
Kosmos Reference Manual

Komposite Open Source Monitoring Suite

For the Kosmos 0.1.x branch

Revision: Id

Midori Consulting (http://www.midori.hu)

Aron Gombas

Kosmos Reference Manual: Komposite Open Source Monitoring
Suite: For the Kosmos 0.1.x branch: Revision: Id
Midori Consulting (http://www.midori.hu)
Aron Gombas
Copyright © 2005 Aron Gombas

Table of Contents
Preface ... vi

Project motivation & history .. vi
Acknowledgments .. vi
Contact ... vii

1. Overview ... 1
Vision ... 1
Design goals .. 1
Implementation goals ... 1
Dependencies ... 1
Compatibility ... 2

2. Components, features and configuration ... 3
Kosmos server .. 3
Kosmos portlets .. 3
CruiseControl Monitoring portlet ... 4
JIRA Monitoring portlet ... 4
SourceForge Monitoring portlet ... 4
Subversion Monitoring portlet ... 5
Good practices .. 5

3. Deployment .. 6
Requirements ... 6
Deployment models ... 6
Deployment step-by-step for Apache Tomcat and eXo Platform ... 7
Deployment step-by-step for Apache Tomcat and Gridsphere .. 8
Deployment step-by-step for JBoss AS and JBoss Portal ... 8
Deployment step-by-step for Apache Tomcat and Liferay Portal .. 9
Deployment step-by-step for Apache Tomcat and Apache Pluto ... 11
General server configuration ... 11
General portlet configuration ... 12
I18n .. 15

4. Developer guide .. 16
Building from source ... 16
Generating the distribution packages ... 16
Server component architecture ... 17
Portlets architecture ... 17

A. Copyright .. 18

iv

List of Figures
1. Kosmos logo .. vi
3.1. Minimalistic deployment .. 7

v

Preface
Project motivation & history

Working as developer and later lead engineer on various Java and C++ projects in the recent years, I had
to spend a serious amount of time reguarly checking various sources of information: build reports,
source code metrics, PMD and CheckStyle reports, the source code itself, project pages of the dependen-
cies, industry news in online mags and such. In other words, I had to filter and manage information com-
ing from different places to get a global picture about the current state of the project. This process was
extremely cumbersome and time-consuming, and distracted me from the more enjoyable part of engin-
eering.

Other members of the team suffered from the same problem, however they wanted to have this global
24/7 picture from a slightly different aspect, based on their "roles" in the team. We clearly needed some
flexible and easily personalizable solution.

And this is what portals are about, right? Aggregation and customization.

Later I came up with the idea of developing a suite of lightweight, highly customizable portlets backed
by a central server mechanism, and then deploying those to a customization-enabled portlet container.
This way beside having a "reference" community page, everyone could set-up his own personal portal
page.

This was how Kosmos has born.

While working on the very first portlets, I contacted JBoss and had explained them my plans. They liked
the idea, it was in sync with certain things what they wanted to do themselves, so they invited my
project as one of the first projects hosted in their new-born JBoss Labs [http://labs.jboss.com] forge.

Figure 1. Kosmos logo

In the very beginning, the project ran under a different temporary codename, but when incubating it to
JBoss Labs, I had to find out the final name. As the guys at JBoss were waiting for me, I had to come up
with a fancy name in a couple of hours. I decided to use the word kosmos, because of several reasons:

• is there anything more beautyful than our universe itself?

• "mikrokozmosz" is a wonderful musical piece by Bela Bartok, one of the greatest Hungarian com-
posers

• gives the opportunity to play more with the notions related, like "kosmonaut"

• a name with the length of six characters perfectly fits Java package names, jar filenames and such

Acknowledgments

vi

http://labs.jboss.com

Huge thanks to my wife, Szilva, for not giving up the struggle for such a long time, and Damon Sicore
and everyone else at JBoss Labs [http://labs.jboss.com] for their support. Special thanks to every Kos-
mos project contributor (you know, guys, who you are).

Contact
You can always find the latest information about the Kosmos project, published by the community, at
the JBoss Labs project page: http://labs.jboss.com/projects/kosmos
[http://labs.jboss.com/projects/kosmos]. Beside the downloads and documentation, we host also our
Wiki and blog here, and this is our primary information resource. Come and visit us regularly.

You can reach me in email at the following address: <aron dot gombas at midori dot hu>.

Aron Gombas

Preface

vii

http://labs.jboss.com
http://labs.jboss.com/projects/kosmos

Chapter 1. Overview
Vision

The first releases of Kosmos focuses on integrating a small set of de-facto standard open source tools
like Subversion or CruiseControl. These releases will form the base for future development and aspire to
reach a production-ready state as soon as possible.

