
Web Services Transaction Management Specification 24/07/2003

1

Web Services Transaction Management (WS-TXM) Ver1.0

July 28, 2003

Authors:

Doug Bunting (doug.bunting@sun.com)
Martin Chapman (martin.chapman@oracle.com)
Oisin Hurley (ohurley@iona.com)
Mark Little (mark.little@arjuna.com) (editor)
Jeff Mischkinsky (jeff.mischkinsky@oracle.com)
Eric Newcomer (eric.newcomer@iona.com) (editor)
Jim Webber (jim.webber@arjuna.com)
Keith Swenson (KSwenson@fsw.fujitsu.com)

Copyright Notice
© 2003 Arjuna Technologies Ltd., Fujitsu Limited, IONA Technologies Ltd., Oracle Corporation,
and Sun Microsystems, Inc.
All Rights Reserved.

This WS-TXM Specification (the "Specification") is protected by copyright and the information
described therein and technology required to implement the Specification may be protected by one
or more U.S. patents, foreign patents, or pending applications. The copyright owners named
above ("Owners") hereby grant you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license under their copyrights to: (i) download, view, reproduce, and otherwise use the
Specification for internal purposes; (ii) distribute the Specification to third parties provided that
the Specification is not modified by you or such third parties; (iii) implement the Specification and
distribute such implementations, including the right to authorize others to do the same, provided
however, that you only distribute the Specification subject to a license agreement that protects the
Owners' interests by including the proprietary legend and terms set forth in this Copyright Notice.

Disclaimer of Warranties

THIS SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY
CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE
CORRECTED BY THE OWNERS). THE OWNERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY OR COPYRIGHT OWNER
PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.

This document does not represent any commitment to release or implement any portion of the
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS, CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. THE OWNERS MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the
Specification.

LIMITATION OF LIABILITY

mailto:doug.bunting@sun.com
mailto:martin.chapman@oracle.com
mailto:ohurley@iona.com
mailto:mark.little@arjuna.com
mailto:jeff.mischkinsky@oracle.com
mailto:eric.newcomer@iona.com
mailto:jim.webber@arjuna.com
mailto:KSwenson@fsw.fujitsu.com

Web Services Transaction Management Specification 24/07/2003

2

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE OWNERS OR
THEIR LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN
IF THE OWNERS AND/OR LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

You will indemnify, hold harmless, and defend the Owners and their licensors from any claims
based on your use of the Specification for any purposes other than those of internal evaluation, and
from any claims that later versions or releases of any Specifications furnished to you are
incompatible with the Specification provided to you under this license.

Restricted Rights Legend

If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Specification and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for the non-DoD acquisitions).

Report

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your evaluation of the Specification ("Feedback"). To the extent that you provide
the Owners with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant the Owners a perpetual, non-exclusive,
worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels
of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

Web Services Transaction Management Specification 24/07/2003

3

Abstract
An increasing number of applications are being constructed by combining or coordinating the
execution of multiple Web services, each of which may represent an interface to a different
underlying technology. The resulting applications can be very complex in structure, with complex
relationships between their constituent services. Furthermore, the execution of such an application
may take a long time to complete, and may contain long periods of inactivity, often due to the
constituent services requiring user interactions. In the loosely coupled environment represented by
Web services, long running applications will require support for recovery and compensation,
because machines may fail, processes may be cancelled, or services may be moved or withdrawn.
Web services transactions also must span multiple transaction models and protocols native to the
underlying technologies onto which the Web services are mapped.
A common technique for fault-tolerance is through the use of atomic transactions, which have the
well know ACID properties, operating on persistent (long-lived) objects. Transactions ensure that
only consistent state changes take place despite concurrent access and failures. However,
traditional transactions depend upon tightly coupled protocols, and thus are often not well suited to
more loosely-coupled Web services based applications, although they are likely to be used in some
of the constituent technologies. It is more likely that traditional transactions are used in the
minority of cases in which the cooperating Web services can take advantage of them, while new
mechanisms, such as compensation, replay, and persisting business process state, more suited to
Web services are developed and used for the more typical case.
WS-TXN provides a suite of transaction models, each suited to solving a different problem
domain. However, because WS-TXN leverages WS-CF, it is intended to allow flexibility in the
types of models supported. Therefore, if new models are required for other problem areas, they
can be incorporated within this specification.

Status of this document
This specification is a draft document and may be updated, extended or replaced by other
documents if necessary. It is for review and evaluation only. The authors of this specification
provide this document as is and provide no warranty about the use of this document in any case.
The authors welcome feedback and contributions to be considered for updates to this document in
the near future.

Web Services Transaction Management Specification 24/07/2003

4

Table of contents

1. Introduction..7

1.1 Problem statement ...7

2. Architecture..8

Relationship to WSDL...9

3. Use case scenarios..9

3.1 Web services coordination...9

3.2 Timed transactions...11

3.3 Arranging a night out...11

3.4 Home entertainment system ..12

4. Web Services transaction management ...13

4.1 Relationship to WS-CTX and WS-CF...14

4.2 ACID transactions ...14

4.2.1 Restrictions imposed on using WS-CF..15

4.2.2 Two-phase commit...15

4.2.3 Coordinator state transitions for two-phase commit protocol..............16

4.2.4 Two-phase participant state transitions..18

4.2.5 Two-phase commit message interactions ..18

4.2.6 Pre- and post- two-phase commit processing22

4.2.7 Coordinator state transitions for synchronization protocol..................23

4.2.8 Recovery and interposition ..24

4.2.9 The context...25

4.2.10 Statuses ..25

4.3 Long running action...26

4.3.1 Restrictions imposed on using WS-CF..27

4.3.2 Context...28

4.3.3 Services and Compensators ...28

4.3.4 Qualifiers..32

4.3.5 Coordinator ..33

4.3.6 Independent LRAs and application structuring33

4.3.7 Status values...34

4.4 Business process transaction..35

4.4.1 Context...37

Web Services Transaction Management Specification 24/07/2003

5

4.4.2 Business domains and interposition...38

4.4.3 Protocols ..39

4.4.4 Qualifers...53

4.4.5 Status values...54

5. WSDL Interfaces and XML Schema Definitions ..54

5.1 The WS-TXM Schema ..54

5.2 The tx-acid Schema ...56

5.3 2PC Protocol..57

5.3.1 WSDL ..57

5.3.2 Schema...62

5.4 Sync Protocol...65

5.4.1 WSDL ..65

5.4.2 Schema...68

5.5 The TX-LRA Protocol ...69

5.5.1 WSDL ..69

5.5.2 Schema...73

5.6 The TX-BP Protocol ..76

5.6.1 Schema...76

5.7 The BP Protocol...77

5.7.1 WSDL ..77

5.7.2 Schema...79

5.8 The Completion Protocol...80

5.8.1 WSDL ..80

5.8.2 Schema...86

5.9 The Checkpoint Protocol ...88

5.9.1 WSDL ..88

5.9.2 Schema...92

5.10 The Restart Protocol ..94

5.10.1 WSDL ..94

5.10.2 Schema...98

5.11 The Terminate Notification Protocol...99

5.11.1 WSDL ..99

5.11.2 Schema...102

Web Services Transaction Management Specification 24/07/2003

6

5.12 The Work Status Protocol..102

5.12.1 WSDL ..102

5.12.2 Schema...107

6. References..110

7. Acknowledgements..111

Web Services Transaction Management Specification 24/07/2003

7

1. Introduction
Atomic transactions are a well-known technique for guaranteeing consistency in the
presence of failures. The ACID properties of atomic transactions (Atomicity,
Consistency, Isolation, and Durability) ensure that even in complex business
applications consistency of state is preserved, despite concurrent accesses and
failures. This is an extremely useful fault-tolerance technique, especially when
multiple, possibly remote, resources are involved.

The concepts of atomic transactions have played a cornerstone role in creating today’s
enterprise application environments by providing guaranteed consistent outcome in
complex multiparty business operations and a useful separation of concerns in
applications. While numerous multiparty business applications involve various
patterns based on atomic transactions in order to solve non-trivial business problems,
it was not until recently the word “business transactions” accumulated any concrete
meaning. Rapid developments in Internet infrastructure and protocols have yielded a
new type of application interoperation concept that makes concepts which could only
previously be considered in an abstract form an implementation reality. The effects of
such changes have been felt most strongly in business environments, fuelling the
mindset for a transition from traditional atomic transactions to extended transaction
models better suited for Internet interoperation.

Most business-to-business applications require transactional support in order to
guarantee consistent outcome and correct execution. These applications often involve
long running computations, loosely coupled systems and components that do not
share data, location, or administration and it is thus difficult to incorporate traditional
ACID transactions within such architectures. For example, an airline reservation
system may reserve a seat on a flight for an individual for a specific period of time,
but if the individual does not confirm the seat within that period it will be unreserved.

The structuring mechanisms available within traditional transaction systems are
sequential and concurrent composition of transactions. These mechanisms are
sufficient if an application function can be represented as a single top-level
transaction. Frequently with Web services this is not the case. Top-level transactions
are most suitably viewed as “short-lived” entities, performing stable state changes to
the system; they are less well suited for structuring “long-lived” application functions
(e.g., running for minutes, hours, days, …). Long-lived top-level transactions
implemented using traditional systems may reduce the concurrency in the system to
an unacceptable level by holding on to locks for a long time; further, if such a
transaction rolls back, much valuable work already performed could be undone. Web
services, because of their inherently unpredictable invocation patterns do not fit well
with traditional ACID systems.

1.1 Problem statement

As Web Services have evolved as a means to integrate processes and applications at
an both inside and outside the firewall, and as Web technologies have become firmly
established and widely adopted, traditional transaction semantics and protocols have
proven to be inappropriate for some Web services-based applications and services.

Web Services Transaction Management Specification 24/07/2003

8

These particular Web services-based transactions differ from traditional transactions
in that they execute over long periods, they require commitments to the transaction to
be “negotiated” at runtime, and isolation levels have to be relaxed.

Structuring certain activities from long-running transactions can reduce the amount of
concurrency within an application or (in the event of failures) require work to be
performed again. For example, there are certain classes of application where it is
known that resources acquired within a transaction can be released “early”, rather than
having to wait until the transaction terminates; in the event of the transaction rolling
back, however, certain compensation activities may be necessary to restore the system
to a consistent state. Such compensation activities (which may perform forward or
backward recovery) will typically be application specific, may not be necessary at all,
or may be more efficiently dealt with by the application.

The goals of the specification are to:

• Provide a basic definition of a core infrastructure service consisting of a
Transaction Service for the Web Service environment. The WS-TXM builds
on the Web Services Coordination Framework.

• Define the mappings onto the Web Service environment (SOAP message and
header definitions, context definition, endpoint address requirements, etc.).

• Define the required infrastructure support such as event mechanisms, etc.

• Define the roles and responsibilities of WS-TXM subcomponents.

2. Architecture
WS-TXM leverages the WS-CF and WS-CTX specifications. Figure 4 illustrates the
layering of WS-TXM onto WS-CF. WS-TXM defines a pluggable transaction
protocol that can be used with the coordinator to negotiate a set of actions for all
participants to execute based on the outcome of a series of related Web services
executions. The executions are related through the use of shared context. Examples of
coordinated outcomes include the classic two-phase commit protocol, a three phase
commit protocol, open nested transaction protocol, asynchronous messaging protocol,
or business process automation protocol.

Web Services Transaction Management Specification 24/07/2003

9

Composite

Web Service

Web Service

Web Service

Web Service

Transaction
Context

Composite

Web Service

Web Service

Web Service

Web Service

Coordinator

Web-Service

Composite

Web-Service

Composite

Coordinator

Web Service

Web Service

Web Service

Web Service

WS-TXM

Figure 1, Relationship of transactions to coordination framework.

Coordinators can be participants of other coordinators, as shown above. When a
coordinator registers itself with another coordinator, it can represent a series of local
activities and map a neutral transaction protocol onto a platform-specific transaction
protocol.

Relationship to WSDL

Where WSDL is used in this specification we shall use a synchronous invocation style
for sending requests. In order to provide for loose-coupling of entities all responses
are sent using synchronous call-backs. However, this is not prescriptive and other
binding styles are possible.

For clarity WSDL is shown in an abbreviated form in the main body of the document:
only portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also
assumed as per [1]. Complete WSDL is available at the end of the specification.

3. Use case scenarios
In this section we shall briefly describe some of the use cases we believe that WS-
TXM can address.

3.1 Web services coordination

Web services will typically not open up two-phase commit protocols to be driven by
external coordinators, and may often combine disparate underlying technologies into a
larger unit of work. As a result, coordinating multiple Web services within a single
transaction can never give the same ACID guarantees as multiple two-phase commit
resources: in a single-phase model if a failure occurs after having committed some

Web Services Transaction Management Specification 24/07/2003

10

resources it is not possible to undo those that have committed. There are two solutions
to this:

1) Wrap these one-phase objects in a two-phase wrapper which ignores the
“prepare” phase and register them with a traditional transaction manager.

2) Treat this as an extended transaction model that requires specific coordination
and error treatment.

In terms of implementation, there is no difference between 1 and 2: the resources are
still one phase and may fail in exactly the same manner. However, on a conceptual
level there is a significant difference: when using a transaction manager, programmers
expect an all-or-nothing effect, especially since applications typically do not know
about one-phase/two-phase restrictions of resources and may mix them in the same
transaction; raising heuristic exceptions is the only possible solution for the
transaction manager that finds it cannot undo committed operations, and then the
application (or typically the administrator) has to deal with the outcome.

From the point of view of the user, the essential information is the state of the system
after recovery from failure. The traditional transaction model allowed the users to
easily understand the state of the data management resources as of the last successful
transaction. In a long running, mixed model world it’s equally important for the users
to discover how far the transaction progressed, but the mechanisms and level of
human interaction required to recover the situation may be very different. In the
world of Web services transactions it’s less likely that automatic recovery will be
possible in as many cases as in a more tightly controlled environment, and more likely
that human intervention will need to play a bigger part in restoring the system to
normalcy.

Giving applications a specific extended transaction model that clearly defines how
resources behave and does not allow one-phase and two-phase resources to be
registered in the same transaction, gives a better understanding to users: the
programmer must make a conscious choice as to the model that is being used, and the
entire application is structured accordingly. In the end these types of applications are
not transactional, and a traditional two-phase aware transaction system is
inappropriate for them.

This notion of having a different extended transaction model for each use-case makes
applications aware of the issues involved and helps to categorize objects and activities
into which type of model they support. So, for example, one object may be used
successfully within a two-phase and one-phase model, whereas another may only be
used within two-phase. It is important to reduce complexity in developing
“transactional” internet application by not over overloading a given model (e.g.,
ACID transactions).

