A POJO can be the following and have the

 consequences when attached:

 *

 * It is PojoCacheable, that is, it has been annotated with

 * {@see org.jboss.cache.aop.annotation.PojoCacheable}

 annotation (or via XML), and has

 * been "instrumented" either compile- or load-time. The POJO

 will be mapped recursively to

 * the system and fine-grained replication will be performed.

 *

 * It is Serializable. The POJO will still be stored in the

 cache system. However, it is

 * treated as an "opaque" object per se. That is, the POJO will

 neither be intercepted

 * (for fine-grained operation) or object relationship will be

 maintained.

 *

 * Neither of above. In this case, a user can specify whether it

 wants this POJO to be

 * stored (e.g., replicated or persistent). If not, a

 PojoCacheException will be thrown.

 *

 * @param id An id String to identify the object in the cache.

 To promote concurrency, we

 * recommend the use of hierarchical String

 separating by a designated separator. Default

 * is "/" but it can be set differently via a System

 property, jbosscache.separator

 * in the future release. E.g., "ben", or

 "student/joe", etc.

 * @param pojo object to be inserted into the cache. If null, it

 will nullify the fqn node.

 * @return Existing POJO or null if there is none.

Detachment

25

 * @throws PojoCacheException Throws if there is an error

 related to the cache operation.

 */

 Object attach(String id, Object pojo) throws PojoCacheException;

As described in the above javadoc, this method "attaches" the passed object to the

cache at the specified location (id). The passed in object (pojo) must have been

instrumented (using the @Replicable annotation) or implement the Serializable

interface.

If the object is not instrumented, but serializable, POJO Cache will simply treat it as

an opaque "primitive" type. That is, it will simply store it without mapping the object's

fields into the cache. Replication is done on the object wide level and therefore it will

not be fine-grained.

If the object has references to other objects, this call will issue attach() calls

recursively until the entire object graph is traversed. In addition, object identity and

object references are preserved. So both circular and multiply referenced objects are

mapped as expected.

The return value after the call is the previous object under id, if any. As a result, a

successful call i will replace that old value with the new instance. Note that a user will

only need to issue this call once for each top-level object. Further calls can be made

directly on the graph, and they will be mapped as expected.

2.2. Detachment

 /**

 * Remove POJO object from the cache.

 *

 * @param id Is string that associates with this node.

 * @return Original value object from this node.

 * @throws PojoCacheException Throws if there is an error

 related to the cache operation.

 */

 Object detach(String id) throws PojoCacheException;

This call will detach the POJO from the cache by removing the contents under id

and return the POJO instance stored there (null if it doesn't exist). If successful,

further operations against this object will not affect the cache. Note this call will also

remove everything stored under id even if you have put other plain cache data there.

2.3. Query

 /**

Chapter 4. API Overview

26

 * Retrieve POJO from the cache system. Return null if object

 does not exist in the cache.

 * Note that this operation is fast if there is already a POJO

 instance attached to the cache.

 *

 * @param id that associates with this node.

 * @return Current content value. Null if does not exist.

 * @throws PojoCacheException Throws if there is an error

 related to the cache operation.

 */

 Object find(String id) throws PojoCacheException;

This call will return the current object content located under id. This method call is

useful when you don't have the exact POJO reference. For example, when you fail

over to the replicated node, you want to get the object reference from the replicated

cache instance. In this case, PojoCache will create a new Java object if it does not

exist and then add the cache interceptor such that every future access will be in sync

with the underlying cache store.

 /**

 * Query all managed POJO objects under the id recursively. Note

 that this will not return

 * the sub-object POJOs, e.g., if Person has a sub-object of

 Address, it

 * won't return Address pojo. Also note also that this operation

 is not thread-safe

 * now. In addition, it assumes that once a POJO is found with a

 id, no more POJO is stored

 * under the children of the id. That is, we don't mix the id

 with different POJOs.

 *

 * @param id The starting place to find all POJOs.

 * @return Map of all POJOs found with (id, POJO) pair. Return

 size of 0, if not found.

 * @throws PojoCacheException Throws if there is an error

 related to the cache operation.

 */

 Map findAll(String id) throws PojoCacheException;

This call will return all the managed POJOs under cache with a base Fqn name. It is

recursive, meaning that it will traverse all the sub-trees to find the POJOs under that

base. For example, if you specify the fqn to be root, e.g., "/" , then it will return all

the managed POJOs under the cache.

Chapter 5.

27

Configuration and Deployment
Since POJO Cache uses Core Cache for the underlying node replication,

transaction, locking, and passivation behavior, the configuration is mostly the same.

1. Cache configuration xml file

When a PojoCache instance is obtained from a PojoCacheFactory, it is required

that the either a org.jboss.cache.config.Configuration object is passed, or

more typically a String indicating the location on the classpath or filesystem of an xml

configuration file is provided. In the latter case, PojoCacheFactory will parse the xml

to create a Configuration. PojoCache will simply pass the resulting Configuration

to the underlying Core Cache implementation. For details on the configuration please

see the "Configuration" chapter in the the JBoss Cache User Guide.

