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Introducing SwitchYard

 New JBoss community project
 Next generation Enterprise Service Bus
 What happened to JBoss ESB?
 Taking the next evolutionary step
 Focus on consistent, intuitive user experience
  Refactor core to eliminate known pain points
  Leverage standards and complimentary technologies
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Activity

 SwitchYard
  Milestone 1 - February, 2011
  0.1 release - June, 2011
  0.2 release - August, 2011
  0.3 release - December, 2011
  0.n releases every 8-10 weeks

 JBoss ESB
  SOA Platform 5.1 - March, 2011
  JBoss ESB 4.10 - August 2011
  SOA Platform 5.2 - November, 2011
  SOA Platform 5.3 - In Planning
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Enterprise Services

  You have an application
  It contains services that other apps will use
  It may want to consume services elsewhere
  A structured development methodology 
would help
  Something ‘service-oriented’ ... hmm

  Now for a platform that helps develop and 
run these type of applications

  <Insert ESB Here>

from a Developer’s Perspective

Enterprise Service Bus

SOAP

BPELRouting

Routing

DB

Some Dude's
Computer

Exhibit #1 : Not Helping
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Application Architecture

Application
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Application Architecture

Implementation
Logic

Application
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Application Architecture

POJO
(CDI)

Routing
(Camel)

Business Rule
(Drools)Workflow

(jBPM 5)

Orchestration
(BPEL)

Implementation
Logic

Application
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Application Architecture

Implementation
Logic
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Application Architecture

Implementation
Logicprovide consume
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Application Architecture

Implementation
Logicprovide consume

SCA

Java

WSDL

public interface OrderService {
   OrderAck submitOrder(Order order);   
}

  <portType name="OrderService">
    <operation name="submitOrder">
      <input message="tns:submitOrder"/>
      <output message="tns:submitOrderResponse"/>
    </operation>
  </portType>

<component name="OrderService">
   <bean:implementation.bean 
      class="org.example.OrderServiceBean"/>
   <service name="OrderService">
      <interface.java 
       interface="org.example.OrderService"/>
   </service>
   <reference name="InventoryService">
      <interface.java 
       interface="org.example.InventoryService"/>
   </reference>
</component>
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Application Architecture

Implementation
Logic

provide consume
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Application Architecture

Implementation
Logic

provideRemote Remoteconsume
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Application Architecture

Implementation
Logic

provideRemote Remoteconsume

SOAP

JMS

FTP

File

REST

Email

...

SOAP

JMS

FTP

File

REST

Email

...
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Application Architecture

Implementation
Logic

provide consumeRemote Remote
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Application Architecture

Implementation
Logic

provide consumeRemote Remote

Data
Transform

Data
Validation

Declarative Behavior

Policy
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Implementing a Service
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Bean Services

 POJO = Service ... ‘nuff said
 Easy to use
  Annotation-driven
  Config auto-generated
  Service auto-registered

 Based on CDI
  Standard programming model (Java EE / JSR 299)
  Straightforward integration into the web tier
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Providing a Service

•  Create a Java interface representing the contract
•  Create a Java class implementing the interface
•  Add an @Service annotation
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Bean Service

Tuesday, January 24, 12



Bean Service

public interface OrderService {
    OrderAck submitOrder(Order order);  
}
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Bean Service

public class OrderServiceBean implements OrderService {
        
    public OrderAck submitOrder(Order order) {

    ...
    }
}

public interface OrderService {
    OrderAck submitOrder(Order order);  
}
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Bean Service

public class OrderServiceBean implements OrderService {
        
    public OrderAck submitOrder(Order order) {

    ...
    }
}

public interface OrderService {
    OrderAck submitOrder(Order order);  
}

This is where the magic happens

@Service(OrderService.class)
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Consuming a Service

•  Add a field representing the consumed service
•  Add an @Reference annotation
•  Invoke methods on the injected reference
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Service Reference

@Service(OrderService.class)
public class OrderServiceBean implements OrderService {
    
    

    
    public OrderAck submitOrder(Order order) {
        // Check the inventory
        Item orderItem = inventory.lookupItem(order.getItemId());
        ...
    }
}
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Service Reference

@Service(OrderService.class)
public class OrderServiceBean implements OrderService {
    
    

    
    public OrderAck submitOrder(Order order) {
        // Check the inventory
        Item orderItem = inventory.lookupItem(order.getItemId());
        ...
    }
}

