
Tuesday, January 24, 12

Enterprise Services Made Easy

Keith Babo
Magesh Bojan

with SwitchYard

Tuesday, January 24, 12

Introducing SwitchYard

 New JBoss community project
 Next generation Enterprise Service Bus
 What happened to JBoss ESB?
 Taking the next evolutionary step
 Focus on consistent, intuitive user experience
 Refactor core to eliminate known pain points
 Leverage standards and complimentary technologies

Tuesday, January 24, 12

Activity

 SwitchYard
 Milestone 1 - February, 2011
 0.1 release - June, 2011
 0.2 release - August, 2011
 0.3 release - December, 2011
 0.n releases every 8-10 weeks

 JBoss ESB
 SOA Platform 5.1 - March, 2011
 JBoss ESB 4.10 - August 2011
 SOA Platform 5.2 - November, 2011
 SOA Platform 5.3 - In Planning

Tuesday, January 24, 12

Enterprise Services

 You have an application
 It contains services that other apps will use
 It may want to consume services elsewhere
 A structured development methodology
would help
 Something ‘service-oriented’ ... hmm

 Now for a platform that helps develop and
run these type of applications

 <Insert ESB Here>

from a Developer’s Perspective

Enterprise Service Bus

SOAP

BPELRouting

Routing

DB

Some Dude's
Computer

Exhibit #1 : Not Helping

Tuesday, January 24, 12

Application Architecture

Application

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

Application

Tuesday, January 24, 12

Application Architecture

POJO
(CDI)

Routing
(Camel)

Business Rule
(Drools)Workflow

(jBPM 5)

Orchestration
(BPEL)

Implementation
Logic

Application

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

Tuesday, January 24, 12

Application Architecture

Implementation
Logicprovide consume

Tuesday, January 24, 12

Application Architecture

Implementation
Logicprovide consume

SCA

Java

WSDL

public interface OrderService {
 OrderAck submitOrder(Order order);
}

 <portType name="OrderService">
 <operation name="submitOrder">
 <input message="tns:submitOrder"/>
 <output message="tns:submitOrderResponse"/>
 </operation>
 </portType>

<component name="OrderService">
 <bean:implementation.bean
 class="org.example.OrderServiceBean"/>
 <service name="OrderService">
 <interface.java
 interface="org.example.OrderService"/>
 </service>
 <reference name="InventoryService">
 <interface.java
 interface="org.example.InventoryService"/>
 </reference>
</component>

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

provide consume

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

provideRemote Remoteconsume

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

provideRemote Remoteconsume

SOAP

JMS

FTP

File

REST

Email

...

SOAP

JMS

FTP

File

REST

Email

...

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

provide consumeRemote Remote

Tuesday, January 24, 12

Application Architecture

Implementation
Logic

provide consumeRemote Remote

Data
Transform

Data
Validation

Declarative Behavior

Policy

Tuesday, January 24, 12

Implementing a Service

Tuesday, January 24, 12

Bean Services

 POJO = Service ... ‘nuff said
 Easy to use
 Annotation-driven
 Config auto-generated
 Service auto-registered

 Based on CDI
 Standard programming model (Java EE / JSR 299)
 Straightforward integration into the web tier

Tuesday, January 24, 12

Providing a Service

• Create a Java interface representing the contract
• Create a Java class implementing the interface
• Add an @Service annotation

Tuesday, January 24, 12

Bean Service

Tuesday, January 24, 12

Bean Service

public interface OrderService {
 OrderAck submitOrder(Order order);
}

Tuesday, January 24, 12

Bean Service

public class OrderServiceBean implements OrderService {

 public OrderAck submitOrder(Order order) {

 ...
 }
}

public interface OrderService {
 OrderAck submitOrder(Order order);
}

Tuesday, January 24, 12

Bean Service

public class OrderServiceBean implements OrderService {

 public OrderAck submitOrder(Order order) {

 ...
 }
}

public interface OrderService {
 OrderAck submitOrder(Order order);
}

This is where the magic happens

@Service(OrderService.class)

