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Build comprehensive BPM 
platform on top of jBPM and 

Drools that will truly 
accelerate your business



Sounds nice but what's that?

How easy is to:
• Introduce new (version of) process?
• Change logic of a process?
• Upgrade your environment?
• Migrate your active processes?



... the goal is to be able...

• Add new (version) processes without 
affecting already running instances

• Alter business logic invoked by the 
processes independently 

• Run different versions of the engine at 
the same time



... the developer goal is to be 
able...

• Do not maintain knowledge sessions on 
application/client side

• Do not worry about version if not 
needed
– Process version
– Engine version

• Simplify usability of the engine from 
application/client



JBoss AS7 to the rescue

• JBoss Modules
– jBPM and Drools configured as JBoss 

Module with all their dependencies

• OSGi
– Engine factories registered in OSGi service 

registry with version properties
– Engines registered in OSGi service registry 

with custom properties
– Client code packaged as OSGi bundles



JBoss AS7

Platform overview

jBPM & Drools Module
V 5.3

OSGi Service Registry

jBPM & Drools Module
V 5.2

Process bundle Process bundle

BPM module v 1.0



Platform components

• BPM module

– Registers resolver manager

• JBPM & Drools module

– Registers ExecutionEngineFactory

– Registers resolvers

• Platform bundle 

– Bootstraps and registers ExecutionEngine

• Client application

– Uses ExecutionEngine via resolvers



BPM module

• Simple abstraction layer on top of jBPM 
and Drools APIs to make clients 
independent of the version

• Registers ResolverManager in OSGi 
service registry as single point of 
interaction for ExecutionEngine look 
ups



ResolverManager

public interface ExecutionEngineResolverManager {

    void register(String owner, ExecutionEngineResolver resolver);

    void unregister(String owner, UUID resolverUniqueId);

    ExecutionEngineResolver find(RequestContext context);

    ExecutionEngine findAndLookUp(RequestContext context);

    Collection<ExecutionEngineResolver> getResolvers();

}



jBPM & Drools module

• jBPM and Drools components bundled in a 
single JBoss Module together with all 
dependencies

• OSGi enabled

• Registers ExecutionEngineFactory that is 
exposed to process bundles to construct 
ExecutionEngines for given version of jBPM 
and Drools

• Registers resolvers supported by given 
version



ExecutionEngineFactory
public interface ExecutionEngineFactory {

    public ExecutionEngine newExecutionEngine(

                                   ClassLoader bundleClassLoader);

    public ExecutionEngine newExecutionEngine(

                             ClassLoader bundleClassLoader, 

                             ExecutionEngineConfiguration config);

    public ExecutionEngine newExecutionEngine(

                                    ClassLoader bundleClassLoader, 

                              ExecutionEngineConfiguration config, 

                                                 Object callback);

    public ExecutionEngine newExecutionEngine(

                                    ClassLoader bundleClassLoader, 

                              ExecutionEngineConfiguration config, 

                           ExecutionEngineMapperStrategy strategy,

                                                 Object callback);

}



Process bundle

• Main component that makes use of the 
platform and delivers functionality

• Produces ExecutionEngine which is:
– Wrapper around KnowledgeBase
– Provides session management based on 

business keys using configurable 
strategies

• Registers ExecutionEngine under various 
properties making it discoverable by resolvers



ExecutionEngine

public interface ExecutionEngine {

    public Object getKnowledgeBase();

    public SessionDelegate getStatelessSession();

    public SessionDelegate getSession(String businessKey);

    public SessionDelegate getSessionById(int id);

    public Object getHumanTaskConnector();

    public UUID getUUID();

    public String buildCompositeId(String id);

    public void disposeSession(SessionDelegate session);

}



Client application

• Ultimate client of the platform
• Makes use of ExecutionEngine and 

ResolverManager to perform work
• Independent of the platform and 

process version

• Communicates only through OSGi 
service registry



Client application code

// get reference to Resolver manager

ServiceReference srf = this.context.getServiceReference(

                  ExecutionEngineResolverManager.class.getName());