@Inject @Reference
private InventoryService inventory;

More Magic
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Into the Web Tier

<div id="content">
  <h1>New Order</h1>
  <h:form id="newOrder">
    <div>
     Order ID:
     <h:inputText id="orderID" value="#{order.orderId}" required="true"/><br/>
     Item ID:
     <h:inputText id="itemID" value="#{order.itemId}" required="true"/><br/>
     Quantity:
     <h:inputText id="quantity" value="#{order.quantity}" required="true"/><p/>
     <h:commandButton id="createOrder" value="Create" action="#{order.create}"/>
     </div>
  </h:form>
</div>
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Into the Web Tier
@Named
@RequestScoped
public class Order implements Serializable {

    @Inject
    @Reference
    private OrderService orderService;

    public void create() {
        OrderAck serviceAck = orderService.submitOrder(this);
        FacesContext.getCurrentInstance().addMessage(null, 

      new FacesMessage(serviceAck.toString()));
    }
    ... 
}
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JSF + CDI + SwitchYard

Tuesday, January 24, 12



Routing

Message Content Based 
Router

Message 
Translator

Content FIlter

Aggregator

Messaging 
Gateway

Message 
Store
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Routing Services

 Integrates Apache Camel with SwitchYard
 Camel provides
  Routing engine and language(s)
  Loads of EIP
  Cornucopia of components

 Camel as a service
  Routes provide pipeline orchestration
  Service interface
  Service references resolved independent of binding
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Example Route

public class OrderServiceBuilder extends RouteBuilder {
    
    public void configure() {
        from("file://orders/in")
            .log("Order Received : ${body}")
            .to("bean:prioritize")
            .filter().xpath("/order[@priority=‘high’]”"))
            .to("file://shipping/in");
    }
}

Tuesday, January 24, 12



Example Route

Route

from <file>

log

filter

to <file>

validate
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Route As A Service

public class OrderServiceBuilder extends RouteBuilder {
    
    public void configure() {
        from("switchyard://OrderService")
            .log("Order Received : ${body}")
            .to("bean:prioritize")
            .filter().xpath("/order[@priority=‘high’]”"))
            .to("switchyard://ShippingService");
    }
}
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Route As A Service

public class OrderServiceBuilder extends RouteBuilder {
    
    public void configure() {
        from("switchyard://OrderService")
            .log("Order Received : ${body}")
            .to("bean:prioritize")
            .filter().xpath("/order[@priority=‘high’]”"))
            .to("switchyard://ShippingService");
    }
}

@Route(OrderService.class)
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Beans In Camel

•  Allows Java objects to be called inside a route
•  Very useful for fine-grained integration tasks

•  EIP configuration - route, split, etc.
•  Metadata access
•  Bolt-on logic

•  Bean registry is pluggable
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CDI Beans In Camel

•  Keep the same programming model you use for services
•  Wired to Camel route based on @Named annotation

@Route(MyService.class)

public class MyServiceBuilder extends RouteBuilder {

  public void configure() {

    from("switchyard://MyService")
      .split(body(String.class).tokenize("\n"))
      .filter(body(String.class).startsWith("item:"))
      .to("bean:MyBean");
    }
}

Camel Route

Kapow! @Named("MyBean")

@ApplicationScoped

public class SomeBean {

  public void foo() {

     …

  }

}

CDI Bean
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Workflow Services

•  Provides business process and human workflow support
•  Based on jBPM 5
•  Native integration in BPMN2 modeler
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Service Orchestration
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Integrated Workflow
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Decision Services

•  Business Rules as Services
•  Based on Drools
•  Provides

•  Bootstrap of Knowledge Runtime and Session
•  Explicit contract for decision service
•  Binding agnostic fact insertion
•  Data format isolation
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An Example

package org.example

rule "Is of valid age"
    when
        $a : Applicant( age > 17 )
    then
        $a.setValid( true );
end

rule "Is not of valid age"
    when
        $a : Applicant( age < 18 )
    then
        $a.setValid( false );
end

interview.drl

public interface Interview {
    public void verify(Applicant applicant);
}

Interview.java

switchyard.xml
<implementation.rules stateful="false">
   <rulesAction name="verify" type="EXECUTE_RULES"/>
   <resource 
      location="/rules/interview/Interview.drl" 
      type="DRL"/>
</implementation.rules>
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Orchestration Services