It is important for users to be able to discover at any point during the execution of a
business process exactly how far the transactional aspect of the process has
progressed, and to be given options for branching or redirecting the outcome in the
face of potentially recoverable errors.

Web Services Transaction Management Specification 24/07/2003

11

3.2 Timed transactions

Many business transactions have specific “real-time” deadlines within which they
must operate (e.g., purchasing of shares). After the deadline has elapsed, if the
business transaction has not completed in a normal manner, there will typically be
application specific ways in which it must terminate (e.g., purchase the shares at the
current price if it is less than a certain value).

3.3 Arranging a night out

Consider the following long running business transaction, illustrated by Figure 2. The
application activity is concerned with booking a taxi (t1), reserving a table at a
restaurant (t2), reserving a seat at the theatre (t3), and then booking a room at a hotel
(t4). If all of these operations were performed as a single transaction (shown by the
dotted ellipse), then resources acquired during t1 would not be released until the top-
level transaction has terminated. If subsequent activities t2, t3 etc. do not require those
resources, then they will be needlessly unavailable to other clients.

Long-running applications and activities can be structured as many independent,
short-duration top-level transactions, to form a long-running business transaction.
This structuring allows an activity to acquire and use resources for only the required
duration of this long-running transactional activity. Therefore, as shown the business
transaction may be structured as many different, coordinated, short-duration top-level
transactions.

t1

t2

t3

t4

time

Application
activity

t5 t6

Figure 2, An example of a logical long-running “transaction”, without failure.

However, if failures and concurrent access occur during the lifetime of these
individual transactional activities then the behaviour of the entire long-running
transaction may not possess ACID properties. Therefore, some form of (application
specific) compensation may be required to attempt to return the state of the system to
(application specific) consistency. Just as the application programmer has to
implement the transactional work in the non-failure case, so too will programmers
typically have to implement compensation transactions, since only they have the
necessary application specific knowledge. Note, for simple or well-ordered work it is
possible to provide automatic compensations.

For example, let us assume that t4 has failed (rolls back). Further assume that the
application can continue to make forward progress, but in order to do so must now

Web Services Transaction Management Specification 24/07/2003

12

undo some state changes made prior to the start of t4 (by t1, t2 or t3). Therefore, new
activities are started; tc1 which is a compensation activity that will attempt to undo
state changes performed, by say t2, and t3 which will continue the application once
tc1 has completed. tc5’ and tc6’ are new activities that continue after compensation,
e.g., since it was not possible to reserve the theatre, restaurant and hotel, it is decided
to book tickets at the cinema. Obviously other forms of transaction composition are
possible.

t1

t2

t3

t4 t6’

time

Application
activity

tc1 t5’

failure

Figure 3, An example of a logical long-running “transaction”, with failure.

It should be noted that even with suitable compensations, it can never be guaranteed
to make the entire activity transactional: in the time between the original transaction
completing and its compensation running, other activities may have performed work
based upon the results of the yet to be compensated transaction. Attempting to undo
these additional transactions (if this is possible) can result in an avalanche of
compensations that may still not be able to return the system to the state it had prior to
the execution of the first transaction. In addition, compensations may (continually)
fail and it will then be extremely important to inform users (or system administrators).
In the world of Web services transactions, automatic recovery is by definition less
possible than previously.

Note, it will be application specific as to whether or not compensation should be tried
again if it does fail. For example, consider the situation where a transaction sells
shares and the compensation is to buy them back; if the compensation fails it may be
inappropriate (and expensive) to try it again until it does eventually succeed if the
share price is going up rapidly.

3.4 Home entertainment system

Let us assume that we are interested in building our own customized home
entertainment system consisting of TV, DVD player, hi-fi and video recorder.
Furthermore, rather than purchase each of these from the same manufacturer we want
to shop around and get the best of each from possibly different sources.

Web Services Transaction Management Specification 24/07/2003

13

t2

time

Application
activity

t4 t5 t3 t1

Figure 4, Building a home entertainment system via the Web.

When we visit the TV site we wish to start a transactional activity, t1, that will allow
us to search and provisionally reserve (obtain transactional locks on) a number of
different televisions (set A) that match our requirements. Before t1 terminates, we
select a subset of the televisions, B, we are interested in, and provide a reference to
our online bank account which the television site may contact to check that we have
sufficient funds. t1 then ends, any locks obtained that are not members of B are
released as normally for a transaction, (allowing other users to acquire them
immediately if necessary), and all other locks are obtained and passed to t2.

The sequence of operations for t2, t3, and t4 are identical, where only subsets of items
(DVD player, hi-fi and video) we have transactionally locked is released when each
activity terminates. By the time t5 is executed there is a list of items that are locked
and under its control, possibly also including the on-line bank account. Therefore, t5
is responsible for committing or rolling back the final purchase order. All locked
resources are atomically handed off to the next atomic action, and failures do not
require compensation: the atomicity property of t1, t2, t3, t4 and t5 ensures that either
the purchase happens, or it does not (and all resources will be released).

4. Web Services transaction management
The WS-TXM specification defines three transaction models that address different
use cases in current business-to-business interactions. However, it is likely that other
transaction models will be required for different problem domains and therefore this
specification is intended to incorporate these other models when required. There is a
variety of models for Web services transactions depending on their use – 1PC, 2PC,
distributed 2PC with interoperability, business process coordination. As such, it is the
intention of the specification authors and supporters that other models should be
added as and when they become available.

• ACID transaction: a traditional ACID transaction (AT) designed for
interoperability across existing transaction infrastructures.

Web Services Transaction Management Specification 24/07/2003

14

• Long running action: an activity, or group of activities, which does not
necessarily possess the guaranteed ACID properties. A long running action
(LRA) still has the “all or nothing” atomic effect, i.e., failure should not result
in partial work. Participants within an LRA may use forward (compensation)
or backward error recovery to ensure atomicity. Isolation is also considered a
back-end implementation responsibility.

• Business process transaction: an activity, or group of activities, that is
responsible for performing some application specific work. A business process
(BP) may be structured as a collection of atomic transactions or long running
actions depending upon the application requirements.

Because WS-TXM uses WS-CF, it builds upon the context information defined by
that specification. Each transaction protocol specified within WS-TXM has its own
context which will be described in the relevant sections.

4.1 Relationship to WS-CTX and WS-CF

WS-TXM builds on the Web Services Coordination Framework (WS-CF) and Web
Service CTX Service (WS-CTX) specifications. It does this by defining specific
coordinator and participant services and augmenting the distribution context.

In order to support the three transaction models, WS-TXM imposes the following
restrictions on its interactions with WS-CF:

• The ACID transaction, long running action and business process models bind
the scope of an activity to the scope of a “transaction”. This is similar to the
way that WS-CF binds the scope of an activity to the lifetime of a coordinator.

• In the rest of this text we shall assume that participants for the various
transaction models are instance of the WS-CF Participant service. However,
because that aspect of the WS-CF specification is optional, the Participant
services may be defined elsewhere. Only the message exchanges are mandated
for interoperability.

4.2 ACID transactions

The ACID transaction model recognizes that Web Services are for interoperability as
much as for the Internet. As such, interoperability of existing transaction processing
systems will be an important part of Web Services Transaction Management: such
systems already form the backbone of enterprise level applications and will continue
to do so for the Web Services equivalent. Business-to-business activities will typically
involve back-end transaction processing systems either directly or indirectly and
being able to tie together these environments will be the key to the successful take-up
of Web Services transactions.

Although ACID transactions may not be suitable for all Web Services, they are most
definitely suitable for some, and particularly high-value interactions such as those
involved in finance. As a result, the ACID transaction model defined in WS-TXM has
been designed with interoperability in mind.

Web Services Transaction Management Specification 24/07/2003

15

In the ACID model, each activity is bound to the scope of a transaction, such that the
end of an activity automatically triggers the termination (commit or rollback) of the
associated transaction. The coordinator-type URI for the ACID transaction model is
http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/2003/03

4.2.1 Restrictions imposed on using WS-CF

As well as the restrictions outlined previously for general WS-TXM protocols, the
ACID transaction model imposes the following additional restrictions:

• It is illegal to attempt to remove a participant from a transaction at any time.
When the transaction terminates, participants are implicitly removed. As such,
any attempt to call removeParticipant will result in the wrongState message
being sent by the coordinator.

• It is illegal to call the WS-CF coordinate operation on the coordinator. All
WS-TXM coordinator implementations will return the notCoordinated
message if the coordinator receives a coordinate request.

4.2.2 Two-phase commit

The ACID transaction model uses a traditional two-phase commit protocol [2] with
the following optimizations:

• Presumed rollback: the transaction coordinator need not record information
about the participants in stable storage until it decides to commit, i.e., until
after the prepare phase has completed successfully.

• One-phase: if there is only a single participant involved in the transaction then
there is no need for a prepare phase since consensus is implicit.

• Read-only: a participant that is responsible for a service that did not modify
any transactional data during the course of the transaction can indicate to the
coordinator during prepare that it is a read-only participant and it will be
omitted from the second phase of the commit protocol.

Participants that have successfully passed the prepare phase are allowed to make
autonomous decisions as to whether they commit or rollback. A participant that makes
such an autonomous choice must record its decision in case it is eventually contacted
to complete the original transaction. If the coordinator eventually informs the
participant of the fate of the transaction and it is the same as the autonomous choice
the participant made, then there is obviously no problem: the participant simply got
there before the coordinator did. However, if the decision is contrary, then a non-
atomic outcome has happened: a heuristic outcome, with a corresponding heuristic
decision.

The possible heuristic outcomes are:

• Heuristic rollback: the commit operation failed because some or all of the
participants unilaterally rolled back the transaction.

http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/2003/03

Web Services Transaction Management Specification 24/07/2003

16

• Heuristic commit: an attempted rollback operation failed because all of the
participants unilaterally committed. This may happen if, for example, the
coordinator was able to successfully prepare the transaction but then decided
to roll it back (e.g., it could not update its log) but in the meanwhile the
participants decided to commit.

• Heuristic mixed: some updates were committed while others were rolled back.

• Heuristic hazard: the disposition of some of the updates is unknown. For those
which are known, they have either all been committed or all rolled back.

4.2.3 Coordinator state transitions for two-phase commit protocol

As shown in Figure 5, and in line with the basic WS-CTX, when the activity begins a
begin message is sent by the activity service to the ACID transaction protocol ALS
(Tx ALS); this then creates a corresponding coordinator that is associated with the
activity through the context. The coordinator begins in the Active state and has the
lifetime period associated with the activity. What this means is that if the activity
timeout elapses and as a result the Context Service terminates the activity, the
transaction will also be terminated in the same state as the activity.

If the activity is instructed to complete in the Success state then the activity service
sends an appropriate completeWithStatus message to the Tx ALS which will then try
to commit. If there is only a single participant enrolled with the transaction then there
is no need for the coordinator to execute the two-phase protocol. As such, the
coordinator begins the OnePhaseCommit protocol and either transits to the
RolledBack or Committed state, depending upon the result returned by the participant.
The activity completion status is either Failure or Success respectively.

If there are multiple participants enrolled with the transaction, the coordinator transits
to the Preparing state and begins to execute the two-phase commit protocol by
sending the prepare message to each participant. If all of the participants indicate that
the services they represent performed no work (i.e., are read only) then the transaction
is complete and the coordinator transits to the Committed state; the activity
completion status is Success.

Any failures from a participant or indication that it cannot prepare cause the
coordinator to rollback (move to the RollingBack state) and send rollback messages to
all of the other participants. It then transits to the RolledBack state, with the activity in
the Failure completion status.

Web Services Transaction Management Specification 24/07/2003

17

Figure 5, Transaction coordinator two-phase status transition.

Assuming all participants have prepared successfully, the transaction coordinator
makes the decision as to whether to commit or rollback and must record sufficient
information on stable storage to ensure this decision can be completed in the event of
a failure. It is then in the Prepared state. When the coordinator starts the second phase
of the commit protocol it is in the Committing state and ultimately moves to the
Committed state.

In terms of the underlying activity service and coordination service, Figure 6 shows
the flow of messages:
1) The application issues a begin on the Transaction/Coordination Service ALS to

demarcate the beginning of a transaction. This causes the
Transaction/Coordination Service to create a coordinator used to identify the
activity instance and subsequently track the elements interested in the transaction
outcome (i.e., the participants).

2) The application issues a server method. Context information is appended to the
message. The context is used at the target to recreate the execution environment.
Having been passed a coordinator reference the target registers interest in the
transaction outcome. (Note, an implementation can choose to register participants
directly to the coordinator or through a subordinate coordinator that resides on the
target.)

3) The application issues a completeWithStatus to indicate the end of the transaction.
The completion indication is passed to the coordinator. The coordinator sends the
two-phase commit protocol messages to each registered participant and returns the
outcome to the activity service.

Web Services Transaction Management Specification 24/07/2003

18

CoordinatorCoordinatorCoordinatorCoordinator

begin

method

addParticipant

completeWithStatus

prepare

ApplicationApplicationApplicationApplication ServiceServiceServiceService ParticipantParticipantParticipantParticipant

commit

Implementation
(2PC)

“prepare”

“rollback”
“commit”
“prepare”

“rollback”

“prepare”

“rollback”
“commit”

prepared ok

committed
committed

Figure 6, Two-phase commit transactions.

4.2.4 Two-phase participant state transitions

The participant state transitions are the same as the coordinators:

Figure 7, Two-phase participant state transitions.

4.2.5 Two-phase commit message interactions

In this section we shall describe the message that are exchanged between the
coordinator and the participants. Although the text refers to the coordinator soliciting

Web Services Transaction Management Specification 24/07/2003

19

responses from participants, because WS-CF supports an asynchronous model,
participants may send unsolicited “responses” to the coordinator via the setResponse
message.

The ACID transaction model supports two styles of participant service
implementation: the singleton approach, whereby one participant service (end-point)
is implicitly associated with only one transaction, and the factory approach, whereby a
single participant service may manage participants on behalf of many different
transactions. Therefore, all operations on the participant service are implicitly
associated with the current context, i.e., it is propagated to the participants in order to
identify which transaction is to be operated on. The unique participant identification is
also present on each message.

The AT sub-protocol URI for the two-phase commit protocol is
http://www.webservicestransactions.org/wsdl/wsTXM/tx-acid/2pc/2003/03 and this is
used in the addParticipant invocation. The Participant accepts the following messages
(illustrated in Figure 8). The CoordinatorParticipant end-point address as defined in
WS-CF is propagated on all messages:

• prepare: The coordinator is preparing. The participant can respond with a
voteReadonly, voteCommit or voteRollback messages indicating whether or
not it is willing to commit. If voteCommit is used then optional Qualifiers may
be sent back to augment the protocol. If the participant is a subordinate
coordinator and finds that it cannot determine the status of some of its enlisted
participants then it must return the heuristicHazardFault message.
Alternatively, if a subordinate coordinator finds that some of the participants
have committed and some have rolled back then it must return the
heuristicMixedFault message.

