

HP Total-e-Transactions

White Paper

A Technical White Paper by TechMetrix Research
Prepared for HP

Audience: Technical architects, developers

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 2/40

Table of Contents

1. SCOPE AND PURPOSE OF THE WHITE PAPER ..3

2. EXECUTIVE SUMMARY...4

3. TRANSACTION PROCESSING CONCEPTS ...6

3.1. WHAT IS A TRANSACTION? ... 6
3.2. TRANSACTIONAL ARCHITECTURE SUB-COMPONENTS .. 8
3.3. TRANSACTION MODELS.. 10
3.3.1. The flat transaction model... 10
3.3.2. The nested transaction model.. 10

3.4. STANDARDS INVOLVED IN TRANSACTIONAL ARCHITECTURES .. 12
3.4.1. X/Open DTP .. 12
3.4.2. CORBA OTS... 13
3.4.3. J2EE Architecture Standard and EJB Component model................................. 13

4. HP TOTAL-E-TRANSACTIONS 2.1...19

4.1. TOTAL-E-TRANSACTIONS 2.1 OVERVIEW .. 19
4.2. TOTAL-E-TRANSACTIONS COMPONENTS.. 21
4.2.1. Total e-Transaction core ... 21
4.2.2. Crash Recovery ... 28
4.2.3. Transactional JDBC Drivers ... 30
4.2.4. Transactional Objects (TO) for Java.. 32
4.2.5. Transactional Queue (TQ) for Java ... 34
4.2.6. The Empay demonstration application .. 35

5. TOTAL-E-TRANSACTIONS INTEGRATION WITH HP’S TOTAL-E-SERVER AND HP

APPLICATION SERVER...37

6. SUMMARY ...39

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 3/40

1. Scope and purpose of the white paper

The transactions managed 30 years ago needed to be reliable – and the
same applies to today's e-business transactions. However, the constraints of

information systems have changed considerably. The transaction managers
being built at the start of the '70s were constructed for a different system of

computing and were based on standards and technologies available at the

time. This paper will examine how the "new generation" transaction
managers can help you to manage transactions involving components

distributed on a corporate intranet.

A transaction manager is a core component of any modern distributed
application architecture, and must be tightly integrated with the other

components, such as application servers or databases. Total-e-Transactions
is a JTS-compliant transaction manager package, and can either be used

stand alone or within HP 's J2EE-compliant application servers, Total-e-
Server and HP Application Server. We shall look at the implications of both of

these options.

We shall then examine the positioning adopted by HP Total-e-Transactions,
giving a precise description of the various components of the offering, and

looking at the solution in the light of the main standards for e-business

infrastructures today (in particular, J2EE and JTS). Particular emphasis shall
be placed on how HP Total-e-Transactions 2.1 meets corporate intranet

transaction requirements, and on its 100% Java implementation, which
enables it to integrate tightly with existing IT systems.

Terminology:
• J2EE: Java 2 Enterprise Edition

• JTS: Java Transaction Service

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 4/40

2. Executive Summary

Many companies have long tried to automate their business processes,
targeting efficiency and reliability, so as to improve their quality of service

for customers. Business processes often involve multiple data sources (such
as databases or flat files) and calculation components, which can span

networks. But what happens if a failure occurs during execution of a business

process? Data integrity can be compromised and this can lead to serious
business problems.

These types of problems appeared very early on in the IT industry, and

major software companies built transaction monitors to help solve them.
These middleware products provided an environment for executing mission-

critical business processes reliably and predictably, with what we call a
“transaction paradigm.”

The first transaction managers were designed during the '70s, helping many

industries to solve transactional problems. However, at this time, enterprise
computing was organized centrally and transaction monitors were designed

in a proprietary fashion for host-centric computing.

Today, the challenge has shifted: reliability and predictability are still

mandatory, but the data and operations involved in a transaction can be
distributed across large corporate intranets and managed by heterogeneous

systems. Traditional transaction managers lack the flexibility and standards
to meet all of these new challenges in an efficient way.

The transaction paradigm has been very efficient in the past for centric

systems, and new computer technologies and standards can bring this
paradigm into the e-business context:

• Component technology: a paradigm for designing business

processes that provides quality coupled with flexibility to enable
businesses to cope with rapid changes.

• Transaction standards: based on the mature OMG OTS standard,
Sun JTS provides a standard method for implementing transactions

involving components from different data sources over large-scale

corporate intranets.
• Integration with existing systems: J2EE standards allow

existing systems to be seamlessly integrated in a transactional
fashion.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 5/40

To meet the new requirements for e-business transactions, HP has built
Total-e-Transactions, the industry's first 100% pure Java JTS

implementation. Because it is based on mature transaction standards and

Java, HP provides a reliable object-based transactional infrastructure that
seamlessly integrates data and applications within major corporate intranets.

Terminology:

• J2EE: Java 2 Enterprise Edition
• JTS: Java Transaction Service

• OMG’s OTS: Object Management Group ‘s Object Transaction
Service

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 6/40

3. Transaction processing concepts

In order to appreciate HP’s Total-e-Transactions product, it is important to
understand the benefits of transactions, the main transactional models, and

the architectures that can support them. The purpose of this section is to
describe these elements.

3.1. What is a transaction?

Let us take a simple example to illustrate the sort of problems that
transactions are designed to solve. Let us imagine that a bank wishes to

automate its business processes with an IT system, for example a transfer
between two accounts (A and B) whose balances are respectively $200 and

$300. This process will be made up of a series of operations, in the following
order:

1- Balance of account A read ($200)
2- Solvency of account A checked before and after transfer (bank

does not allow overdrafts)
3- Amount of transfer debited from account A ($100)

4- Amount of transfer credited to account B ($400)

This process may be affected by the following events:

• Hardware or software failure: If the IT system suffers a failure
when a transfer process has completed step 3, account A will be

debited but account B will not be credited. We would then say that
data integrity has been compromised, which can be extremely

harmful for the bank.