•  Orchestrate web services using BPEL
•  Backed by Riftsaw

•  Apache ODE base
•  GWT-based console
•  Short-lived and long-running processes
•  Process persistence and recovery
•  Process versioning

•  WSDL-based contracts a natural fit for BPEL

Tuesday, January 24, 12



Binding a Service
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Service Bindings

Implementation
Logic

provideRemote Remoteconsume

Web ServicesBindings

Gateways

MOM FTP File REST Legacy Adapters

SOAP HornetQ
Camel

JMS
Camel
FTP

Camel
File

Camel
CXF-RS

REST  
Easy * JCA *

* coming soon

Custom
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SOAP Gateway

 SOAP binding for services and references
 Service contract based on WSDL
 Message payload is XML

  XML through the bus
 Implemented as JAX-WS provider
 Binding configuration in SCA descriptor
 Forge tooling support
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Binding Configuration

<service name="OrderService" promote="OrderService">
   <interface.wsdl 
       interface="wsdl/OrderService.wsdl#wsdl.porttype(OrderService)"/>
   <binding.soap>
      <wsdl>wsdl/OrderService.wsdl</wsdl>
      <socketAddr>:18001</socketAddr>
   </binding.soap>
</service>

<reference name="InventoryService" promote="InventoryService">
   <binding.soap>
      <wsdl>wsdl/InventoryService.wsdl</soap:wsdl>
   </soap:binding.soap>
</reference>
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Camel Gateway
  Allows Camel components to be used as gateways
  XML or URI-based endpoint configuration
  File, Timer, and JMS included with AS7 distribution

  Others can be added as modules

Camel
Gateways

File
Atom

SNMP

LDAPHL7

HTTP

Email

DB JMS

TCP

Timer

...
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Binding Configuration

<camel:binding.camel 
   configURI="file://tmp/in?autoCreate=true&amp;initialDelay=10&amp;delete=true">
   <camel:operationSelector operationName="print"/>
</camel:binding.camel>

<camel:binding.file>
   <camel:operationSelector operationName="print" />
   <camel:consume>
      <camel:inputDir>/tmp/in</camel:inputDir>
      <camel:autoCreate>true</camel:autoCreate>
      <camel:initialDelay>10</camel:initialDelay>
      <camel:delete>true</camel:delete>
   </camel:consume>
</camel:binding.file>

XML-Based

URI-Based
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HornetQ Gateway

  Bind to HornetQ destinations
  8.2 million messages per second in SpecJMS
  Two different ways to use it

  Camel Gateway Component - JMS
  SwitchYard HornetQ Component - Core API

<service name="GreetingService" promote="GreetingService">
   <hornetq:binding.hornetq>
      <hornetq:operationSelector operationName="greet"/>
      <hornetq:config>
         <hornetq:connector>
            <hornetq:factoryClass>org.hornetq.core.remoting.impl.invm.InVMConnectorFactory</hornetq:factoryClass>
         </hornetq:connector>
         <hornetq:queue>jms.queue.GreetingServiceQueue</hornetq:queue>
      </hornetq:config>
   </hornetq:binding.hornetq>
</service>
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Declarative Behavior
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Transformation

•  Ubiquitous challenge in application integration and SOA
•  Change in data representation

• java.io.Reader -> java.lang.String

•  Change in data format
• CSV -> XML

•  Change in data itself
• Enrichment

•  Multiple ways to handle this requirement
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• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

xml -> java

xml -> java
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• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

xml -> java

xml -> java
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• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

NO!

xml -> java

xml -> java
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• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

NO!

NO!

xml -> java

xml -> java
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Transformers

 Transformation is wired into SwitchYard core
  Types declared via service contract
  Transformer resolved dynamically at runtime

 Declarative, not procedural

 Java, JAXB, XSLT, JSON, and Smooks

consume

<xml>

provide

javaYES! xml -> java
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Java Transformer

@Transformer(from = "{urn:switchyard-example:orders:1.0}submitOrder")
public Order transform(Element from) {
   return new Order()
      .setOrderId(getElementValue(from, "orderId”))
      .setItemId(getElementValue(from, "itemId”))
      .setQuantity(Integer.valueOf(getElementValue(from, "quantity”)));
}

•  Config generated from annotation
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XSLT Transformer

•  Declared in application descriptor

<transform.xslt 
   from="{http://acme/}A"
   to="{http://acme/}B" 
   xsltFile="com/acme/xslt/A2B.xslt"/>
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Validators

•  Declarative validation
•  Supports XML Schema and Java validation
•  Executes pre and post transformation

<validate.xml 
   schemaType="XMLSCHEMA"
   name="{urn:example:purchasing}order" 
   schemaFile="xsd/order.xsd"/>

<xml>

order.xsd

consume provide
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Policy

•  Declarative policy
•  Requirements attached to service definition
•  Runtime injects policy enforcement point

<service name="OrderService requires="propagatesTransaction">
...