• rollback: The coordinator is cancelling. If the participant is receiving this
message after a prepare message, then any error at this point will cause a
heuristic. If the participant is a subordinate coordinator and cannot determine
how all of its enlisted participants terminated then it must return the
heuristicHazardFault message. If the participant is a subordinate coordinator
and some of its enlisted participants committed then it must return the
heuristicMixedFault message. If the participant commits rather than rolls back
then it must return the heuristicCommitFault message. Otherwise the
participant sends the rolledback message.

• commit: The coordinator is top-level and is confirming. Any error at this point
will cause a heuristic. If the participant is a subordinate coordinator and cannot
determine how all of its enlisted participants terminated then it must return the
heuristicHazardFault message. If the participant is a subordinate coordinator
and some of its enlisted participants rolled back then it must return the
heuristicMixedFault message. If the participant rolls back rather than commits
then it must return the heuristicRollbackFault message. Otherwise the
participant returns a committed message.

Web Services Transaction Management Specification 24/07/2003

20

• onePhaseCommit: If only a single participant is registered with a two-phase
coordinator then it is possible for the coordinator to optimize the commit stage
and not have to execute two phases. If the participant is a subordinate
coordinator and cannot determine how all of its enlisted participants
terminated then it must return the HeuristicHazardFault message. If the
participant is a subordinate coordinator and some of its enlisted participants
rolled back then it must return the HeuristicMixedFault message. If the
participant rolls back rather than commits then it must return the
HeuristicRollbackFault message. Otherwise the participant returns either the
committed or rolledback message.

• forgetHeuristic: The participant made a post-prepare choice that was contrary
to the coordinator’s. Hence it may have caused a non-atomic (heuristic)
outcome. If this happens, the participant must remember the decision it took
(persistently) until the coordinator tells it via this message that it is safe to
forget. Success is indicated by sending the heuristicForgotten message. Any
other response is assumed to indicate a failure.

CoordinatorP
articipant

2PC Participant

prepare

v oteReadOnly

v oteCommit

v oteRollback

commit

heuristicHazardFault

heuristicMixedFault

heuristicCommitFault

heuristicRollbackFault

committed or rolledback

onePhaseCommit

rollback

f orgetHeuristic

Coordinator generated

Participant generated

heuristicForgotten

Figure 8, AT coordinator-to-participant message exchanges.

The WSDL portType declarations for the CoordinatorParticipant and
twoPCParticipant roles are shown in Figure 9.

<wsdl:portType name="twoPCParticipantPortType">

 <wsdl:operation name="prepare">

Web Services Transaction Management Specification 24/07/2003

21

 <wsdl:input message="tns:PrepareMessage"/>

 </wsdl:operation>

 <wsdl:operation name="onePhaseCommit">

 <wsdl:input message="tns:OnePhaseCommitMessage"/>

 </wsdl:operation>

 <wsdl:operation name="rollback">

 <wsdl:input message="tns:RollbackMessage"/>

 </wsdl:operation>

 <wsdl:operation name="commit">

 <wsdl:input message="tns:CommitMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forgetHeuristic">

 <wsdl:input message="tns:ForgetHeuristicMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="committed">

 <wsdl:input message="tns:CommittedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="rolledBack">

 <wsdl:input message="tns:RolledBackMessage"/>

 </wsdl:operation>

 <wsdl:operation name="vote">

 <wsdl:input message="tns:VoteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="heuristicForgotten">

 <wsdl:input message="tns:HeuristicForgottenMessage"/>

 </wsdl:operation>

 <wsdl:operation name="heuristicFault">

 <wsdl:input message="tns:HeuristicFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 9, WSDL portType Declarations for Coordinator and 2PCParticipant Roles

Web Services Transaction Management Specification 24/07/2003

22

Note, although an application Web Service may play the role of a participant, it is not
required to.

4.2.6 Pre- and post- two-phase commit processing

Most modern transaction processing systems allow the creation of participants that do
not take part in the two-phase commit protocol, but are informed before it begins and
after it has completed. They are called Synchronizations, and are typically employed
to flush volatile (cached) state, which may be being used to improve performance of
an application, to a recoverable object or database prior to the transaction committing;
once flushed, the data will the be controlled by a two-phase aware participant.

The AT sub-protocol URI for the synchronization protocol is
http://www.webservicestransactions.org/wsdl/wsTXM/tx-acid/sync/2003/03 and this
is used in the addParticipant invocation.

The message exchanges (ignoring the normal WS-CF coordinator-to-participant
message exchanges, including failures) are illustrated in Figure 10:

• beforeCompletion: A Synchronization participant is informed that the
coordinator it is registered with is about to complete the two-phase protocol
and in what state, i.e., committing or rolling back. The failure of the
participant at this stage will cause the coordinator to cancel if it is not already
doing so.

• afterCompletion: A Synchronization participant is informed that the
coordinator it is registered with has completed the two-phase protocol and in
what state, i.e., committed or rolled back (via the associated Status). Any
failures by the participant at this stage have no affect on the transaction.

CoordinatorP
articipant

Sy nchronizatio
n

bef oreCompletion

af terCompletion

success

Coordinator generated

Sy nchronization generated

Figure 10, AT coordinator-to-synchronization message exchanges.

The WSDL portType declarations for the CoordinatorParticipant and Synchronization
roles are shown in Figure 11.

<wsdl:portType name="SynchronizationPortType">

 <wsdl:operation name="beforeCompletion">

 <wsdl:input message="tns:BeforeCompletionMessage"/>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

23

 <wsdl:operation name="afterCompletion">

 <wsdl:input message="tns:AfterCompletionMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="beforeCompletionParticipantRegistered">

 <wsdl:input

message="tns:BeforeCompletionParticipantRegisteredMessage"/>

 </wsdl:operation>

 <wsdl:operation name="afterCompletionParticipantRegistered">

 <wsdl:input

message="tns:AfterCompletionParticipantRegisteredMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 11, WSDL portType Declarations for Coordinator and 2PCParticipant Roles.

Note, the participant is registered for both beforeCompletion and afterCompletion.

4.2.7 Coordinator state transitions for synchronization protocol

The state transitions for the transaction coordinator which has enrolled
Synchronizations is shown in Figure 12. In this scenario we assume the transaction is
committing: if it were to rollback, then only the AfterCompletion message will be sent
from the coordinator to the Synchronization participants.

Web Services Transaction Management Specification 24/07/2003

24

Figure 12, Transaction coordinator Synchronization state transitions.

The coordinator moves into the BeforeCompletion state and sends each enrolled
Synchronization the beforeCompletion message. Any error received by the
coordinator from a Synchronization at this stage will force the transaction to rollback.
Assuming no errors occur, the two-phase commit protocol is executed, as detailed
previously. Once the protocol has completed, the coordinator transits to the
AfterCompletion status and sends the afterCompletion message to all
Synchronizations; any errors at this stage do not affect the transaction outcome and
how they are dealt with is implementation dependant.

4.2.8 Recovery and interposition

Because WS-TXM layers on WS-CF, interposition is allowed though not required.
Individual participants may be subordinate coordinators to improve performance or to
federate a distributed environment into separate domains (possibly managed by
different organizations or transaction management systems).

Each participant or subordinate coordinator is responsible for ensuring that sufficient
data is made durable in order to complete the transaction in the event of failures.
Recovering participants or coordinators use the recovery mechanisms defined in WS-
CF to determine the current status of a transaction/participant and act accordingly.
Interposition and check pointing of state allow the system to drive a consistent view
of the outcome and recovery actions taken, but allowing always the possibility that
recovery isn’t possible and must be logged or flagged for the administrator.

Although enterprise transaction systems address the aspects of distributed recovery, in
a large scale environment or in the presence of long term failures, recovery may not
be automatic. As such, manual intervention may be necessary to restore an
application’s consistency.

Web Services Transaction Management Specification 24/07/2003

25

4.2.9 The context

<xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType"/>

 </xs:complexContent>

</xs:complexType>

<xs:element name="context" type="tns:ContextType"/>

Figure 13, Transaction Context.

4.2.10 Statuses

The following extensions to the WS-CTX Status type are returned by participants to
indicate the outcome of executing relevant parts of the protocol and are also used to
indicate the current status of the transaction:

• RollbackOnly: the status of the coordinator or participant is that it will
rollback eventually.

• RollingBack: the coordinator or participant is in the process of rolling back.

• RolledBack: the coordinator/participant has rolled back. This may be a
transient and in fact, because the protocol uses a presumed-abort optimisation,
the NoActivity status can be used to infer that the coordinator cancelled.

• Committing: the coordinator/participant is in the process of committing. This
does not mean that the final outcome will be Committed.

• Committed: the coordinator/participant has confirmed.

• HeuristicRollback: all of the participants rolled back when they were asked to
commit.

• HeuristicCommit: all of the participants committed when they were asked to
rollback.

• HeuristicHazard: some of the participants rolled back, some committed and
the outcome of others is indeterminate.

• HeuristicMixed: some of the participants rolled back whereas the remainder
committed.

• Preparing: the coordinator/participant is preparing.

• Prepared: the coordinator/participant has prepared.

These are specified in the AT schema, as per Figure 14..

Web Services Transaction Management Specification 24/07/2003

26

<xs:simpleType name="StatusType">

 <xs:restriction base="wstxm:StatusType">

 <xs:enumeration value="activity.status.tx-acid.ROLLBACK_ONLY"/>

 <xs:enumeration value="activity.status.tx-acid.ROLLING_BACK"/>

 <xs:enumeration value="activity.status.tx-acid.ROLLED_BACK"/>

 <xs:enumeration value="activity.status.tx-acid.COMMITTING"/>

 <xs:enumeration value="activity.status.tx-acid.COMMITTED"/>

 <xs:enumeration value="activity.status.tx-

acid.HEURISTIC_ROLLBACK"/>

 <xs:enumeration value="activity.status.tx-

acid.HEURISTIC_HAZARD"/>

 <xs:enumeration value="activity.status.tx-acid.HEURISTIC_MIXED"/>

 <xs:enumeration value="activity.status.tx-acid.PREPARING"/>

 <xs:enumeration value="activity.status.tx-acid.PREPARED"/>

 </xs:restriction>

</xs:simpleType>

Figure 14, AT StatusType.

4.3 Long running action

The long running action model (LRA) is designed specifically for those business
interactions that occur over a long duration. Within this model, an activity reflects
business interactions: all work performed within the scope of an activity is required to
be compensatable. Therefore, an activity’s work is either performed successfully or
undone. How services perform their work and ensure it can be undone if
compensation is required, are implementation choices and not exposed to the LRA
model. The LRA model simply defines the triggers for compensation actions and the
conditions under which those triggers are executed.

As with most transaction models, LRA is concerned only with ensuring participants
obey the protocol necessary to make an activity compensatable; semantics of the
business interactions are not part of LRA model. Issues such as isolation of services
between potentially conflicting activities and durability of service work are assumed
to be implementation decisions. The coordination protocol used to ensure an activity
is completed successfully or compensated is not two-phase and is intended to better
model business-to-business interactions. Although this may result in non-atomic
behaviour for the overall business activity, other activities may be started by the
application or service to attempt to compensate in some other manner.

Each LRA is tied to the scope of an activity. This means that when the activity
terminates, the LRA coordination protocol will be automatically performed either to
accept or compensate the work.

Web Services Transaction Management Specification 24/07/2003

27

In the LRA model, each activity is bound to the scope of a compensation interaction.
For example, when a user reserves a seat on a flight, the airline reservation centre may
take an optimistic approach and actually book the seat and debit the users account,
relying on the fact that most of their customers who reserve seats later book them; the
compensation action for this activity would obviously be to un-book the seat and
credit the user’s account. Work performed within the scope of a nested LRA must
remain compensatable until an enclosing activity informs the service(s) that it is no
longer required. For example, consider the night-out reservation example mentioned
earlier.

Figure 15, LRA example.

Figure 15 shows how part of the night-out may be mapped into LRAs. All of the
individual activities are compensatable. For example, this means that if LRA1 fails or
the user decides to not accept the booked taxi, the work will be undone automatically.
Because LRA1 is nested within another LRA, once LRA1 completes successfully any
compensation mechanisms for its work may be passed to LRA5: this is an
implementation choice for the Compensator. In the event that LRA5 completes
successfully, no work is required to be compensated, otherwise all work performed
within the scope of LRA5 (LRA1 to LRA4) will be compensated.

The coordinator-type URI for the LRA model is
http://www.webservicestransactions.org /wstxm/tx-lra/2003/03

In the following sections we shall use the terms LRA and compensation activity
interchangeably.

4.3.1 Restrictions imposed on using WS-CF

As well as the restrictions outlined previously for general WS-TXM protocols, the
LRA transaction model imposes the following additional restrictions:

Web Services Transaction Management Specification 24/07/2003

28

• It is illegal to call the WS-CF coordinate operation on the coordinator. All
WS-TXM coordinator implementations will return the notCoordinated
message if the coordinator receives a coordinate request.

4.3.2 Context

The context for the LRA protocol, from the LRA schema, is shown in Figure 16.

<xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType">

 <xs:sequence>

 <xs:element name="lra-id" type="xs:anyURI"/>

 <xs:element name="coordinator-hierarchy">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="coordinator-location"

 type="xs:anyURI" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

Figure 16, The LRA Protocol Context.

4.3.3 Services and Compensators

As in any business interaction, application services may or may not be compensatable.
Even the ability to compensate may be a transient capability of a service. An ALS for
the LRA is associated with the underlying CTX Service. It is up to the user of the
augmented context as to whether or not all services invoked within the scope of an
LRA must be compensatable. This choice is made by setting the MustUnderstand
attribute appropriately. Obviously by mixing the two service types the user may end
up with a business activity that will ultimately not be undone by the LRA model, but
which may require outside (application specific) compensation.

Web Services Transaction Management Specification 24/07/2003

29

A Compensator is the LRA participant that operates on behalf of a service to undo the
work it performs within the scope of an LRA or to compensate for the fact that the
original work could not be completed. How compensation is carried out will
obviously be dependant upon the service; compensation work may be carried out by
other LRAs which themselves have Compensators.