• Network failure: If the system is deployed over a network, a

further risk to data integrity is added, in that the process can stall,
for example at step three.

• Concurrent access: Let us imagine that a transfer of $100 from

account A to another account, C, begins at the same time that a
different transfer of $200 from account 1 to account B is just

embarking on step 2. Both transfers will foresee a positive balance
after the transfer, while in reality the account will be $100

overdrawn.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 7/40

No matter how robust the hardware, software or networks, zero-risk is
impossible, and an enterprise such as a bank cannot tolerate the slightest

error, since it may result in substantial loss of revenue.

Ideally, our bank should have a system that is able to support its business

processes while protecting data integrity under any circumstances. This
system should display the following properties:

• Atomicity: a process must be carried out in its entirety, or not at

all. If something occurs to stop it being fully executed, the system
must return to its initial state.

• Consistency: guarantees that the transaction always produces

correct results according to the semantics of the application.

• Isolation: every process must give the illusion of being executed
independently from others, whether concurrently or not. This

means that the system must use methods such as locks or
timestamps to ensure that the data cannot be modified by multiple

concurrent processes simultaneously, and to guarantee that a
process cannot read data in a provisionally inconsistent state.

• Durability: the system must guarantee that the final state of a
completed process exists beyond the lifetime of the application that

created/modified it, despite non-catastrophic failures.

A transaction service provides a software infrastructure which ensures that
transactions benefit from ACID properties.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 8/40

3.2. Transactional architecture sub-
components

The traditional components of a transactional architecture are illustrated in
the schema below. This shows the transaction manager, in charge of

directing transactions with the resource managers and the resources, acting
under the orders of the application components.

Orders

Accounts

customers

RESOURCES

RESOURCE
MANAGERS

APPLICATION
COMPONENTS

TRANSACTION
MANAGER

Process 1

Process 2

Begin

Commit / Rollback

Figure 1: Transactional architecture sub-components

� The application components

Application components are in charge of implementing the business logic of
processes, which brings into play the data from sources such as databases.

They give explicit orders to 'commit' a transaction so as to ratify the final
state of the system, or to cancel or 'roll back' in order to return to the

system's initial state.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 9/40

� The resource manager

The resource manager is a component that manages the traditional aspects

of storage systems (e.g. a database). Generally, it is a driver that takes part
in the process of registering resources with the transaction manager, so as to

keep track of all the data in play in the transaction. This process is known as
resource enlistment. Should one of the system components crash, the

resource manager coordinates with the transaction manager to bring the
application back to a consistent state.

� The transaction manager

The transaction manager is the core element of the transactional
architecture. It creates a transaction and its context, and is governed by the

application components. It coordinates resource enlistment. Should a serious
incident occur during a transaction (network outage, software or hardware

failure on one of the components…) causing data to be corrupted, the
transaction manager must repair the system data in order to restore it to a

consistent state. If a transaction is carried out correctly, the transaction

manager sends a commit order to the resource managers involved.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 10/40

3.3. Transaction models

We shall look here at the two principal models used today: the flat

transaction model and the nested transaction model. Although other models
do exist, we shall not be covering them in this particular document.

3.3.1. The flat transaction model

The flat transaction is the simplest model, and the most often used. It is
based on the “all or nothing” paradigm, it being impossible to partially

commit or roll back a flat transaction, even if it is made up of several
operations. It forms an indivisible unit of work (UOW). The advantage of this

flat transaction model lies in its simplicity, and
Total-e-Transactions supports this model.

However, the flat transaction model reaches its limits as soon as transactions

are required to be long-running and designed in a modular fashion. Let us
imagine that a long flat transaction is made up of a series of cumbersome

operations stops, for whatever reason (e.g. a software failure), when only

90% complete. The transaction manager will carry out a rollback and cancel
all the work accomplished by the transaction thus far, even if valid. This can

lead to reduced efficiency in certain cases.

Luckily, a more flexible model is available. This is the nested transaction
model.

3.3.2. The nested transaction model

The nested transaction model was developed so as to offer finer granularity
and makes it possible to nest transactions inside each other, hierarchically.

The nested transaction model features a top-level transaction, which contains

several sub-transactions called child transactions. One sub-transaction may
contain other sub-transactions. A hierarchy of transactions is called a

transaction family.

A sub-transaction behaves like a flat transaction, in that it is either carried
out completely or not at all. Conversely, a sub-transaction completes with a

provisional commit which depends on the commitment of all the enclosing
transactions. If a sub-transaction completes with a rollback, this is

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 11/40

permanent, and the enclosing transaction is free to commit or roll back,
depending on the application context. If a transaction within a transaction

family rolls back, all the sub-transactions will roll back.

This transaction model has the following advantages:

• Modularity: the nested transaction model enables transactions to

be developed independently from the context in which they will be
used. This nested model provides modularity, which is a very useful

feature in distributed environments.

• Failure containment: If a sub-transaction fails, the top-level
transaction has the option to fix the problem without having to roll

back and cancel any work accomplished so far. The failure is
therefore contained. If the business context of the application so

permits, the top-level transaction can decide to commit. This will
make all sub-transaction commits permanent.

Unlike most of the commercially available transaction managers, Total-e-
Transactions fully supports the nested transaction model.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 12/40

3.4. Standards involved in transactional
architectures

Transactional computing has been the subject of a number of standardization
efforts, which have responded to the functional and technical needs

encountered over time. Distribution of critical data on networks is at the root
of the X/Open DTP standard for distributed transactions that standardizes

distributed transactional architectures. The OMG extended the transaction
concept to distributed objects with the OTS standard.

J2EE is an n-tiered architecture standard whose arrival caused industry

players to rush to develop e-business applications. JTA and JTS are
standards that enable J2EE to support transactions. They are compatible with

OTS standards for distributed transactions.

