


Big Data : Experiments with 
Apache Hadoop and

JBoss Community projects



About the speaker

• Anil Saldhana is Lead Security Architect 
at JBoss.

• Founder of PicketBox and PicketLink.

• Interested in using Big Data and 
Analytics in PicketLink



About the talk

• Talk is based on personal experiments 
during free time.

• Project PicketLink generates logs.

• Log analysis  and security analytics 
involves Big Data.

• Hence have to learn big data stuff.



About the talk

• Talk is based on personal experiments 
during free time.

• If you already use Hadoop projects, you 
will be disappointed. Share your 
experience with us. :-)

• If you are new to Hadoop ecosystem, 
then you will forgive me.



Milestones for the talk

• Understand what Apache Hadoop 
ecosystem is. (Milestone 1)

• Use Apache Hadoop Map Reduce 
using jboss.org projects. (Milestone 2)

• Use Apache Hadoop for PicketLink 
Analytics. (Milestone 3)



Define The Problem Space

• Big Data is a growing reality.

• Data, data, data is everywhere.

• Distinguish between structured and 
unstructured data.
– Structured Data –> Customer Data

– Unstructured Data -> web clicks, logs, social 
data



Big Data Analytics

• Data Warehouses hold unprocessed 
data.

• Data Marts hold processed/analyzed 
data.



Big Data Analytics

• Structured Data
– Customer Records, Ordering System, 

News Feeds

• Semi-structured Data
– Parsed Logs, Sales History, Click Analytics

• Unstructured Data
– Raw Log Files,Images, Documents, Social 

Media Posts.



Big Data Analytics



Apache Hadoop Ecosystem

• Open Source Project at the Apache 
Software Foundation.

• Hadoop Common, HDFS

• Other projects such as Pig, HBase, 
Zookeeper are relevant



Hadoop Map Reduce
• Core processing paradigm.

Source: http://developer.yahoo.com/hadoop/tutorial/module4.html



Hadoop Map Reduce
• Three modes of operation.

– Local (standalone) mode
– Pseudo-distributed mode
– Fully distributed mode



Hadoop HDFS

• Core storage paradigm.
– Eg: 100TB file as 1 file.

• Distributed File System.

• Stores files as blocks.

• Default block size is 64MB.

• Random Reads, Parallel Reads.

• Redundancy. 
– Each block stored 3 times



Hadoop HDFS

Source:  http://developer.yahoo.com/hadoop/tutorial/module2.html



Hadoop HDFS

• NameNode
– Directory of data blocks
– High Memory Consumption.
– State is saved to disk.

• Secondary NameNode
– Backup for NameNode.
– Takes time to become active.



Apache Pig

• Excellent ETL (Extract, Transform, 
Load) paradigm.

• Can use Map Reduce internally.

• Slightly slower than M/R direct.
• Saves programming needs.



Apache HBase

• Column Database.

• Uses HDFS for storage.

• Map Oriented/ Key-value pairs.
• Similar to Google BigTable.



Apache Zookeeper

• Management platform for Hadoop.



Tinkering with Hadoop

• Hadoop core code base is undergoing 
massive changes. 

• Released.
– V0.20
– V1.0.x
– V2.0 alpha (in development)

• Pointless to fork Hadoop code base.
– It is going to change anyway. :(



Example of running Hadoop 
in Pseudo-distributed Mode



Hadoop Pseudo-distributed 
Mode

• One Node setup.

• Configure core-site.xml, hdfs-site.xml, 
mapred-site.xml

• Setup passphraseless ssh

• Format a DFS
– /bin/hadoop namenode -format

http://hadoop.apache.org/common/docs/r1.0.3/single_node_setup.html



Hadoop Pseudo-distributed 
Mode

• Startup hadoop daemons
– /bin/start-all.sh

• Open your browser to two tabs
– HDFS Health http://localhost:50070/dfshealth.jsp

– Job Tracker http://localhost:50030/jobtracker.jsp

Starts
NameNode,

SecondaryNameNode,
Data Node

TaskTracker Node

http://localhost:50070/dfshealth.jsp
http://localhost:50030/jobtracker.jsp


Hadoop Pseudo-distributed 
Mode

• Copy input files into HDFS
– /bin/hadoop fs -put input input

• Run the wordcount M/R
– /bin/hadoop jar ../hadoop-examples-*.jar 

wordcount input output



Hadoop Pseudo-distributed 
Mode

• Copy output files from HDFS into local
– /bin/hadoop fs -get output pseudoOutput

• Now peek inside pseudoOutput dir

• If you want to delete any HDFS 
directory,
– /bin/hadoop fs -rmr output

• Stop all Hadoop Daemons
– /bin/stop-all.sh



Summary : We have 
understood Apache Hadoop 

ecosystem
(Milestone 1)



Experiments using JBoss 
Community Projects



Hadoop on JBoss AS 7

• Not a good fit.