</service>

consume provide
JMS
Queue

desired transaction scope

Transaction
Policy
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Testing Services
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Testing

 Big Bang testing of SOA applications must stop!
 Develop and test your project iteratively
  Service, transformation, binding, etc.

 SwitchYardRunner
  Bootstraps runtime, components, and application

 MixIns
  Enriches test case via composition vs. extension
  CDI, HTTP, Smooks, BPM, HornetQ

 Arquillian
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Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

    @ServiceOperation("InventoryService.lookupItem")
    private Invoker lookupItem;

    @Test
    public void testItemLookupExists() throws Exception {
        final String ITEM_ID = "BUTTER";
        Item item = lookupItem
            .sendInOut(ITEM_ID)
            .getContent(Item.class);

        Assert.assertNotNull(item);
        Assert.assertEquals(ITEM_ID, item.getItemId());
    }
}
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Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

    @ServiceOperation("InventoryService.lookupItem")
    private Invoker lookupItem;

    @Test
    public void testItemLookupExists() throws Exception {
        final String ITEM_ID = "BUTTER";
        Item item = lookupItem
            .sendInOut(ITEM_ID)
            .getContent(Item.class);

        Assert.assertNotNull(item);
        Assert.assertEquals(ITEM_ID, item.getItemId());
    }
}

Bootstraps SwitchYard
runtime and handles

test injection
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Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

    @ServiceOperation("InventoryService.lookupItem")
    private Invoker lookupItem;

    @Test
    public void testItemLookupExists() throws Exception {
        final String ITEM_ID = "BUTTER";
        Item item = lookupItem
            .sendInOut(ITEM_ID)
            .getContent(Item.class);

        Assert.assertNotNull(item);
        Assert.assertEquals(ITEM_ID, item.getItemId());
    }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI 
including Bean Scanning
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Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

    @ServiceOperation("InventoryService.lookupItem")
    private Invoker lookupItem;

    @Test
    public void testItemLookupExists() throws Exception {
        final String ITEM_ID = "BUTTER";
        Item item = lookupItem
            .sendInOut(ITEM_ID)
            .getContent(Item.class);

        Assert.assertNotNull(item);
        Assert.assertEquals(ITEM_ID, item.getItemId());
    }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI 
including Bean Scanning

Injects a reference
to a service operation
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Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

    @ServiceOperation("InventoryService.lookupItem")
    private Invoker lookupItem;

    @Test
    public void testItemLookupExists() throws Exception {
        final String ITEM_ID = "BUTTER";
        Item item = lookupItem
            .sendInOut(ITEM_ID)
            .getContent(Item.class);

        Assert.assertNotNull(item);
        Assert.assertEquals(ITEM_ID, item.getItemId());
    }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI 
including Bean Scanning

Injects a reference
to a service operation

Sends and receives 
messages over the bus
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Transformation Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = SmooksMixIn.class)
public class SmooksTransformationTest {

    private SmooksMixIn smooksMixIn;

    @Test
    public void testOrderTransform() throws Exception {
        // Verify the Order_XML.xml Smooks Java->XML binding

     smooksMixIn.testJavaXMLReadWrite(
Order.class, 
"/smooks/Order_XML.xml", 
"/xml/order.xml");

    }
}

Injected MixIn class
provides helper methods
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Binding Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
        config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
        mixins = {CDIMixIn.class, HTTPMixIn.class})
public class WebServiceTest {

    private HTTPMixIn httpMixIn;

    @Test
    public void invokeOrderWebService() throws Exception {

    httpMixIn.postResourceAndTestXML(
"http://localhost:18001/OrderService", 
"/xml/soap-request.xml", 
"/xml/soap-response.xml");

    }
}

This tests the service
from the “outside”

Load the application
descriptor and CDI services
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Runtime
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Runtime Options

•  Supported Containers
•  JBoss AS 7 (7.1.0.CR1b)
•  OpenShift (7.0.2.Final)
•  JBoss AS 6 (Phased out from 0.3)
•  Java SE - unit test or standalone
•  Tomcat
•  OSGi, and others coming soon ...