In the long run, we have left the door open with an extensible architecture. We will consider supporting
anything demanded. That includes both popular open source and commercial tools if they are accessible
through some kind of public web-service, API, or at by page-scraping (in case of web interfaces).

Design goals
We aim to reach the following primary design goals:

1. Lightweight architecture implemented with POJOs.

2. Several independent and simplistic components rather than single monolithic one.

3. Easy and flexible deployment, and so no changes in the monitored resources.

4. Full transparency for the monitored resources and no extra burden on them.

5. Maximum vendor-indepence: no proprietary features of servlet containers, application servers,
portlet containers or WebDAV servers.

6. Consistent and intuitive user interface for all portlets.

7. Visualization by using charts and graphics instead of plain textual information, wherever possible.

Implementation goals
We aim to reach the following primary implementation goals:

1. Java 1.5 language compatibility (some of the language features introduced in Java 1.5 are not com-
patible with Hessian).

2. Portlets that are perfectly JSR-168-compliant.

3. Portlets that are conform with the portal theme by using exclusively the standard JSR-168 CSS
styles.

Dependencies
Kosmos is built on the top of:

• Apache Commons [http://jakarta.apache.org/commons] projects: various packages used as utility
classes.

1

http://jakarta.apache.org/commons

• Display tag [http://displaytag.sourceforge.net] library: used for rendering the tables.

• Hessian [http://www.caucho.com/hessian] binary web service protocol: used for implementing the
web-services.

• JavaSVN [http://tmate.org/svn] Subversion client library: used for processing Subversion repositor-
ies.

• Jakarta Slide [http://jakarta.apache.org/slide]: its client library is used to access the WebDAV-based
cache. Additionally, Slide is also our primary WebDAV server implementation.

• JFreeChart [http://www.jfree.org/jfreechart] library: used to generate the chart images.

• JTidy [http://jtidy.sourceforge.net]: used to transform the HTML documents to XML before further
processing.

• JSTL [http://jakarta.apache.org/taglibs] tag library: used in the view tier.

• Log4j [http://logging.apache.org/log4j/docs] library: used for general-purpose logging.

• Saxon [http://saxon.sourceforge.net] XSLT and XQuery processor: used to analyze HTML docu-
ments.

• Spring Framework [http://www.springframework.org]: used as IoC container.

Compatibility
Please see the detailed compatibility matrix on the project website.

Overview

2

http://displaytag.sourceforge.net
http://www.caucho.com/hessian
http://tmate.org/svn
http://jakarta.apache.org/slide
http://www.jfree.org/jfreechart
http://jtidy.sourceforge.net
http://jakarta.apache.org/taglibs
http://logging.apache.org/log4j/docs
http://saxon.sourceforge.net
http://www.springframework.org

Chapter 2. Components, features and
configuration
Kosmos server

The “remote server” component acts like a traditional back-end: it collects, analyzes, stores and caches
all the information. It then provides results for the front-end. You might ask, "Is it necessary to complic-
ate the deployment with this additional component?" Having a single layer (portlets only, that access the
monitored resources directly), it could be much simpler!

The primary reason is that certain operations performed by the system (like monitoring a remote Subver-
sion repository) can be very expensive: traversing the repository content can easily take hours, depend-
ing on many factors like the repository complexity, server performance, or network bandwidth. By using
a simple caching mechanism built into the server component, if several portlet instances are monitoring
the same repository and they fire identical requests, only the very first will result in a new traversal! The
other requests will receive the cached result until the first cache-miss (which can be caused also by a
time-out, of course). This simple mechanism gives a huge performance boost and puts less burden on the
“target box”, the Subversion server in this case.

Server component features:

• Implements the application logic.

• Provides Hessian-based web services for the portlets (view tier).

• Caches calculation results and publishes the dynamically generated content (e.g. chart images) to a
WebDAV file repository.

Kosmos portlets
The portlets implement the “view tier”, they are responsible for rendering the results computed by the
server component. Portlet technology was chosen over “traditional” web-application techniques, because
flexible customization was a high-priority project goal.

You can set up any portal page, which can contain any number of the portlets in various layouts. Also,
you can mix Kosmos portlets with portlets coming from other projects or vendors, without any restric-
tion. The deployment and configuration process is portlet container-dependent, thus it is out of the scope
of this document. Please refer to the technical documentation of your particular container.

