


Infinispan

from POC to Production



Who am I?

Mark Addy, Senior Consultant

Fast, Reliable, Secure, Manageable



Agenda

Part 1

• An existing production system unable to scale

Part 2

• A green-field project unable to meet SLA’s



About the Customer

• Global on-line travel & accommodation 

provider

– 50 million searches per day

• Our relationship

– Troubleshooting

– Workshops



Part 1 – Existing Application

Connectivity Engine

• Supplements site content with data from 

third parties (Content Providers)

– Tomcat

– Spring

– EhCache

– MySQL

– Apache load-balancer / mod_jk

Part 1



Part 1

Logical View



Content Provider Challenges

• Unreliable third party systems

• Distant network communications

• Critical for generating local site content

• Response time

• Choice & low response time == more 

profit

Part 1



Existing Cache

• NOT Hibernate 2LC

• Spring Interceptors wrap calls to content providers

Part 1

<bean id="searchService" class="org.springframework.aop.framework.ProxyFactoryBean">

<property name="proxyInterfaces" value=“ISearchServiceTargetBean"/>

<property name="target" ref="searchServiceTargetBean"/>

<property name="interceptorNames">

<list>

<value>cacheInterceptor</value>

</list>

</property>

</bean>

<bean id="searchServiceTargetBean“ class=“SearchServiceTargetBean">

...

</bean>



Extreme Redundancy
800,000 elements

10 nodes = 10 copies of data

Part 1



The Price

• 10G JVM Heap

– 10-12 second pauses for major GC

– Over 8G of heap is cache

• Eviction before Expiry

– More trips to content providers

• EhCache expiry / eviction piggybacks 

client cache access

Part 1



How to Scale?

Part 1



Objectives

• Reduce JVM Heap Size

– 10 second pauses are too long

• Increase cache capacity

• Remove Eviction

– Cache entries should expire naturally

• Improve Response Times

– Latency decreases if eviction, GC pauses 

and frequency are reduced

Part 1



Discussions

• Pre-sales workshop

– Express Terracotta EhCache

– Oracle Coherence

– Infinispan

Part 1



Why Infinispan?

• Open source advocates

• Cutting edge technology

Part 1



Benchmarking

• Must be reproducible

• Must reflect accurately the production 

load and data

– 50 million searches / day == 600 / sec

• Must be able to imitate the content 

providers

Part 1



Solution

• Replica load-test environment

• Port mirror production traffic 

– Capture incoming requests

– Capture content provider responses

• Custom JMeter script

• Mock application Spring Beans

Part 1



Benchmarking Architecture

Part 1



Benchmarking Validation

• Understand your cached data

– jmap
jmap –dump:file=mydump.hprof <pid>

– Eclipse Memory Analyzer

– OQL
SELECT 

toString(x.key)

, x.key.@retainedHeapSize

, x.value.@retainedHeapSize

FROM net.sf.ehcache.Element x 

Part 1



Benchmarking Validation

Extract cached object properties

– creationTime

– lastAccessTime

– lastUpdateTime

– hitCount

Part 1

- you can learn a lot quickly

– timeToLive

– timeToIdle

– etc

– etc



Enable JMX for Infinispan

Part 1

Enable CacheManager Statistics
<global>

<globalJmxStatistics 

enabled="true" 

jmxDomain="org.infinispan" 

cacheManagerName=“MyCacheManager"/>

...

</global>

Enable Cache Statistics
<default>

<jmxStatistics enabled="true"/>

...

</default>



Enable Remote JMX

Part 1

-Dcom.sun.management.jmxremote.port=nnnn

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false



Record Performance

• RHQ http://rhq-project.org

– JVM memory, GC profile, CPU usage

– Infinispan plugin

Part 1

http://rhq-project.org/
http://rhq-project.org/
http://rhq-project.org/


Infinispan

Part 1



Distributed Mode

Part 1

hash(key) determines owners



Distribution Features

• Configurable redundancy

– numOwners

• Dynamic scaling

– Automatic rebalancing for distribution and 

recovery of redundancy

• Replication (distribution) overhead does 

not increase as more nodes are added

Part 1



Hotrod

• Client – Server architecture

– Java client

– Connection pooling 

– Dynamic scaling

– Smart routing

• Separate application and cache 

memory requirements

Part 1



Application – Cache Separation

Application

• CPU intensive

• High infant mortality

Cache

• Low CPU requirement

• Mortality linked to 

expiry / eviction

Part 1



Hotrod Architecture

Part 1



Remember this is cutting edge

• Latest final release was 4.2.1

• Lets get cracking...

– Distributed mode

– Hotrod client

– What issues did we encounter...