2. Passivation

A common use-case is to configure the underlying Core Cache to enable

passivation. Passivation is a feature used to reduce cache memory usage by evicting

stale data that can later be reloaded. In JBoss Cache, it is done via a combination

of an eviction policy and a cache loader. That is, when a node is evicted from the

Cache's in-memory store, it will be stored in a persistent store by the cache loader.

When the node is requested again, it will be loaded from the persistent store and

stored into memory.

There is a restriction, however. Since POJO Cache maps object data into an

internal area, there are two places that have object information. One is under

the regular String ID that the user specifies, and the other is located under

/__JBossInternal__. Therefore, to maintain consistentency, when you specify the

eviction region, you can only specify one global (i.e., /_default_) region. This way,

when the nodes associated with a POJO are passivated, they will do so across the

whole region.

Below is a snippet from a cache configuration xml illustrating how the eviction policy

along with cache loader can be configured. Please note that this is simply an aspect

of the underlying Cache. That is, PojoCache layer is agnostic to this behavior.

<attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <attribute

 name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

Chapter 5. Configuration and ...

28

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">3</attribute>

 </region>

 </config>

</attribute>

<attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>true</passivation>

 <preload>/</preload>

 <shared>false</shared>

 <!-- we can now have multiple cache loaders, which get

 chained -->

 <cacheloader>

 <class>org.jboss.cache.loader.FileCacheLoader</class>

 <!-- whether the cache loader writes are asynchronous -->

 <async>false</async>

 <!-- only one cache loader in the chain may set

 fetchPersistentState to true.

 An exception is thrown if more than one cache loader

 sets this to true. -->

 <fetchPersistentState>true</fetchPersistentState>

 <!-- determines whether this cache loader ignores writes -

 defaults to false. -->

 <ignoreModifications>false</ignoreModifications>

 </cacheloader>

 </config>

</attribute>

Another way to support multiple regions in eviction is to use region-based

marshalling. See the "Architecture" chapter in the JBoss Cache User Guide for

more information on region-based marshalling. When the Cache uses region-based

marshalling, POJO Cache will store internal node data on the region that is specified.

This allows for a more flexible eviction policy.

3. AOP Configuration

POJO Cache supplies a pojocache-aop.xml that is required to be set via a system

property: jboss.aop.path during compile- or load-time, or placed in the user's

classpath. The file now consists of the interceptor stack specification, as well as

annotations for POJO instrumentation. It is listed fully in the Appendix section. Note

that the file should not normally need to be modified. Only an advanced use-case

would require changes.

4. Deployment Options

There are a number of ways to deploy POJO Cache:

Programatic Deployment

29

4.1. Programatic Deployment

Simply instantiate a PojoCacheFactory and invoke one of the overloaded

createCache methods shown in the API Overview.

4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and

4.x)

If PojoCache is run in JBoss AS then your cache can be deployed as an MBean

simply by copying a standard cache configuration file to the server's deploy

directory. The standard format of PojoCache's standard XML configuration file (as

shown in the Appendix) is the same as a JBoss AS MBean deployment descriptor,

so the AS's SAR Deployer has no trouble handling it. Also, you don't have to place

the configuration file directly in deploy; you can package it along with other services

or JEE components in a SAR or EAR.

In AS 5, if you're using a server config based on the standard all config, then

that's all you need to do; all required jars will be on the classpath. Otherwise, you

will need to ensure pojocache.jar, jbosscache.jar and jgroups-all.jar

are on the classpath. You may need to add other jars if you're using things

like JdbmCacheLoader. The simplest way to do this is to copy the jars from the

PojoCache distribution's lib directory to the server config's lib directory. You could

also package the jars with the configuration file in Service Archive (.sar) file or an

EAR.

It is possible, to deploy a POJO Cache 2.0 instance in JBoss AS 4.x However, the

significant API changes between the 2.x and 1.x releases mean none of the standard

AS 4.x clustering services (e.g. http session replication) that rely on the 1.x API will

work with PojoCache 2.x. Also, be aware that usage of PojoCache 2.x in AS 4.x is

not something the cache developers are making any significant effort to test, so be

sure to test your application well (which of course you're doing anyway.)

Note in the example the value of the mbean element's code attribute:

org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper. This is the class JBoss

Cache uses to handle JMX integration; the PojoCache itself does not expose

an MBean interface. See the JBoss Cache MBeans section for more on the

PojoCacheJmxWrapper.

Once your cache is deployed, in order to use it with an in-VM client such as a servlet,

a JMX proxy can be used to get a reference to the cache:

 MBeanServer server = MBeanServerLocator.locateJBoss();

 ObjectName on = new ObjectName("jboss.cache:service=PojoCache");

 PojoCacheJmxWrapperMBean cacheWrapper =

 (PojoCacheJmxWrapperMBean)

 MBeanServerInvocationHandler.newProxyInstance(server, on,

Chapter 5. Configuration and ...