Using the portlet user interfaces should be straight-forward. There are a set of common features suppor-
ted by all the portlets:

• You can minimize, maximize each portlet or get some help by clicking the icons in the titlebar
(provided your portlet container supports this and your portal theme doesn't hide those controls).

• You can sort the items in the tables in ascending or descending order by clicking to the column head-
ers.

• You can get detailed information related to a given attribute by clicking the information icons.

3

CruiseControl Monitoring portlet
This portlet monitors the continuous integration build processes managed by CruiseControl, a very well-
known continuous build framework. It helps you to track whether the builds of your projects break,
without checking email, reports, or web reports.

Portlet features:

• It reports on the build labels, build results, timestamps, and unit test results. You can also get de-
tailed information about the unit tests.

• The status icons denote failed builds or successful builds with failed unit tests.

Please visit http://cruisecontrol.sourceforge.net [http://cruisecontrol.sourceforge.net] if you want to learn
more about CruiseControl.

JIRA Monitoring portlet
This portlet monitors projects hosted by JIRA, a popular issue tracking and project management applica-
tion. It helps you by giving a quick overview about the state of several projects in a single place.

Portlet features:

• It reports on project details and issues organized by status, priority and assignee. Some of the statist-
ics are available as graphical charts.

• The status icons denote projects with a significant number of open issues.

• You can jump onto the JIRA page of the given project by clicking the project name, or to the actual
project webpage by clicking the URL in project details view.

Please visit http://www.atlassian.com/software/jira [http://www.atlassian.com/software/jira] for a short
summary about JIRA.

SourceForge Monitoring portlet
This portlet monitors the file releases on SourceForge, the world's largest development and download re-
pository of open source projects. The main goal of this portlet is to help you to keep your project de-
pendencies and development toolbox up-to-date, without regularly checking the dependency project
pages one-by-one.

Portlet features:

• It reports on the latest versions of the packages and their age.

• The status icons denote new releases (projects with fresh file releases) or inactive projects (projects
with very old latest release).

• You can jump onto the download pages of the given project or that particular version on Source-
Forge by clicking the appropriate package name or the version label.

Components, features and configura-
tion

4

http://cruisecontrol.sourceforge.net
http://www.atlassian.com/software/jira

Please visit the main page of Sourceforge at http://www.sourceforge.net [http://www.sourceforge.net] if
you haven't done it before.

Subversion Monitoring portlet
This portlet monitors repositories managed by Subversion, one of the most widely used version control
systems. It helps you track the activity and complexity of several separate repositories very easily in a
single portlet.

Portlet features:

• It can connect both to secure and public repositories.

• It reports on the latest touch, developer activity and repository statistics. Additionally, some of stats
are visualized in charts if you click to the information icons.

• The status icons denote inactive repositories (repositories with very low activity or very old latest
touch).

Please visit http://subversion.tigris.org [http://subversion.tigris.org] if you are interested in Subversion.

Good practices
Here are a couple of additional ideas which can make your life easier when configuring your particular
Kosmos portal instance:

• Combining Kosmos portlets with other portlets is a good practice to maximize the information ef-
fectively aggregated on your portal page. Other than the standard Kosmos portlets, you should con-
sider using: Forums portlet, RSS portlet, Blog portlet, Poll portlet, CMS portlet and Wiki portlet. All
these (provided you use them in the right way) should improve the communication both inside your
community and with the external world.

• All portlets support multiple monitored resources, and you can group them as you wish. For ex-
ample, you can have a separate portlet for monitoring Spring, and another for monitoring ACEGI. It
might make sense to group those as related packages together within a single portlet, and keep all the
Struts-related packages in another portlet, and Tomcat-related packages in a third one.

Components, features and configura-
tion

5

http://www.sourceforge.net
http://subversion.tigris.org

Chapter 3. Deployment
Requirements

You will need to deploy the server component and the portlets separately. Please note that however we
listed recommended container implementations below, you can use any other product until that is com-
pliant with the appropriate servlet or portlet specifications. You can learn more about the compatibity is-
sues by studying the compatibility matrix maintained on the project website.

• We offer deployment scripts in form of Ant build scripts, which automate the deployment process. If
you want to use these, you will need to install Ant. The default target of each script is redeploy,
which deletes the old deployment (if there exists) and deploys a new clean one. Of course, you can
still deploy manually if Ant is not available in your environment. In any case, it's a good idea to look
through the deploy scripts.

• The server component requires standard servlet containers (or a single container) for proper running.
The most trivial option is to use the Apache Tomcat [http://jakarta.apache.org/tomcat] container.