Tuesday, January 24, 12

Consuming a Service

• Add a field representing the consumed service
• Add an @Reference annotation
• Invoke methods on the injected reference

Tuesday, January 24, 12

Service Reference

@Service(OrderService.class)
public class OrderServiceBean implements OrderService {

 public OrderAck submitOrder(Order order) {
 // Check the inventory
 Item orderItem = inventory.lookupItem(order.getItemId());
 ...
 }
}

Tuesday, January 24, 12

Service Reference

@Service(OrderService.class)
public class OrderServiceBean implements OrderService {

 public OrderAck submitOrder(Order order) {
 // Check the inventory
 Item orderItem = inventory.lookupItem(order.getItemId());
 ...
 }
}

@Inject @Reference
private InventoryService inventory;

More Magic

Tuesday, January 24, 12

Into the Web Tier

<div id="content">
 <h1>New Order</h1>
 <h:form id="newOrder">
 <div>
 Order ID:
 <h:inputText id="orderID" value="#{order.orderId}" required="true"/>

 Item ID:
 <h:inputText id="itemID" value="#{order.itemId}" required="true"/>

 Quantity:
 <h:inputText id="quantity" value="#{order.quantity}" required="true"/><p/>
 <h:commandButton id="createOrder" value="Create" action="#{order.create}"/>
 </div>
 </h:form>
</div>

Tuesday, January 24, 12

Into the Web Tier
@Named
@RequestScoped
public class Order implements Serializable {

 @Inject
 @Reference
 private OrderService orderService;

 public void create() {
 OrderAck serviceAck = orderService.submitOrder(this);
 FacesContext.getCurrentInstance().addMessage(null,

 new FacesMessage(serviceAck.toString()));
 }
 ...
}

Tuesday, January 24, 12

JSF + CDI + SwitchYard

Tuesday, January 24, 12

Routing

Message Content Based
Router

Message
Translator

Content FIlter

Aggregator

Messaging
Gateway

Message
Store

Tuesday, January 24, 12

Routing Services

 Integrates Apache Camel with SwitchYard
 Camel provides
 Routing engine and language(s)
 Loads of EIP
 Cornucopia of components

 Camel as a service
 Routes provide pipeline orchestration
 Service interface
 Service references resolved independent of binding

Tuesday, January 24, 12

Example Route

public class OrderServiceBuilder extends RouteBuilder {

 public void configure() {
 from("file://orders/in")
 .log("Order Received : ${body}")
 .to("bean:prioritize")
 .filter().xpath("/order[@priority=‘high’]”"))
 .to("file://shipping/in");
 }
}

Tuesday, January 24, 12

Example Route

Route

from <file>

log

filter

to <file>

validate

Tuesday, January 24, 12

Route As A Service

public class OrderServiceBuilder extends RouteBuilder {

 public void configure() {
 from("switchyard://OrderService")
 .log("Order Received : ${body}")
 .to("bean:prioritize")
 .filter().xpath("/order[@priority=‘high’]”"))
 .to("switchyard://ShippingService");
 }
}

Tuesday, January 24, 12

Route As A Service

public class OrderServiceBuilder extends RouteBuilder {

 public void configure() {
 from("switchyard://OrderService")
 .log("Order Received : ${body}")
 .to("bean:prioritize")
 .filter().xpath("/order[@priority=‘high’]”"))
 .to("switchyard://ShippingService");
 }
}

@Route(OrderService.class)

Tuesday, January 24, 12

Beans In Camel

• Allows Java objects to be called inside a route
• Very useful for fine-grained integration tasks

• EIP configuration - route, split, etc.
• Metadata access
• Bolt-on logic

• Bean registry is pluggable

Tuesday, January 24, 12

CDI Beans In Camel

• Keep the same programming model you use for services
• Wired to Camel route based on @Named annotation

@Route(MyService.class)

public class MyServiceBuilder extends RouteBuilder {

 public void configure() {

 from("switchyard://MyService")
 .split(body(String.class).tokenize("\n"))
 .filter(body(String.class).startsWith("item:"))
 .to("bean:MyBean");
 }
}