Part 1



Topology Aware Consistent Hash

Part 1

• Ensure back-ups are held preferentially on 

separate machine, rack and site

• https://community.jboss.org/thread/168236

• We need to upgrade to the latest 5.0.0.CR

https://community.jboss.org/thread/168236


Virtual Nodes

Sub-divides hash wheel positions

Part 1

<hash numVirtualNodes=2/>



Virtual Nodes

• Improves data distribution

Part 1

• But didn’t work at the time for Hotrod

• https://issues.jboss.org/browse/ISPN-1217

https://issues.jboss.org/browse/ISPN-1217
https://issues.jboss.org/browse/ISPN-1217
https://issues.jboss.org/browse/ISPN-1217


Hotrod Concurrent Start-up
• Dynamic scaling

– Replicated ___hotRodTopologyCache holds current cluster topology

Part 1

– New starters must lock and update this cache to add themselves to 

the current view

– Deadlock!

– https://issues.jboss.org/browse/ISPN-1182

• Stagger start-up

https://issues.jboss.org/browse/ISPN-1182
https://issues.jboss.org/browse/ISPN-1182
https://issues.jboss.org/browse/ISPN-1182


Hotrod Client Failure Detection

Unable to recover from cluster splits

Part 1



Hotrod Client Failure Detection

• New servers only added to 

___hotRodTopologyCache on start-up

• Restart required to re-establish client topology view

Part 1



Hotrod Server Cluster Meltdown

Part 1



Hotrod Server Cluster Meltdown

• Clients can’t start without an available 

server

• Static Configuration is only read once

• To restart client-server communications 

either

– Restart last “known” server

– Restart the client

Part 1



Change of tack
• Hotrod abandoned, for now

– Data distribution

– Concurrent start up

– Failure detection

– Unacceptable for this customer

• Enter the classic embedded approach

Part 1

• How did we get this to work...



Dynamic Scaling

• Unpredictable under heavy load, writers blocked

– Unacceptable waits for this system

<hash numOwners=“2” rehashEnabled=“false” />

– Accept some data loss during a leave / join

• Chunked rehashing / state transfer (5.1)

– https://issues.jboss.org/browse/ISPN-284

• Non-blocking state transfer

– https://issues.jboss.org/browse/ISPN-1424

• Manual rehashing

– https://issues.jboss.org/browse/ISPN-1394

Part 1

https://issues.jboss.org/browse/ISPN-284
https://issues.jboss.org/browse/ISPN-284
https://issues.jboss.org/browse/ISPN-284
https://issues.jboss.org/browse/ISPN-1424
https://issues.jboss.org/browse/ISPN-1424
https://issues.jboss.org/browse/ISPN-1424
https://issues.jboss.org/browse/ISPN-1394
https://issues.jboss.org/browse/ISPN-1394
https://issues.jboss.org/browse/ISPN-1394


Cache Entry Size

• Average cache entry ~6K

– 1 million entries = 6GB

– Hotrod stores serialized entries by default

• JBoss Marshalling

– Default Infinispan mechanism

– Get reference from ComponentRegistry

• JBoss Serialization

– Quick, easy to implement

Part 1



Compression Considerations

• Trade

– Capacity in JVM vs Serialization Overhead

• Suitability

– Assess on a cache by cache basis

– Very high access is probably too expensive

• Average 6K reduced to 1K

Part 1



Advanced Cache Tuning

cache.getAdvancedCache.withFlags(Flag... flags)

• Flag.SKIP_REMOTE_LOOKUP

– Prevents remote gets being run for an update 
put(K key, V value)

DistributionInterceptor.remoteGetBeforeWrite()

DistributionInterceptor.handleWriteCommand()

DistributionInterceptor.visitPutKeyValueCommand()

– We don’t need to return the previous cache entry 

value

Part 1



JGroups

• UDP out-performed TCP (for us)