3.4.1. X/Open DTP

X/Open, a consortium of vendors, developed a standard called DTP –
Distributed Transaction Processing. Its purpose is to standardize distributed

transaction architectures. It specifies the API used to communicate between
resource managers, transaction managers and applications.

Application Program

Resource
Manager

Transaction
Manager

TXRM

XA

Figure 2: Standard X/Open DTP

The RM API is used by the application to deal with data handled by the

resource manager. The XA API is used by the transaction manager to
coordinate data updates via the resource managers. The TX API is used by

applications to direct transactions via the transaction manager. The typical
orders sent are start, stop and commit transactions.

It is important to note that the only transaction model supported by the DTP

is the flat model.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 13/40

3.4.2. CORBA OTS

The DTP standard was developed at a time when programs were mostly
designed procedurally. The arrival of object technologies brought major

changes to application development methodology and deployment
architecture, providing new opportunities for easier, more modular

application development and flexible deployment using a scalable
architecture. Because the execution model for procedural programs is

radically different from that of object-based programs, the need to develop
standards for object transactions began to be felt. The OMG developed such

a standard, called OTS (Object Transaction Service), as part of the CORBA

services.

The OTS Specification has been built to be comparable with X/Open DTP. The
XA protocol to coordinate data updates by resource managers is compatible

between both standards. The main difference between the X/Open DTP
Standard and the OTS specification is that OTS casts all of the basic

operations as methods on objects, which use IIOP as the communication
protocol.

An implementation of the OTS standard must support the flat transaction

model, and support for nested transactions is optional.

3.4.3. J2EE Architecture Standard and EJB Component
model

J2EE (Java 2 Enterprise Edition) is a standard designed to simplify problems

linked to development, deployment and maintenance of multi-tier enterprise

applications. J2EE was drawn up jointly by some of the main players in the
middleware industry; its development is governed by Sun Microsystems.

The J2EE standard is based on Java, enriching it with a number of

specifications which meet the requirements of enterprise applications
(connection to databases, transactional systems, asynchronous

middleware…). We can therefore say that Java is a subset of J2EE, and J2EE
offers a standard framework for development of enterprise applications. The

J2EE 1.2 standard is made up of the following specifications:

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 14/40

Mandatory components

API Description

JDBC 2.0 (Java DataBase Connectivity) Relational database connection API

RMI/IIOP 1.0 (Remote Method
Invocation / Internet InterOrb Protocol)

EJB component access protocol

EJB 1.1 (Enterprise JavaBeans) Component model

Servlet 2.2 Web server extension API

JSP 1.1 (Java Server Pages) Server-side scripting API for the Web

JMS 1.0 (Java Message Services) MOM connection API

JNDI 1.2 (Java Naming and Directory
Interface)

Directory connection API

JTA 1.0.1 (Java Transaction Services) Transactional service management API

JavaMail 1.1 E-mail management API

JAF 1.0 (Java Activation Framework) API for management of messages attached to
e-mail

Recommended components

API Description

JTS 1.0 (Java Transaction Service) Specification for transactional interoperability
between EJB containers based on CORBA, OTS &
JTA

Adopting J2EE for an enterprise application offers a number of advantages:

• Independence from the operating system used by the application
• Independence from the application server running the application

• Portability of J2EE competencies to various application deployment
environments

The J2EE standard brought significant changes to the application server

market. Most application server vendors have adhered to the standard, and
can guarantee that clients remain independent from their platforms.

The EJB specification occupies an important place within the standard, since

it offers an environment for modeling processes and business objects. There
are two types of EJB:

• Session EJBs make it possible to model business processes (e.g.

transferring a sum from account A to account B), and offer

distribution, security, naming and transaction capabilities.

• Entity EJBs model business entities (e.g. a bank account). Entity
EJBs offer the same features as Session EJBs and support

persistence. This property makes it possible to save the state of the
component in an appropriate facility (e.g. database).

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 15/40

� The role of JTA in J2EE Architectures

The J2EE standard was designed to simplify development of multi-tier
applications and to make it lasting. The JTA is an API that developers can use

to prompt transactional behavior in their applications. The main objective of
JTA is to standardize and simplify the way in which developers use

transactions in J2EE architectures.

Application

Application
Server

Resource
ManagerTransaction

Manager

JTA UserTransaction JTA XAResource

JDBC, JMS

JTA TransactionManager

EJB

Low level
Transaction

Service
Implementation

Inbound TX Outbound TX

Figure 3: JTA Architecture

The above diagram illustrates how JTA standardizes the interfaces between

the J2EE architecture components involved in the transactions.

• The UserTransaction interface enables the application to control the
transaction (here we encounter the commit, rollback and begin

orders, for example). This is the interface that is visible to
developers.

• The TransactionManager interface enables the application server to
control the perimeters of the transactions launched from the

application.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 16/40

• The Transaction interface is used to carry out a set of operations
associated with the transaction. Enlistment and synchronization are

two such operations.

• The XAResource interface is a Java mapping of the industry
standard XA interface. This interface enables any XA resource

manager to be involved in a transaction initialized by the
Transaction Manager. This means an XA database or XA MOM can

be included in a distributed transaction.

The JTA occupies a very important place in the J2EE architecture. Below are

the specifications relating to it:

• EJB containers handle management of EJB components, offer
transactional capacities via the JTA interface (more precisely,

implementation of the UserTransaction interface)

• The extension of the JDBC 2.0 specification brings support for the

XA standard, which enables JDBC 2.0 resource managers to allow
databases to participate in distributed transactions, which may, for

instance, be initiated by an EJB.

• The JMS specification includes XA support, and enables a JMS
message to participate in a distributed transaction. This technique

is important for uncoupling systems in a transactional fashion.

It is important to bear in mind that, at present, JTA is rooted in the DTP
standard and operates with the XA interface, which limits it to the flat

transaction model.