30

 PojoCacheJmxWrapperMBean.class, false);

 PojoCache cache = cacheWrapper.getPojoCache();

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server

inside the current JVM. The javax.management.MBeanServerInvocationHandler

class' newProxyInstance method creates a dynamic proxy implementing the given

interface and uses JMX to dynamically dispatch methods invoked against the

generated interface to the MBean. The name used to look up the MBean is the same

as defined in the cache's configuration file.

Once the proxy to the PojoCacheJmxWrapper is obtained, the getPojoCache() will

return a reference to the PojoCache itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services

via deployment of a file whose name ends with -beans.xml. A POJO service is

one whose implementation is via a "Plain Old Java Object", meaning a simple

java bean that isn't required to implement any special interfaces or extend any

particular superclass. A PojoCache is a POJO service, and all the components in a

Configuration are also POJOS, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the

core of JBoss AS. JBoss Microcontainer is a sophisticated IOC framework (similar to

Spring). A -beans.xml file is basically a descriptor that tells the IOC framework how

to assemble the various beans that make up a POJO service.

The rules for how to deploy the file, how to package it, how to ensure the required

jars are on the classpath, etc. are the same as for a JMX-based deployment.

Following is an abbreviated example -beans.xml file. The details of building

up the Configuration are omitted; see the "Deploying JBoss Cache" chapter in

the JBoss Cache User Guide for a more complete example. If you look in the

server/all/deploy directory of an AS 5 installation, you can find several more

examples.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... details omitted

POJO Cache MBeans

31

 </bean>

 <!-- The cache itself. -->

 <bean name="ExampleCache"

 class="org.jboss.cache.pojo.impl.PojoCacheImpl">

 <constructor

 factoryClass="org.jboss.cache.pojo.PojoCacheFactory

 factoryMethod="createCache">

 <parameter><inject

 bean="ExampleCacheConfig"/></parameter>

 <parameter>false</false>

 </constructor>

 </bean>

</deployment>

An interesting thing to note in the above example is the difference between

POJO Cache and a plain Cache in the use of a factory to create the cache. (See

the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for the

comparable plain Cache example.) The PojoCacheFactory exposes static methods

for creating a PojoCache; as a result there is no need to add a separate bean

element for the factory. Core Cache's DefaultCacheFactory creates caches from a

singleton instance, requiring a bit more boilerplate in the config file.

5. POJO Cache MBeans

POJO Cache provides an MBean that can be registered with your environment's

JMX server to allow access to the cache instance via JMX. This MBean is the

org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper. It is a StandardMBean, so it's

MBean interface is org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean. This

MBean can be used to:

• Get a reference to the underlying PojoCache.

• Invoke create/start/stop/destroy lifecycle operations on the underlying PojoCache.

• See numerous details about the cache's configuration, and change those

configuration items that can be changed when the cache has already been started.

See the PojoCacheJmxWrapperMBean javadoc for more details.

It is important to note a significant architectural difference between PojoCache 1.x

and 2.x. In 1.x, the old TreeCacheAop class was itself an MBean, and essentially

exposed the cache's entire API via JMX. In 2.x, JMX has been returned to it's

fundamental role as a management layer. The PojoCache object itself is completely

Chapter 5. Configuration and ...

32

unaware of JMX; instead JMX functionality is added through a wrapper class

designed for that purpose. Furthermore, the interface exposed through JMX has

been limited to management functions; the general PojoCache API is no longer

exposed through JMX. For example, it is no longer possible to invoke a cache

attach or detach via the JMX interface.

If a PojoCacheJmxWrapper is registered, the

wrapper also registers MBeans for the underlying

plain Cache and for each interceptor configured

in the cache's interceptor stack. These MBeans

are used to capture and expose statistics related

to cache operations; see the JBoss Cache

User Guide for more. They are hierarchically

associated with the PojoCacheJmxWrapper

MBean and have service names that reflect this

relationship. For example, a plain Cache associated

with a jboss.cache:service=PojoCache

will be accessible through an mbean named

jboss.cache:service=PojoCache,cacheType=Cache.

The replication interceptor MBean for that cache will be

accessible through the mbean named

jboss.cache:service=PojoCache,cacheType=Cache,cache-

interceptor=ReplicationInterceptor.

6. Registering the PojoCacheJmxWrapper

The best way to ensure the PojoCacheJmxWrapper is registered in JMX depends on

how you are deploying your cache:

6.1. Programatic Registration

Simplest way to do this is to create your PojoCache and pass it to the

PojoCacheJmxWrapper constructor.