For example, consider the travel example illustrated in Figure 17, where normal (non-
failure) activities are connected by solid lines whereas compensation activities are
connected by dashed lines. In this case the user first attempts to book a first-class seat
on an airline; the compensator for this (which is executed in the event of a crash or
failure to complete the booking, for example) starts another LRA that tries to cancel
the booking. If the cancellation LRA fails, then its compensator emails the system
administrator for the airline reservation site; if the cancellation succeeds, however, it
tries to book an economy seat on the same flight (which for simplicity does not have a
compensator task).

Figure 17, Compensator LRAs.

Because LRAs may execute over a long period of time, compensation may have to
occur at any time and be tolerant of failures. Consequently, Compensators may have
to maintain information within a durable form.

When a service does work that may have to be later compensated within the scope of
an LRA, it enlists a Compensator participant with the LRA coordinator. The
Compensator (which is a WS-CF Participant), will be invoked in the following way
(illustrated in Figure 18) by the LRA coordinator when the activity terminates:

• Success: the activity has completed successfully. If the activity is nested then
Compensators may propagate themselves (or new Compensators) to the
enclosing LRA. Otherwise the Compensators are informed that the activity has
terminated and they can perform any necessary cleanups.

Web Services Transaction Management Specification 24/07/2003

30

• Fail: the activity has completed unsuccessfully. All Compensators that are
registered with the LRA will be invoked to perform compensation in the
reverse order. The coordinator forgets about all Compensators that indicated
they operated correctly. Otherwise, compensation may be attempted again
(possibly after a period of time) or alternatively a compensation violation has
occurred and must be logged.

Each service is required to log sufficient information in order to ensure (with best
effort) that compensation is possible. Because WS-TXM layers on WS-CF,
interposition is allowed though not required. Individual compensators may be
subordinate coordinators to improve performance or to federate a distributed
environment into separate domains.

Each compensator (participant) or subordinate coordinator is responsible for ensuring
that sufficient data is made durable in order to undo the LRA in the event of failures.
Recovering participants or coordinators use the recovery mechanisms defined in WS-
CF to determine the current status of the LRA and act accordingly. Interposition and
check pointing of state allow the system to drive a consistent view of the outcome and
recovery actions taken, but allowing always the possibility that recovery isn’t possible
and must be logged or flagged for the administrator. In a large scale environment or in
the presence of long term failures, recovery may not be automatic. As such, manual
intervention may be necessary to restore an application’s consistency.

LRALRALRALRAApplicationApplicationApplicationApplication CompensatorCompensatorCompensatorCompensator

begin

ServiceServiceServiceService ServiceServiceServiceService

operation

operation

addParticipant

addParticipant

compensate

complete (FAIL)

CompensatorCompensatorCompensatorCompensator

compensate

Figure 18, Example LRA interaction diagram.

In order to conduct the protocol, the following message interactions occur between the
coordinator and its participants (Compensators):

Web Services Transaction Management Specification 24/07/2003

31

• Compensator: this accepts the compensate and complete messages, indicating
it should either compensate for work or tidy up respectively. A Compensator
that cannot compensate must maintain its information until it is told to forget.

• Coordinator: the responses the coordinator accepts are compensated,
unknownCompensatorFault, cannotCompensateFault, completed, forgot and
cannotCompleteFault.

The message interactions (via the normal WS-CF Coordinator/Participant exchanges)
are shown in Figure 19; not shown are the other Coordinator/Participant message
exchanges.

Coordinat
orParticip

ant

Compensat
or

compensated

cannotCompensateFault

compensate

complete

Coordinator generated

Compensator generated

completed

unknownCompensatorFault

cannotCompleteFault

f orget

f orgot

Figure 19, Coordinator-to-Compensator message interactions.

It is expected that the receipt of cannotCompensateFault or cannotCompleteFault will
be handled by the application or logged if not.

The WSDL portType declarations for the CoordinatorParticipant and Compensator
roles are shown in Figure 20.

<wsdl:portType name="CompensatorPortType">

 <wsdl:operation name="compensate">

 <wsdl:input message="tns:CompensateMessage"/>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

32

 <wsdl:operation name="complete">

 <wsdl:input message="tns:CompleteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forget">

 <wsdl:input message="tns:ForgetMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorPortType">

 <wsdl:operation name="compensated">

 <wsdl:input message="tns:CompensatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completed">

 <wsdl:input message="tns:CompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forgot">

 <wsdl:input message="tns:ForgotMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCompensator">

 <wsdl:input message="tns:UnknownCompensatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cannotCompensate">

 <wsdl:input message="tns:CannotCompensateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cannotComplete">

 <wsdl:input message="tns:CannotCompleteFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 20, WSDL portType Declarations for CoordinatorParticipant and Compensator Roles.

Note, a Compensator can resign from the LRA at any time prior to the completion of
an activity by sending the removeParticipant message to the coordinator.

4.3.4 Qualifiers

When a Compensator is enrolled with an LRA, the entity performing the enrol can
supply a number of qualifiers which may be used by the coordinator and business

Web Services Transaction Management Specification 24/07/2003

33

application to influence the overall outcome of the activity. The currently supported
qualifiers are:

• TimeLimit: the time limit (in seconds) that the Compensator can guarantee
that it can compensate the work performed by the service. After this time
period has elapsed, it may no longer be possible to undo the work within the
scope of this (or any enclosing) LRA. It may therefore be necessary for the
application or service to start other activities to explicitly try to compensate
this work. The application or coordinator may use this information to control
the lifecycle of an LRA.

The time limit qualifier from the LRA schema is shown in Figure 21.

<xs:element name="TimeLimitQualifier">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="wstxm:TimeLimitQualifierType">

 <xs:sequence>

 <xs:element name="compensator" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

Figure 21, The Time Limit Qualifier.

4.3.5 Coordinator

The LRA model uses a presumed nothing protocol: the coordinator must
communicate with Compensators in order to inform them of the LRA activity. Every
time a Compensator is enrolled with an LRA, the coordinator must make information
about it durable so that the Compensator can be contacted when the LRA terminates,
even in the event of subsequent failures.

4.3.6 Independent LRAs and application structuring

So far we have not really considered the relationship between LRAs in an application.
Obviously LRAs may be used sequentially and concurrently as illustrated in Figure
15, where the termination of an LRA signals the start of some other unit of work
within an application. However, LRAs are units of compensatable work and an
application may have as many such units of work operating simultaneously as it needs
to accomplish its tasks. Furthermore, the outcome of work within LRAs may
determine how other LRAs are terminated.

Web Services Transaction Management Specification 24/07/2003

34

An application can be structured to so that LRAs are used to assemble units of
compensatable work and then held in the active state while the application performs
other work in the scope of different (concurrent or sequential) LRAs. Only when the
right subset of work (LRAs) is arrived at by the application will that subset be
confirmed; all other LRAs will be told to cancel (complete in a failure state).

For example, Figure 18 illustrates how a travel agency application may be structured
using this technique. LRA1 is used to obtain the taxi to the airport. The user then
wishes to get the cheapest flight from three different airlines and so the agency
structures each seat reservation (or booking, depending upon how the user feels) as a
separate LRA. In this example, the airline represented by LRA2 gives a cost of $150
for the flight; while LRA2 is still active, the application starts LRA3, a new
independent-level LRA to ask the next airline for a costing: LRA3 gives a value of
$160 and so it is cancelled. Finally the travel agency starts LRA4 to check the other
airline, which gives a value of $120 for the seat. Thus, LRA2 is cancelled and LRA4
is confirmed, with the result that the seat is bought. The travel agency then uses the
same technique to select the cheapest travel insurance from amongst two options
(using LRA5 and LRA6).

Figure 22, Using LRAs to select units of work.

4.3.7 Status values

The following extensions to the WS-CTX Status type are returned by Compensators
to indicate the current status:

• Compensating: the Compensator is currently compensating for the LRA.

• Compensated: the Compensator has successfully compensated for the LRA.

• FailedToCompensate: the Compensator was not able to compensate for the
LRA. It must maintain information about the work it was to compensate until
the coordinator sends it a forget message.

• Completing: the Compensator is tidying up after being told to complete.

• Completed: the coordinator/participant has confirmed.

Web Services Transaction Management Specification 24/07/2003

35

• FailedToComplete: the Compensator was unable to tidy-up.

4.4 Business process transaction

In the business process transaction model (BP model) all parties involved in a
business process reside within business domains, which may themselves use business
processes to perform work. Business process transactions are responsible for
managing interactions between these domains. A business process (business-to-
business interaction) is split into business tasks and each task executes within a
specific business domain. A business domain may itself be subdivided into other
business domains (business processes) in a recursive manner. An individual task may
require multiple services to work. Each task is assumed to be a compensatable unit of
work. However, as with the LRA model described earlier, how compensation is
provided is an implementation choice for the task.

For example, consider the purchasing of a home entertainment system example shown
in Figure 23. The on-line shop interacts with its specific suppliers, each of which
resides in its own business domain. The work necessary to obtain each component is
modelled as a separate task. In this example, the HiFi task is actually composed of
two sub-tasks.

Figure 23, Business processes and tasks.

In this example, the user may interact synchronously with the shop to build up the
entertainment system. Alternatively, the user may submit an order (possibly with a list
of alternate requirements) to the shop which will eventually call back when it has
been filled; likewise, the shop then submits orders to each supplier, requiring them to
call back when each component is available (or is known to be unavailable).

The business process transaction model supports this synchronous and asynchronous
interaction pattern. Business domains are instructed to perform work within the scope
of a global business process. The business process has an overall manager that may be
informed by individual tasks when they have completed their work (either

Web Services Transaction Management Specification 24/07/2003

36

successfully or unsuccessfully), or it may periodically communicate with each task to
determine its current status. In addition, each task may make period checkpoints of its
progress such that if a failure occurs, it may be restarted from that point rather than
having to start from the beginning. A business process can either terminate in a
confirmed (successful) manner in which case all of the work requested will have been
performed, or it will terminate in a cancelled (unsuccessful) manner, in which case all
of the work will be undone.

If it cannot be undone, then this fact must be logged. One key difference between the
business process transaction model and that of traditional 2PC is that it assumes
success, that is the BP model is optimistic and assumes the failure case is the minority
and can be handled or resolved offline if necessary, or through
replay/void/compensation, but not always automatically, often requiring human
interaction.

Just as this specification does not mandate how individual business tasks perform
work, it does not mandate how a business task undoes its work. It may use a
compensation mechanism similar to the LRA model presented earlier, or it may use
some other framework.

Logging is essential in the BP model for replay, void, and compensation (attempts to
“rollback” or restore the initial state). However, recovery may ultimately be the
responsibility of a manual operator if automatic recovery/compensation is not
possible. As we shall see, interposition plays a major role in the BP model to improve
performance or to federate a distributed environment into separate domains. In fact
user intervention is likely to be an important part of business process management, as
is monitoring of every step. As such, although the protocols are described in terms of
participant services, it is expected that in some cases implementations of participants
will interact directly with operators. The asynchronous nature of the BP model allows
arbitrary periods of time to elapse between requests and responses to assist in this type
of interaction.

Each participant or subordinate coordinator is responsible for ensuring that sufficient
data is made durable in order to complete the BP even in the event of failures.
Recovering participants or coordinators use the recovery mechanisms defined in WS-
CF to determine the current status of the BP and act accordingly. Interposition and
check pointing of state allow the system to drive a consistent view of the outcome and
recovery actions taken, but allowing always the possibility that recovery isn’t possible
and must be logged or flagged for the administrator. In a large scale environment or in
the presence of long term failures, recovery may not be automatic. As such, manual
intervention may be necessary to restore an application’s consistency.

A business process transaction is associated with an activity, such that the lifetime of
the activity is the lifetime of the business process (essentially the lifetime of the
business-to-business interaction). The coordinator-type URI for the BP model is
http://www.webservicestransactions.org/wstxm/tx-bp/2003/03

Figure 24 illustrates the state transitions for a business process (and business
task).Once created, the business process (which is structured as an activity) is in the
Active state. From here it may transit to the Cancelled state and in which case no

Web Services Transaction Management Specification 24/07/2003

37

further work is performed. More typical is that it moves to the Working state where it
may remain for as long as is necessary to perform the work necessary.

How (and where to) the business process moves from this state will depend upon the
application and the structure of any individual business tasks. If there are no failures
(e.g., all work requested can be performed) then the process moves to the Confirmed
state and all work is completed. However, if there are failures (e.g., a machine crash
or the fact that a requested item cannot be found to fulfil an order) then the process
may either move to the cancelled state (signifying that all work performed has been
undone) or it moves to the Failure state where business-level compensation (or other
recovery mechanisms such as void and replay) may occur.

This compensation is different from that which occurs to undo the entire business
process: it is an attempt by each task/process to compensate for the inability to fulfil a
specific business requirement. If it is possible to compensate then the task moves back
to the Working state; otherwise it moves to the Cancelled state. Because compensation
may occur in an application/domain specific manner it may include manual (operator)
involvement. As such, compensation can take arbitrary amounts of time.

Figure 24, Business process state transitions.

4.4.1 Context

The context type for the Business Process sub-protocols is shown in

<xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType">

Web Services Transaction Management Specification 24/07/2003

38

 <xs:sequence>

 <xs:element name="process-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Figure 25, The BP Protocol Context Type

4.4.2 Business domains and interposition

In order to participant within a business process transaction (BP model), each business
domain is exposed as a single subordinate (interposed) coordinator, forming a parent-
child relationship; the business domain is identified by the coordinator URI. The
interposed coordinator is responsible for managing the domains participation within
the overall business transaction. The internal implementation of a domain is not the
responsibility of this specification. In order to perform work necessary for a business
task a domain may use its own business process transaction, ACID transactions, or
some other infrastructure.

For example, Figure 26 shows how the home entertainment system would be
federated into interposed coordinator domains. Each domain is represented by a
subordinate coordinator that masks the internal business process infrastructure from
its parent. Not only does the interposed domain require the use of a different context
when communicating with services within the domain (the coordinator endpoint is
different), but each domain may use different protocols to those outside of the
domain: the subordinate coordinator may then act as a translator from protocols
outside the domain to protocols used within the domain.

For example, a domain may be implemented entirely using the OASIS BTP with the
interposed coordinator responsible for mapping BP protocol messages into BTP’s
atom or cohesion messages and vice versa. Another domain (possibly in the same
overall business process) may use the OMG’s Object Transaction Service (OTS) and
therefore provide an interposed coordinator to translate between the BP model and the
OTS. The important point is that as far as a parent coordinator in the BP hierarchy is
concerned it interacts with participants and as long as those participants obey the BP
protocol, it cannot determine the implementation.

Web Services Transaction Management Specification 24/07/2003

39

HiFi domain

DVD domain

Turntable Speakers

Root coordinator

Video domain

Figure 26, Example business process interposition.