• The portlets needs a JSR-168-compliant portlet container. One possible open source choice is JBoss
Portal [http://www.jboss.org/products/jbossportal] deployed into a JBoss Application server
[http://www.jboss.org/products/jbossas] instance.

• For storing the dynamically generated content (e.g. chart images), you need a WebDAV
[http://www.webdav.org/] server implementation. One option is to use Jakarta Slide
[http://jakarta.apache.org/slide], but Subversion [http://subversion.tigris.org] provides a WebDAV
interface, too.

Deployment models
Due to the flexible architecture of Kosmos, it's possible to deploy the system to various environments,
for example:

• minimalistic: a single container which can act both as servlet-container for Kosmos server, the Web-
DAV server, and the portlet-container for the portlets. As result, there will be three separate web ap-
plications running in the same container. This is the simplest way to deploy Kosmos and it can be an
effective setup in many cases.

• advanced: separate (even heterogenous!) containers on the same physical node of the network: for
example you can use Apache Tomcat as servlet-container and JBoss AS with JBoss Portal as portlet-
container. It means that your components will run in separate JVMs which can be useful from a sta-
bility or security viewpoint.

• distributed: containers on separate nodes. Server A can run one instance of JBoss AS to host the
server component, server B can run another to host the WebDAV repository, while server C can run
a third one to host the portlet container.

For advanced users it is possible to deploy each service of the server component to different nodes if
that's necessary! You can fine-tune the performance of the system this way.

Since all the information is exposed as standard Hessian web-services, it is possible and perfectly
legal to develop other types of front-end for the system: web applications, applets or desktop applic-

6

http://jakarta.apache.org/tomcat
http://www.jboss.org/products/jbossportal
http://www.jboss.org/products/jbossportal
http://www.jboss.org/products/jbossas
http://www.webdav.org/
http://jakarta.apache.org/slide
http://subversion.tigris.org

ations and completely avoid using a portlet container!

Figure 3.1. Minimalistic deployment

You can complicate all the models by another important decision: what RDBMS to use to support the
portlet container and how to deploy it. Again, it's possible to use the same physical node or nodes which
host the containers, or to have separate database servers for this purporse. It's all up to you, your needs
and possibilities.

In the following sections, we give detailed step-by-step instructions for various deployment models, but
because of their huge variety, we will cover just some of those. After reading these, it should be relat-
ively easy to find out what to do in situations not listed here.

Deployment step-by-step for Apache Tomcat
and eXo Platform

1. Install eXo Platform [http://www.exoplatform.com] as written in its documentation
[http://www.exoplatform.com/portal/faces/public/exo/home/community/wiki]. We recommend us-
ing the bundle distribution, because that contains both the Apache Tomcat servlet container and the
eXo Platform portlet container in a single package.

2. Deploy Jakarta Slide [http://jakarta.apache.org/slide] to the Tomcat instance used by eXo as written
in the JBoss AS step-by-step.

3. You can deploy the server component into the Apache Tomcat instance used by eXo, by running
the server deploy script:

ant -f deploy-server-tomcat.xml

Please don't forget to set the CATALINA_HOME environment variable before.

4. Deploy the portlet web application by running the portlet deployment script as:

Deployment

7

http://www.exoplatform.com
http://www.exoplatform.com/portal/faces/public/exo/home/community/wiki
http://jakarta.apache.org/slide

ant -f deploy-portlet-exo.xml

5. Launch eXo, open the default portal page (e.g. http://localhost:8080/portal), and lo-
gin with the default account (admin and exo).
Go to page edit mode and add the Kosmos portlets to the page. Change back to view mode.

Deployment step-by-step for Apache Tomcat
and Gridsphere

Follow these steps:

1. Install Gridsphere [http://www.gridsphere.org] as written in its manual
[http://www.gridsphere.org/gridsphere/docs/UsersGuide/UsersGuide.html].

2. Deploy Jakarta Slide [http://jakarta.apache.org/slide] to the Tomcat instance used by Gridsphere as
written in the JBoss AS step-by-step.

3. You can deploy the server component into the Apache Tomcat instance used by Gridsphere, by
running the server deploy script:

ant -f deploy-server-tomcat.xml

Please don't forget to set the CATALINA_HOME environment variable before.

4. Deploy the portlet web application by running the portlet deploy script as:

ant -f deploy-portlet-gridsphere.xml

As an additional step, copy
$GRIDSPHERE_HOME/build/lib/gridsphere-ui-tags.jar to
$CATALINA_HOME/webapps/kosmos-portlet.war/WEB-INF/lib.