 // Build but don't start the cache

 // (although it would work OK if we started it)

 PojoCache cache =

 PojoCacheFactory.createCache("cache-configuration.xml", false);

 PojoCacheJmxWrapperMBean wrapper = new

 PojoCacheJmxWrapper(cache);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=PojoCache");

 server.registerMBean(wrapper, on);

 // Invoking lifecycle methods on the wrapper results

JMX-Based Deployment in JBoss AS (JBoss

AS 4.x and 5.x)

33

 // in a call through to the cache

 wrapper.create();

 wrapper.start();

 ... use the cache

 ... on application shutdown

 // Invoking lifecycle methods on the wrapper results

 // in a call through to the cache

 wrapper.stop();

 wrapper.destroy();

Alternatively, build a Configuration object and pass it to the

PojoCacheJmxWrapper. The wrapper will construct the PojoCache:

 Configuration config = buildConfiguration(); // whatever it does

 PojoCacheJmxWrapperMBean wrapper = new

 PojoCacheJmxWrapper(config);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");

 server.registerMBean(wrapper, on);

 // Call to wrapper.create() will build the Cache if one wasn't

 injected

 wrapper.create();

 wrapper.start();

 // Now that it's built, created and started, get the cache from

 the wrapper

 PojoCache cache = wrapper.getPojoCache();

 // ... use the cache

 // ... on application shutdown

 wrapper.stop();

 wrapper.destroy();

6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and

5.x)

When you deploy your cache in JBoss AS using a -service.xml file, a

PojoCacheJmxWrapper is automatically registered. There is no need to do anything

Chapter 5. Configuration and ...

34

further. The PojoCacheJmxWrapper is accessible through the service name specified

in the cache configuration file's mbean element.

6.3. Via JBoss Microcontainer (JBoss AS 5.x)

PojoCacheJmxWrapper is a POJO, so the microcontainer has no problem creating

one. The trick is getting it to register your bean in JMX. This can be done by

specifying the org.jboss.aop.microcontainer.aspects.jmx.JMX annotation on

the PojoCacheJmxWrapper bean:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <!-- The cache itself. -->

 <bean name="ExampleCache"

 class="org.jboss.cache.pojo.impl.PojoCacheImpl">

 <constructor

 factoryClass="org.jboss.cache.pojo.PojoCacheFactory

 factoryMethod="createCache">

 <parameter><inject

 bean="ExampleCacheConfig"/></parameter>

 <parameter>false</false>

 </constructor>

 </bean>

 <!-- JMX Management -->

 <bean name="ExampleCacheJmxWrapper"

 class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(

 name="jboss.cache:service=ExamplePojoCache",

 exposedInterface=org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean.class,

 registerDirectly=true)

 </annotation>

Via JBoss Microcontainer (JBoss AS 5.x)

35

 <constructor>

 <parameter><inject bean="ExampleCache"/></parameter>

 </constructor>

 </bean>

</deployment>

As discussed in the Programatic Registration section, PojoCacheJmxWrapper can

do the work of building, creating and starting the PojoCache if it is provided with a

Configuration:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <bean name="ExampleCache"

 class="org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(

 name="jboss.cache:service=ExamplePojoCache",

 exposedInterface=org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean.class,

 registerDirectly=true)

 </annotation>

 <constructor>

 <parameter><inject

 bean="ExampleCacheConfig"/></parameter>

 </constructor>

 </bean>

</deployment>

Chapter 5. Configuration and ...

36

7. Runtime Statistics and JMX Notifications

As mentioned above, the cache exposes a variety of statistical information through

its MBeans. It also emits JMX notifications when events occur in the cache. See

the JBoss Cache User Guide for more on the statistics and notifications that are

available.

The only PojoCache addition to the plain JBoss Cache behavior described in the

User Guide is that you can register with the PojoCacheJmxWrapper to get the

notifications. There is no requirement to figure out the ObjectName of the underlying

cache's CacheJmxWrapper and register with that.

Chapter 6.

37

Instrumentation
In order to store an object in POJO Cache, it must be either instrumented or made

serializable. Instrumentation is the most optimal approach since it preserves object

identity and provides field granular replication. POJO Cache currently uses the JBoss

AOP project to provide instrumentation, so the same processes described in the

AOP documentation are used with POJO Cache.

The primary input to JBoss AOP is the AOP binding file, which is responsible for

specifying which classes should be instrumented. POJO Cache provides a binding

file, pojocache-aop.xml , which matches all classes that have been annotated with

the @Replicable annotation. Advanced users may choose to alter this definition to

instrument classes in other various interesting ways. However, it is recommended to

just stick with the default annotation binding.

The instrumentation process can be executed at either load-time, or compile-time.

Load-time instrumentation uses a Java agent to intercept and modify classes as they

are loaded; whereas compile-time instrumentation requires running aopc as part of

the compilation process.

Note

Load-time is the recommended approach, since compile-time

instrumentation adds hard dependencies to the weaved bytecode

which ties the output to a particular version of JBoss AOP.