This specification does not define what constitutes a business domain, i.e., what
collection of services are grouped into a single domain. Neither does it specify how or
when interposition occurs on behalf of a given domain. For example, the first service
that resides within a specific domain may be responsible for performing interposition.
Or interposition may occur only when work is done that is to be controlled by the
overall business process.

When and where to use interposition is a design decision. Typically there will be a
business transaction manager (e.g., the root coordinator) that knows which systems
have been updated or not (i.e., knows which systems have completed and with what
status). It knows either because the participants have notified it of the completion and
status, or because it asked for a response and did not get one. Or it knows some parts
have finished with others still pending.

Unlike traditional transaction systems where recovery is typically automatic and
required little or no user or application intervention, in a long running business
process that executes over many disparate business domains, the hardest part is
determining when a failure has occurred and what to do in such a situation. In the
worst case, the error is logged and brought to the attention of an administrator. In the
best case, the compensation or undo logic is executed, or some workaround is found
through presenting the exception to the user and having the user choose another
possible option.

4.4.3 Protocols

The protocols used by the business process transaction model can be categorized as
predominately driven from the business domain or to the business domain.

4.4.3.1 From the business domain

It is important to understand how a business process transaction is controlled and
ultimately terminated. In a traditional transaction system, there is a single transaction
terminator (the entity that ultimately informs the coordinator to commit or rollback).
However, in a business process transaction there may never be a single terminator or
the role of the terminator may flow with the business interactions. Each entity that
wishes to be informed when the business process can be terminated may enlist a

Web Services Transaction Management Specification 24/07/2003

40

TerminatorParticipant with the coordinator, which is an instance of the WS-CF
Participant.

The TerminatorParticipant uses the terminate-notification sub-protocol, which is
identified by the URI http://www.webservicestransactions.org/wstxm/tx-
bp/tn/2003/03

This protocol is executed automatically by the coordinator when the business process
enters a completion state. The completion state being defined by everything running
to successful conclusion, cancel, compensation, or user workaround. The Participant
accepts the following messages (illustrated in Figure 27):

• confirmComplete: the business process can be completed successfully. The
TerminatorParticipant responds with the confirmCompleted message. Any
other response is ignored by the coordinator.

• cancelComplete: the business process can only be cancelled. The
TerminatorParticipant calls back with the cancelCompleted message. Any
other response is ignored by the coordinator.

Coordinat
orParticip

ant

TerminatorP
articipant

conf irmCompleted

cancelComplete

Coordinator generated

TerminatorParticipant generated

conf irmComplete

cancelCompleted

Figure 27, Coordinator-to-terminator interactions.

The WSDL portType declarations for the CoordinatorParticipant and
TerminatorParticipant roles is shown in Figure 28.

<wsdl:portType name="TerminatorParticipantPortType">

 <wsdl:operation name="confirmComplete">

 <wsdl:input message="ConfirmCompleteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelComplete">

 <wsdl:input message="CancelCompleteMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

http://www.webservicestransactions.org/wstxn/tx-bp/tn
http://www.webservicestransactions.org/wstxn/tx-bp/tn

Web Services Transaction Management Specification 24/07/2003

41

 <wsdl:operation name="confirmCompleted">

 <wsdl:input message="ConfirmCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelCompleted">

 <wsdl:input message="CancelCompletedMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 28, The CoordinatorParticipant and TerminatorParticipant Roles

It is beyond the scope of this specification to determine whether or not only a single
TerminatorParticipant can be enlisted with the business process, since this will depend
upon the application.

If a business domain finds that it cannot fulfil its work it can either cause the entire
business process to fail (set the CompletionStatus to FAIL_ONLY), or it can give its
parent the opportunity to perform some compensation. This compensation will be
specific to the business process, but could include removing the failed business
domain from the overall process or asking the domain to perform some alternate
work. In this case, the parent registers a BusinessProcessParticipant with the child
domain (interposed coordinator) and uses the businessProcess protocol.

The BP model sub-protocol URI for the businessProcess protocol is
http://www.webservicestransactions.org/wstxm/tx-bp/bp/2003/03 and this is used in
the addParticipant invocation. The businessProcess protocol can be executed as many
times as necessary within the business process by sending the appropriate WS-CF
coordinate message to the coordinator.

The Participant accepts the following messages (illustrated in Figure 24); the
CoordinatorParticipant end-point address as defined in WS-CF is propagated on all
messages:

• failure: the child (interposed) coordinator sends this message to the participant
(and indirectly to its parent) to indicate that it cannot perform the requested
work and has cancelled. Because the message is contextualized, the
identification of the business domain (coordinator URI) is included in the
message. The BusinessProcessParticipant sends the failureAcknowledged
message. Any other response is ignored.

• failureHazard: the child (interposed) coordinator sends this message to the
participant (and indirectly to its parent) to indicate that it cannot perform the
requested work and has been unable to cancel completely. Because the
message is contextualized, the identification of the business domain
(coordinator URI) is included in the message. The BusinessProcessParticipant
sends the failureHazardAcknowledged message. Any other response is
ignored.

Web Services Transaction Management Specification 24/07/2003

42

Coordinat
orParticip

ant

BusinessPr
ocessPartic

ipant

f ailureAcknowledged

f ailureHazard

Coordinator generated

BusinessProcessParticipant generated

f ailure

f ailureHazardAcknowledged

Figure 29, Business process protocol interactions.

The WSDL portType declarations for the CoordinatorParticipant and
BusinessProcessParticipant roles are shown in

<wsdl:portType name="BusinessProcessParticipantPortType">

 <wsdl:operation name="failure">

 <wsdl:input message="FailureMessage"/>

 </wsdl:operation>

 <wsdl:operation name="failureHazard">

 <wsdl:input message="FailureHazardMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="failureAcknowledged">

 <wsdl:input message="FailureAcknowledgedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="failureHazardAcknowledged">

 <wsdl:input message="FailureHazardAcknowledgedMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 30, CoordinatorParticipant and BusinessProcessParticipant portType Declarations.

4.4.3.2 To the business domain

Within the BP model, each business domain is represented by a
BusinessTaskCoordinator. The identifier of the BusinessTaskCoordinator may be
used at the application (business process) level to determine task associations.
Because a business process is modelled as an activity, a BusinessTaskCoordinator is
implicitly bound to a single business process. The business domain is responsible for

Web Services Transaction Management Specification 24/07/2003

43

managing the work given to it within the scope of the activity and mapping it to the
business process, presumably via the activity identifier. The BP protocol defines the
following coordination protocols for which a BusinessTaskCoordinator can enlist:

• checkpoint: when instructed to do so, each domain creates a checkpoint from
which it can be restarted should it be instructed to later. Each checkpoint is
uniquely identified and the identifier can later be used to restart the business
process from a specific checkpoint. The failure (or inability) of a domain to
create a checkpoint invalids the entire checkpoint. The checkpointTimelimit
Qualifier may be returned to indicate for how long the checkpoint will be
valid.

• restart: each domain is instructed to restart itself from the specified
checkpoint.

• workStatus: determines whether or not the individual domains have completed
their work.

• completion: called on all business domains to either confirm or cancel the
work of the business process.

The BP sub-protocol URI for the checkpoint protocol is
http://www.webservicestransactions.org/wstxm/tx-bp/cp/2003/03 and this is used in
the addParticipant invocation. The checkpoint protocol can be executed as many
times as necessary by the application within the business process by sending the
appropriate WS-CF coordinate message to the coordinator.

The Participant accepts the following messages (illustrated in Figure 31).

• createCheckpoint: the business domain should attempt to create a consistent
checkpoint and associate it with the unique identifier provided by the
coordinator. The checkpoint is required to be maintained for the duration of
the business process. If the business domain can create the checkpoint then it
sends the checkpointed message to the CoordinatorParticipant. If the
checkpoint cannot be created then the checkpointFailed message is sent.
Failure to create a checkpoint does not automatically mean that the business
process fails; as such the completion status of the activity is not changed.

If a consistent checkpoint is obtained across all business domains, the
checkpointingSucceeded message is sent to the ClientRespondant (the endpoint
representing the entity that sent the coordinate message) including the unique
checkpoint identifier. Otherwise a checkpoiningtFailed message is sent.

Web Services Transaction Management Specification 24/07/2003

44

Figure 31, Checkpoint protocol interactions.

The actor definitions for the Checkpoint protocol are shown in Figure 31.

<wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="checkpointingSuccedded">

 <wsdl:input message="tns:CheckpointingSucceededfulMessage"/>

 </wsdl:operation>

 <wsdl:operation name="checkpointingFailed">

 <wsdl:input message="tns:CheckpointingFailedMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="createCheckpoint">

 <wsdl:input message="tns:CreateCheckpointMessage"/>

 </wsdl:operation>

 <wsdl:operation name="checkpointed">

 <wsdl:input message="tns:CheckpointedMessage"/>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

45

 <wsdl:operation name="checkpointFailed">

 <wsdl:input message="tns:CheckpointFailedMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="checkpoint">

 <wsdl:input message="tns:CheckpointMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 32, Checkpoint Protocol Actor WSDL portType Declarations.

The BP sub-protocol URI for the restart protocol is
http://www.webservicestransactions.org/wstxm/tx-bp/restart/2003/03 and this is used
in the addParticipant invocation. The restart protocol can be executed as many times
as necessary by the application within the business process by sending the appropriate
WS-CF coordinate message to the coordinator.

The Participant accepts the following messages (illustrated in Figure 33); the
CoordinatorParticipant end-point address as defined in WS-CF is propagated on all
messages:

• restart: the unique checkpoint identifier is included in the tryRestart message
and instructs the business domain to restart its work from the specified
checkpoint. Any work that may have occurred subsequent to this checkpoint
must be undone by the domain. If the domain cannot restart from the specified
checkpoint (e.g., it cannot undo additional work) then it sends the
cannotRestart message to the CoordinatorParticipant. Otherwise the restarted
message is sent.

If the checkpoint identifier is invalid, the coordinator sends the invalidCheckpoint
message to the ClientRespondant ((the endpoint representing the entity that sent the
coordinate message). If a consistent restart is obtained across all business domains,
the restartedSuccessfully message is sent to the ClientRespondant including the
unique checkpoint identifier. Otherwise a restartFailed message is sent and the
completion status of the activity representing the business process is set to
FAIL_ONLY.

Web Services Transaction Management Specification 24/07/2003

46

Figure 33, Restart protocol interactions.

The actor definitions for the Restart protocol are shown in Figure 33.

<wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="invalidCheckpoint">

 <wsdl:input message="tns:InvalidCheckpointMessage"/>

 </wsdl:operation>

 <wsdl:operation name="restartedSuccessfully">

 <wsdl:input message="tns:RestartedSuccessfullyMessage"/>

 </wsdl:operation>

 <wsdl:operation name="restartFailed">

 <wsdl:input message="tns:RestartFailedMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="tryRestart">

 <wsdl:input message="tns:TryRestartMessage"/>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

47

 <wsdl:operation name="restarted">

 <wsdl:input message="tns:RestartedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cannotRestart">

 <wsdl:input message="tns:CannotRestartMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="restart">

 <wsdl:input message="tns:RestartMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 34, The Restart Protocol Actor WSDL portType Declarations.

An application uses the workStatus protocol to determine whether or not the business
process as a whole is able to complete successfully, such that all work requested has
been performed and can be confirmed (the business process has entered a completion
state). For example, in the home entertainment example, the user may invoke this
protocol to determine whether all of the individual components have been procured
and are awaiting final confirmation of the order. The BP sub-protocol URI for the
workStatus protocol is http://www.webservicestransactions.org/wstxm/tx-
bp/ws/2003/03 and this is used in the addParticipant invocation. The workStatus
protocol can be executed by the application as many times as necessary by the
application within the business process by sending the appropriate WS-CF coordinate
message to the coordinator.

The Participant accepts the following messages (illustrated in Figure 35); the
CoordinatorParticipant end-point address as defined in WS-CF is propagated on all
messages:

• getWorkStatus: this message is sent to each business domain to determine the
current status of the work (task). If the task is ready to complete in a
successful manner then the BusinessTaskCoordinator responds with the
workStatusCompleted message. If the task has cancelled its work then the
BusinessTaskCoordinator responds with the workStatusCancelled message
and the completion status of the activity is set to FAIL_ONLY. If the task is
still processing its work then it responds with the workStatusProcessing
message. The task may provide additional Qualifiers on the
workStatusCompleted or workStatusProcessing messages, for example to
indicate how much longer the task may require in order to complete
processing.

Web Services Transaction Management Specification 24/07/2003

48

Because the work performed by each business domain may take arbitrary amounts of
time to complete, it is permissible for each domain to autonomously inform the
coordinator when it is complete (in either a success or failure condition). A completed
business domain sends a message to the coordinator indicating either workCompleted
or workCancelled.

If an importing business domain completes its work on the first request then it is
possible to optimize the protocol and indicate to the coordinator that this has occurred.
To do so, the business domain can specify one of the Qualifiers described in 4.4.4
during interposition.

If all of the enlisted BusinessTaskCoordinators inform the coordinator that they have
completed, then the coordinator will use the terminate-notification protocol described
earlier.

If all of the business domains indicate they are ready to complete then the
workCompleted message is sent to the ClientRespondant. If at least one domain is not
yet ready then the workProcessing message is sent. Alternatively, if all of the domains
have cancelled their work, the workCancelled message is sent to the
ClientRespondant and the activity completion status is set to FAIL_ONLY.

Figure 35, Status of work status protocol interactions.

The actor definitions for the Work Status protocol are shown in Figure 36.

Web Services Transaction Management Specification 24/07/2003

49

<wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="workStatusCompleted">

 <wsdl:input message="tns:WorkStatusCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workStatusCancelled">

 <wsdl:input message="tns:WorkStatusCancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workStatusProcessing">

 <wsdl:input message="tns:WorkStatusProcessingMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="getWorkStatus">

 <wsdl:input message="tns:GetWorkStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workProcessing">

 <wsdl:input message="tns:WorkProcessingMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workCompleted">

 <wsdl:input message="tns:WorkCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workCancelled">

 <wsdl:input message="tns:WorkCancelledMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="workStatus">

 <wsdl:input message="tns:WorkStatusMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 36, The Work Protocol Actor WSDL portType Declarations.

The BP sub-protocol URI for the completion protocol is
http://www.webservicestransactions.org/wstxm/tx-bp/completion/2003/03 and this is

Web Services Transaction Management Specification 24/07/2003

50

used in the addParticipant invocation. The completion protocol can only be executed
once when the WS-CTX activity terminates. It is illegal to send the coordinate
message to the coordinator specifying this protocol URI. If this is attempted, a
compliant coordinator will return the notCoordinated message.