ExecutionEngineResolverManager resolverManager =

     (ExecutionEngineResolverManager)this.context.getService(srf);

//find right resolver and directly look up the engine

RequestContext reqContext = new HttpRequestContext(request);

ExecutionEngine engine = resolverManager.findAndLookUp(reqContext);

// get session by business key and start process on it    

String compositeProcessInstanceId = engine.getSession("business-
key").startProcess(”process-id”);



Resolvers

• Resolver is responsible for finding the 
right ExecutionEngine based on given 
context

• Default policy - first resolver that 
accepts the context will do the look up 
in OSGi service registry

• Platform delivers some resolvers out of 
the box but process bundles can 
introduce custom resolvers as well



Available default resolvers

• UUID based resolver that accepts context if:

– Explicitly contains UUID property of the engine

– Contains composite id property (for instance 
processInstanceId)

• Version based resolver that accepts context if:

– Explicitly contains version property

• Valid time resolver that will accepts the context if:

– No version parameter is given



Session management

• In case where more than one session is in 
use there is a need to keep track of the 
identifiers and in some cases even 
relationship between process instance and 
session instance

• By default this need must be secured on 
application side

• On clustered environment things get more 
complicated (avoid concurrent usage of the 
same session)



SessionMappingStrategies

• Platform is equipped with strategies that are 
capable of maintaining sessions identifiers 
based on some business key

• Application refers to the session with custom 
business key like for instance user id or 
department instead of the internal session id

• Strategies are pluggable and every 
ExecutionEngine instance can utilize different 
implementation



Available session mapping 
strategies

• SerializableMap strategy – dedicated 
strategy for standalone installation that 
will simply persist the map of known 
values to the disc

• Clustered strategy – dedicated strategy 
that will employ Inifinispan as 
distributed cache with configured data 
store



Make your engine configurable

• ExecutionEngine will emit notification on 
number of events so the process bundle 
can react on them:
– Knowledge base creation
– Knowledge session creation
– Work item registration
– Dispose of the session
– etc



ExecutionEngineCallback

public interface ExecutionEngineCallback {

    public void preKnowledgeBaseCreate(KnowledgeBuilder builder);

    public void postKnowledgeBaseCreate(KnowledgeBase kBase);

    public void preKnowledgeSessionCreate(Environment environment, 

                                        KnowledgeSessionConfiguration config, KnowledgeBase kBase);

    public void postKnowledgeSessionCreate(StatefulKnowledgeSession session, String businessKey);

    public void postKnowledgeSessionCreate(StatelessKnowledgeSession session, String businessKey);

    public void preKnowledgeSessionRestore(Environment environment, 

                                       KnowledgeSessionConfiguration config, KnowledgeBase kBase);

    public void postKnowledgeSessionRestore(StatefulKnowledgeSession session, String businessKey);

    public void preSessionDispose(StatefulKnowledgeSession session, String businessKey);

    public void postSessionDispose(StatefulKnowledgeSession session, String businessKey);

    public void preWorkItemRegister(StatefulKnowledgeSession session, String businessKey,

                                                     KnowledgeBase kBase, WorkItemHandler handler);

    public void postWorkItemRegister(StatefulKnowledgeSession session, String businessKey,

                                                     KnowledgeBase kBase, WorkItemHandler handler);

}



Multi tenancy

• Multi tenancy is achieved by:
– Separate process bundles registered with 

dedicated properties
– Additional resolver that will understand 

tenant configuration



Still in evaluation phase...

• The work is still in evaluation stage so 
everything can change and hopefully if 
it does it's for the good

• Please submit your input, requirements, 
ideas 

• There are some limitation currently that 
are being investigated and most of them 
have workarounds :)



Thanks for your attention

Questions? Comments?

More than welcome – get in touch via:

Email: mswiders@redhat.com

IRC: chat.freenode.net#jbpm

mailto:mswiders@redhat.com
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