• Discovery

– For a cold, full cluster start-up avoid split 

brain / merge scenarios
<PING timeout="3000" num_initial_members="10"/>

• Heartbeat

– Ensure failure detection is configured 

appropriately 
<FD_ALL interval="3000" timeout="10000"/>

Part 1



Extending Embedded

Part 1



Current Production System

• Over 20 nodes

– 8 Request facing, remainder storage only

• Over 15 million entries

– 7.5 million unique

– 20GB cached data

– Nothing is evicted before natural expiration

• 5GB JVM Heap, 3-4 second GC pauses

• 30% reduction in response times

Part 1



Summary
• Don’t compromise on the benchmarking

– Understand your cached data profile

– Functional testing is NOT sufficient

– Monitoring and Analysis is essential

• Tune Virtual Nodes for best distribution

• Mitigate memory usage of embedded cache 

– Consider compressing embedded cache entries

– Non request facing storage nodes

• Distributed Infinispan out performs EhCache

• Don’t rule Hotrod out

– Not acceptable for this customer

– Many improvements and bug fixes

Part 1



Part 2 – Green Field SLA’s
New Pricing Engine

– Tomcat

– Spring & Grails

– Infinispan

– Oracle RAC

– Apache load-balancer / mod_jk

Historical Pricing Engine 

– EhCache

– MySQL

– 2 second full Paris Query

Part 2



Logical View

Part 2

• New Pricing Engine

– Side by side rollout

– Controller determines 

where to send requests and 

aggregates results

– NOT Hibernate 2LC

– Spring Interceptors 

containing logic to check / 

update cache wrap calls to 

DB that extract and 

generate cache entries



Proposed Caching

• Everything distributed

– It worked before so we just turn in on, right?

Part 2



The Pain

• Distributed Mode

– Network saturation on 1Gb switch 

(125MB/second) under load

– Contention in org.jgroups

• Performance SLA’s

– Caching data in Local mode required 14G heap & 

20 second GC pauses

• Aggressive rollout strategy

– Struggling at low user load

Part 2



Cache Analysis

• Eclipse Memory Analyzer

– Identify cache profile

– Small subset of elements account for 

almost all the space

– Paris “Rates” sizes 20K – 1.6MB

– Paris search (500 rates records) == 

50MB total

– 1Gb switch max throughput = 

125MB/second

Part 2



Revised Caching

• Local caching for numerous “small” elements

• Distributed for “large” expensive elements

Part 2



Distributed Issue

• Here’s why normal distributed doesn’t work

– One Paris request requires 500 rates records (50MB)

– 10 nodes distributed cluster = 1 in 5 chance data is local

– 80% remote Gets == 40MB network traffic

Part 2



Options
• Rewrite the application caching logic

– Significantly reduce the element size

• Run Local caching with oversized heap

– Daily restart, eliminate full GC pauses

– Large memory investment and careful management

• Sacrifice caching and hit the DB

– Hits response times and hammer the database

• Distributed Execution?

– Send a task to the data and extract just what you need

Part 2



Change in Psychology...

If the mountain will not come to 

Muhammad, then Muhammad must go 

to the mountain

Part 2



Distributed Execution

• DefaultExecutorService

– http://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/distexec

/DefaultExecutorService.html

• Create the Distributed Execution Service to run on the cache 

node specified
public DefaultExecutorService(Cache masterCacheNode)

• Run task on primary owner of Key input
public Future<T> submit(Callable<T> task, K... input) 

– Resolve primary owner of Key then either

• Run locally

• Issue a remote command and run on the owning node

Part 2

http://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/distexec/DefaultExecutorService.html
http://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/distexec/DefaultExecutorService.html


Pricing Controller

• Callable task

– Contains code to 

• Grab reference to local Spring Context

• Load required beans

• Spring interceptor checks cache at the owning 

node (local get)

• If not found then goto database, retrieve and 

update cache

• Extract pricing based on request criteria

• Return results

Existing 

Code

Part 2



Pricing Controller

• Create a new DefaultExecutorService

– Create callable tasks required to satisfy request

– Issue callable tasks concurrently
while (moreKeys) {

Callable<T> callable = new MyCallable<T>(...);

Future<T> future = distributedExecutorService.submit(callable, key);

...

}

– Collate results and assemble response
while (moreFutures) {

T result = future.get();

}

Part 2



Distributed Execution

• Only the relevant information from the cache 

entry is returned

Part 2



Results

• Latency – Paris search

– Historic Engine 2 seconds

– Dist-Exec 200ms

• JVM 

– 5GB Heap

– 3-4 second pauses

Part 2



Limitations

• Failover

– Task sent to primary owner only

– https://community.jboss.org/wiki/Infinispan60-

DistributedExecutionEnhancements

– Handle failures yourself

• Hotrod not supported

– This would be fantastic!

– https://issues.jboss.org/browse/ISPN-1094

• Both in 6.0?

Part 2

https://community.jboss.org/wiki/Infinispan60-DistributedExecutionEnhancements
https://community.jboss.org/wiki/Infinispan60-DistributedExecutionEnhancements
https://community.jboss.org/wiki/Infinispan60-DistributedExecutionEnhancements
https://issues.jboss.org/browse/ISPN-1094
https://issues.jboss.org/browse/ISPN-1094
https://issues.jboss.org/browse/ISPN-1094


Summary

• Analysis and re-design of cached data

• Accessing large data sets requires an 

alternative access pattern

• Dramatically reduced latency 

– Parallel execution

– Fraction of data transferred across the wire

• Execution failures must be handled by 

application code, at the moment...

Part 2



Thanks for Listening!

Any Questions?