JTA does not, however, specify any standard for internal implementation of
the transaction manager. This means that a transaction cannot involve more

than one transaction manager. The JTS standard has been designed to

overcome this problem in order to make transaction interoperability a
possibility.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 17/40

� The role of JTS in J2EE architectures

Figure 3 depicts the components of a transactional architecture, which
comply with JTA standards. However, there is no specification to describe the

internal operation of the transaction manager.

Application

Application
Server

Resource
ManagerTransaction

Manager

JTA UserTransaction JTA XAResource

JDBC, JMS

JTA TransactionManager

EJB

Corba OTS
Implementation

Inbound TX Outbound TX

Figure 4: JTS Standard

A transaction manager that conforms to the JTA standard can be

implemented internally in a proprietary fashion (communication protocol,
identification of objects, conversations, etc.). IBM CICS and BEA Tuxedo are

two transaction managers whose internal implementation is proprietary. JTA
only covers high-level interfaces. Without a standard describing how

transaction managers interoperate, two JTA transaction managers will not be
able to communicate with each other or manage the same transaction. In

fact, they will not be able to communicate with any other transactional
system. The JTS standard therefore sought to standardize internal

implementation of transaction managers by relying on the OTS standard.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 18/40

JTS specifies the implementation of a JTA-compatible transaction manager
for high-level interfaces, and relies on Java mapping of the CORBA OTS 1.1

specification at low level. A JTS transaction manager therefore offers

transactional interoperability with other JTS managers, and more generally
with any OTS-compliant transaction manager.

JTS is strongly recommended by the J2EE specification promoted by Sun. It

is therefore important, when choosing a J2EE infrastructure for managing
distributed transactions, to ensure that this standard is supported.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 19/40

4. HP Total-e-transactions 2.1

4.1. Total-e-Transactions 2.1 overview

Middleware

Object Request Broker (ORB)

ORB Portability Layer

Object Transaction Service (OTS)

Transactional Objects
(TO) for Java

Transactional Queue
(TQ) for Java

JTA

EMPAY sample application Other user applications

JTS
JDBC

Included in Total-e-Transactions 2.1 package

Interact with each other
Figure 5: Total-e-Transactions 2.1 Architecture diagram

The above schema illustrates the HP Total-e-Transactions architecture. The

yellow blocks stand for the different components supplied in the product.

The Total-e-Transactions transactional engine is fully compatible with J2EE.
It is made up of the following elements:

• the ORB portability layer is a product-specific feature that gives all
higher layers independence from the communicating infrastructure,

which is the CORBA ORB.
• The JTS implementation is based on this last layer, providing low-

level OTS compatibility and high-level JTA support.

• Transactional access to relational databases is based on the J2EE
JDBC standard and Merant drivers. These components are J2EE-

compliant.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 20/40

Total-e-Transactions also offers non-J2EE-compliant components bringing
additional functionality:

• The TO framework offers automatic object persistence and

concurrent access management features, making it a high-level
transactional application development environment.

• The TQ framework is built on TO for Java, and offers a transactional
queue mechanism.

• Lastly, the Empay application is shipped with documentation which
gives a practical illustration of what Total-e-Transactions can do.

In the next section, we shall give a more precise description of these

elements.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 21/40

4.2. Total-e-Transactions Components

4.2.1. Total e-Transaction core

The Total-e-Transactions core forms the heart of the infrastructure, and is
where distributed transactions are managed. Below we list its main features,

which the other components in the product offering also benefit from:

� ORB Portability Layer

HP has developed an interface to make its JTS implementation independent

from the underlying communication infrastructure (CORBA ORB). This

interface is the ORB portability layer which enables Total-e-Transactions to
be ported to any CORBA-compliant ORB.

Visibroker 3.4
Sun JDK 1.2

mini-ORB
Orbix2000 1.2

ORB Portability Layer

OTS

TO for Java

TQ for Java

JTA JDBC

…etc

Figure 6: Orb portability layer

The ORBs supported in version 2.1 are Sun JDK 1.2 mini-ORB, Visibroker
3.4 and Orbix2000 1.2. HP is planning to extend this support to other ORBs.

The object adapter is an important component in CORBA infrastructures.

When a CORBA client invokes a remote object, the Object adapter is
responsible for activating and passing the remote call to the implementation

object, and deactivating the object. The first object adapter introduced by
the OMG was the BOA (Basic Object Adapter). However, the BOA description

was not precise enough to provide for interoperability between different
ORBs. So the OMG defined another object adaptor (Portable Object Adaptor)

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 22/40

with enhanced portability and flexibility features, which allows for real ORB
interoperability.

The Total-e-Transactions ORB Portability layer is fully compatible with the
BOA and the latest POA introduced in the CORBA 2.3 specification. This

feature is necessary in order to ensure interoperability between CORBA OTS-
compliant transaction managers and portable interceptors.

� Support for flat and nested transactions

Support for flat transaction models is provided by the JTA API, while low-

level OTS support enables nested transactions to be handled (The JTA
interface also allows nested transactions, if it is configured correctly). The

OTS specification provides low-level APIs that are not suitable for a
productive development. TO for Java and TQ for Java are higher-level

frameworks that support better productivity for business objects and
transactional processes.

� JTA API support

The flat transactions managed by Total-e-Transactions are controlled by the

JTA standard API, which makes it possible to distribute transactions among
XA-compatible sources (JDBC 2 and JMS data sources) using a two-phase

commit protocol.

� Support for distributed transactions (using two-phase
commit)

A transaction may involve resources that reside in different address spaces,

such as two databases distributed over a network. It is important for the
transaction to be fully committed, or else fully cancelled. In order for the

ACID properties of distributed transactions to be guaranteed, the two-phase
commit protocol must be used.

The example given below involves two databases taking part in a flat

transaction initiated by Total-e-Transactions, which carries out an UPDATE on

an Oracle database and an INSERT in an MS SQL Server database.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 23/40

The API used by the transaction developer here is JTA. This means that the
respective resource managers of Oracle and MS SQL Server (JDBC drivers)

must be compatible with the XA interface.