5. Launch Gridsphere, open the default portal page (e.g. ht-
tp://localhost:8080/gridsphere), and login with the default account (root and empty
password). After this, there are couple of extra steps that you can do using the Gridsphere admin
portlets:

a. Deploy kosmos-portlet manually.

b. Create a new public group kosmos that contains all the Kosmos portlets and add your user to
this new group.

c. Go to your new page and add the Kosmos portlets to this.

Deployment step-by-step for JBoss AS and
JBoss Portal

Follow these steps:

Deployment

8

http://www.gridsphere.org
http://www.gridsphere.org/gridsphere/docs/UsersGuide/UsersGuide.html
http://jakarta.apache.org/slide

1. Install JBoss AS as written in its manual. The current reference documentation both for JBoss AS
and JBoss Portal is available from the http://www.jboss.org site.

2. Deploy Jakarta Slide [http://jakarta.apache.org/slide] to JBoss AS and configure it as written in the
appropriate manuals. We have included the Slide web application archive (slide.war) in the
binary distribution package of Kosmos, under the /etc folder. In most situations, it's enough to
copy this file to the deployment folder of the servlet container or the application server.

As a quick test, check whether you can access the Slide repositories through a WebDAV navigator.
If you use Windows XP, it is able to map a WebDAV repository as a folder to your filesystem.
Otherwise try to open the repository in your browser using the ht-
tp://localhost:8080/slide URL.

3. Install JBoss Portal as written in its manual. Test if there are no error messages in the JBoss AS
logfile.

4. Run the server deploy script as:

ant -f deploy-server-jboss-as.xml

5. Deploy the portlet web application by running the portlet deploy script as:

ant -f deploy-portlet-jboss-portal.xml

6. Launch JBoss AS and check the default portal page (e.g.
http://localhost:8080/portal), whether you can see the Kosmos page in the page list.

It is possible also to hot-deploy the components while JBoss AS is running.

Deployment step-by-step for Apache Tomcat
and Liferay Portal

1. Install Liferay Portal [http://www.liferay.com/web/guest/products] as written in its manual. We re-
commend using the bundle distribution, because that contains both the Apache Tomcat servlet con-
tainer and the Liferay Portal portlet container in a single package.

2. Deploy Jakarta Slide [http://jakarta.apache.org/slide] to the Tomcat instance used by Liferay as
written in the JBoss AS step-by-step.

3. You can deploy the server component into the Apache Tomcat instance used by Liferay, by running
the server deploy script:

ant -f deploy-server-tomcat.xml

Don't forget to set the CATALINA_HOME environment variable before.

4. Hot-deploy the portlets by running the portlet deploy script:

ant -f deploy-portlet-liferay-portal.xml

Edit this file and make sure the properties are correct. If you have CATALINA_HOME set, you
shouldn't have to worry about the

container.dir

Deployment

9

http://www.jboss.org
http://jakarta.apache.org/slide
http://www.liferay.com/web/guest/products
http://jakarta.apache.org/slide

property. Ensure

container.lib

and

liferay.home

are correct. Hot-deploy the portlets as written at ht-
tp://www.liferay.com/web/guest/documentation/development/hot_deploy. The portlet distribution
package of Kosmos contains a customized version of portlet-deployer-3.5.0.xml which
you might find convenient as starting point.

There are a couple of issues you can face while starting up your Liferay, depending on your JVM
version:

a. You have to downgrade the
$LIFERAY_HOME/webapps/kosmos-portlet/WEB-INF/lib/ext/commons-lo
gging-1.0.4.jar to commons-logging-1.0.3.jar (downloadable from ht-
tp://www.ibiblio.org/maven/commons-logging/jars/) if Liferay throws a
java.lang.NoSuchMethodError:
org.apache.log4j.Category.log(Ljava/lang/String;Lorg/apache/log
4j/Level;Ljava/lang/Object;Ljava/lang/Throwable;)V. The same excep-
tion might be thrown also for the kosmos-servlet and the kosmos-portlet web-applications, the
fix is the same: downgrade the same JAR also in
$LIFERAY_HOME/webapps/kosmos-server/WEB-INF/lib and
$LIFERAY_HOME/webapps/kosmos-portlet/WEB-INF/lib, respectively.

