

Seam 3 Migration
Planning To Production

• Trevor Sweeney, Team Lead App
World™ Webstore Development

• trsweeney@rim.com• trsweeney@rim.com

• What is the App World™ Webstore?
• How we began migration
• Code changes • Code changes
• Common Errors
• Moving to production

What is the Blackberry App
World™ Webstore?

Where we are today

• JBoss AS 7.0.1
• Seam 3.1.0
• Hibernate 4.0.0• Hibernate 4.0.0
• JSF 2.0
• Richfaces 4.1.0

Where were we last year

• JBoss AS 5.1.0
• Hibernate 3.5.1
• Seam 2.2.1• Seam 2.2.1
• JSF 1.0
• Richfaces 3.3.1

Why Migrate?

Why Migrate?

• JSF/Richfaces AJAX issue in IE9

Why Migrate?

• JSF/Richfaces AJAX issue in IE9
• Codebase outside of upgrade path

Why Migrate?

• JSF/Richfaces AJAX issue in IE9
• Codebase outside of upgrade path
• Community development moving to new • Community development moving to new
technology

Proposed Solutions

Proposed Solutions

• Use AJAX outside of framework

Proposed Solutions

• Use AJAX outside of framework
• Maintain custom framework

Proposed Solutions

• Use AJAX outside of framework
• Maintain custom framework
• Add new features agnostic to framework• Add new features agnostic to framework

Proposed Solutions

• Use AJAX outside of framework
• Maintain custom framework
• Add new features agnostic to framework• Add new features agnostic to framework
• Migrate to Jee6 environment

To migrate or not to migrate.

• Risks
– Unable to estimate size and scope of
changeschanges

– Lack of knowledge/training

• Benefits
– Upgrades and features available without
development work

– Bug fixes provided by community

How we began

How we began

• Seam 2 Structure
– Resources

• Meta-inf
• Web-inf• Web-inf

– Src
– View
– Build.xml

How we began

• Seam 2 Structure
– Resources

• Meta-inf
• Web-inf

• Seam 3 Structure
– Java
– Resources

• Web-inf

– Src
– View
– Build.xml

– Meta-inf
– Webapp

• Meta-inf
• Web-inf

– Build.pom

Simple Code Changes

Simple Code Changes

• @In vs @Inject

Simple Code Changes

• @In vs @Inject

• @Factory vs @Produces• @Factory vs @Produces

Simple Code Changes

• @In vs @Inject

• @Factory vs @Produces• @Factory vs @Produces

• @Name vs @Named

Simple Code Changes

• @Out
– No longer needed
– When using @Inject a direct link to the – When using @Inject a direct link to the
context is obtained

– Changing the injected instance is
immediately reflected in the context

Scopes

• Seam 2 to CDI Scope Conversion
– @Event, @Page to @RequestScoped
– @Conversation to @ConversationScoped– @Conversation to @ConversationScoped
– @Session to @SessionScoped
– @Application to @ApplicationScoped

– Default Scope in Seam 2 should not map
to @Dependant scope in CDI

Dependant Scope

Dependant Scope
@Conversation
public class ConvBean{

@In ReqBean req;
@In Worker worker;

}

@Event
public class ReqBean{

@In Worker worker;
}

public class Worker{
…
}

Dependant Scope
@Conversation
public class ConvBean{

@In ReqBean req;
@In Worker worker;

}

@ConversationScoped
public class ConvBean{

@Inject ReqBean reqBean;
@Inject Worker worker;

}

@Event
public class ReqBean{

@In Worker worker;
}

public class Worker{
…
}

@RequestScoped
public class ReqBean{

@Inject Worker worker;
}

public class Worker{
…
}

Conversations

Conversations

• Conversation management

Conversations

• Conversation management

• Working without nested conversations• Working without nested conversations

Conversations

• Conversation management

• Working without nested conversations• Working without nested conversations

• Understanding the contexts

Conversation Management

Conversation Management
@Name(“convScope”)
@Conversation
public class ConvBean {

@Begin
public void beginConversation()
{
…
}

@End
public void endConversation()
{
…
}

}

Conversation Management
@Name(“convScope”)
@Conversation
public class ConvBean {

@Begin
public void beginConversation()
{
…
}

@Named(“convScope”)
@ConversationScoped
public class ConvBean implements Serializable
{
@Inject
private Conversation conversation;

public void beginConversation()
{
if (conversation.isTransient())