The Participant accepts the following messages (illustrated in Figure 37).

• confirm: the coordinator sends this message if the CompletionStatus of the
business activity is SUCCESS. The business domain is required to confirm all
work that it has performed in the scope of this business process. If successful,
the confirmed message is sent to the CoordinatorParticipant. If the work
cannot be confirmed then it should be cancelled (undone) and the cancelled
message is sent. Alternatively, if the inability to complete the work is a
transient, the confirming message is sent to the coordinator and the coordinator
must enquire as to the eventual result; both the coordinator and the business
domain must retain sufficient durable information to ensure this can occur
despite failures. If it is not possible to determine whether or not the work has
been completed (or in what state), the unknownResult message is sent.

• cancel: the coordinator sends this message if the CompletionStatus of the
business activity is FAIL or FAIL_ONLY. The business domain is required to
undo all work that it has performed in the scope of this business process. If
successful, the cancelled message is sent to the CoordinatorParticipant. If the
work cannot be cancelled and was in fact performed, then the confirmed
message is sent back to the coordinator. Alternatively, if the inability to cancel
the work is a transient, the cancelling message is returned by the business
domain and the coordinator must enquire as to the eventual result; both the
coordinator and the business domain must retain sufficient durable information
to ensure this can occur despite failures. If it is not possible to determine
whether or not the work has been completed (or in what state), the
unknownResult message is sent.

If all of the business process work is successfully performed, a processConfirmed
message is ultimately sent to the ClientRespondant. If all of the work is undone, then
the processCancelled message is sent. The inability to determine the results of all
business domains will cause the unknownResultOccurred message to be sent and the
identifiers for all such domains will be included in the message. If some domains
cancelled whilst other confirmed, the mixedResponse message will be sent and will
contain the identifiers of each domain that cancelled and each domain that confirmed.

Error! Objects cannot be created from editing field codes.

Figure 37, Completion protocol interactions.

The actor definitions for the Completion protocol are shown in Figure 37.

<wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="unknownResultOccurred">

 <wsdl:input message="tns:UnknownResultOccurredMessage"/>

Web Services Transaction Management Specification 24/07/2003

51

 </wsdl:operation>

 <wsdl:operation name="processConfirmed">

 <wsdl:input message="tns:ProcessConfirmedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="processCancelled">

 <wsdl:input message="tns:ProcessCancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="mixedResponse">

 <wsdl:input message="tns:MixedResponseMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="confirmProcess">

 <wsdl:input message="tns:ConfirmProcessMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelProcess">

 <wsdl:input message="tns:CancelProcessMessage"/>

 </wsdl:operation>

 <wsdl:operation name="confirming">

 <wsdl:input message="tns:ConfirmingMessage"/>

 </wsdl:operation>

 <wsdl:operation name="confirmed">

 <wsdl:input message="tns:ConfirmedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelled">

 <wsdl:input message="tns:CancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownResult">

 <wsdl:input message="tns:UnknownResultMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="BusinessTaskCoordinationPortType">

 <wsdl:operation name="confirm">

Web Services Transaction Management Specification 24/07/2003

52

 <wsdl:input message="tns:ConfirmMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancel">

 <wsdl:input message="tns:CancelMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 38, The Completion Protocol Actor WSDL portType Declarations.

It is expected that the receipt of cancelling, confirming or unknownResult will be
handled by the application or logged if not.

Note, a BusinessTaskCoordinator can resign from the business process at any time
prior to the completion of an activity by sending the removeParticipant message to
the coordinator.

4.4.3.3 Business process entities

Figure 39 illustrates how the various entities (end points) we have discussed in
relation to the BP model may fit into the various business domains that constitute the
overall business process. As mentioned before, this structuring allows for the
federation of a business process. This means that although different implementations
or coordination protocols may be used within a domain (federated space), the
BusinessProcessParticipant translates to and from the BP protocol.

As shown, the TerminatorParticipant will typically reside at the root of the business
process; this may be the ultimate root (e.g., the client) or may be a sub-root for nested
business tasks.

BusinessProcessParticipants may be registered with child tasks in order to provide a
level of business-fault tolerance. Each sub-domain (task) has a
BusinessTaskCoordinator that ties it into the overall business process.

Web Services Transaction Management Specification 24/07/2003

53

Figure 39, Example business process entities.

4.4.4 Qualifers

When a BusinessTaskCoordinator is enrolled with a business process, the entity
performing the enrol can supply a number of qualifiers which may be used by the
coordinator and business application to influence the overall outcome of the activity.
The currently supported qualifiers are:

• workCompleted: the task is ready to complete in a successful manner. This is
equivalent to the business domain sending the workCompleted setResponse
message.

• workCancelled: the task has cancelled its work; the completion status of the
activity is set to FAIL_ONLY. This is equivalent to the business domain
sending the workCancelled setResponse message.

Web Services Transaction Management Specification 24/07/2003

54

• checkpointTimelimit: it is likely that each checkpoint that is taken may be
valid for only a specific period of time. This Qualifier is used to indicate (in
seconds) how long a specific checkpoint can be relied upon. The time limit is
not meant to be a guarantee on the lifecycle of a checkpoint, but while the time
limit has not elapsed, the domain is required to retain the checkpoint with best
effort.

4.4.5 Status values

The following extensions to the WS-CTX Status type are returned by business
domains or their participants to indicate the current status:

• Working: the domain is performing the business task.

• Checkpointing: the domain is currently performing a checkpoint operation.

• Checkpointed: the domain has successfully checkpointed.

• Restarting: the domain is currently restarting from a saved checkpoint.

• Restarted: the domain has successfully restarted from a saved checkpoint.

• Cancelling: the domain is in the process of cancelling the business task.

• Cancelled: the domain has cancelled the business task.

• Confirming: the domain is in the process of confirming the business task.

• Confirmed: the domain has confirmed the business task.

• Failure: there has been a failure in the normal processing of the business task.

5. WSDL Interfaces and XML Schema Definitions

5.1 The WS-TXM Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wscf="http://www.webservicestransactions.org/schemas/wscf/2003/

03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/2003/

03">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wscf/2003/0

3" schemaLocation="../../WS-CF/xml/wscf.xsd"/>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="wscf:AssertionType"/>

 </xs:complexContent>

Web Services Transaction Management Specification 24/07/2003

55

 </xs:complexType>

 <xs:element name="assertion" type="tns:AssertionType"

abstract="true"/>

 <xs:complexType name="FaultType">

 <xs:complexContent>

 <xs:extension base="wscf:FaultType"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="fault" type="tns:FaultType" abstract="true"/>

 <xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wscf:ContextType">

 <xs:sequence>

 <xs:element name="timelimit" type="xs:positiveInteger"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="context" type="tns:ContextType"

substitutionGroup="wscf:context"/>

 <xs:complexType name="QualifierType">

 <xs:complexContent>

 <xs:extension base="wscf:QualifierType"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="qualifier" type="tns:QualifierType"

abstract="true" substitutionGroup="wscf:qualifier"/>

 <xs:simpleType name="StatusType">

 <xs:restriction base="wscf:StatusType"/>

 </xs:simpleType>

 <xs:element name="status" type="tns:StatusType"

substitutionGroup="wscf:status"/>

</xs:schema>

Web Services Transaction Management Specification 24/07/2003

56

5.2 The tx-acid Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-acid/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2003/03" xmlns:

wstxm="http://www.webservicestransactions.org/schemas/wstxm/2003/03"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/2003/

03" schemaLocation="../wstxm.xsd"/>

 <xs:simpleType name="StatusType">

 <xs:restriction base="wstxm:StatusType">

 <xs:enumeration value="activity.status.tx-acid.ROLLBACK_ONLY"/>

 <xs:enumeration value="activity.status.tx-acid.ROLLING_BACK"/>

 <xs:enumeration value="activity.status.tx-acid.ROLLED_BACK"/>

 <xs:enumeration value="activity.status.tx-acid.COMMITTING"/>

 <xs:enumeration value="activity.status.tx-acid.COMMITTED"/>

 <xs:enumeration value="activity.status.tx-

acid.HEURISTIC_ROLLBACK"/>

 <xs:enumeration value="activity.status.tx-

acid.HEURISTIC_HAZARD"/>

 <xs:enumeration value="activity.status.tx-

acid.HEURISTIC_MIXED"/>

 <xs:enumeration value="activity.status.tx-acid.PREPARING"/>

 <xs:enumeration value="activity.status.tx-acid.PREPARED"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="status" type="tns:StatusType"

substitutionGroup="wstxm:status"/>

 <xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType"/>

 </xs:complexContent>

 </xs:complexType>

Web Services Transaction Management Specification 24/07/2003

57

 <xs:element name="context" type="tns:ContextType"/>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="wstxm:AssertionType"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="FaultType">

 <xs:complexContent>

 <xs:extension base="wstxm:FaultType"/>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

5.3 2PC Protocol

5.3.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-acid/2pc/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03"

xmlns:2pc="http://www.webservicestransactions.org/schemas/wstxm/2pc/2

003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/2pc/2

003/03" location="2pc.xsd"/>

 <!-- 2PC protocol messages -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="2pc:context"/>

 </wsdl:message>

 <wsdl:message name="PrepareMessage">

 <wsdl:part name="content" element="2pc:prepare"/>

 </wsdl:message>

 <wsdl:message name="VoteMessage">

 <wsdl:part name="content" element="2pc:vote"/>

Web Services Transaction Management Specification 24/07/2003

58

 </wsdl:message>

 <wsdl:message name="RollbackMessage">

 <wsdl:part name="content" element="2pc:rollback"/>

 </wsdl:message>

 <wsdl:message name="RolledBackMessage">

 <wsdl:part name="content" element="2pc:rolled-back"/>

 </wsdl:message>

 <wsdl:message name="CommitMessage">

 <wsdl:part name="content" element="2pc:commit"/>

 </wsdl:message>

 <wsdl:message name="CommittedMessage">

 <wsdl:part name="content" element="2pc:committed"/>

 </wsdl:message>

 <wsdl:message name="OnePhaseCommitMessage">

 <wsdl:part name="content" element="2pc:one-phase-commit"/>

 </wsdl:message>

 <wsdl:message name="ForgetHeuristicMessage">

 <wsdl:part name="content" element="2pc:forget-heuristic"/>

 </wsdl:message>

 <wsdl:message name="HeuristicForgottenMessage">

 <wsdl:part name="content" element="2pc:heuristic-forgotten"/>

 </wsdl:message>

 <!-- 2PC protocol fault messages -->

 <wsdl:message name="HeuristicFaultMessage">

 <wsdl:part name="content" element="2pc:heuristic"/>

 </wsdl:message>

 <!-- 2PC protocol actor portType declarations -->

 <wsdl:portType name="twoPCParticipantPortType">

 <wsdl:operation name="prepare">

 <wsdl:input message="tns:PrepareMessage"/>

 </wsdl:operation>

 <wsdl:operation name="onePhaseCommit">

 <wsdl:input message="tns:OnePhaseCommitMessage"/>

Web Services Transaction Management Specification 24/07/2003

59

 </wsdl:operation>

 <wsdl:operation name="rollback">

 <wsdl:input message="tns:RollbacklMessage"/>

 </wsdl:operation>

 <wsdl:operation name="commit">

 <wsdl:input message="tns:CommitMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forgetHeuristic">

 <wsdl:input message="tns:ForgetHeuristicMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="committed">

 <wsdl:input message="tns:CommittedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="rolledBack">

 <wsdl:input message="tns:RolledBackMessage"/>

 </wsdl:operation>

 <wsdl:operation name="vote">

 <wsdl:input message="tns:VoteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="heuristicForgotten">

 <wsdl:input message="tns:HeuristicForgottenMessage"/>

 </wsdl:operation>

 <wsdl:operation name="heuristicFault">

 <wsdl:input message="tns:HeuristicFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- 2PC protocol actor SOAP bindings -->

 <wsdl:binding name="twoPCParticipantPortTypeSOAPBinding"

type="tns:twoPCParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

Web Services Transaction Management Specification 24/07/2003

60

 <wsdl:operation name="prepare">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/prepare" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="onePhaseCommit">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/onePhaseCommit" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="rollback">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/rollback" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="commit">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/commit" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

Web Services Transaction Management Specification 24/07/2003

61

 </wsdl:operation>

 <wsdl:operation name="forgetHeuristic">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/forgetHeuristic" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="committed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/committed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="rolledBack">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/rolledBack" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="vote">

Web Services Transaction Management Specification 24/07/2003

62

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/vote" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="heuristicForgotten">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/heuristicForgotten" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="heuristicFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/2pc/2003/03/heuristicFault" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.3.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

Web Services Transaction Management Specification 24/07/2003

63

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-acid/2pc/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2pc/2003/03"

xmlns:acid="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2003/03" schemaLocation="../tx-acid.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="acid:ContextType"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="acid:AssertionType">

 <xs:sequence>

 <xs:element name="participant-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="FaultType">

 <xs:complexContent>

 <xs:extension base="acid:FaultType">

 <xs:sequence>

 <xs:element name="participant-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Web Services Transaction Management Specification 24/07/2003

64

 <xs:element name="prepare" type="tns:AssertionType"/>

 <xs:element name="vote">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="decision">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="READ_ONLY"/>

 <xs:enumeration value="COMMIT"/>

 <xs:enumeration value="ROLLBACK"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="heuristic">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="heuristic-type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="HAZARD"/>

 <xs:enumeration value="MIXED"/>

 <xs:enumeration value="COMMIT"/>

 <xs:enumeration value="ROLLBACK"/>

 </xs:restriction>

Web Services Transaction Management Specification 24/07/2003

65

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="rollback" type="tns:AssertionType"/>

 <xs:element name="rolled-back" type="tns:AssertionType"/>

 <xs:element name="commit" type="tns:AssertionType"/>

 <xs:element name="committed" type="tns:AssertionType"/>

 <xs:element name="one-phase-commit" type="tns:AssertionType"/>

 <xs:element name="forget-heuristic" type="tns:AssertionType"/>

 <xs:element name="heuristic-forgotten" type="tns:AssertionType"/>

</xs:schema>

5.4 Sync Protocol

5.4.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-acid/sync/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/sync/2003/03"

xmlns:sync="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/sync/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/sync/2003/03" location="sync.xsd"/>

 <!-- Synchronisation protocol messages -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="sync:context"/>

