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• Sharing the same communication 
channel (physical or logical)

• Also called multiplexing and de-
multiplexing electronics

• Referred to as packet switching in 
data networks

The Case Of The Fat Pipe



We See It All Around Us

•  Cable TV/Satellite
– Multiple channels on the same cable

•   Home Internet (DSL/NAT)
– Multiple computers using the Internet
– Phone and DSL on the same wire

• Mail (yes - snail mail)!!
– Single USPS truck with lots of mail



How is it done generally?

• Address on the transmission unit (CDMA)
– Packet switched networks
– email

• Timing sender and receiver (TDMA)
– Can’t think of one.. Seriously… 

• Sub dividing the communication channel, if 
possible (e.g. FDMA)
– OTA TV/Radio



Why The Need For The Fat Fella.. 
er…. Fat Pipe

• To shared an 
expensive, otherwise 
under utilized, 
communication channel

• Scaling is easy



Weren’t You Going To Talk About 
Messaging Systems…

Messaging Systems P2P/Pub-Sub implement these 
concepts too

Consider Pub/Sub

• They share a single bus (logical communication channel, 
maybe a multicast address)

• Subjects are used to DEMUX

Consider P2P 

• A broker that routes based on header is essential

• Can also be done by using message selector



MUX/DEMUX Concept In Messaging Systems With Un-
equal Producers/Consumers
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Consumer 1   x = 0, y = MAX_INT / n

Consumer 2   x = MAX_INT / n, y = 2 x MAX_INT / n

Consumer n   x = (n-1) x MAX_INT / n, y = n x 
MAX_INT / n

Queue

Producer m   Hash(key, MAX_INT)Producer 1   Hash(key,MAX_INT)



The Concept Of Message Groups

Premise

"Message belonging to a group will be 
processed mutually exclusively of 

other messages in the group"



Message Groups 

• Well known "Message Group" header 
identifies mutual exclusivity 

• Sender identifies the "Group" by populating 
the header

• The hub (broker/router) enforces mutual 
exclusion (external sync point)

• Start of critical section starts on read

• End of critical section upon transaction end 
(acknowledged/released/rejected)



MUX/DEMUX With Message Groups
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Queue

Producer m   MessageGroup=mProducer 1   
MessageGroup=1



What Can We Do With Message 
Groups

• Scalability
– Just add more consumers or producers

• Fault Tolerance
– Death of a consumer has no implication

• Consumer should be stateless
• Consumer should always read/persist/write 

within a transaction boundary

• Automatic Workload Management
– Any free consumer is free to take on any 

work available
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What is “QPID”?

Apache Software Foundation (ASF)

Apache Qpid™ is a cross-platform Enterprise Messaging system which 
implements the Advanced Message Queuing Protocol (AMQP), providing 
message brokers written in C++ and Java, along with clients for C++, Java 
JMS, .Net, Python, and Ruby.

Open Source – Apache License, Version 2.0

“Ready to Run” Brokers (C++/Java)

Client Tools and Libraries

http://qpid.apache.org



What is “AMQP”?

Advanced Message Queuing Protocol
• Open standard message-oriented middleware

• Industry Consortium/OASIS Technical Committee 

• Messaging Protocol

– Broker/Client model (v0.10)

– Peer-to-Peer (v1.0)

• Message Structure

• Type System

• Wire-level Binary encoding

http://www.amqp.org



What is “MRG-Messaging”?

Redhat Enterprise Messaging Product

Based on QPID

QA'd against RHEL

Long term support



The QPID Model

Principal players:

Client Applications

Broker

Messages

Broker

app

app



The QPID Model

BrokerClient

Connection

Queue
Sender

Receiver

Session

Exchange

Session



The Queue Object

• Message Storage

• Different types (policies):
– FIFO
– Priority

– Message Groups

• Single Queue Abstraction
– Durability
– Transactions



The Queue Object

Operations provided by the Queue abstraction:

 
enqueue: done by producers, 

available for consumers

acquire: by consumer, no longer available, 
but not yet fully transferred

delete: remove from queue (acknowledged)

release: (unacquired) put back on the queue, 
made available again.



QPID Message Group Queue
A FIFO Queue that is group aware.

1) Classifies arriving messages by group.

