

Painless Persistence

Some guidelines for creating persistent
Java applications that work

The Authors

Anthony Patricio – Senior JBoss Certification Developer
– Highest volume poster on early Hibernate forums

– 5 years as 3rd level Hibernate support

– Author of two Hibernate books

Greg Kable – JBoss Certification Manager
– More than 20 years enterprise application experience

– More than 15 years enterprise Java experience

– Lived through the evolution of Java persistence from JDBC 1.0 to
JPA 2

Anti-pattern – We're Special!

Forces
• Your problem domain is special

• You have leet SQL/JDBC skills

• You don't need no stinking ORM

– they're heavy, slow and hard to use

– nobody needs all those features

Results
• Lots and lots and lots of custom, low-level code

– Constantly re-inventing the wheel

• Very poor maintainability

• Worse performance overall

Solution
Leverage an ORM
• Your problem domain is special Very unlikely!

• You have leet SQL/JDBC skills Very expensive!

• You don't need no stinking ORM You do!

– they're fast, easy to use and cheap

– use the features as and when you need them

Results
• Good encapsulation of data concerns

• Easier to maintain and much less code

• Better performance overall with excellent results from targeted
optimisation

Anti-pattern – ORM Apathy

Forces
• Hibernate is very good at what it does so nobody needs to understand

the DB

• Pressure to deliver NOW!

• Efficient design is HARD!

Results
• Use of default ORM behaviour throughout

• No concern for performance

• Occasional unpredictable behaviours and bugs

• Works in testing but not in production

Solution

Learn how to use JPA
• Be prepared to have some developers who understand ORM and the

DBMS

• Design the data and service layers:

– What does the DBMS look like?

– What representations does the business logic need?

– What do you need to do with the data?

• Avoid nice but expensive features (e.g. cascade)

• Monitor performance and work with the DBAs to address hot spots

Results
• It works!

Anti-pattern – Skinny Objects

Forces
• Data focused development (often with a legacy DB)

• Misunderstanding of ORM

Results
• No encapsulation

• Very poor maintainability

• Very fragile implementations

Example
@Entity
class Cafe
{

private int key;

private Chain chain;
private Integer longitude;
private Integer latitude;
....

@Id @GeneratedValue
public void setKey(int key) {...}
public int getKey() {...}

@ManyToOne
public void setChain(Chain chain) {...}
public Chain getChain() {...}

public void setLongitude(Integer longitude) {...}
public Integer getLongitude() {...}

public void setLatitude(Integer latitude) {...}
public Integer getLatitude() {...}

}

Solution

Design your entities
• Encapsulate behaviours where appropriate

• Do NOT externalise the entity's internal consistency

• Do NOT expose implementation details

• Fail early, fail often

Results
• Less “wrapper” code

• More reliable business logic

• Faster and more accurate detection of business logic and design errors

A Better Way
@Entity
public class Cafe
{

private int key;

private Chain chain;
private Integer longitude;
private Integer latitude;
....

@Id @GeneratedValue
private void setKey(int key) {...}
public int getKey() {...}

@ManyToOne @Column(nullable = false)
private void setChain(Chain chain) {...}
public Chain getChain() {...}

@Column(nullable = false)
public Integer getLongitude() {...}
private void setLongitude(Integer longitude) {...}

@Column(nullable = false)
public Integer getLatitude() {...}
private void setLatitude(Integer latitude) {...}

@Transient
public void setLocation(Integer longitude, Integer latitude) {...}

}

Even Better
@Entity
class Cafe
{

@Id @GeneratedValue
private int key;

@ManyToOne @Column(nullable = false)
private Chain chain;
@Embedded
private Location location;
....

protected Cafe() {}
public Cafe(Chain chain, Location location) throws NPE {...}

public int getKey() {...}

public Location getLocation(Location location) {...}
public void setLocation(Location location) throws NPE {...}

public Chain getChain() {...}
}

Anti-pattern – OO Purity

Forces
• Heavy focus on OO principles

• Poor attention to DBMS design

• No service layer

Results
• Poor performance (probably fatally so)

• Unpredictable behaviour under load

• Often buggy in very strange ways

Solution

• Design for and use a service layer

• OO + ORM != OODB
– There is a good reason OODBs have never taken off

• “you can” != “you should”
– avoid bi-directional associations unless they are required by

the business logic

– be careful mapping inheritance

– avoid cascade unless you REALLY know the implications

– make sure entities and actions are well defined and
separated

Anti-pattern – DAO Heaven

Forces
• Lack of overall application design

• Poor understanding of ORM

Results
• DAO takes over

• Poor encapsulation

• Overly complex coding and duplicated effort

Solution

Design your data access
• Don't confuse the DAO and the service layer

– DAO exists to abstract common persistence actions

– DAO must not understand or be involved in transactions

• EM is a perfectly adequate DAO for small scale

• A single generic DAO works for medium scale

• One DAO per domain model works well for large scale

• Use @NamedQuery and generic query execution

Results
• Clean separation of concerns

• Simpler, more reliable business logic

Anti-pattern – False Identity

Forces
• Inexperience

• Time pressures

Results
• Very difficult bugs

• Eventual maintenance nightmare

Solution
• Use autogenerated keys wherever possible

• ALWAYS declare equals() and hashcode()

Identity, Equality & Hibernate

• 1st level cache uses identity

• Everything else uses equals()

• Be careful about equals/hashcode and hibernate proxies

== ID Business

Compound Key No Yes Yes

New Instances Yes No Yes

Out of session No Yes Yes

Collection Integrity Yes No Yes

Identity, Equality & Hibernate

As Generated by Eclipse...
@Entity
class Cafe
{

@ManyToOne @Column(nullable = false)
private Chain chain;
....

@Override
public boolean equals(Object obj) {

....
if (getClass() != obj.getClass())

return false;
Cafe other = (Cafe) obj;
if (chain == null) {

if (other.chain != null)
return false;

} else if (!chain.equals(other.chain))
return false;

....
return true;

}
}

Identity, Equality & Hibernate

What works...
@Entity
class Cafe
{

@ManyToOne @Column(nullable = false)
private Chain chain;
....

@Override
public boolean equals(Object obj) {

....
if (!(obj.instanceof(Cafe)))

return false;
Cafe other = (Cafe) obj;
if (chain == null) {

if (other.getChain() != null)
return false;

} else if (!chain.equals(other.getChain()))
return false;

....
return true;

}
}

Recommended Practices

• Use auto-generated primary keys but always declare a
business key for Java equivalence

• Include entity version on all tables and use @Version

• Don't be afraid to use JP-QL

• Use native JDBC for heavy, read only queries such as
reporting – createNativeQuery() and
@NamedNativeQuery

• Second level cache is for read frequently only

• Consider using Seam/Weld's conversation context

5 Steps to Painless
Persistence

1. Invest in some JPA skills

2. Design your persistent objects

3. Create a services layer (DAOs are not sufficient)

4. Avoid cool but expensive features (e.g.
Cascade) and always work with the DBAs

5. Don't blindly do anything – always think before
you code!

Questions

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