•  Application Deployment Options
•  JAR, WAR, EAR
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Runtime Architecture

Platform - JBoss AS 7, OpenShift, Java SE, Tomcat, Unit Test

SwitchYard Core

Gateway
Components

Implementation
Components Policy Configuration

Validators Transformers

Admin

Deployment

API Runtime

Application Application

Message Bus
Registry

Service Domain

•  Small, extensible core (150kb)
•  Features are modules
•  Service Domain

•  Service endpoint registry
•  Message Bus
•  Application services

•  Multiple service domains on 
the roadmap
•  Isolate application services
• Share policy, configuration, etc.
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•  JBoss AS 7
•  Blazingly fast (< 3s startup)
•  Lightweight
•  Modular core

•  SwitchYard on AS7
•  Module Service Container

• Core - api, config, deploy, runtime, transform, validate
• Components - bean, bpel, camel, rules, soap, hornetq, bpm
• Dependencies - Camel, Smooks, jBPM, Drools, XStream

AS7 Runtime Architecture

JBoss AS 7

SwitchYard Dependencies

Modules

Subsystems

SwitchYard

Deployers

SwitchYard

DMR

Admin
Console

CLI

app.jar
META-INF/
   switchyard.xml
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AS7 Configuration

<server xmlns="urn:jboss:domain:1.1">
...
   <extensions>
       ...
       <extension module="org.switchyard"/>
   </extensions>
...
   <subsystem xmlns="urn:jboss:domain:switchyard:1.0">
       <modules>
           <module identifier="org.switchyard.component.bean" implClass="org.switchyard.component.bean.deploy.BeanComponent"/>
           <module identifier="org.switchyard.component.soap" implClass="org.switchyard.component.soap.deploy.SOAPComponent">
               <properties>
                   <socketAddr>:18001</socketAddr>
               </properties>
           </module>
           <module identifier="org.switchyard.component.camel" implClass="org.switchyard.component.camel.deploy.CamelComponent"/>
           <module identifier="org.switchyard.component.rules" implClass="org.switchyard.component.rules.deploy.RulesComponent"/>
           <module identifier="org.switchyard.component.bpm" implClass="org.switchyard.component.bpm.deploy.BPMComponent"/>
           <module identifier="org.switchyard.component.bpel" implClass="org.switchyard.component.bpel.deploy.BPELComponent"/>
           <module identifier="org.switchyard.component.hornetq" implClass="org.switchyard.component.hornetq.deploy.HornetQComponent"/>
       </modules>
   </subsystem>
...
</server>

Tuesday, January 24, 12



•  OpenShift (Go beyond the Clouds)
•  Free PaaS from Red Hat
•  Java, Perl, PHP, Python, Ruby and ...
•  SwitchYard!

•  SwitchYard on OpenShift
•  Runs on JBoss AS 7
•  Simple bootstrap using our template application

• Sample application included in the template project

Cloud

http://github.com/jboss-switchyard/switchyard-openshift
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Tooling
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Tooling

 Seam Forge
  Rapid application development tool
  Ease of a wizard, power of a shell

 IDE Support
 Maven support provides baseline functionality across IDEs
  Specific tooling features for Eclipse
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Forge

[ExampleService] ExampleService $ project install-facet switchyard.bpm

[ExampleService] ExampleService $ project install-facet switchyard.soap

[ExampleService] ExampleService $ soap-binding bind-service 
          --serviceName ExampleService --wsdl wsdl/Example.wsdl 

[ExampleService] ExampleService $ bpm-service --serviceName ExampleService 

[ExampleService] ExampleService $ switchyard promote-service --serviceName ExampleService 

Add SwitchYard to your application

Create a BPMN 2 workflow service

Bind the service to SOAP / HTTP
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Join Us!
• Learn

• http://www.jboss.org/switchyard

• Play
• http://github.com/jboss-switchyard/quickstarts

• Chat
• chat.freenode.net #switchyard

• Fork
• http://github.com/jboss-switchyard
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Questions?
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