2) Tracks the state of all known groups:

      Creates states as necessary

      Deletes states when no longer needed

3) Enforces ownership of a group by a consumer:

      Determine the “next available message”



Group State Class
    struct GroupState {

        std::string group;  // group identifier
        std::string owner;  // consumer with acquired messages
        uint32_t acquired;  // count of outstanding acquired messages

       struct MessageState {
            SequenceNumber position;
            bool           acquired;
            MessageState(const qpid::framing::SequenceNumber& p);
            bool operator<(const MessageState& b) const;
        };
        typedef std::deque<MessageState> MessageFifo;
        MessageFifo members;   // msgs belonging to this group

        GroupState() : acquired(0) {}
        bool owned() const {return !owner.empty();}
        MessageFifo::iterator findMsg(const SequenceNumber &);
    };

    typedef sys::unordered_map<std::string, struct GroupState> GroupMap;
    typedef std::map<SequenceNumber, struct GroupState *> GroupFifo;

    GroupMap messageGroups; // index: group name
    GroupFifo freeGroups;   // ordered by oldest free msg



Message Arrival
void enqueued( const QueuedMessage& qm )
{
    GroupState& state = findGroup(qm);
    GroupState::MessageState mState(qm.position);
    state.members.push_back(mState);
    uint32_t total = state.members.size();
    QPID_LOG( trace, "group queue " << qName <<
              ": added message to group id=" << state.group << 
              " total=" << total );
    if (total == 1) {
        // newly created group, no owner
        assert(freeGroups.find(qm.position) == freeGroups.end());
        freeGroups[qm.position] = &state;
    }
}



Message Selection
bool nextConsumableMessage( Consumer& c, QueuedMessage& next )
{
    next.position = c->getPosition();
    if (!freeGroups.empty()) {
        const framing::SequenceNumber& nextFree = freeGroups.begin()->first;
        if (nextFree <= next.position) {  // take oldest free
            next.position = nextFree;
            --next.position;
        }
    }

    while (messages.browse( next.position, next, true )) {
        GroupState& group = findGroup(next);
        if (!group.owned()) {
            own( group, c );
            return true;
        } else if (group.owner == c->getName()) {
            return true;
        }
    }
    return false;
}



Message Acquire

void acquired( const QueuedMessage& qm )
{
    GroupState& state = findGroup(qm);
    GroupState::MessageFifo::iterator m = state.findMsg(qm.position);
    assert(m != state.members.end());
    m->acquired = true;
    state.acquired += 1;
}



Message Dequeue

void dequeued( const QueuedMessage& qm )
{
    GroupState& state = findGroup(qm);
    GroupState::MessageFifo::iterator m = state.findMsg(qm.position);
    if (m->acquired) {
        state.acquired -= 1;
    }
    state.members.erase(m);

    if (state.members.size() == 0) {
        messageGroups.erase( state.group );
    } else if (state.acquired == 0 && state.owned()) {
        disown(state);
    }
}



QPID Message Group Queue 
Configuration

• Via qpid-config:

  qpid-config add queue <name> 
                   --group-header=”<key>” 

                   --shared-groups

• Via messaging API address string 
syntax:

  s = session.createSender(“<name> {create:always,
        node:{x-declare: {arguments:

               {'qpid.group_header_key':'<key>',

                'qpid.shared_msg_group': true}}}}”)



QPID Message Groups
Producer Client Code

• Java
String groupKey = “<key>”;

TextMessage msg = ssn.createTextMessage(“data”);

msg.setStringProperty(groupKey, “group1”);

sender.send(msg);



QPID Message Groups
Producer Client Code

• C++
std::string groupKey = “<key>”;

Message msg(“data”);

msg.getProperties()[groupKey] = std::string(“group1”);

sender.send(msg);



QPID Message Groups
Consumer Client Code

• .... <crickets> ....

Nothing special needs to be done by the 
Consumer, except, of course:

Don't Ack a message until you are done 
processing that message!

“Well Behaved Consumer”



QPID Message Groups
Debug-ability

• QMF Broker Query method:

 rc = broker.query(“queue”, “<queue name>”);
• rc.outArgs[“results”] returns a map holding 

the state of the group queue:

    {group_header_key: <key>,
     group_state: [ {group_id: <id>,

                             msg_count: <#>,

                             consumer: “ ... “}, 



QPID Message Groups

Questions and Demo...
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