b. You have to delete $LIFERAY_HOME/common/endorsed/xml-apis.jar if Liferay
throws a javax.servlet.ServletException: Provider
org.apache.xalan.processor.TransformerFactoryImpl not found ex-
ception

c. You have to copy
$LIFERAY_HOME/liferay/WEB-INF/tld/liferay-portlet.tld to
$LIFERAY_HOME/webapps/kosmos-portlet/WEB-INF/tld if Liferay throws a
org.apache.jasper.JasperException: /
pages/sf_monitoring.jsp(1,1) File "/
WEB-INF/tld/liferay-portlet.tld" not found or similar exception

d. You have to copy $LIFERAY_HOME/liferay/WEB-INF/lib/util-taglib.jar to
$LIFERAY_HOME/webapps/kosmos-portlet/WEB-INF/lib if Liferay throws a
org.apache.jasper.JasperException: /
pages/sf_monitoring.jsp(1,1) Failed to load or instantiate
TagExtraInfo class: com.liferay.portlet.taglib.ActionURLTei or
similar exception

5. Launch Liferay, open the default portal page (e.g. http://localhost:8080) and login with
the default account (test@liferay.com and test).

Open the portlet administration portlet and assign some roles to the Kosmos portlets (e.g. User
and Guest). Also, set the JIRA and Subversion monitoring portlets to wide style, all the others to
narrow. Create a new page or go to an existing page, and check whether you can see the Kosmos
portlets selectable in the combo boxes at the bottom of the portal pages.

Deployment step-by-step for Apache Tomcat

Deployment

10

http://www.liferay.com/web/guest/documentation/development/hot_deploy
http://www.liferay.com/web/guest/documentation/development/hot_deploy
http://www.ibiblio.org/maven/commons-logging/jars/
http://www.ibiblio.org/maven/commons-logging/jars/

and Apache Pluto
Follow these steps:

1. Install Pluto [http://portals.apache.org/pluto] as written in its manual. We recommend using the
bundle distribution, because that contains both the Apache Tomcat servlet container and the Pluto
portlet container in a single package.

2. Deploy Jakarta Slide [http://jakarta.apache.org/slide] to the Tomcat instance used by Pluto as writ-
ten in the JBoss AS step-by-step.

3. You can deploy the server component into the Apache Tomcat instance used by Pluto, by running
the server deploy script:

ant -f deploy-server-tomcat.xml

Please don't forget to set the CATALINA_HOME environment variable before.

4. Pluto has a portlet called Deploy War Admin Portlet to deploy other portlets. It makes the
deployment process extremely easy: just select the portlet WAR and configure the pages, Pluto will
take care of all the low-level details. Don't forget to restart Pluto after you've deployed your port-
lets, otherwise your new portal page won't appear in the menu!

If you decided to do an automated deployment instead of using the administrative portlet, run the
portlet deploy script:

ant -f deploy-portlet-pluto.xml

. After this, you have to manually update the following Pluto configuration files:

pageregistry.xml
portletcontexts.txt
portletentityregistry.xml

You can use the sample files found in /conf/pluto of the Kosmos portlet distribution package
as starting point.

5. Launch Pluto and check the default portal page (e.g. ht-
tp://localhost:8080/pluto/portal), whether you can see your new page in the page
list.

General server configuration
The server component can be configured through its Spring application context configuration file kos-
mos-services-servlet.xml . (Please note that former versions were configurable partly through
their web.xml, but after introducing the pluggable cache store mechanism, all configuration was
moved to the Spring XML.) It's absolutely straightforward to modify it, but please note that the config-
uration changes might require reloading the servlet!

Here is some basic help for better understanding of the kosmos-services-servlet.xml:

• Each service is implemented by a POJO that is exposed as web service by a Spring-based Hessian
proxy class. Consequently there is one section like this per service:

<!-- CC service -->
<bean id="ccService" class="hu.midori.kosmos.server.cc.CcServiceImpl"/>

Deployment

11

http://portals.apache.org/pluto
http://jakarta.apache.org/slide

<property name="store" ref""webdavCachedDataStore"/>
</bean>
<bean name="/cc-service" class="org.springframework.remoting.caucho.HessianServiceExporter">
<property name="service" ref="ccService"/>
<property name="serviceInterface" value="hu.midori.kosmos.protocol.CcService"/>

</bean>

You can activate and deactivate the services by adding or deleting these sections, depending which
portlets you're going to use. In the default configuration, all the services are activated and unless
there is a special reason to remove them, it's better not to touch these sections. There is hardly any
performance penalty or security problem even if you have unused, but active services.

There is one required property for the services: this is called store and it's a reference to the cache
store to use. See next section for more details.

• The services can generate and save cached data, mostly images that are later used by the portlets
view tier. There is a simple, but flexible store mechanism built into Kosmos. However this is a "plug-
gable" mechanism, by default, there is only one implementation shipped with Kosmos: a WebDAV-
based cache store. (In the very beginning, using WebDAV for this purpose was a requirement, not an
option, but the poor quality of the WebDAV client libraries and servers motivated adding an extra
level of abstraction to ensure that with some minimal work, any other web-based store can be used
here.)