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

Phase 1
Prepare to commit

COMMIT ?

COMMIT ?

YES

YES

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT

COMMIT

Phase 2
Commit

Phase 1 : Prepare to Commit

Total-e-Transactions initiates the transaction with the

resource managers involved (Oracle and MS SQL Server
databases), and then determines whether they are able to
commit.

If one of the resource managers is unable to commit its
transaction, it uses its right to veto the distributed
transaction. Total-e-Transactions then orders the rollback

of all the resource managers taking part in the distributed
transaction.

If the resource managers are able to commit, they send a

confirmation order to the transaction manager, which
registers the commit order for the distributed transaction in
a stable storage system before moving to phase 2 of the

protocol. The resource managers remain blocked as they
wait for phase 2 of the protocol to be completed.

Phase 2 : Commit

Total-e-Transactions sends the

commit order to the resource
managers. If Total-e-
Transactions crashes before it
was able to send the commit

order to one or more resource
managers, then these remain
blocked. A crash recovery

mechanism or autonomous
decision from the database is
then required for the resources
to be freed. (Please refer to

part 4.2.2 for a complete
description of the Total-e-
Transactions crash recovery

component.)

Figure 7: Managing a distributed transaction with a two-phase commit protocol

The distributed transaction covered in the example above is controlled by the

JTA API and acts on XA resources. Therefore the transaction will, necessarily,

be flat. For more modular development and a subtler degree of error
management, the nested transaction model is more effective. Total-e-

Transactions enables nested transactions involving different resource
managers to execute a two-phase commit.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 24/40

� Interposition

A distributed transaction involves resources residing in different address
spaces, most often distributed over different machines in a network.

Initializing the distributed transaction involves enlisting the resources with
the transaction manager's root coordinator, which will require as many IIOP

network calls as there are resources on remote machines. Distributed
transaction coordination also requires IIOP Network calls between the

resources and the transaction manager located on different machines.

A network call requires a set of operations (marshalling, demarshalling,

object activation, IIOP communication…) that use up a lot of CPU and
network bandwidth, and are subject to network outages. Optimization of

IIOP calls may make it possible to improve application robustness and
performances. The CORBA OTS specification provides for such a mechanism;

it is called Interposition, and is supported by Total-e-Transactions.

Oracle
RDBMS

Total-e-Transactions

MS SQL
Server
RDBMS

Oracle
RDBMS

Total-e-Transactions

Machine 1

Queue

Machine 2

Root
coordinator

Subordinate
coordinator

IIOP Network calls
for TX coordination

Client App

IIOP Network calls
for TX Control

Figure 8: Interposition

The above example shows a client application initializing a transaction
distributed over four resources located on two machines. The root

coordinator of machine 1 must enlist the resources involved, two of which
are found on machine 2, which means IIOP calls will be required.

Interposition enables the enlistment of machine 2's resources to be
delegated to a subordinate coordinator, which enlists with the root

coordinator of machine 1. Transaction coordination is also more efficient,
because the number of remote calls is kept to a minimum.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 25/40

� Transaction heuristics

The OTS specification enables participants in a transaction to decide
unilaterally to roll back, after the prepare to commit phase, without awaiting

the decision of the transaction manager. This is called a heuristic decision.
Heuristic decisions should be made with extreme caution and are assumed to

be a relatively rare event, as they may differ from the decision made by the
transaction manager, which can then cause the system to lose integrity.

These decisions can, however, be useful in certain cases; this is shown in the

example below, which involves a transaction distributed over two databases,

using a two-phase commit protocol and subject to a network outage during
the post-prepare phase:

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

Phase 1
Prepare to commit

COMMIT ?

COMMIT ?

YES

YES

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT

COMMIT

Phase 2
Commit

CRASH
Blocked
resource

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

Heuristic
Rollback

Blocked
resource

Released
resource

fig 9: Heuristic Rollback exception example

Total-e-Transactions initiates phase one

of the two-phase commit protocol. The
two resource managers confirm their
ability to commit the transaction, and
store this decision in a durable storage

system. Resources then remained
blocked, as they wait for operations to
continue.

Total-e-Transactions moves to phase
two of the protocol, and sends both
resource managers the commit order.

Between the two calls, the network
crashes. The first database has already
committed, while the second keeps on

blocking resources, pending the
decision of the transaction manager.
The resources are therefore no longer
available for other transactions.

The database takes the initiative to roll
back the transaction to free resources.
Data integrity is compromised. Total-e-

Transactions will throw a Heuristic
Rollback exception, and will warn the
administrator so that he/she can take

corrective action.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 26/40

� Multi-thread aware

Unlike many other transaction managers, Total-e-Transactions enables a
transaction to be managed by several threads, and enables the thread to

manage several transactions.

� Explicit and Implicit transaction context propagation

Each transaction has its own context. This context is essential within
distributed transactions. The OTS implementation of Total-e-Transactions is

able to transfer the transactional context via the architecture components in
a way that is transparent for the developer. However, it is possible to

deactivate implicit propagation and to carry it out manually through
programming. This technique provides a way to develop transactional

applications more flexibly. In particular, it enables checked/unchecked
transaction behavior to be supported, and allows transactional and non-

transactional methods to be combined through a single interface.

� Checked/unchecked transaction behavior

Total-e-Transactions supports both Checked and Unchecked transaction
behavior. The ‘classical’ transaction exhibits checked behavior whereby the

transaction will not commit until all participants have completed their work,
and only when the originator requests commit processing. Unchecked

behavior allows relaxed models of atomicity to be implemented: the
developer takes responsibility for ensuring that all outstanding work has

completed before the transaction terminates.

