

Big Data : Experiments with
Apache Hadoop and

JBoss Community projects

About the speaker

• Anil Saldhana is Lead Security Architect
at JBoss.

• Founder of PicketBox and PicketLink.

• Interested in using Big Data and
Analytics in PicketLink

About the talk

• Talk is based on personal experiments
during free time.

• Project PicketLink generates logs.

• Log analysis and security analytics
involves Big Data.

• Hence have to learn big data stuff.

About the talk

• Talk is based on personal experiments
during free time.

• If you already use Hadoop projects, you
will be disappointed. Share your
experience with us. :-)

• If you are new to Hadoop ecosystem,
then you will forgive me.

Milestones for the talk

• Understand what Apache Hadoop
ecosystem is. (Milestone 1)

• Use Apache Hadoop Map Reduce
using jboss.org projects. (Milestone 2)

• Use Apache Hadoop for PicketLink
Analytics. (Milestone 3)

Define The Problem Space

• Big Data is a growing reality.

• Data, data, data is everywhere.

• Distinguish between structured and
unstructured data.
– Structured Data –> Customer Data

– Unstructured Data -> web clicks, logs, social
data

Big Data Analytics

• Data Warehouses hold unprocessed
data.

• Data Marts hold processed/analyzed
data.

Big Data Analytics

• Structured Data
– Customer Records, Ordering System,

News Feeds

• Semi-structured Data
– Parsed Logs, Sales History, Click Analytics

• Unstructured Data
– Raw Log Files,Images, Documents, Social

Media Posts.

Big Data Analytics

Apache Hadoop Ecosystem

• Open Source Project at the Apache
Software Foundation.

• Hadoop Common, HDFS

• Other projects such as Pig, HBase,
Zookeeper are relevant

Hadoop Map Reduce
• Core processing paradigm.

Source: http://developer.yahoo.com/hadoop/tutorial/module4.html

Hadoop Map Reduce
• Three modes of operation.

– Local (standalone) mode
– Pseudo-distributed mode
– Fully distributed mode

Hadoop HDFS

• Core storage paradigm.
– Eg: 100TB file as 1 file.

• Distributed File System.

• Stores files as blocks.

• Default block size is 64MB.

• Random Reads, Parallel Reads.

• Redundancy.
– Each block stored 3 times

Hadoop HDFS

Source: http://developer.yahoo.com/hadoop/tutorial/module2.html

Hadoop HDFS

• NameNode
– Directory of data blocks
– High Memory Consumption.
– State is saved to disk.

• Secondary NameNode
– Backup for NameNode.
– Takes time to become active.

Apache Pig

• Excellent ETL (Extract, Transform,
Load) paradigm.

• Can use Map Reduce internally.

• Slightly slower than M/R direct.
• Saves programming needs.

Apache HBase

• Column Database.

• Uses HDFS for storage.

• Map Oriented/ Key-value pairs.
• Similar to Google BigTable.

Apache Zookeeper

• Management platform for Hadoop.

Tinkering with Hadoop

• Hadoop core code base is undergoing
massive changes.

• Released.
– V0.20
– V1.0.x
– V2.0 alpha (in development)

• Pointless to fork Hadoop code base.
– It is going to change anyway. :(

Example of running Hadoop
in Pseudo-distributed Mode

Hadoop Pseudo-distributed
Mode

• One Node setup.

• Configure core-site.xml, hdfs-site.xml,
mapred-site.xml

• Setup passphraseless ssh

• Format a DFS
– /bin/hadoop namenode -format

http://hadoop.apache.org/common/docs/r1.0.3/single_node_setup.html

Hadoop Pseudo-distributed
Mode

• Startup hadoop daemons
– /bin/start-all.sh

• Open your browser to two tabs
– HDFS Health http://localhost:50070/dfshealth.jsp

– Job Tracker http://localhost:50030/jobtracker.jsp

Starts
NameNode,

SecondaryNameNode,
Data Node

TaskTracker Node

http://localhost:50070/dfshealth.jsp
http://localhost:50030/jobtracker.jsp

Hadoop Pseudo-distributed
Mode

• Copy input files into HDFS
– /bin/hadoop fs -put input input

• Run the wordcount M/R
– /bin/hadoop jar ../hadoop-examples-*.jar

wordcount input output

Hadoop Pseudo-distributed
Mode

• Copy output files from HDFS into local
– /bin/hadoop fs -get output pseudoOutput

• Now peek inside pseudoOutput dir

• If you want to delete any HDFS
directory,
– /bin/hadoop fs -rmr output

• Stop all Hadoop Daemons
– /bin/stop-all.sh

Summary : We have
understood Apache Hadoop

ecosystem
(Milestone 1)

Experiments using JBoss
Community Projects

Hadoop on JBoss AS 7

• Not a good fit.

