

Message Groups and MRG-M

Ajay Madhavan
Ajay.Madhavan@cmegroup.com

Joel Tosi
jtosi@redhat.com

Ken Giusti
kgiusti@apache.org

June 25, 2012

mailto:Ajay.Madhavan@cmegroup.com
mailto:jtosi@redhat.com
mailto:kgiusti@apache.org

• Sharing the same communication
channel (physical or logical)

• Also called multiplexing and de-
multiplexing electronics

• Referred to as packet switching in
data networks

The Case Of The Fat Pipe

We See It All Around Us

• Cable TV/Satellite
– Multiple channels on the same cable

• Home Internet (DSL/NAT)
– Multiple computers using the Internet
– Phone and DSL on the same wire

• Mail (yes - snail mail)!!
– Single USPS truck with lots of mail

How is it done generally?

• Address on the transmission unit (CDMA)
– Packet switched networks
– email

• Timing sender and receiver (TDMA)
– Can’t think of one.. Seriously…

• Sub dividing the communication channel, if
possible (e.g. FDMA)
– OTA TV/Radio

Why The Need For The Fat Fella..
er…. Fat Pipe

• To shared an
expensive, otherwise
under utilized,
communication channel

• Scaling is easy

Weren’t You Going To Talk About
Messaging Systems…

Messaging Systems P2P/Pub-Sub implement these
concepts too

Consider Pub/Sub

• They share a single bus (logical communication channel,
maybe a multicast address)

• Subjects are used to DEMUX

Consider P2P

• A broker that routes based on header is essential

• Can also be done by using message selector

MUX/DEMUX Concept In Messaging Systems With Un-
equal Producers/Consumers

1

2

n

Consumer 1 x = 0, y = MAX_INT / n

Consumer 2 x = MAX_INT / n, y = 2 x MAX_INT / n

Consumer n x = (n-1) x MAX_INT / n, y = n x
MAX_INT / n

Queue

Producer m Hash(key, MAX_INT)Producer 1 Hash(key,MAX_INT)

The Concept Of Message Groups

Premise

"Message belonging to a group will be
processed mutually exclusively of

other messages in the group"

Message Groups

• Well known "Message Group" header
identifies mutual exclusivity

• Sender identifies the "Group" by populating
the header

• The hub (broker/router) enforces mutual
exclusion (external sync point)

• Start of critical section starts on read

• End of critical section upon transaction end
(acknowledged/released/rejected)

MUX/DEMUX With Message Groups

1

2

n

Consumer 1

Consumer 2

Consumer n

Queue

Producer m MessageGroup=mProducer 1
MessageGroup=1

What Can We Do With Message
Groups

• Scalability
– Just add more consumers or producers

• Fault Tolerance
– Death of a consumer has no implication

• Consumer should be stateless
• Consumer should always read/persist/write

within a transaction boundary

• Automatic Workload Management
– Any free consumer is free to take on any

work available

Real World Scenario

•

Click to edit Master text styles

–

Second level

•

Third level

–

Fourth level

»

Fifth level

Trading
Desks

FIX
Gateway

FIX
Gateway

Dedicated
T1 Broke

r

Market
Interfaces

Message Groups in
QPID/MRG-M

QPID Message Group
Implementation

Ken Giusti
kgiusti@apache.org

Developer – Apache QPID Project

Principal Software Engineer – Redhat/MRG-M

June 25, 2012

What is “QPID”?

Apache Software Foundation (ASF)

Apache Qpid™ is a cross-platform Enterprise Messaging system which
implements the Advanced Message Queuing Protocol (AMQP), providing
message brokers written in C++ and Java, along with clients for C++, Java
JMS, .Net, Python, and Ruby.

Open Source – Apache License, Version 2.0

“Ready to Run” Brokers (C++/Java)

Client Tools and Libraries

http://qpid.apache.org

What is “AMQP”?

Advanced Message Queuing Protocol
• Open standard message-oriented middleware

• Industry Consortium/OASIS Technical Committee

• Messaging Protocol

– Broker/Client model (v0.10)

– Peer-to-Peer (v1.0)

• Message Structure

• Type System

• Wire-level Binary encoding

http://www.amqp.org

What is “MRG-Messaging”?

Redhat Enterprise Messaging Product

Based on QPID

QA'd against RHEL

Long term support

The QPID Model

Principal players:

Client Applications

Broker

Messages

Broker

app

app

The QPID Model

BrokerClient

Connection

Queue
Sender

Receiver

Session

Exchange

Session

The Queue Object

• Message Storage

• Different types (policies):
– FIFO
– Priority

– Message Groups

• Single Queue Abstraction
– Durability
– Transactions

The Queue Object

Operations provided by the Queue abstraction:

enqueue: done by producers,

available for consumers

acquire: by consumer, no longer available,
but not yet fully transferred

delete: remove from queue (acknowledged)

release: (unacquired) put back on the queue,
made available again.

