
jBPM & Drools go Enterprise
Maciej Swiderski

Build comprehensive BPM
platform on top of jBPM and

Drools that will truly
accelerate your business

Sounds nice but what's that?

How easy is to:
• Introduce new (version of) process?
• Change logic of a process?
• Upgrade your environment?
• Migrate your active processes?

... the goal is to be able...

• Add new (version) processes without
affecting already running instances

• Alter business logic invoked by the
processes independently

• Run different versions of the engine at
the same time

... the developer goal is to be
able...

• Do not maintain knowledge sessions on
application/client side

• Do not worry about version if not
needed
– Process version
– Engine version

• Simplify usability of the engine from
application/client

JBoss AS7 to the rescue

• JBoss Modules
– jBPM and Drools configured as JBoss

Module with all their dependencies

• OSGi
– Engine factories registered in OSGi service

registry with version properties
– Engines registered in OSGi service registry

with custom properties
– Client code packaged as OSGi bundles

JBoss AS7

Platform overview

jBPM & Drools Module
V 5.3

OSGi Service Registry

jBPM & Drools Module
V 5.2

Process bundle Process bundle

BPM module v 1.0

Platform components

• BPM module

– Registers resolver manager

• JBPM & Drools module

– Registers ExecutionEngineFactory

– Registers resolvers

• Platform bundle

– Bootstraps and registers ExecutionEngine

• Client application

– Uses ExecutionEngine via resolvers

BPM module

• Simple abstraction layer on top of jBPM
and Drools APIs to make clients
independent of the version

• Registers ResolverManager in OSGi
service registry as single point of
interaction for ExecutionEngine look
ups

ResolverManager

public interface ExecutionEngineResolverManager {

 void register(String owner, ExecutionEngineResolver resolver);

 void unregister(String owner, UUID resolverUniqueId);

 ExecutionEngineResolver find(RequestContext context);

 ExecutionEngine findAndLookUp(RequestContext context);

 Collection<ExecutionEngineResolver> getResolvers();

}

jBPM & Drools module

• jBPM and Drools components bundled in a
single JBoss Module together with all
dependencies

• OSGi enabled

• Registers ExecutionEngineFactory that is
exposed to process bundles to construct
ExecutionEngines for given version of jBPM
and Drools

• Registers resolvers supported by given
version

ExecutionEngineFactory
public interface ExecutionEngineFactory {

 public ExecutionEngine newExecutionEngine(

 ClassLoader bundleClassLoader);

 public ExecutionEngine newExecutionEngine(

 ClassLoader bundleClassLoader,

 ExecutionEngineConfiguration config);

 public ExecutionEngine newExecutionEngine(

 ClassLoader bundleClassLoader,

 ExecutionEngineConfiguration config,

 Object callback);

 public ExecutionEngine newExecutionEngine(

 ClassLoader bundleClassLoader,

 ExecutionEngineConfiguration config,

 ExecutionEngineMapperStrategy strategy,

 Object callback);

}

Process bundle

• Main component that makes use of the
platform and delivers functionality

• Produces ExecutionEngine which is:
– Wrapper around KnowledgeBase
– Provides session management based on

business keys using configurable
strategies

• Registers ExecutionEngine under various
properties making it discoverable by resolvers

ExecutionEngine

public interface ExecutionEngine {

 public Object getKnowledgeBase();

 public SessionDelegate getStatelessSession();

 public SessionDelegate getSession(String businessKey);

 public SessionDelegate getSessionById(int id);

 public Object getHumanTaskConnector();

 public UUID getUUID();

 public String buildCompositeId(String id);

 public void disposeSession(SessionDelegate session);

}

Client application

• Ultimate client of the platform
• Makes use of ExecutionEngine and

ResolverManager to perform work
• Independent of the platform and

process version

• Communicates only through OSGi
service registry

Client application code

// get reference to Resolver manager

ServiceReference srf = this.context.getServiceReference(

 ExecutionEngineResolverManager.class.getName());

ExecutionEngineResolverManager resolverManager =

 (ExecutionEngineResolverManager)this.context.getService(srf);

//find right resolver and directly look up the engine

RequestContext reqContext = new HttpRequestContext(request);

ExecutionEngine engine = resolverManager.findAndLookUp(reqContext);

// get session by business key and start process on it

String compositeProcessInstanceId = engine.getSession("business-
key").startProcess(”process-id”);

Resolvers

• Resolver is responsible for finding the
right ExecutionEngine based on given
context

• Default policy - first resolver that
accepts the context will do the look up
in OSGi service registry

• Platform delivers some resolvers out of
the box but process bundles can
introduce custom resolvers as well

Available default resolvers

• UUID based resolver that accepts context if:

– Explicitly contains UUID property of the engine

– Contains composite id property (for instance
processInstanceId)

• Version based resolver that accepts context if:

– Explicitly contains version property

• Valid time resolver that will accepts the context if:

– No version parameter is given

Session management

• In case where more than one session is in
use there is a need to keep track of the
identifiers and in some cases even
relationship between process instance and
session instance

• By default this need must be secured on
application side

• On clustered environment things get more
complicated (avoid concurrent usage of the
same session)

SessionMappingStrategies

• Platform is equipped with strategies that are
capable of maintaining sessions identifiers
based on some business key

• Application refers to the session with custom
business key like for instance user id or
department instead of the internal session id

• Strategies are pluggable and every
ExecutionEngine instance can utilize different
implementation

Available session mapping
strategies

• SerializableMap strategy – dedicated
strategy for standalone installation that
will simply persist the map of known
values to the disc

• Clustered strategy – dedicated strategy
that will employ Inifinispan as
distributed cache with configured data
store

Make your engine configurable

• ExecutionEngine will emit notification on
number of events so the process bundle
can react on them:
– Knowledge base creation
– Knowledge session creation
– Work item registration
– Dispose of the session
– etc

ExecutionEngineCallback

public interface ExecutionEngineCallback {

 public void preKnowledgeBaseCreate(KnowledgeBuilder builder);

 public void postKnowledgeBaseCreate(KnowledgeBase kBase);

 public void preKnowledgeSessionCreate(Environment environment,

 KnowledgeSessionConfiguration config, KnowledgeBase kBase);

 public void postKnowledgeSessionCreate(StatefulKnowledgeSession session, String businessKey);

 public void postKnowledgeSessionCreate(StatelessKnowledgeSession session, String businessKey);

 public void preKnowledgeSessionRestore(Environment environment,

 KnowledgeSessionConfiguration config, KnowledgeBase kBase);

 public void postKnowledgeSessionRestore(StatefulKnowledgeSession session, String businessKey);

 public void preSessionDispose(StatefulKnowledgeSession session, String businessKey);

 public void postSessionDispose(StatefulKnowledgeSession session, String businessKey);

 public void preWorkItemRegister(StatefulKnowledgeSession session, String businessKey,

 KnowledgeBase kBase, WorkItemHandler handler);

 public void postWorkItemRegister(StatefulKnowledgeSession session, String businessKey,

 KnowledgeBase kBase, WorkItemHandler handler);

}

Multi tenancy

• Multi tenancy is achieved by:
– Separate process bundles registered with

dedicated properties
– Additional resolver that will understand

tenant configuration

Still in evaluation phase...

• The work is still in evaluation stage so
everything can change and hopefully if
it does it's for the good

• Please submit your input, requirements,
ideas

• There are some limitation currently that
are being investigated and most of them
have workarounds :)

Thanks for your attention

Questions? Comments?

More than welcome – get in touch via:

Email: mswiders@redhat.com

IRC: chat.freenode.net#jbpm

mailto:mswiders@redhat.com

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