1. Load-time instrumentation

Load-time instrumentation uses a Java agent to intercept all classes loaded by the

JVM. As they are loaded JBoss AOP instruments them, allowing POJO Cache to

monitor field changes. To enable load time instrumentation the JVM must be started

with the following specified:

1. The jboss.aop.path system property set to the location of pojocache-aop.xml

2. A javaagent argument which includes jboss-aop-jdk50.jar

These requirements lead to the following example ant task:

<java classname="Foo" fork="yes">

 <jvmarg value="-javaagent:lib/jboss-aop.jar"/>

 <jvmarg

 value="-Djboss.aop.path=etc/META-INF/pojocache-aop.xml"/>

Chapter 6. Instrumentation

38

 <classpath refid="test.classpath"/>

</java>

Once the JVM is executed in this manner, any class with the @Replicable

annotation will be instrumented when it is loaded.

2. Compile-time instrumentation

While load-time is the preffered approach, it is also possible to instrument classes at

compile-time. To do this, the aopc tool is used, with the following requirements:

1. The aoppath option must point to the location of pojocache-aop.xml

2. The src option must point to the location of your class files that are to be

instrumented. This is typically the output folder of a javac run.

The following is an example ant task which performs compile-time instrumentation:

<taskdef name="aopc" classname="org.jboss.aop.ant.AopC"

 classpathref="aop.classpath"/>

<target name="aopc" depends="compile" description="Precompile aop

 class">

 <aopc compilerclasspathref="aop.classpath" verbose="true">

 <src path="${build}"/>

 <include name="org/jboss/cache/aop/test/**/*.class"/>

 <aoppath path="${output}/resources/pojocache-aop.xml"/>

 <classpath path="${build}"/>

 <classpath refid="lib.classpath"/>

 </aopc>

</target>

In this example, once the aopc target is executeed the clasess in the build directory

are modified. They can then be packaged in a jar and loaded using the normal Java

mechanisms.

3. Understanding the provided AOP descriptor

The advanced user might decide to alter the provided AOP descritor. In order to do

this, it is important to understand the reaons behind what is provided, and what is

required by POJO Cache. Previous sections have mentioned that any class with the

@Replicable annotation will be instrumented. This happens, because the provided

AOP descriptor, pojocache-aop.xml, has a perpare statement which matches any

class (or subclass) using the annotation. This is shown in the following snippet:

Annotation

39

<prepare expr="field(*

 $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)"/>

More specifically, any code which accesses a field on a class which has been

annotated with @Replicable, will be instrumented: The "field" pointcut in the

expression matches both read and write operations. The wildcard "*" indicates that

all java protection modes are intercepted (private, package, protected, public). The

$instanceof expression refers to any annotation that subclasses @Replicable.

Finally, the ending wildcard allows the matched field to have any name.

4. Annotation

Annotation is a new feature in Java 5.0 that when declared can contain metadata at

compile and run time. It is well suited for aop declaration since there will be no need

for external metadata xml descriptor.

4.1. POJO annotation for instrumentation

To support annotation (in order to simplify user's development effort), the JBoss

Cache distribution ships with a pojocache-aop.xml under the resources directory.

For reference, here is annotation definition from pojocache-aop.xml again :

<aop>

 <prepare

 expr="field(*@org.jboss.cache.pojo.annotation.Replicable->*)"/>

</aop>

Basically, it simply states that any annotation with both marker interfaces will be

"aspectized" accordingly.

Here is a code snippet that illustrate the declaration:

@org.jboss.cache.pojo.annotation.Replicable public class

Person {...}

The above declaration will instrument the class Person and all of its sub-classes.

That is, if Student sub-class from Personal , then it will get instrumented

automatically without further annotation declaration.

4.2. JDK5.0 field level annotations

In Release 2.0, we have added two additional field level annotations for customized

behavior. The first one is @org.jboss.cache.pojo.annotation.Transient . When

Chapter 6. Instrumentation

40

applied to a field variable, it has the same effect as the Java language transient

keyword. That is, PojoCache won't put this field into cache management (and

therefore no replication).

The second one is @org.jboss.cache.pojo.annotation.Serializable , when

applied to a field variable, PojoCache will treat this variable as Serializable , even

when it is Replicable . However, the field will need to implement the Serializable

interface such that it can be replicated.

Here is a code snippet that illustrates usage of these two annotations. Assuming that

you have a Gadget class:

public class Gadget

{

 // resource won't be replicated

 @Transient

 Resource resource;

 // specialAddress is treated as a Serializable object but still

 has object relationship

 @Serializable

 SpecialAddress specialAddress;

 // other state variables

}

Then when we do:

 Gadget gadget = new Gadget();

 Resource resource = new Resource();

 SpecialAddress specialAddress = new SpecialAddress();

 // setters

 gadget.setResource(resource);

 gadget.setSpecialAddress(specialAddress);

 // put into PojoCache management

 cache1.putObject("/gadget", gadget);

 // retrieve it from another cache instance

 Gadget g2 = (Gadget) cache2.getObject("/gadget");

 // This is should be null because of @Transient tag so it is not

 replicated.

 g2.getResource();

Weaving

41

 SepcialAddress d2 = g2.getSpecialAddress();

 d2.setName("inet"); // This won't get replicated automatically

 because of @Serializable tag

 ge.setSpecialAddress(d2); // Now this will.