� Direct / Indirect Transaction Management

The developer can choose to work the transaction directly by using the
Control, Coordinator and Terminator services. Indirect transaction

management is where the transaction control work is carried out through the
Current object. This is similar to using the JTA, where transaction control and

creation is abstracted from the user.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 27/40

� Synchronization Interface

A synchronization interface is available for objects that are to be notified
before a transaction is ready to start and/or after a transaction finishes its

two-phase commit processing. Synchronizations are typically employed to
flush the volatile state of objects or databases before the transaction

commits.

� Support for CosTransaction::Current

Total-e-Transactions supports the CosTransaction::Current object in addition
to the JTA. This allows developers some flexibility in the way they wish to

communicate with the Transaction Service.

The main advantage of CosTransaction::Current, with regard to the JTA
UserTransaction interface for transaction control, is that it offers real

management of multi-threading and nested transactions.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 28/40

4.2.2. Crash Recovery

A component in a transactional architecture may fall prey to a failure

(software, hardware or network) during a transaction. It is vital for the
transactional infrastructure to carry out corrective action when the system is

rebooted, in order to restart in a state that is consistent and compliant with
ACID properties. Total-e-Transactions' Crash Recovery module handles data

repair operations after one or more components crashes.

The diagrams in this section show how the crash recovery component brings

the system back into a consistent state after two types of failure.

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT

COMMIT

Phase 2
Commit with

network failure

CRASH

Heuristic
Exception

Released
resource

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions Heuristic

Outcome

Recovery
Scan

Admin
Intervention

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT ?

COMMIT ?

Phase 1
Prepare to commit

YES

YES

Case 1, Network failure:

During the post-prepare phase of a
distributed transaction, a network outage

stops the transaction manager from
sending the commit order to the second
database. Total-e-Transactions will

attempt to re-establish a connection once
the network link is open again.

The second database awaits the phase 2

commit order. The enlisted resources
remain unavailable to other transactions.
After a period of time set by the
administrator, the database makes the

decision, without the transaction
manager, to roll back the local
transaction in order to free up the

resources. This is a heuristic decision, as
the distributed transaction has been
committed.

Once the network connection is re-
established, the Total-e-Transactions
crash recovery component will reconnect

to the second database and will detect a
heuristic exception, which will be
transmitted to the administrator so that
he/she can take the necessary

compensatory action to bring the system
back into a consistent state.

Fig 10: Crash recovery with Network failure

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 29/40

Phase 2
Commit with

Transaction manager crash

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT

COMMIT

CRASH

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT

COMMIT

MS SQL
Server
RDBMS

JDBC

JDBC
Oracle
RDBMS

Total-
e-Transactions

COMMIT ?

COMMIT ?

Phase 1
Prepare to commit

YES

YES

Case 2, Transaction manager failure:

At the end of the prepare phase, the
transaction manager takes the decision to

commit and record it in a stable storage
system. The transaction manager fails.
Just after rebooting, the transaction
manager detects that a transaction in

progress has been stopped irregularly,
and will try and communicate with the
resource managers involved. In our case,

they are still on standby, and the crash
recovery component will continue the
transaction.

Fig 11: Crash recovery with Transaction manager failure

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 30/40

4.2.3. Transactional JDBC Drivers

Relational database management systems (RDBMSs) form one of the

essential building blocks of any information system, and are generally used
for storing data. Modern relational databases, such as Oracle or Microsoft

SQL Server, are also able to manage transactions, but only for the data that
they manage. This is referred to as a lightweight transaction.

A transaction that brings several relational databases into play is said to be

distributed, and must be directed by a transaction manager such as Total-e-

Transactions. The role of RDBMSs in distributed transactions is extremely
important, since they help guarantee the ACIDity of transactions,

coordinating with the transaction manager. RDBMSs offer internal
mechanisms such as management of concurrent data access, which are often

used for distributed transactions.

The connectivity of J2EE architectures with relational databases is covered by
the JDBC standard, which offers a standard access API regardless of the

RDBMS in question. The JDBC standard has enjoyed considerable success in
the industry, and numerous implementations are available on the market.

JDBC 2.0 supports X/Open DTP distributed transactions as it complies with
the XA standard. JDBC 1.0 does not support distributed transactions.

Informix

Cloudscape 3.5

Visibroker 3.4
Sun JDK 1.2

mini-ORB
Orbix2000 1.2

ORB Portability Layer

Object Transaction Service (OTS)

Transactional Objects
(TO) for Java

Transactional Queue

(TQ) for Java

JTA

JTS

JDBC

Merant JDBC Sequelink

Server 5.1

IBM DB2
Oracle

8.1.6 / 8.1.7

MS SQL

Server 2000 Informix Sybase

Supported with Total-e-Transaction 2.1

To be supported

Cloudscape Native

JDBC Driver

fig 12: Total-e-Transactions JDBC connectivity using Merant technology

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 31/40

Total-e-Transactions supports JDBC 1.0 and 2.0, thanks to the Merant

Sequelink server 5.1 product which is included with Total-e-Transactions 2.1.

Merant Sequelink Server 5.1 supports many JDBC 2.0-compliant RDBMSs
(such as Oracle, MS SQL Server, IBM DB2, Informix and Sybase), enabling

distributed transactions to be carried out. However, Total-e-Transactions only
supports Oracle 8.1.6/8.1.7 and MS SQL Server 2000 connectivity through

Merant Sequelink Server 5.1. Total-e-Transactions also supports the Informix
Cloudscape 3.5 object relational database through its native JDBC 2.0-

compliant driver. HP plans to extend support to more databases using Merant
Technology.

As JDBC access is costly in terms of performances, Total-e-Transactions

offers optimization mechanisms (JDBC pooling) so as to minimize the
resources monopolized by the transactions using RDBMSs.