@End
public void endConversation()
{
…
}

}

if (conversation.isTransient())
{
conversation.begin();

}
}

public void endConversation()
{
if (!conversation.isTransient())
{
conversation.end();

}
}

}

Working without nested
conversations

Working without nested
conversations

• Nested conversations provided easy
method of creating different work flows

Working without nested
conversations

• Nested conversations provided easy
method of creating different work flows

• Re-architecture was required during
migration

Webstore Purchase Process
seam 2.2.1

Purchase Process
(Parent Conversation)

Login
(Nested Conversation

To do Login)

Add Payment Method
(Nested Conversation
to setup ex: credit card)

Webstore Purchase Process
Seam 3/CDI

Purchase Process
(Conversation)

Login Add Payment Method

Site State
Manager

Understanding The Context

@Conversation
public class ConvBean{

@In ReqBean req;
}

@Event

Understanding The Context

@Event
public class ReqBean{

int someImportantState
}

@Conversation
public class ConvBean{

@In ReqBean req;
}

@Event

@ConversationScoped
public class ConvBean{

@Inject ReqBean reqBean;
}

@RequestScoped

Understanding The Context

@Event
public class ReqBean{

int someImportantState
}

@RequestScoped
public class ReqBean{

int someImportantState;
}

JBoss EL Parser Changes

• Minor annoyances caused big changes

JBoss EL Parser Changes

• Minor annoyances caused big changes
- Bean methods must begin with get/set
#{list.size}#{list.size}
#{bool.isSet}

JBoss EL Parser Changes

• Minor annoyances caused big changes
- Bean methods must begin with get/set
#{list.size}#{list.size}
#{bool.isSet}

- Var args methods not supported
#{bean.setParams(x, y) }
#{bean.setParams(x, y, z) }

Servlet Vs CDI Filters

Servlet Vs CDI Filters

• Servlet Filters
– Loaded using web-fragment.xml
– Outside of CDI– Outside of CDI

Servlet Vs CDI Filters

• Servlet Filters
– Loaded using web-fragment.xml
– Outside of CDI– Outside of CDI

• CDI Filters
– Observer\Observable interface
– Allows access to contexts

Servlet Vs CDI Filters

• Webstore usage of Filters

Servlet Vs CDI Filters

• Webstore usage of Filters
– Setting cache control headers

Servlet Vs CDI Filters

• Webstore usage of Filters
– Setting cache control headers
– Removing JSessionID param on outbound – Removing JSessionID param on outbound
links
• Only way to override the
HTTPServletResponseWrapper to remove the
JSessionID during the encodeURL method

Restricting Access To Pages

• Seam 2

– pages.xml – pages.xml
• <page view-id=“/someid.xhtml" login-required="true“>

Restricting Access To Pages

• Seam 3/CDI
@ViewConfig
public interface Pages {
public static enum Pages1 {public static enum Pages1 {
@ViewPattern("/someid.xhtml")
@SOMEROLE
SOMEPAGE

}
}

Restricting Access To Pages

• Seam 3/CDI

@Secures @SOMEROLE
public boolean isUserAuth(Identity identity){public boolean isUserAuth(Identity identity){

if (identity.isLoggedIn() && identity.hasRole(“SOMEROLE", "users",
"webstore") && ctx != null){
return true;

}else{
return false

}

Restricting Access To Pages

• Seam 3/CDI

private void authenticationPass(String username){
setStatus(AuthenticationStatus.SUCCESS);
identity.addRole(“SOMEROLE", "users", "webstore");
setUser(new SimpleUser(username));

}

Common Errors

• WELD 1409
– Ambiguous dependencies for type

• WELD 1408
– Unsatisfied dependencies

Moving To Production

Moving To Production

• Test, Test, Test
– This is essentially a new product

Moving To Production

• Test, Test, Test
– This is essentially a new product

• Higher than expected bug rate• Higher than expected bug rate
– Higher than expected churn was reflected
in bug rate

Moving To Production

• Test, Test, Test
– This is essentially a new product

• Higher than expected bug rate• Higher than expected bug rate
– Higher than expected churn was reflected
in bug rate

• Unexpected performance gains!

Questions?