5. Weaving

As already mentioned, a user can use the aop precompiler (aopc) to precompile the

POJO classes such that, during runtime, there is no additional system class loader

needed. The precompiler will read in pojocache-aop.xml and weave the POJO byte

code at compile time. This is a convenient feature to make the aop less intrusive.

Below is an Ant snippet that defines the library needed for the various Ant targets

that we are listing here. User can refer to the build.xml in the distribution for full

details.

<path id="aop.classpath">

 <fileset dir="${lib}">

 <include name="**/*.jar" />

 <exclude name="**/jboss-cache.jar" />

 <exclude name="**/j*unit.jar" />

 <exclude name="**/bsh*.jar" />

 </fileset>

</path>

5.1. Ant target for running load-time instrumentation using

specialized class loader

In JDK5.0, you can use the javaagent option that does not require a separate

Classloader. Here are the ant snippet from one-test-pojo , for example.

<target name="one.test.pojo" depends="compile" description="run one

 junit test case.">

 <junit printsummary="yes" timeout="${junit.timeout}" fork="yes">

 <jvmarg

 value="-Djboss.aop.path=${output}/resources/pojocache-aop.xml"/>

 <jvmarg value="-javaagent:${lib}/jboss-aop-jdk50.jar"/>

 <classpath path="${output}/etc" />

 <sysproperty key="log4j.configuration"

 value="file:${output}/etc/log4j.xml" />

 <classpath refid="lib.classpath"/>

 <classpath refid="build.classpath"/>

 <formatter type="xml" usefile="true"/>

Chapter 6. Instrumentation

42

 <test name="${test}" todir="${reports}"/>

 </junit>

</target>

5.2. Ant target for aopc

Below is the code snippet for the aopc Ant target. Running this target will do

compile-time weaving of the POJO classes specified.

<taskdef name="aopc" classname="org.jboss.aop.ant.AopC"

 classpathref="aop.classpath"/>

<target name="aopc" depends="compile" description="Precompile aop

 class">

 <aopc compilerclasspathref="aop.classpath" verbose="true">

 <src path="${build}"/>

 <include name="org/jboss/cache/aop/test/**/*.class"/>

 <aoppath path="${output}/resources/pojocache-aop.xml"/>

 <classpath path="${build}"/>

 <classpath refid="lib.classpath"/>

 </aopc>

</target>

Below is a snapshot of files that are generated when aopc is applied. Notice that

couple extra classes have been generated because of aopc .

Figure 6.1. Classes generated after aopc

Chapter 7.

43

TroubleShooting
We have maintained a PojoCache wiki troubleshooting page

[http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting]. Please refer it

first. We will keep adding troubleshooting tips there.

All the current outstanding issues are documented in JBossCache Jira page

[http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051] . Please check it for

details. If you have discovered additional issues, please report it there as well.

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051

44

Chapter 8.

45

Appendix

1. Example POJO

The example POJO classes used for are: Person, Student, and Address. Below

are their definition (note that neither class implements Serializable) along with the

annotation.

@org.jboss.cache.pojo.annotation.Replicable

public class Person {

 String name=null;

 int age=0;

 Map hobbies=null;

 Address address=null;

 Set skills;

 List languages;

 public String getName() { return name; }

 public void setName(String name) { this.name=name; }

 public int getAge() { return age; }

 public void setAge(int age) { this.age = age; }

 public Map getHobbies() { return hobbies; }

 public void setHobbies(Map hobbies) { this.hobbies = hobbies; }

 public Address getAddress() { return address; }

 public void setAddress(Address address) { this.address =

 address; }

 public Set getSkills() { return skills; }

 public void setSkills(Set skills) { this.skills = skills; }

 public List getLanguages() { return languages; }

 public void setLanguages(List languages) { this.languages =

 languages; }

}

public class Student extends Person {

 String year=null;

 public String getYear() { return year; }

 public void setYear(String year) { this.year=year; }

}

Chapter 8. Appendix

46

 @org.jboss.cache.pojo.annotation.Replicable

 public class Address {

 String street=null;

 String city=null;

 int zip=0;

 public String getStreet() { return street; }

 public void setStreet(String street) { this.street=street; }

 // ...

}

2. Sample Cache configuration xml

Below is a sample xml configuration for Cache that you can use for PojoCache

creation.