The cache stores are implemented as POJOs, too. They can have different properties depending on
the implementation, we discuss only WebdavCachedDataStore here:

<!-- WebDAV cached data store -->
<bean id="webdavCachedDataStore" class="hu.midori.kosmos.server.WebdavCachedDataStore">
<property name="webdavUrl" value="http://localhost:8080/slide/files"/><!-- Both HTTP and HTTPS protocol can be used here. -->
<property name="webdavUser" value=""/>
<property name="webdavPassword" value=""/>
<!-- This URL will be used as base URL for the generated images.

If you don't specify anything here, the value of "webdavUrl"
will be used. Uncomment this, if you want to override that.

<property name="clientUrl" value="http://myserver/my-webdav/kosmos-images"/>
-->

</bean>

The URL is required, but you can leave the user and password empty if your WebDAV is configured
to serve unauthenticated requests, too. In the URL you can use both HTTP and HTTPS protocols.
The clientUrl parameter makes it possible to override the URLs generated for the clients: you
can store the images as https://secure.mydomain.com/mywebdav, but access them as
http://public.mydomain.com/webdav if your network environment is configured to
match this.

• It's possible (and relatively easy) to do more complicated changes (like using separate or even in-
homogenous cache stores per service, using more than one instance of the same service, etc.), but
please make sure that you know what you do. It's recommended to study the related sections of the
Spring Framework documentation [http://www.springframework.org/documentation], too.

Please take a look at the sample configuration files shipped in the distributed package.

General portlet configuration
All the other portlet settings can be configured by specifying <init-param> entities in the port-
let.xml . The common init-parameters supported by every portlet are:

Deployment

12

http://www.springframework.org/documentation

monitored.resource It is used only for display purposes, doesn't affect the functional-
ity.

service.url It points to the appropriate Hessian-service. For example, in the
case of SfMonitoringPortlet it can be: ht-

Deployment

13

. A quick check to test whether the service is available at the giv-
en URL is opening the URL in a normal browser window. You
should see a “Hessian requires POST” error message if everything
is fine.

monitored.urls (or mon-
itored.dirs)

Comma-separated list of items to monitor. Depending on the port-
let, items can be URLs or directory paths:

• CcMonitoringPortlet: URLs of the webpages where
CruiseControl publishers produce their output including the
logfiles related to the projects to monitor. For example: ht-
tp://cruisecontrol.jboss.com/cc/buildresu
lts/
ejb3-4.0-testsuite,http://cruisecontrol.j
boss.com/cc/buildresults/ejb3-head-testsu
ite.

• JiraMonitoringPortlet: URLs of the JIRA home
pages related to the projects to monitor. For example: ht-
tp://jira.jboss.com/jira/browse/JBWIKI,ht
tp://jira.jboss.com/jira/browse/JBLAB.

• SFMonitoringPortlet: URLs of the SourceForge pages
which host the projects to monitor. For example: ht-
tp://www.sourceforge.net/projects/springf
rame-
work,http://sourceforge.net/projects/aceg
isecurity.

• SvnMonitoringPortlet: URLs of the Subversion repos-
itories to monitor. For example: ht-
tp://svn.apache.org/repos/asf/commons,htt
p://svn.apache.org/repos/asf/db. If you have se-
cure repositories, you must include the username and the pass-
word in the URL: ht-
tp://myusername:mypassword@www.mycompany.
com/svn/mysecurerepo. Please note that the security in-
formation will not appear in the user interface, so if you re-
strict the access to portlet.xml and the serverside log,
then it's completely safe.

Here is a section of the default portlet.xml file shipped in the distribution:

<portlet>
<portlet-name>KosmosDependenciesSfMonitoringPortlet</portlet-name>
<portlet-class>hu.midori.kosmos.portlet.sf.SfMonitoringPortlet</portlet-class>
<supported-locale>en</supported-locale>
<supported-locale>hu</supported-locale>
<resource-bundle>hu.midori.kosmos.portlet.sf.sf_monitoring</resource-bundle>
<init-param>
<name>monitored.resource</name>
<value>Kosmos Dependencies</value>

</init-param>
<init-param>
<name>service.url</name>
<value>http://localhost:8080/kosmos-server/kosmos-services/sf-service</value>

</init-param>
<init-param>
<name>monitored.urls</name>

Deployment

14

<value>
http://sourceforge.net/projects/cruisecontrol/,
http://sourceforge.net/projects/displaytag/,
http://sourceforge.net/projects/jfreechart/,
http://sourceforge.net/projects/jtidy/,
http://sourceforge.net/projects/saxon/,
http://www.sourceforge.net/projects/springframework

</value>
</init-param>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>HELP</portlet-mode>
<portlet-mode>VIEW</portlet-mode>

</supports>
<portlet-info>
<title>SourceForge Monitoring</title>

</portlet-info>
</portlet>

If you have any problems or questions, please study the default portlet.xml , and you will probably
find the answer there.