• Hadoop is primarily used for batch 
processing.

• JavaEE currently has no direct batch 
processing capabilities.
– JSR 352 in the works.



Drools on Hadoop

• Drools Expert is a rules engine from 
JBoss community.

• Drools Core can be used to introduce 
rules in Map Reduce programs.



Infinispan on Hadoop

• Infinispan is an extremely scalable, 
highly available data grid platform.

• Infinispan is a good data grid 
infrastructure for Map Reduce 
programs.



Use Case:  Hadoop M/R,
Twitter Feeds,

Drools and Infinispan 



Use Case

• Offline obtained a few twitter feeds with  
search terms – JBoss, 
JUDCon,Aerogear, Infinispan etc

• Map Reduce uses drools to see if a 
particular tweet contains desired search 
terms.

• If a tweet matches, it is put on a 
distributed Infinispan clustered cache.



Use Case

• Demo
– Basically rule based batch processing
– Distributed cache for distribution



Other Possibilities

• PicketBox XACML Engine
– Access control inside your Map/Reduce 

programs.

• Hibernate
– JPA stuff for your M/R.



Summary:  Run Apache 
Map Reduce using 
JBoss.org projects.

(Milestone 2) 



Use Case:  PicketLink Log 
Analysis using Apache Pig 



PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider
– Logs generated at the Identity Provider



PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider

13:14:06,862 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-1) PLFED000200: 
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

– 13:14:09,042 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 
[PicketLink Audit] /idp-sig CREATED_ASSERTION ID_d4aaa7be-d19c-4136-853f-6b016d17570b 
[Info]

– 13:14:09,056 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 
[PicketLink Audit] /idp-sig RESPONSE_TO_SP http://localhost:8080/sales-post-sig/ [Info]

–
13:14:09,092 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 

[PicketLink Audit] /sales-post-sig RESPONSE_FROM_IDP tomcat [Info]

– 13:14:11,012 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

– 13:14:11,044 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 
[PicketLink Audit] /idp-sig RESPONSE_TO_SP http://localhost:8080/sales-post-sig/ [Info]

– 13:14:11,120 INFO  [org.picketlink.identity.federation.audit] (http--127.0.0.1-8080-2) PLFED000200: 
[PicketLink Audit] /sales-post-sig REQUEST_TO_IDP [Info]

–



PicketLink Log Analysis

• PicketLink Log
– Logs generated at the Service Provider
– Using Apache Pig to generated reports



PicketLink Log Analysis

-- Load the PicketLink Log file
file = LOAD 'picketlink.log' USING PigStorage('\n') AS (entry: chararray);

-- Trim the entries loaded
trimmedfile = FOREACH file GENERATE TRIM(entry) as entry;

-- Filter the log entries to the desired pattern
selectedrows = FILTER trimmedfile BY (entry matches  '.*RESPONSE_FROM_IDP.*');
dump selectedrows;

-- Store the data into intermediate file
STORE selectedrows into 'selectedrows' USING PigStorage(' ');



PicketLink Log Analysis

-- Load the intermediate data
data = load 'selectedrows/part*' USING PigStorage(' ') AS (timestamp: chararray, info1: 
chararray, audit : chararray, plnum: chararray, thread: chararray, bracks1: chararray, bracks2: 
chararray, ignore: chararray,  endpoint: chararray, event: chararray, username: chararray, 
info2: chararray);
describe data;
dump data;

-- Generate a tuple of endpoint vs. username
mytuple = FOREACH data GENERATE TOTUPLE(username,endpoint);
dump mytuple;

-- Store into results
STORE mytuple into 'results' using PigStorage(' ');



PicketLink Log Analysis

• PicketLink Log Results
(tomcat,/sales-post-sig)

(tomcat,/sales-redirect-sig)

(tomcat,/sales-post)

(tomcat,/sales-redirect)



Summary:  PicketLink Log 
Analysis can be done using 

Apache Pig
(Milestone 3) 



Closing Thoughts

• If you just need Map Reduce, the Data 
Grid API from Infinispan has a much 
cleaner API.

• You can use any JBoss Community 
project as part of your Map/Reduce 
programs.

• GlusterFS for NameNode robustness.



Resources
• Blogs:

http://everythingbigdata.blogspot.com
– http://anil-identity.blogspot.com

• Apache Hadoop Website.
– http://hadoop.apache.org

• Project Infinispan
– http://www.jboss.org/infinispan/

• Project Drools
– http://www.jboss.org/drools/

http://everythingbigdata.blogspot.com/
http://anil-identity.blogspot.com/
http://hadoop.apache.org/
http://www.jboss.org/infinispan/
http://www.jboss.org/drools/
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