• Hadoop is primarily used for batch
processing.

• JavaEE currently has no direct batch
processing capabilities.
– JSR 352 in the works.

Drools on Hadoop

• Drools Expert is a rules engine from
JBoss community.

• Drools Core can be used to introduce
rules in Map Reduce programs.

Infinispan on Hadoop

• Infinispan is an extremely scalable,
highly available data grid platform.

• Infinispan is a good data grid
infrastructure for Map Reduce
programs.

Use Case: Hadoop M/R,
Twitter Feeds,

Drools and Infinispan

Use Case

• Offline obtained a few twitter feeds with
search terms – JBoss,
JUDCon,Aerogear, Infinispan etc

• Map Reduce uses drools to see if a
particular tweet contains desired search
terms.

• If a tweet matches, it is put on a
distributed Infinispan clustered cache.

Use Case

• Demo
– Basically rule based batch processing
– Distributed cache for distribution

Other Possibilities

• PicketBox XACML Engine
– Access control inside your Map/Reduce

programs.

• Hibernate
– JPA stuff for your M/R.

Summary: Run Apache
Map Reduce using
JBoss.org projects.

(Milestone 2)

Use Case: PicketLink Log
Analysis using Apache Pig

PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider
– Logs generated at the Identity Provider

PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider

13:14:06,862 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-1) PLFED000200:
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

– 13:14:09,042 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:
[PicketLink Audit] /idp-sig CREATED_ASSERTION ID_d4aaa7be-d19c-4136-853f-6b016d17570b
[Info]

– 13:14:09,056 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:
[PicketLink Audit] /idp-sig RESPONSE_TO_SP http://localhost:8080/sales-post-sig/ [Info]

–
13:14:09,092 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:

[PicketLink Audit] /sales-post-sig RESPONSE_FROM_IDP tomcat [Info]

– 13:14:11,012 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

– 13:14:11,044 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:
[PicketLink Audit] /idp-sig RESPONSE_TO_SP http://localhost:8080/sales-post-sig/ [Info]

– 13:14:11,120 INFO [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200:
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

–

PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider
– Using Apache Pig to generated reports

PicketLink Log Analysis

-- Load the PicketLink Log file
file = LOAD 'picketlink.log' USING PigStorage('\n') AS (entry: chararray);

-- Trim the entries loaded
trimmedfile = FOREACH file GENERATE TRIM(entry) as entry;

-- Filter the log entries to the desired pattern
selectedrows = FILTER trimmedfile BY (entry matches '.*RESPONSE_FROM_IDP.*');
dump selectedrows;

-- Store the data into intermediate file
STORE selectedrows into 'selectedrows' USING PigStorage(' ');

PicketLink Log Analysis

-- Load the intermediate data
data = load 'selectedrows/part*' USING PigStorage(' ') AS (timestamp: chararray, info1:
chararray, audit : chararray, plnum: chararray, thread: chararray, bracks1: chararray, bracks2:
chararray, ignore: chararray, endpoint: chararray, event: chararray, username: chararray,
info2: chararray);
describe data;
dump data;

-- Generate a tuple of endpoint vs. username
mytuple = FOREACH data GENERATE TOTUPLE(username,endpoint);
dump mytuple;

-- Store into results
STORE mytuple into 'results' using PigStorage(' ');

PicketLink Log Analysis

• PicketLink Log Results
(tomcat,/sales-post-sig)

(tomcat,/sales-redirect-sig)

(tomcat,/sales-post)

(tomcat,/sales-redirect)

Summary: PicketLink Log
Analysis can be done using

Apache Pig
(Milestone 3)

Closing Thoughts

• If you just need Map Reduce, the Data
Grid API from Infinispan has a much
cleaner API.

• You can use any JBoss Community
project as part of your Map/Reduce
programs.

• GlusterFS for NameNode robustness.

Resources
• Blogs:

http://everythingbigdata.blogspot.com
– http://anil-identity.blogspot.com

• Apache Hadoop Website.
– http://hadoop.apache.org

• Project Infinispan
– http://www.jboss.org/infinispan/

• Project Drools
– http://www.jboss.org/drools/

http://everythingbigdata.blogspot.com/
http://anil-identity.blogspot.com/
http://hadoop.apache.org/
http://www.jboss.org/infinispan/
http://www.jboss.org/drools/

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