I18n
Setting the preferred language for the whole application is a two-step process:

• For the server component, you have to set the context parameter called locale in its web.xml:

<context-param>
<param-name>locale</param-name>
<param-value>en</param-value>

</context-param>

This setting will affect mostly the labels on the chart images, as these are the only resources gener-
ated by the server component that are language-dependent.

• For the portlets, you have to set the context parameter which configures the JSTL library in the port-
let module web.xml:

<context-param>
<param-name>javax.servlet.jsp.jstl.fmt.locale</param-name>
<param-value>en</param-value>

</context-param>

This setting will specify the language for the whole web-based user interface.

Both these parameters accept the standard Java locale signs as value, but please make sure that the prop-
erty file of the selected language is available in your distribution. Please see the project site for localized
versions available.

For advanced users: as you see, one server supports only one language set, which is absolutely sufficient
in most of the cases. A multi-language server would require a more complicated caching mechanism
(some parts of the content are language-independent thus could be shared between client requests with
different locale settings, while others are not), which is necessary only in some infrequent environments.
As workaround, for two languages you can launch two separate Kosmos servers with different language
settings.

Deployment

15

Chapter 4. Developer guide
Building from source

The Kosmos build system use a small set of easy-to-understand Ant scripts and property files. There are
three actual build-scripts: one for building the server component (build-server.xml), one for
building the portlets (build-portlet.xml) and one for creating the distribution packages (build-
distro.xml). The two “real” build scripts use a common template build/build.xml and are
configured through the property files in the build directory.

The variable names are self-explanatory and all the targets are well-documented in the appropriate
script:

Buildfile: build-portlet.xml
Buildfile: build-portlet.xml
Kosmos Portlet Module build-script
Main targets:

all Recompiles all Java source files
clean Cleans up temporary files created during previous builds
compile Compiles Java source files
deploy Deploys the module to the container
dist-bin Prepares all binary distributables
redeploy Redeploys the module to the container
undeploy Undeploys the module from the container
Default target: redeploy

For instance, recompiling the full source code is simply:

ant -f build-portlet.xml all

Please study the scripts themselves for further details.

Generating the distribution packages
There are a couple of Ant targets for this purpose:

Buildfile: build-distro.xml
Kosmos Distro build-file
Main targets:

clean Cleans up temporary files created during previous builds
dist Prepares all distributables
dist-bin Prepares all binary distributables
dist-src Prepares all source distributables
javadocs Generates the javadocs
manual Generates the manual in all formats
manual-html Generates the manual in multi-page HTML format
manual-pdf Generates the manual in PDF format
manual-single-html Generates the manual in single-page HTML format
Default target: dist

The only detail you have to care about is setting the correct local paths in build.properties for
the following dependencies that are not included in the Kosmos distribution package:

docbook.dir=/java/docbook-xsl-1.69.1
fop.dir=/java/fop-0.20.5

16

saxon.dir=/java/saxonb-8.5

Server component architecture
The high-level features of the services are implemented in the AbstractKosmosService class.
This where the initialization and caching is performed. You should start learning the server component
code by studying its javadocs. Also, to understand the cache store mechanism, please take a look at the
CachedDataStore interface and WebdavCachedDataStore as a sample implementation.

As the monitored resources and their interfaces vary a lot, there is no uniform way for the concrete ser-
vices to access them. They use various techniques to get the information requested, ranging from simple
page-scraping to using proprietary APIs. All these are documented in the javadocs of the concrete
XxxServiceImpl implementation classes which use callback-like classes XxxHandler to do the
actual work.

From the server to the portlets, the data is transferred simply by instantiating the DTO classes in the
hu.midori.kosmos.protocol package and sending them over the wire using Hessian. All this is
very simple and lightweight.

Portlets architecture
The portlets are extremely simple: they just connect the appropriate service, download a collection of
DTOs and render the JSPs. That's it.

Developer guide

17

Appendix A. Copyright
GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of

18

any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

Copyright

19

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square

Copyright

20

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

Copyright

21

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these

Copyright

22

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this

Copyright

23

License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

Copyright

24

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

Copyright

25