<?xml version="1.0" encoding="UTF-8" ?>

<server>

 <mbean code="org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper"

 name="jboss.cache:service=PojoCache">

 <depends>jboss:service=TransactionManager</depends>

 <!-- Configure the TransactionManager -->

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.transaction.DummyTransactionManagerLookup

 </attribute>

 <!-- Isolation level : SERIALIZABLE

 REPEATABLE_READ (default)

 READ_COMMITTED

 READ_UNCOMMITTED

 NONE

 -->

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <!-- Valid modes are LOCAL, REPL_ASYNC and REPL_SYNC -->

 <attribute name="CacheMode">REPL_SYNC</attribute>

 <!-- Name of cluster. Needs to be the same for all caches,

 in order for them to find each other

 -->

 <attribute name="ClusterName">PojoCacheCluster</attribute>

 <!-- JGroups protocol stack properties. -->

Sample Cache configuration xml

47

 <attribute name="ClusterConfig">

 <config>

 <!-- UDP: if you have a multihomed machine, set the

 bind_addr

 attribute to the appropriate NIC IP address -->

 <!-- UDP: On Windows machines, because of the media

 sense feature

 being broken with multicast (even after disabling

 media sense)

 set the loopback attribute to true -->

 <UDP mcast_addr="228.1.2.3" mcast_port="48866"

 ip_ttl="64" ip_mcast="true"

 mcast_send_buf_size="150000"

 mcast_recv_buf_size="80000"

 ucast_send_buf_size="150000"

 ucast_recv_buf_size="80000"

 loopback="false"/>

 <PING timeout="2000" num_initial_members="3"/>

 <MERGE2 min_interval="10000" max_interval="20000"/>

 <FD shun="true"/>

 <FD_SOCK/>

 <VERIFY_SUSPECT timeout="1500"/>

 <pbcast.NAKACK gc_lag="50"

 retransmit_timeout="600,1200,2400,4800"

 max_xmit_size="8192"/>

 <UNICAST timeout="600,1200,2400",4800/>

 <pbcast.STABLE desired_avg_gossip="400000"/>

 <FC max_credits="2000000" min_threshold="0.10"/>

 <FRAG2 frag_size="8192"/>

 <pbcast.GMS join_timeout="5000"

 join_retry_timeout="2000"

 shun="true" print_local_addr="true"/>

 <pbcast.STATE_TRANSFER/>

 </config>

 </attribute>

 <!-- Whether or not to fetch state on joining a cluster -->

 <attribute name="FetchInMemoryState">true</attribute>

 <!-- The max amount of time (in milliseconds) we wait until

 the

 initial state (ie. the contents of the cache) are

 retrieved from

 existing members in a clustered environment

 -->

 <attribute

 name="InitialStateRetrievalTimeout">15000</attribute>

 <!-- Number of milliseconds to wait until all responses for a

Chapter 8. Appendix

48

 synchronous call have been received.

 -->

 <attribute name="SyncReplTimeout">15000</attribute>

 <!-- Max number of milliseconds to wait for a lock

 acquisition -->

 <attribute name="LockAcquisitionTimeout">10000</attribute>

 </mbean>

</server>

3. PojoCache configuration xml

Attached is a full listing for pojocache-aop.xml.

 <?xml version="1.0" encoding="UTF-8"?>

 <!--

 This is the PojoCache configuration file that specifies:

 1. Interceptor stack for API

 2. Annotation binding for POJO (via "prepare" element)

 Basically, this is a variant of jboss-aop.xml. Note that

 except for the customization of interceptor stack, you

 should

 not need to modify this file.

 To run PojoCache, you will need to define a system property:

 jboss.aop.path that contains the path to this file such that

 JBoss Aop

 can locate it.

 -->

 <aop>

 <!--

 This defines the PojoCache 2.0 interceptor stack. Unless

 necessary, don't modify the stack here!

 -->

 <!-- Check id range validity -->

 <interceptor name="CheckId"

 class="org.jboss.cache.pojo.interceptors.CheckIdInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Track Tx undo operation -->

 <interceptor name="Undo"

 class="org.jboss.cache.pojo.interceptors.PojoTxUndoInterceptor"

 scope="PER_INSTANCE"/>

PojoCache configuration xml

49

 <!-- Begining of interceptor chain -->

 <interceptor name="Start"

 class="org.jboss.cache.pojo.interceptors.PojoBeginInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Check if we need a local tx for batch processing -->

 <interceptor name="Tx"

 class="org.jboss.cache.pojo.interceptors.PojoTxInterceptor"

 scope="PER_INSTANCE"/>

 <!--

 Mockup failed tx for testing. You will need to set

 PojoFailedTxMockupInterceptor.setRollback(true)

 to activate it.