 </wsdl:message>

 <wsdl:message name="BeforeCompletionMessage">

 <wsdl:part name="content" element="sync:before-completion"/>

Web Services Transaction Management Specification 24/07/2003

66

 </wsdl:message>

 <wsdl:message name="BeforeCompletionParticipantRegisteredMessage">

 <wsdl:part name="content" element="sync:before-completion-

participant-registered"/>

 </wsdl:message>

 <wsdl:message name="AfterCompletionMessage">

 <wsdl:part name="content" element="sync:after-completion"/>

 </wsdl:message>

 <wsdl:message name="AfterCompletionParticipantRegisteredMessage">

 <wsdl:part name="content" element="sync:after-completion-

participant-registered"/>

 </wsdl:message>

 <!-- Sync protocol actor portType declarations -->

 <wsdl:portType name="SynchronizationPortType">

 <wsdl:operation name="beforeCompletion">

 <wsdl:input message="tns:BeforeCompletionMessage"/>

 </wsdl:operation>

 <wsdl:operation name="afterCompletion">

 <wsdl:input message="tns:AfterCompletionMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="beforeCompletionParticipantRegistered">

 <wsdl:input

message="tns:BeforeCompletionParticipantRegisteredMessage"/>

 </wsdl:operation>

 <wsdl:operation name="afterCompletionParticipantRegistered">

 <wsdl:input

message="tns:AfterCompletionParticipantRegisteredMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- SOAP binding for sync protocol actors -->

 <wsdl:binding name="SynchronizationPortTypeSOAPBinding"

type="tns:SynchronizationPortType">

Web Services Transaction Management Specification 24/07/2003

67

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="beforeCompletion">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/sync/2003/03/beforeCompletion" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="afterCompletion">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/sync/2003/03/afterCompletion" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="beforeCompletionParticipantRegistered">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/sync/2003/03/beforeCompletionParticipantRegistered"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="afterCompletionParticipantRegistered">

Web Services Transaction Management Specification 24/07/2003

68

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

acid/sync/2003/03/afterCompletionParticipantRegistered"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.4.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-acid/sync/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/sync/2003/03"

xmlns:acid="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

acid/2003/03" schemaLocation="../tx-acid.xsd"/>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="acid:AssertionType">

 <xs:sequence>

 <xs:element ref="acid:status"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="acid:ContextType"/>

Web Services Transaction Management Specification 24/07/2003

69

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="before-completion" type="tns:AssertionType"/>

 <xs:element name="before-completion-participant-registered"

type="acid:AssertionType"/>

 <xs:element name="after-completion" type="tns:AssertionType"/>

 <xs:element name="after-completion-participant-registered"

type="acid:AssertionType"/>

</xs:schema>

5.5 The TX-LRA Protocol

5.5.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-lra/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03" xmlns:tx-

lra="http://www.webservicestransactions.org/schemas/wstxm/tx-

lra/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

lra/2003/03" location="lra.xsd"/>

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="tx-lra:context"/>

 </wsdl:message>

 <!-- Outcome messages to participant -->

 <wsdl:message name="FailMessage"/>

 <wsdl:message name="FailedMessage"/>

 <wsdl:message name="SuccessMessage"/>

 <wsdl:message name="SucceededMessage"/>

 <!-- LRA protocol messages -->

 <wsdl:message name="CompensateMessage"/>

 <wsdl:message name="CompensatedMessage"/>

Web Services Transaction Management Specification 24/07/2003

70

 <wsdl:message name="CompleteMessage"/>

 <wsdl:message name="CompletedMessage"/>

 <wsdl:message name="ForgetMessage"/>

 <wsdl:message name="ForgotMessage"/>

 <!-- LRA protocol fault messages -->

 <wsdl:message name="UnknownCompensatorFaultMessage"/>

 <wsdl:message name="CannotCompensateFaultMessage"/>

 <wsdl:message name="CannotCompleteFaultMessage"/>

 <!-- LRA protocol actor portType declarations -->

 <wsdl:portType name="CompensatorPortType">

 <wsdl:operation name="compensate">

 <wsdl:input message="tns:CompensateMessage"/>

 </wsdl:operation>

 <wsdl:operation name="complete">

 <wsdl:input message="tns:CompleteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forget">

 <wsdl:input message="tns:ForgetMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorPortType">

 <wsdl:operation name="compensated">

 <wsdl:input message="tns:CompensatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completed">

 <wsdl:input message="tns:CompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="forgot">

 <wsdl:input message="tns:ForgotMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCompensator">

 <wsdl:input message="tns:UnknownCompensatorFaultMessage"/>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

71

 <wsdl:operation name="cannotCompensate">

 <wsdl:input message="tns:CannotCompensateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cannotComplete">

 <wsdl:input message="tns:CannotCompleteFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- Bindings for LRA protocol actors -->

 <wsdl:binding name="CompensatorPortTypeSOAPBinding"

type="tns:CompensatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="compensate">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/compensate" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="complete">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/complete" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="forget">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/forget" style="document"/>

 <wsdl:input>

Web Services Transaction Management Specification 24/07/2003

72

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorPortTypeSOAPBinding"

type="tns:CoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="compensated">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/compensated" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="completed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/completed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="forgot">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/forgot" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

Web Services Transaction Management Specification 24/07/2003

73

 </wsdl:operation>

 <wsdl:operation name="unknownCompensator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/unknownCompensator" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cannotCompensate">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/cannotCompensate" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cannotComplete">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

lra/2003/03/cannotComplete" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.5.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

Web Services Transaction Management Specification 24/07/2003

74

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-lra/2003/03" xmlns:

wstxm="http://www.webservicestransactions.org/schemas/wstxm/2003/03"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

lra/2003/03">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/2003/

03" schemaLocation="../wstxm.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType">

 <xs:sequence>

 <xs:element name="lra-id" type="xs:anyURI"/>

 <xs:element name="coordinator-hierarchy">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="coordinator-location"

type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="TimeLimitQualifier"

substitutionGroup="wstxm:qualifier">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="wstxm:QualifierType">

 <xs:sequence>

 <xs:element name="compensator" type="xs:anyURI"/>

Web Services Transaction Management Specification 24/07/2003

75

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:simpleType name="StatusType">

 <xs:restriction base="wstxm:StatusType">

 <xs:enumeration value="Compensating"/>

 <xs:enumeration value="Compensated"/>

 <xs:enumeration value="Completing"/>

 <xs:enumeration value="Completed"/>

 <xs:enumeration value="FailedToComplete"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="status" type="tns:StatusType"

substitutionGroup="wstxm:status"/>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="wstxm:AssertionType">

 <xs:sequence>

 <xs:element name="participant-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="forget" type="tns:AssertionType"/>

 <xs:element name="compensate" type="tns:AssertionType"/>

 <xs:element name="complete" type="tns:AssertionType"/>

 <xs:element name="forgot" type="tns:AssertionType"/>

 <xs:element name="compensated" type="tns:AssertionType"/>

 <xs:element name="completed" type="tns:AssertionType"/>

 <xs:element name="unknown-compensator-fault"

type="wstxm:FaultType"/>

Web Services Transaction Management Specification 24/07/2003

76

 <xs:element name="cannot-compensate-fault" type="wstxm:FaultType"/>

 <xs:element name="cannot-complete-fault" type="wstxm:FaultType"/>

</xs:schema>

5.6 The TX-BP Protocol

5.6.1 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/2003/03" xmlns:

wstxm="http://www.webservicestransactions.org/schemas/wstxm/2003/03"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/2003/

03" schemaLocation="../wstxm.xsd"/>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="wstxm:AssertionType">

 <xs:sequence>

 <xs:element name="participant-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wstxm:ContextType">

 <xs:sequence>

 <xs:element name="process-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Web Services Transaction Management Specification 24/07/2003

77

 <xs:complexType name="QualifierType">

 <xs:complexContent>

 <xs:extension base="wstxm:QualifierType"/>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

5.7 The BP Protocol

5.7.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/bp/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/bp/2003/03"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/bp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/bp/2003/03" location="bp.xsd"/>

 <!-- Business process protocol messages -->

 <wsdl:message name="FailureMessage">

 <wsdl:part name="content" element="bp:failure"/>

 </wsdl:message>

 <wsdl:message name="FailureAcknowledgedMessage">

 <wsdl:part name="content" element="bp:failure-acknowledged"/>

 </wsdl:message>

 <wsdl:message name="FailureHazardMessage">

 <wsdl:part name="content" element="bp:failure-hazard"/>

 </wsdl:message>

 <wsdl:message name="FailureHazardAcknowledgedMessage">

 <wsdl:part name="content" element="bp:failure-hazard-

acknowledged"/>

 </wsdl:message>

 <!-- BP protocol actors -->

Web Services Transaction Management Specification 24/07/2003

78

 <wsdl:portType name="BusinessProcessParticipantPortType">

 <wsdl:operation name="failure">

 <wsdl:input message="FailureMessage"/>

 </wsdl:operation>

 <wsdl:operation name="failureHazard">

 <wsdl:input message="FailureHazardMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="failureAcknowledged">

 <wsdl:input message="FailureAcknowledgedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="failureHazardAcknowledged">

 <wsdl:input message="FailureHazardAcknowledgedMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- BP protocol actor SOAP bindings -->

 <wsdl:binding name="BusinessProcessParticipantPortTypeSOAPBinding"

type="tns:BusinessProcessParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="failure">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/bp/2003/03/failure" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="wsc4c:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="failureHazard">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/bp/2003/03/failureHazard" style="document"/>

 <wsdl:input>

Web Services Transaction Management Specification 24/07/2003

79

 <soap:body use="literal"/>

 <soap:header use="literal" message="wsc4c:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="failureAcknowledged">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/bp/2003/03/failureAcknowledged" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="wsc4c:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="failureHazardAcknowledged">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/bp/2003/03/failureHazardAcknowledged" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="wsc4c:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.7.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

Web Services Transaction Management Specification 24/07/2003

80

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/bp/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/bp/2003/03"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="failure" type="bp:AssertionType"/>

 <xs:element name="failure-acknowledged" type="bp:AssertionType"/>

 <xs:element name="failure-hazard" type="bp:AssertionType"/>

 <xs:element name="failure-hazard-acknowledged"

type="bp:AssertionType"/>

</xs:schema>

5.8 The Completion Protocol

5.8.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/completion/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03"

xmlns:comp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/ws/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/ws/2003/03" location="completion.xsd"/>

 <!-- Completion protocol messages -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="comp:context"/>

 </wsdl:message>

 <wsdl:message name="UnknownResultOccurredMessage">

 <wsdl:part name="content" element="comp:unknown-result-

occurred"/>

 </wsdl:message>

Web Services Transaction Management Specification 24/07/2003

81

 <wsdl:message name="ConfirmProcessMessage">

 <wsdl:part name="content" element="comp:confirm-process"/>

 </wsdl:message>

 <wsdl:message name="ProcessConfirmedMessage">

 <wsdl:part name="content" element="comp:process-confirmed"/>

 </wsdl:message>

 <wsdl:message name="CancelProcessMessage">

 <wsdl:part name="content" element="comp:cancel-process"/>

 </wsdl:message>

 <wsdl:message name="ProcessCancelledMessage">

 <wsdl:part name="content" element="comp:process-cancelled"/>

 </wsdl:message>

 <wsdl:message name="MixedResponseMessage">

 <wsdl:part name="content" element="comp:mixed-response"/>

 </wsdl:message>

 <wsdl:message name="ConfirmingMessage">

 <wsdl:part name="content" element="comp:confirming"/>

 </wsdl:message>

 <wsdl:message name="ConfirmMessage">

 <wsdl:part name="content" element="comp:confirm"/>

 </wsdl:message>

 <wsdl:message name="CancelMessage">

 <wsdl:part name="content" element="comp:cancel"/>

 </wsdl:message>

 <wsdl:message name="ConfirmedMessage">

 <wsdl:part name="content" element="comp:confirmed"/>

 </wsdl:message>

 <wsdl:message name="CancelledMessage">

 <wsdl:part name="content" element="comp:cancelled"/>

 </wsdl:message>

 <wsdl:message name="UnknownResultMessage">

 <wsdl:part name="content" element="comp:unknown-result"/>

 </wsdl:message>

Web Services Transaction Management Specification 24/07/2003

82

 <!-- Completion protocol actors -->

 <wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="unknownResultOccurred">

 <wsdl:input message="tns:UnknownResultOccurredMessage"/>

 </wsdl:operation>

 <wsdl:operation name="processConfirmed">

 <wsdl:input message="tns:ProcessConfirmedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="processCancelled">

 <wsdl:input message="tns:ProcessCancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="mixedResponse">

 <wsdl:input message="tns:MixedResponseMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="confirmProcess">

 <wsdl:input message="tns:ConfirmProcessMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelProcess">

 <wsdl:input message="tns:CancelProcessMessage"/>

 </wsdl:operation>

 <wsdl:operation name="confirming">

 <wsdl:input message="tns:ConfirmingMessage"/>

 </wsdl:operation>

 <wsdl:operation name="confirmed">

 <wsdl:input message="tns:ConfirmedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelled">

 <wsdl:input message="tns:CancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownResult">

 <wsdl:input message="tns:UnknownResultMessage"/>

Web Services Transaction Management Specification 24/07/2003

83

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="BusinessTaskCoordinationPortType">

 <wsdl:operation name="confirm">

 <wsdl:input message="tns:ConfirmMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancel">

 <wsdl:input message="tns:CancelMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- Completion protocol actor SOAP bindings -->

 <wsdl:binding name="ClientRespondantPortTypeSOAPBinding"

type="tns:ClientRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="unknownResultOccurred">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/unknownResultOccurred" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="processConfirmed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/processConfirmed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="processCancelled">

Web Services Transaction Management Specification 24/07/2003

84

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/processCancelled" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="mixedResponse">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/mixedResponse" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="confirmProcess">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/confirmProcess" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cancelProcess">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/cancelProcess" style="document"/>

 <wsdl:input>

Web Services Transaction Management Specification 24/07/2003

85

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="confirming">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/confirming" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="confirmed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/confirmed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cancelled">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/cancelled" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="unknownResult">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/unknownResult" style="document"/>

Web Services Transaction Management Specification 24/07/2003

86

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding

name="BusinessTaskCoordinationPortTypeTypeSOAPBinding"

type="tns:BusinessTaskCoordinationPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="confirm">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/confirm" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cancel">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/completion/2003/03/cancel" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.8.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

Web Services Transaction Management Specification 24/07/2003

87

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/completion/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/completion/2003/03"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="bp:ContextType"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="bp:AssertionType">

 <xs:sequence>

 <xs:element name="checkpoint-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="unknown-result-occurred">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="unknown" type="xs:anyURI"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

Web Services Transaction Management Specification 24/07/2003

88

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="confirm-process" type="tns:AssertionType"/>