Camel Route

Kapow! @Named("MyBean")

@ApplicationScoped

public class SomeBean {

 public void foo() {

 …

 }

}

CDI Bean

Tuesday, January 24, 12

Workflow Services

• Provides business process and human workflow support
• Based on jBPM 5
• Native integration in BPMN2 modeler

Tuesday, January 24, 12

Service Orchestration

Tuesday, January 24, 12

Integrated Workflow

Tuesday, January 24, 12

Decision Services

• Business Rules as Services
• Based on Drools
• Provides

• Bootstrap of Knowledge Runtime and Session
• Explicit contract for decision service
• Binding agnostic fact insertion
• Data format isolation

Tuesday, January 24, 12

An Example

package org.example

rule "Is of valid age"
 when
 $a : Applicant(age > 17)
 then
 $a.setValid(true);
end

rule "Is not of valid age"
 when
 $a : Applicant(age < 18)
 then
 $a.setValid(false);
end

interview.drl

public interface Interview {
 public void verify(Applicant applicant);
}

Interview.java

switchyard.xml
<implementation.rules stateful="false">
 <rulesAction name="verify" type="EXECUTE_RULES"/>
 <resource
 location="/rules/interview/Interview.drl"
 type="DRL"/>
</implementation.rules>

Tuesday, January 24, 12

Orchestration Services

• Orchestrate web services using BPEL
• Backed by Riftsaw

• Apache ODE base
• GWT-based console
• Short-lived and long-running processes
• Process persistence and recovery
• Process versioning

• WSDL-based contracts a natural fit for BPEL

Tuesday, January 24, 12

Binding a Service

Tuesday, January 24, 12

Service Bindings

Implementation
Logic

provideRemote Remoteconsume

Web ServicesBindings

Gateways

MOM FTP File REST Legacy Adapters

SOAP HornetQ
Camel

JMS
Camel
FTP

Camel
File

Camel
CXF-RS

REST
Easy * JCA *

* coming soon

Custom

Tuesday, January 24, 12

SOAP Gateway

 SOAP binding for services and references
 Service contract based on WSDL
 Message payload is XML

 XML through the bus
 Implemented as JAX-WS provider
 Binding configuration in SCA descriptor
 Forge tooling support

Tuesday, January 24, 12

Binding Configuration

<service name="OrderService" promote="OrderService">
 <interface.wsdl
 interface="wsdl/OrderService.wsdl#wsdl.porttype(OrderService)"/>
 <binding.soap>
 <wsdl>wsdl/OrderService.wsdl</wsdl>
 <socketAddr>:18001</socketAddr>
 </binding.soap>
</service>

<reference name="InventoryService" promote="InventoryService">
 <binding.soap>
 <wsdl>wsdl/InventoryService.wsdl</soap:wsdl>
 </soap:binding.soap>
</reference>

Tuesday, January 24, 12

Camel Gateway
 Allows Camel components to be used as gateways
 XML or URI-based endpoint configuration
 File, Timer, and JMS included with AS7 distribution

 Others can be added as modules

Camel
Gateways

File
Atom

SNMP

LDAPHL7

HTTP

Email

DB JMS

TCP

Timer

...

Tuesday, January 24, 12

Binding Configuration

<camel:binding.camel
 configURI="file://tmp/in?autoCreate=true&initialDelay=10&delete=true">
 <camel:operationSelector operationName="print"/>
</camel:binding.camel>

<camel:binding.file>
 <camel:operationSelector operationName="print" />
 <camel:consume>
 <camel:inputDir>/tmp/in</camel:inputDir>
 <camel:autoCreate>true</camel:autoCreate>
 <camel:initialDelay>10</camel:initialDelay>
 <camel:delete>true</camel:delete>
 </camel:consume>
</camel:binding.file>