QPID Message Group Queue
A FIFO Queue that is group aware.

1) Classifies arriving messages by group.

2) Tracks the state of all known groups:

 Creates states as necessary

 Deletes states when no longer needed

3) Enforces ownership of a group by a consumer:

 Determine the “next available message”

Group State Class
 struct GroupState {

 std::string group; // group identifier
 std::string owner; // consumer with acquired messages
 uint32_t acquired; // count of outstanding acquired messages

 struct MessageState {
 SequenceNumber position;
 bool acquired;
 MessageState(const qpid::framing::SequenceNumber& p);
 bool operator<(const MessageState& b) const;
 };
 typedef std::deque<MessageState> MessageFifo;
 MessageFifo members; // msgs belonging to this group

 GroupState() : acquired(0) {}
 bool owned() const {return !owner.empty();}
 MessageFifo::iterator findMsg(const SequenceNumber &);
 };

 typedef sys::unordered_map<std::string, struct GroupState> GroupMap;
 typedef std::map<SequenceNumber, struct GroupState *> GroupFifo;

 GroupMap messageGroups; // index: group name
 GroupFifo freeGroups; // ordered by oldest free msg

Message Arrival
void enqueued(const QueuedMessage& qm)
{
 GroupState& state = findGroup(qm);
 GroupState::MessageState mState(qm.position);
 state.members.push_back(mState);
 uint32_t total = state.members.size();
 QPID_LOG(trace, "group queue " << qName <<
 ": added message to group id=" << state.group <<
 " total=" << total);
 if (total == 1) {
 // newly created group, no owner
 assert(freeGroups.find(qm.position) == freeGroups.end());
 freeGroups[qm.position] = &state;
 }
}

Message Selection
bool nextConsumableMessage(Consumer& c, QueuedMessage& next)
{
 next.position = c->getPosition();
 if (!freeGroups.empty()) {
 const framing::SequenceNumber& nextFree = freeGroups.begin()->first;
 if (nextFree <= next.position) { // take oldest free
 next.position = nextFree;
 --next.position;
 }
 }

 while (messages.browse(next.position, next, true)) {
 GroupState& group = findGroup(next);
 if (!group.owned()) {
 own(group, c);
 return true;
 } else if (group.owner == c->getName()) {
 return true;
 }
 }
 return false;
}

Message Acquire

void acquired(const QueuedMessage& qm)
{
 GroupState& state = findGroup(qm);
 GroupState::MessageFifo::iterator m = state.findMsg(qm.position);
 assert(m != state.members.end());
 m->acquired = true;
 state.acquired += 1;
}

Message Dequeue

void dequeued(const QueuedMessage& qm)
{
 GroupState& state = findGroup(qm);
 GroupState::MessageFifo::iterator m = state.findMsg(qm.position);
 if (m->acquired) {
 state.acquired -= 1;
 }
 state.members.erase(m);

 if (state.members.size() == 0) {
 messageGroups.erase(state.group);
 } else if (state.acquired == 0 && state.owned()) {
 disown(state);
 }
}

QPID Message Group Queue
Configuration

• Via qpid-config:

 qpid-config add queue <name>
 --group-header=”<key>”

 --shared-groups

• Via messaging API address string
syntax:

 s = session.createSender(“<name> {create:always,
 node:{x-declare: {arguments:

 {'qpid.group_header_key':'<key>',

 'qpid.shared_msg_group': true}}}}”)

QPID Message Groups
Producer Client Code

• Java
String groupKey = “<key>”;

TextMessage msg = ssn.createTextMessage(“data”);

msg.setStringProperty(groupKey, “group1”);

sender.send(msg);

QPID Message Groups
Producer Client Code

• C++
std::string groupKey = “<key>”;

Message msg(“data”);

msg.getProperties()[groupKey] = std::string(“group1”);

sender.send(msg);

QPID Message Groups
Consumer Client Code

• <crickets>

Nothing special needs to be done by the
Consumer, except, of course:

Don't Ack a message until you are done
processing that message!

“Well Behaved Consumer”

QPID Message Groups
Debug-ability

• QMF Broker Query method:

 rc = broker.query(“queue”, “<queue name>”);
• rc.outArgs[“results”] returns a map holding

the state of the group queue:

 {group_header_key: <key>,
 group_state: [{group_id: <id>,

 msg_count: <#>,

 consumer: “ ... “},

QPID Message Groups

Questions and Demo...

	Slide 1
	Slide 2
	The Case Of The Fat Pipe
	We See It All Around Us
	How is it done generally?
	Why The Need For The Fat Fella.. er…. Fat Pipe
	Slide 7
	Slide 8
	The Concept Of Message Groups
	Message Groups
	MUX/DEMUX With Message Groups
	What Can We Do With Message Groups
	Real World Scenario
	Message Groups in QPID/MRG-M
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