We note that as the JDBC transactional model is based on the DTP one, it is

therefore limited to the flat transaction model. This means that the Total-e-

Transactions distributed transactions involving JDBC resources will,
necessarily, be flat. However, Total-e-Transactions does offer an alternative

with a software layer for persistence of business objects in JDBC sources,
which supports the nested transaction model. This software layer is described

below.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 32/40

4.2.4. Transactional Objects (TO) for Java

To avoid any confusion, we must point out that the Total-e-Transactions

Transactional Objects for Java that we shall be describing in this section has
no direct link with the transactional objects mentioned in the CORBA OTS

specification.

The OTS implementation provided by Total-e-Transactions is used to develop
business object-based transactional objects; however, OTS remains a low-

level framework with less than optimum productivity. The developer may

have to create and manage transactional contexts, enlist resources, and so
on. The purpose of Transactional Objects for Java (TOs for Java) is to offer a

high-level framework which can mask technical aspects, and a low-level
development framework to enable the developer to concentrate on business

objects and transactional processes. The functionalities of the TO for Java are
as follows:

• Object persistence: TO for Java offer an automatic persistence

facility for objects in a relational database or flat file (persistence
here is limited to simple object models, and is not comparable to

that offered by complex O/R mapping tools)
• Concurrent access: TO for Java offer a preconfigured locking

mechanism for objects in read-only (shared) and in write
(exclusive) mode.

• Management of nested OTS transactions: the TO for Java's

persistence and concurrence management properties coordinate
with the underlying JTS engine, to guarantee transaction ACIDity.

Access to concurrence control mechanisms uses interfaces that are fully

extensible in order to respond to particular situations. This functionality is
very important, since durability (the D in ACID), and isolation (the I in ACID)

are features often provided by resource managers (e.g. databases) that
must function in conjunction with the transaction manager, which guarantees

atomicity and consistency – the A and the C in ACID.

The J2EE EJB model offers similar functionalities: an automatic,
personalizable persistence mechanism, transactional capabilities and

integration of asynchronous communications with EJB 2 (Message Driven
Bean).

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 33/40

EJBs are limited in a number of areas, which can be problematic when it
comes to implementing large-scale systems :

• Threads running through EJBs cannot re-enter,
• EJB transactions rely on the JTA standard and are therefore limited

to the flat transaction model
• Only one thread can pass through an EJB instance

• Management of fine-grained objects is not yet definitive
• Access locking strategies cannot be personalized

The component model proposed by TO for Java does not impose such

limitations, making it a viable alternative to EJBs for some architectures.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 34/40

4.2.5. Transactional Queue (TQ) for Java

Applications developed with TO for Java can use nested transactions, but

these are synchronous. This means that if an object that has to participate in
a transaction is not available at the instant it is called, this will block the

entire transaction, resulting in a long wait or rollback of the transaction.

The notion of the transaction queue is particularly useful when the systems
taking part in a transaction are uncoupled. The situation is typical when

business processes require ACIDity but the availability of the application

involved cannot be guaranteed. The role of the transactional queue here
becomes clear: when a transaction involves a remote application, a message

is sent to a queue (enqueuing) and the transaction is suspended without
blocking the initiating program; when the remote application becomes

available, the message is taken from the queue (dequeuing) and the
transaction continues to be executed.

As it is built upon TO for Java, TQ for Java is nested-transaction-aware. The

next paragraph describes an example of an inter-bank transfer involving a
transactional queue built with TQ for Java involved.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 35/40

4.2.6. The Empay demonstration application

EMPAY is a real transaction and distributed object-based application shipped

with documentation that demonstrates the product features of Total-e-
Transactions, including TO for Java, TQ for Java, and both single and two-

phase commit capabilities. EMPAY is CORBA based and implemented in pure
Java.

The main components of EMPAY are two clerks, two bank servers and a

clearing house.

Each bank server is made up of a database in which customer accounts and

bank transactions are stored (transfers, account creation / deletion /
modification). Bank transactions are carried out by clerks. The bank servers

can transfer funds to accounts from different banks; these transfers may be
direct or may pass via a clearing house, which uses a transactional queue to

process payment operations.

Each bank server consists of a CORBA server implemented in Java, and a
JDBC database. The CORBA servers feature four interfaces:

• The access service interface gives the clerk secure access to

dedicated objects which perform the bank transactions.
• The AccountMaintenance interface is used to perform various back-

end operations, not directly invoked by the clerks.

• The MoneyTransfer interface is transactional, and takes care of
intra- or inter-bank payments.

• The PaymentProcessor interface is also transactional, and carried
out transactions by passing via the clearing house.

The clearing house acts as intermediary between the two banks. Unlike the

direct inter-bank transfer, the clearing house uses a transactional payment
queue to enable transactions to be managed should one of the bank servers

become unavailable. The payment interface is paymentProcessor.

The bank servers are controlled by the clerks, which can be operated via
command line or GUI.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 36/40

BANK
Database 2

BANK
Server 1

BANK
Server 2

CLEARING
HOUSE

Clerk 2

Clerk 1

BANK
Database 1

Payment
Queue

Account maintenance

Access service

Money transfer

Payement
processor

Payement
processor

Payement
processor

Account maintenance

Access service

Money transfer

Non Transactionnal operation

Transactionnal operation

Internal bank transfer

Direct Inter Bank transfer

Indirect Inter Bank transfer

1

2

3

1

1

3

3

2

Fig 13: EMPAY architecture

Five bank transaction scenarios are provided to illustrate the transactional
capabilities of Total-e-Transactions:

 Scenario Description Total-e-Transactions Features used

Scenario 1 Account creation and intra-bank
transfers using command lines

TO for Java

Scenario 2 Account creation and intra-bank
transfers using GUI

TO for Java with a Graphical user interface

Scenario 3 Direct inter-bank transfers TO for Java, 2PC (2 phase commit)

Scenario 4 Automatic transfer of funds by
scripting

TO for Java, 2PC

Scenario 5 Inter-bank transfer using the
clearing house

TQ for java, 2PC

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 37/40

5. Total-e-Transactions integration with
HP’s Total-e-Server and HP

Application Server

Total-e-Transactions is a robust transactional architecture which can be used
as a standalone application. However, it is sometimes necessary to open

transactional applications up to different presentation tiers (Web browser,

PDA…), to manage security, workload increases and availability. These needs
are covered by J2EE application servers such as HP Total-e-Server and HP

Application Server.