XML-Based

URI-Based

Tuesday, January 24, 12

HornetQ Gateway

 Bind to HornetQ destinations
 8.2 million messages per second in SpecJMS
 Two different ways to use it

 Camel Gateway Component - JMS
 SwitchYard HornetQ Component - Core API

<service name="GreetingService" promote="GreetingService">
 <hornetq:binding.hornetq>
 <hornetq:operationSelector operationName="greet"/>
 <hornetq:config>
 <hornetq:connector>
 <hornetq:factoryClass>org.hornetq.core.remoting.impl.invm.InVMConnectorFactory</hornetq:factoryClass>
 </hornetq:connector>
 <hornetq:queue>jms.queue.GreetingServiceQueue</hornetq:queue>
 </hornetq:config>
 </hornetq:binding.hornetq>
</service>

Tuesday, January 24, 12

Declarative Behavior

Tuesday, January 24, 12

Transformation

• Ubiquitous challenge in application integration and SOA
• Change in data representation

• java.io.Reader -> java.lang.String

• Change in data format
• CSV -> XML

• Change in data itself
• Enrichment

• Multiple ways to handle this requirement

Tuesday, January 24, 12

• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

xml -> java

xml -> java

Tuesday, January 24, 12

• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

xml -> java

xml -> java

Tuesday, January 24, 12

• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

NO!

xml -> java

xml -> java

Tuesday, January 24, 12

• In the provider?

• In the consumer?

• Add a routing service?

Where To Transform

NO!
consume

<xml>

provide

java

xml -> java

consume

<xml>

provide

java

consume

<xml>

provide

java

NO!

NO!

xml -> java

xml -> java

Tuesday, January 24, 12

Transformers

 Transformation is wired into SwitchYard core
 Types declared via service contract
 Transformer resolved dynamically at runtime

 Declarative, not procedural

 Java, JAXB, XSLT, JSON, and Smooks

consume

<xml>

provide

javaYES! xml -> java

Tuesday, January 24, 12

Java Transformer

@Transformer(from = "{urn:switchyard-example:orders:1.0}submitOrder")
public Order transform(Element from) {
 return new Order()
 .setOrderId(getElementValue(from, "orderId”))
 .setItemId(getElementValue(from, "itemId”))
 .setQuantity(Integer.valueOf(getElementValue(from, "quantity”)));
}

• Config generated from annotation

Tuesday, January 24, 12

XSLT Transformer

• Declared in application descriptor

<transform.xslt
 from="{http://acme/}A"
 to="{http://acme/}B"
 xsltFile="com/acme/xslt/A2B.xslt"/>

Tuesday, January 24, 12

Validators

• Declarative validation
• Supports XML Schema and Java validation
• Executes pre and post transformation

<validate.xml
 schemaType="XMLSCHEMA"
 name="{urn:example:purchasing}order"
 schemaFile="xsd/order.xsd"/>

<xml>

order.xsd

consume provide

Tuesday, January 24, 12

Policy

• Declarative policy
• Requirements attached to service definition
• Runtime injects policy enforcement point

<service name="OrderService requires="propagatesTransaction">
...

</service>

consume provide
JMS
Queue

desired transaction scope

Transaction
Policy

Tuesday, January 24, 12

Testing Services

Tuesday, January 24, 12

Testing

 Big Bang testing of SOA applications must stop!
 Develop and test your project iteratively
 Service, transformation, binding, etc.

 SwitchYardRunner
 Bootstraps runtime, components, and application

 MixIns
 Enriches test case via composition vs. extension
 CDI, HTTP, Smooks, BPM, HornetQ

 Arquillian

Tuesday, January 24, 12

Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

 @ServiceOperation("InventoryService.lookupItem")
 private Invoker lookupItem;

 @Test
 public void testItemLookupExists() throws Exception {
 final String ITEM_ID = "BUTTER";
 Item item = lookupItem
 .sendInOut(ITEM_ID)
 .getContent(Item.class);

 Assert.assertNotNull(item);
 Assert.assertEquals(ITEM_ID, item.getItemId());
 }
}