 -->

 <interceptor name="MockupTx" class="org.jboss.cache.pojo.interceptors.PojoFailedTxMockupInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Perform parent level node locking -->

 <interceptor name="TxLock"

 class="org.jboss.cache.pojo.interceptors.PojoTxLockInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to perform Pojo level rollback -->

 <interceptor name="TxUndo" class="org.jboss.cache.pojo.interceptors.PojoTxUndoSynchronizationInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to used to check recursive field

 interception. -->

 <interceptor name="Reentrant" class="org.jboss.cache.pojo.interceptors.MethodReentrancyStopperInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Whether to allow non-serializable pojo. Default is

 false. -->

 <interceptor name="MarshallNonSerializable"

 class="org.jboss.cache.pojo.interceptors.CheckNonSerializableInterceptor"

 scope="PER_INSTANCE">

 <attribute

 name="marshallNonSerializable">false</attribute>

 </interceptor>

 <!-- This defines the stack macro -->

 <stack name="Attach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="MarshallNonSerializable"/>

 <interceptor-ref name="Tx"/>

Chapter 8. Appendix

50

 <!-- NOTE: You can comment this out during production

 although leaving it here is OK. -->

 <interceptor-ref name="MockupTx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Detach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

 <!-- NOTE: You can comment this out during production

 although leaving it here is OK. -->

 <interceptor-ref name="MockupTx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Find">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 </stack>

 <!--

 The following section should be READ-ONLY!! It defines the

 annotation binding to the stack.

 -->

 <!-- This binds the jointpoint to specific in-memory

 operations. Currently in PojoUtil. -->

 <bind pointcut="execution(*

 @org.jboss.cache.pojo.annotation.Reentrant->toString())">

 <interceptor-ref name="Reentrant"/>

 </bind>

 <bind pointcut="execution(*

 org.jboss.cache.pojo.PojoUtil-

>@org.jboss.cache.pojo.annotation.TxUndo(..))">

 <interceptor-ref name="Undo"/>

 </bind>

 <bind pointcut="execution(*

 org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Attach(..))">

 <stack-ref name="Attach"/>

 </bind>

PojoCache configuration xml

51

 <bind pointcut="execution(*

 org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Detach(..))">

 <stack-ref name="Detach"/>

 </bind>

 <bind pointcut="execution(*

 org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Find(..))">

 <stack-ref name="Find"/>

 </bind>

 <!--

 Following is declaration for JDK50 annotation. You use the

 specific annotation on your

 POJO such that it can be instrumented. Idea is user will

 then need only to annotate like:

 @org.jboss.cache.pojo.annotation.Replicable

 in his POJO. There will be no need of jboss-aop.xml from user's

 side.

 -->

 <!-- If a POJO has PojoCachable annotation, it will be

 asepctized. -->

 <prepare expr="field(*

 $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)" />

 <!-- Observer and Observable to monitor field modification

 -->

 <bind pointcut="

 set(*

 $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)

 ">

 <interceptor

 class="org.jboss.cache.pojo.observable.SubjectInterceptor"/>

 </bind>

 <introduction

 class="$instanceof{@org.jboss.cache.pojo.annotation.Replicable}">

 <mixin>

 <interfaces>org.jboss.cache.pojo.observable.Subject</interfaces>

 <class>org.jboss.cache.pojo.observable.SubjectImpl</class>

 <construction>new

 org.jboss.cache.pojo.observable.SubjectImpl(this)</construction>

 </mixin>

 </introduction>

Chapter 8. Appendix

52

 </aop>

	POJO Cache
	Table of Contents
	Preface
	Chapter 1. Terminology
	1. Overview

	Chapter 2. Introduction
	1. Overview
	2. Features
	3. Usage
	4. Requirements

	Chapter 3. Architecture
	1. POJO Cache interceptor stack
	2. Field interception
	3. Object relationship management
	4. Object Inheritance
	5. Physical object cache mapping model
	6. Collection Mapping
	6.1. Limitations

	7. Array Mapping

	Chapter 4. API Overview
	1. PojoCacheFactory Class
	2. PojoCache Interface
	2.1. Attachment
	2.2. Detachment
	2.3. Query

	Chapter 5. Configuration and Deployment
	1. Cache configuration xml file
	2. Passivation
	3. AOP Configuration
	4. Deployment Options
	4.1. Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5. POJO Cache MBeans
	6. Registering the PojoCacheJmxWrapper
	6.1. Programatic Registration
	6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	6.3. Via JBoss Microcontainer (JBoss AS 5.x)

	7. Runtime Statistics and JMX Notifications

	Chapter 6. Instrumentation
	1. Load-time instrumentation
	2. Compile-time instrumentation
	3. Understanding the provided AOP descriptor
	4. Annotation
	4.1. POJO annotation for instrumentation
	4.2. JDK5.0 field level annotations

	5. Weaving
	5.1. Ant target for running load-time instrumentation using specialized class loader
	5.2. Ant target for aopc

	Chapter 7. TroubleShooting
	Chapter 8. Appendix
	1. Example POJO
	2. Sample Cache configuration xml
	3. PojoCache configuration xml