Total-e-Transactions is completely implemented in Java, which means it can
be easily integrated with a J2EE application server; HP has gone ahead with

this integration, endowing Total-e-Server and HP Application Server with the
Total-e-Transactions transaction engine.

Total-
e-Transactions 2.1

UBS
LBB DAL ULF BAM

Security Console

State Server

J2EE Developper

DSE

fig 14: Overview of Total-e-server

The diagram above gives an overview of the components in Total-e-Server:

• UBS (Universal Business Server) is made up of a servlet/JSP

engine for integration with the Web, an EJB engine, an XML server
and a DSE (dynamic style sheet Engine) which extends Total-e-

Server's connectivity to mobile devices (PDA, WAP devices…)
• The State server and LLB (Load Balance broker) components

provide the infrastructure with fail-over and load balancing
capabilities, respectively.

• DAL (Dynamic Application Launcher) optimizes fail-over and
lightens the administration task .

• J2EE developer offers a development environment for J2EE
components (Java code, SQL code, EJB, XML/DTD)

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 38/40

• The Security Console is used to manage the lists for controlling
access to J2EE components

• ULF (Universal Listener Framework) extends the connectivity

of UBS to other protocols (TCP, MQ Series, e-mail, FTP…)
• BAM (Bluestone Application Manager) is the administration

environment of Total-e-Server

Total-e-Server and Total-e-Transactions are products designed to work
together, which enable two types of transactional applications to be

developed:

• 100% J2EE Applications: By conforming to the JTS standard,
Total-e-Transactions enables Total-e-Server to develop

transactional applications based on EJB components. Developments
therefore benefit from the easy-to-use component models, while

remaining 100% compatible with the J2EE standard.

• Non-J2EE applications: Total-e-Transactions extends the

transactional capabilities of J2EE with its TO for Java and TQ for
Java frameworks, providing features which are not covered by the

JTA standard (support for nested transactions, subtler multi-
threading management, interposition, and so on).

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 39/40

6. Summary

This document highlighted the importance of the transactional paradigm
when managing business processes. The need for transactions is not a new

one, and it becomes even more meaningful in the age of management of
processes within large-scale corporate intranets. The way in which

transactions were managed yesterday is far removed from today's way of

doing things: information systems are distributed and heterogeneous. The
aim of HP Total-e-Transactions is to provide an infrastructure able to manage

distributed intra-enterprise processes transactionally.

Tomorrow's transactional architecture will have to comply with standards to
manage transactions. Different standards have been developed over the

history of transactional computing, in order to meet the needs which have
emerged as time passes. Total-e-Transactions conforms to the essential

object-based transactional standards, by being fully compatible with J2EE
(JTA/JTS) 1.2 and the CORBA OTS specification, which ensure transactional

interoperability between the other components of the architectures, such as
ORBs and databases.

Total-e-Transactions is the industry's first 100% pure Java JTS

implementation on the market, which secures it a singular position and lends

it the following advantages:

• JTA API support, offers a high degree of productivity for
developers and transactional compatibility with XA sources

• CORBA OTS support guarantees transactional interoperability
with other transaction managers, an essential feature in the

construction of a true transactional infrastructure
• Independence from the operating system and hardware is

provided thanks to the 100% Java product, ensuring flexibility of
deployment

• Total-e-Transactions can be used as a standalone product,
• Total-e-Transactions is also integrated with the J2EE-compliant

HP Total-e-Server and HP Application Server, and combines
the potential of a leading J2EE application server with unique

transactional functionalities.

© TechMetrix Research, 2001 HP Total-e-Transactions – White Paper

 40/40

A white paper written by

TechMetrix Research

Author

Nicolas Farges
Yannick Bessy

Managing Editor & Translation

Hannah Riley

Published
 RC01 - December 2001

USA

TechMetrix Research
76 Bedford Street, suite 33

Lexington, MA 02420

Tel.: +1.781.890.3900
Fax: +1.781.240.0502

EUROPEAN HEADQUARTERS

TechMetrix Research/SQLI
55/57 Rue Saint Roch

75001 PARIS

FRANCE

Tel.: + 33 1 44 55 40 00
Fax: + 33 1 44 55 40 01

SWITZERLAND

TechMetrix Research/SQLI
Chemin de la Rueyre

116-118
CH-1020 RENENS

Tel.: + 41 (0) 21 637 72 30
Fax : + 41 (0) 21 637 72 31

http://www.techmetrix.com
info@techmetrix.com

TechMetrix Research is a technically oriented analyst firm
focused on e-business application development needs.
TechMetrix Research has developed a unique evaluation

approach to provide accurate information on software.
Based in Waltham-MA (USA) and Paris (France), the firm publishes comparison reports and
product reviews, which are real helpers when it comes to making decisions, or simply
keeping pace with the fast moving e-business market.

As its parent company (SQLI) provides information system development and implementation
services to major companies, TechMetrix Research also benefits from the feedback and
experience acquired during large-scale, long-term development projects.

SQLI is a European global system integrator of 700 employees offering full service and
continuing coaching to enable companies to move profitably toward an all-Internet solution.

Assessments and conclusions rendered by TechMetrix Research are proprietary. TechMetrix Research and/or
TechMetrix Research analysts cannot be held liable for any damages directly or indirectly caused by decisions made
using any TechMetrix Research material.
Names appearing in this document that are registered trademarks are not mentioned as being so, nor is the
trademark symbol inserted with each mention of these registered trademarks. This document uses these
trademarks for editorial purposes only. In no way does TechMetrix Research have the intention of infringing on any
registered trademark mentioned in editorial.

© TechMetrix Research 2001 - www.techmetrix.com