Tuesday, January 24, 12

Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

 @ServiceOperation("InventoryService.lookupItem")
 private Invoker lookupItem;

 @Test
 public void testItemLookupExists() throws Exception {
 final String ITEM_ID = "BUTTER";
 Item item = lookupItem
 .sendInOut(ITEM_ID)
 .getContent(Item.class);

 Assert.assertNotNull(item);
 Assert.assertEquals(ITEM_ID, item.getItemId());
 }
}

Bootstraps SwitchYard
runtime and handles

test injection

Tuesday, January 24, 12

Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

 @ServiceOperation("InventoryService.lookupItem")
 private Invoker lookupItem;

 @Test
 public void testItemLookupExists() throws Exception {
 final String ITEM_ID = "BUTTER";
 Item item = lookupItem
 .sendInOut(ITEM_ID)
 .getContent(Item.class);

 Assert.assertNotNull(item);
 Assert.assertEquals(ITEM_ID, item.getItemId());
 }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI
including Bean Scanning

Tuesday, January 24, 12

Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

 @ServiceOperation("InventoryService.lookupItem")
 private Invoker lookupItem;

 @Test
 public void testItemLookupExists() throws Exception {
 final String ITEM_ID = "BUTTER";
 Item item = lookupItem
 .sendInOut(ITEM_ID)
 .getContent(Item.class);

 Assert.assertNotNull(item);
 Assert.assertEquals(ITEM_ID, item.getItemId());
 }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI
including Bean Scanning

Injects a reference
to a service operation

Tuesday, January 24, 12

Service Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class InventoryServiceTest {

 @ServiceOperation("InventoryService.lookupItem")
 private Invoker lookupItem;

 @Test
 public void testItemLookupExists() throws Exception {
 final String ITEM_ID = "BUTTER";
 Item item = lookupItem
 .sendInOut(ITEM_ID)
 .getContent(Item.class);

 Assert.assertNotNull(item);
 Assert.assertEquals(ITEM_ID, item.getItemId());
 }
}

Bootstraps SwitchYard
runtime and handles

test injection
Helper methods for CDI
including Bean Scanning

Injects a reference
to a service operation

Sends and receives
messages over the bus

Tuesday, January 24, 12

Transformation Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = SmooksMixIn.class)
public class SmooksTransformationTest {

 private SmooksMixIn smooksMixIn;

 @Test
 public void testOrderTransform() throws Exception {
 // Verify the Order_XML.xml Smooks Java->XML binding

 smooksMixIn.testJavaXMLReadWrite(
Order.class,
"/smooks/Order_XML.xml",
"/xml/order.xml");

 }
}

Injected MixIn class
provides helper methods

Tuesday, January 24, 12

Binding Test

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
 config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
 mixins = {CDIMixIn.class, HTTPMixIn.class})
public class WebServiceTest {

 private HTTPMixIn httpMixIn;

 @Test
 public void invokeOrderWebService() throws Exception {

 httpMixIn.postResourceAndTestXML(
"http://localhost:18001/OrderService",
"/xml/soap-request.xml",
"/xml/soap-response.xml");

 }
}

This tests the service
from the “outside”

Load the application
descriptor and CDI services

Tuesday, January 24, 12

Runtime

Tuesday, January 24, 12

Runtime Options

• Supported Containers
• JBoss AS 7 (7.1.0.CR1b)
• OpenShift (7.0.2.Final)
• JBoss AS 6 (Phased out from 0.3)
• Java SE - unit test or standalone
• Tomcat
• OSGi, and others coming soon ...

• Application Deployment Options
• JAR, WAR, EAR

Tuesday, January 24, 12

Runtime Architecture

Platform - JBoss AS 7, OpenShift, Java SE, Tomcat, Unit Test

SwitchYard Core

Gateway
Components

Implementation
Components Policy Configuration

Validators Transformers

Admin

Deployment

API Runtime

Application Application

Message Bus
Registry

Service Domain

• Small, extensible core (150kb)
• Features are modules
• Service Domain

• Service endpoint registry
• Message Bus
• Application services

• Multiple service domains on
the roadmap
• Isolate application services
• Share policy, configuration, etc.

Tuesday, January 24, 12

• JBoss AS 7
• Blazingly fast (< 3s startup)
• Lightweight
• Modular core

• SwitchYard on AS7
• Module Service Container

• Core - api, config, deploy, runtime, transform, validate
• Components - bean, bpel, camel, rules, soap, hornetq, bpm
• Dependencies - Camel, Smooks, jBPM, Drools, XStream

AS7 Runtime Architecture

JBoss AS 7

SwitchYard Dependencies

Modules

Subsystems

SwitchYard

Deployers

SwitchYard

DMR

Admin
Console

CLI

app.jar
META-INF/
 switchyard.xml

Tuesday, January 24, 12

AS7 Configuration

<server xmlns="urn:jboss:domain:1.1">
...
 <extensions>
 ...
 <extension module="org.switchyard"/>
 </extensions>
...
 <subsystem xmlns="urn:jboss:domain:switchyard:1.0">
 <modules>
 <module identifier="org.switchyard.component.bean" implClass="org.switchyard.component.bean.deploy.BeanComponent"/>
 <module identifier="org.switchyard.component.soap" implClass="org.switchyard.component.soap.deploy.SOAPComponent">
 <properties>
 <socketAddr>:18001</socketAddr>
 </properties>
 </module>
 <module identifier="org.switchyard.component.camel" implClass="org.switchyard.component.camel.deploy.CamelComponent"/>
 <module identifier="org.switchyard.component.rules" implClass="org.switchyard.component.rules.deploy.RulesComponent"/>
 <module identifier="org.switchyard.component.bpm" implClass="org.switchyard.component.bpm.deploy.BPMComponent"/>
 <module identifier="org.switchyard.component.bpel" implClass="org.switchyard.component.bpel.deploy.BPELComponent"/>
 <module identifier="org.switchyard.component.hornetq" implClass="org.switchyard.component.hornetq.deploy.HornetQComponent"/>
 </modules>
 </subsystem>
...
</server>

Tuesday, January 24, 12

• OpenShift (Go beyond the Clouds)
• Free PaaS from Red Hat
• Java, Perl, PHP, Python, Ruby and ...
• SwitchYard!

• SwitchYard on OpenShift
• Runs on JBoss AS 7
• Simple bootstrap using our template application

• Sample application included in the template project

Cloud

http://github.com/jboss-switchyard/switchyard-openshift

Tuesday, January 24, 12

https://github.com/jboss-switchyard/switchyard-openshift
https://github.com/jboss-switchyard/switchyard-openshift

Tooling

Tuesday, January 24, 12

Tooling

 Seam Forge
 Rapid application development tool
 Ease of a wizard, power of a shell

 IDE Support
 Maven support provides baseline functionality across IDEs
 Specific tooling features for Eclipse

Tuesday, January 24, 12

Forge

[ExampleService] ExampleService $ project install-facet switchyard.bpm

[ExampleService] ExampleService $ project install-facet switchyard.soap

[ExampleService] ExampleService $ soap-binding bind-service
 --serviceName ExampleService --wsdl wsdl/Example.wsdl

[ExampleService] ExampleService $ bpm-service --serviceName ExampleService

[ExampleService] ExampleService $ switchyard promote-service --serviceName ExampleService

Add SwitchYard to your application

Create a BPMN 2 workflow service

Bind the service to SOAP / HTTP

Tuesday, January 24, 12

Join Us!
• Learn

• http://www.jboss.org/switchyard

• Play
• http://github.com/jboss-switchyard/quickstarts

• Chat
• chat.freenode.net #switchyard

• Fork
• http://github.com/jboss-switchyard

Tuesday, January 24, 12

http://www.jboss.org/switchyard
http://www.jboss.org/switchyard
https://github.com/jboss-switchyard
https://github.com/jboss-switchyard

Questions?

Tuesday, January 24, 12

Tuesday, January 24, 12