 <xs:element name="cancel-process" type="tns:AssertionType"/>

 <xs:element name="process-confirmed" type="tns:AssertionType"/>

 <xs:element name="process-cancelled" type="tns:AssertionType"/>

 <xs:element name="mixed-response">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="confirmed" type="xs:anyURI"

maxOccurs="unbounded"/>

 <xs:element name="cancelled" type="xs:anyURI"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="confirming" type="tns:AssertionType"/>

 <xs:element name="confirm" type="tns:AssertionType"/>

 <xs:element name="cancel" type="tns:AssertionType"/>

 <xs:element name="confirmed" type="tns:AssertionType"/>

 <xs:element name="cancelled" type="tns:AssertionType"/>

</xs:schema>

5.9 The Checkpoint Protocol

5.9.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

Web Services Transaction Management Specification 24/07/2003

89

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/cp/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03"

xmlns:cp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/cp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/cp/2003/03" location="cp.xsd"/>

 <!-- CP Context -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="cp:context"/>

 </wsdl:message>

 <!-- CP protocol messages -->

 <wsdl:message name="CheckpointMessage">

 <wsdl:part name="content" element="cp:checkpoint"/>

 </wsdl:message>

 <wsdl:message name="CheckpointedMessage">

 <wsdl:part name="content" element="cp:checkpointed"/>

 </wsdl:message>

 <wsdl:message name="CheckpointFailedMessage">

 <wsdl:part name="content" element="cp:checkpoint-failed"/>

 </wsdl:message>

 <wsdl:message name="CheckpointingSucceededfulMessage">

 <wsdl:part name="content" element="cp:checkpointing-succeeded"/>

 </wsdl:message>

 <wsdl:message name="CheckpointingFailedMessage">

 <wsdl:part name="content" element="cp:checkpointing-failed"/>

 </wsdl:message>

 <wsdl:message name="CreateCheckpointMessage">

 <wsdl:part name="content" element="cp:create-checkpoint"/>

 </wsdl:message>

 <!-- CP protocol actors -->

Web Services Transaction Management Specification 24/07/2003

90

 <wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="checkpointingSuccedded">

 <wsdl:input message="tns:CheckpointingSucceededfulMessage"/>

 </wsdl:operation>

 <wsdl:operation name="checkpointingFailed">

 <wsdl:input message="tns:CheckpointingFailedMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="createCheckpoint">

 <wsdl:input message="tns:CreateCheckpointMessage"/>

 </wsdl:operation>

 <wsdl:operation name="checkpointed">

 <wsdl:input message="tns:CheckpointedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="checkpointFailed">

 <wsdl:input message="tns:CheckpointFailedMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="checkpoint">

 <wsdl:input message="tns:CheckpointMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- CP protocol actor SOAP bindings -->

 <wsdl:binding name="ClientRespondantPortTypeSOAPBinding"

type="tns:ClientRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="checkpointingSuccedded">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/checkpointingSuccedded" style="document"/>

 <wsdl:input>

Web Services Transaction Management Specification 24/07/2003

91

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="checkpointingFailed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/checkpointingFailed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="createCheckpoint">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/createCheckpoint" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="checkpointed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/checkpointed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

Web Services Transaction Management Specification 24/07/2003

92

 </wsdl:operation>

 <wsdl:operation name="checkpointFailed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/checkpointFailed" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="BusinessTaskCoordinatorPortTypeSOAPBinding"

type="tns:BusinessTaskCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="checkpoint">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/cp/2003/03/checkpoint" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.9.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/cp/2003/03"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/cp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

Web Services Transaction Management Specification 24/07/2003

93

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="bp:ContextType"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="bp:AssertionType">

 <xs:sequence>

 <xs:element name="checkpoint-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="QualifierType">

 <xs:complexContent>

 <xs:extension base="bp:QualifierType"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="create-checkpoint" type="tns:AssertionType"/>

 <xs:element name="checkpointing-failed" type="tns:AssertionType"/>

 <xs:element name="checkpointing-succeeded"

type="tns:AssertionType"/>

 <xs:element name="checkpoint" type="tns:AssertionType"/>

 <xs:element name="checkpointed" type="tns:AssertionType"/>

 <xs:element name="checkpoint-failed" type="tns:AssertionType"/>

 <xs:element name="checkpoint-timelimit-qualifier">

 <xs:complexType>

 <xs:complexContent>

Web Services Transaction Management Specification 24/07/2003

94

 <xs:extension base="tns:QualifierType">

 <xs:sequence>

 <xs:element name="checkpoint-alive" type="xs:int"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

5.10 The Restart Protocol

5.10.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/ws/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03"

xmlns:rs="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/restart/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/restart/2003/03" location="restart.xsd"/>

 <!-- Restart protocol messages -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="rs:context"/>

 </wsdl:message>

 <wsdl:message name="InvalidCheckpointMessage">

 <wsdl:part name="content" element="rs:invalid-checkpoint"/>

 </wsdl:message>

 <wsdl:message name="TryRestartMessage">

 <wsdl:part name="content" element="restart:try-restart"/>

 </wsdl:message>

 <wsdl:message name="RestartedSuccessfullyMessage">

 <wsdl:part name="content" element="rs:restarted-successfully"/>

Web Services Transaction Management Specification 24/07/2003

95

 </wsdl:message>

 <wsdl:message name="RestartFailedMessage">

 <wsdl:part name="content" element="rs:restart-failed"/>

 </wsdl:message>

 <wsdl:message name="RestartMessage">

 <wsdl:part name="content" element="rs:restart"/>

 </wsdl:message>

 <wsdl:message name="RestartedMessage">

 <wsdl:part name="content" element="rs:restarted"/>

 </wsdl:message>

 <wsdl:message name="CannotRestartMessage">

 <wsdl:part name="content" element="rs:cannot-restarted"/>

 </wsdl:message>

 <!-- Restart protocol actors -->

 <wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="invalidCheckpoint">

 <wsdl:input message="tns:InvalidCheckpointMessage"/>

 </wsdl:operation>

 <wsdl:operation name="restartedSuccessfully">

 <wsdl:input message="tns:RestartedSuccessfullyMessage"/>

 </wsdl:operation>

 <wsdl:operation name="restartFailed">

 <wsdl:input message="tns:RestartFailedMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="tryRestart">

 <wsdl:input message="tns:TryRestartMessage"/>

 </wsdl:operation>

 <wsdl:operation name="restarted">

 <wsdl:input message="tns:RestartedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cannotRestart">

Web Services Transaction Management Specification 24/07/2003

96

 <wsdl:input message="tns:CannotRestartMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="restart">

 <wsdl:input message="tns:RestartMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- Restart protocol actor SOAP bindings -->

 <wsdl:binding name="ClientRespondantPortTypeSOAPBinding"

type="tns:ClientRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="invalidCheckpoint">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/invalidCheckpoint" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="restartedSuccessfully">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/restartedSuccessfully" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="restartFailed">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/restartFailed" style="document"/>

Web Services Transaction Management Specification 24/07/2003

97

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="tryRestart">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/tryRestart" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="restarted">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/restarted" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cannotRestart">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/cannotRestart" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

Web Services Transaction Management Specification 24/07/2003

98

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="BusinessTaskCoordinatorPortTypeSOAPBinding"

type="tns:BusinessTaskCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="restart">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/restart" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.10.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/restart/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/restart/2003/03">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="bp:ContextType"/>

 </xs:complexContent>

 </xs:complexType>

Web Services Transaction Management Specification 24/07/2003

99

 </xs:element>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="bp:AssertionType">

 <xs:sequence>

 <xs:element name="checkpoint-id" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="invalid-checkpoint" type="tns:AssertionType"/>

 <xs:element name="try-restart" type="tns:AssertionType"/>

 <xs:element name="restarted-successfully"

type="tns:AssertionType"/>

 <xs:element name="restart-failed" type="tns:AssertionType"/>

 <xs:element name="restart" type="tns:AssertionType"/>

 <xs:element name="restarted" type="tns:AssertionType"/>

 <xs:element name="cannot-restart" type="tns:AssertionType"/>

</xs:schema>

5.11 The Terminate Notification Protocol

5.11.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/tn/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/tn/2003/03"

xmlns:tn="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/tn/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/tn/2003/03" location="tn.xsd"/>

 <!-- Terminate-notification protocol messages -->

 <wsdl:message name="ContextMessage">

Web Services Transaction Management Specification 24/07/2003

100

 <wsdl:part name="content" element="tn:context"/>

 </wsdl:message>

 <wsdl:message name="ConfirmCompleteMessage">

 <wsdl:part name="content" element="tn:confirm-complete"/>

 </wsdl:message>

 <wsdl:message name="ConfirmCompletedMessage">

 <wsdl:part name="content" element="tn:confirm-completed"/>

 </wsdl:message>

 <wsdl:message name="CancelCompleteMessage">

 <wsdl:part name="content" element="tn:cancel-complete"/>

 </wsdl:message>

 <wsdl:message name="CancelCompletedMessage">

 <wsdl:part name="content" element="tn:cancel-completed"/>

 </wsdl:message>

 <!-- Terminate notification actor portType declarations -->

 <wsdl:portType name="TerminatorParticipantPortType">

 <wsdl:operation name="confirmComplete">

 <wsdl:input message="ConfirmCompleteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelComplete">

 <wsdl:input message="CancelCompleteMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="confirmCompleted">

 <wsdl:input message="ConfirmCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="cancelCompleted">

 <wsdl:input message="CancelCompletedMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- Terminate notification actors SOAP binding -->

Web Services Transaction Management Specification 24/07/2003

101

 <wsdl:binding name="TerminatorParticipantPortTypeSOAPBinding"

type="tns:TerminatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="confirmComplete">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/tn/2003/03/confirmComplete" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="cancelComplete">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/tn/2003/03/cancelComplete" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="confirmCompleted">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/tn/2003/03/confirmCompleted" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

Web Services Transaction Management Specification 24/07/2003

102

 <wsdl:operation name="cancelCompleted">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/tn/2003/03/cancelCompleted" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.11.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/tn/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/tn/2003/03" xmlns:tx-

bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="context" type="tx-bp:ContextType"/>

 <xs:element name="confirm-complete" type="tx-bp:AssertionType"/>

 <xs:element name="confirm-completed" type="tx-bp:AssertionType"/>

 <xs:element name="cancel-complete" type="tx-bp:AssertionType"/>

 <xs:element name="cancel-completed" type="tx-bp:AssertionType"/>

</xs:schema>

5.12 The Work Status Protocol

5.12.1 WSDL

<?xml version="1.0" encoding="utf-8"?>

Web Services Transaction Management Specification 24/07/2003

103

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wstxm/tx

-bp/ws/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03"

xmlns:ws="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/ws/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/ws/2003/03" location="ws.xsd"/>

 <!-- Work status protocol messages -->

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="ws:context"/>

 </wsdl:message>

 <wsdl:message name="GetWorkStatusMessage">

 <wsdl:part name="content" element="ws:get-work-status"/>

 </wsdl:message>

 <wsdl:message name="WorkStatusCompletedMessage">

 <wsdl:part name="content" element="ws:work-status-completed"/>

 </wsdl:message>

 <wsdl:message name="WorkStatusCancelledMessage">

 <wsdl:part name="content" element="ws:work-status-cancelled"/>

 </wsdl:message>

 <wsdl:message name="WorkStatusProcessingMessage">

 <wsdl:part name="content" element="ws:work-status-processing"/>

 </wsdl:message>

 <wsdl:message name="WorkStatusMessage">

 <wsdl:part name="content" element="ws:work-status"/>

 </wsdl:message>

 <wsdl:message name="WorkCompletedMessage">

 <wsdl:part name="content" element="ws:work-completed"/>

 </wsdl:message>

 <wsdl:message name="WorkCancelledMessage">

 <wsdl:part name="content" element="ws:work-cancelled"/>

Web Services Transaction Management Specification 24/07/2003

104

 </wsdl:message>

 <wsdl:message name="WorkProcessingMessage">

 <wsdl:part name="content" element="ws:work-processing"/>

 </wsdl:message>

 <!-- Work status protocol actors -->

 <wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="workStatusCompleted">

 <wsdl:input message="tns:WorkStatusCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workStatusCancelled">

 <wsdl:input message="tns:WorkStatusCancelledMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workStatusProcessing">

 <wsdl:input message="tns:WorkStatusProcessingMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="getWorkStatus">

 <wsdl:input message="tns:GetWorkStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workProcessing">

 <wsdl:input message="tns:WorkProcessingMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workCompleted">

 <wsdl:input message="tns:WorkCompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="workCancelled">

 <wsdl:input message="tns:WorkCancelledMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="BusinessTaskCoordinatorPortType">

 <wsdl:operation name="workStatus">

 <wsdl:input message="tns:WorkStatusMessage"/>

Web Services Transaction Management Specification 24/07/2003

105

 </wsdl:operation>

 </wsdl:portType>

 <!-- Work status protocol actor SOAP bindings -->

 <wsdl:binding name="ClientRespondantPortTypeSOAPBinding"

type="tns:ClientRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="workStatusCompleted">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workStatusCompleted" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="workStatusCancelled">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workStatusCancelled" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="workStatusProcessing">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workStatusProcessing" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

Web Services Transaction Management Specification 24/07/2003

106

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="getWorkStatus">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/getWorkStatus" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="workProcessing">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workProcessing" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="workCompleted">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workCompleted" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="workCancelled">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workCancelled" style="document"/>

 <wsdl:input>

Web Services Transaction Management Specification 24/07/2003

107

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="BusinessTaskCoordinatorPortTypeSOAPBinding"

type="tns:BusinessTaskCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <wsdl:operation name="workStatus">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wstxm/tx-

bp/ws/2003/03/workStatus" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

5.12.2 Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.webservicestransactions.org/schemas/wstxm

/tx-bp/ws/2003/03"

xmlns:tns="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/ws/2003/03"

xmlns:bp="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://www.webservicestransactions.org/schemas/wstxm/tx-

bp/2003/03" schemaLocation="../bp.xsd"/>

 <xs:element name="context">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="bp:ContextType"/>

Web Services Transaction Management Specification 24/07/2003

108

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="bp:AssertionType">

 <xs:sequence>

 <xs:element ref="tns:work-completed-qualifier"

minOccurs="0"/>

 <xs:element ref="tns:work-cancelled-qualifier"

minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="QualifierType">

 <xs:complexContent>

 <xs:extension base="bp:QualifierType"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="get-work-status" type="tns:AssertionType"/>

 <xs:element name="work-status-completed" type="tns:AssertionType"/>

 <xs:element name="work-status-cancelled" type="tns:AssertionType"/>

 <xs:element name="work-status-processing"

type="tns:AssertionType"/>

 <xs:element name="work-processing" type="tns:AssertionType"/>

 <xs:element name="work-status" type="tns:AssertionType"/>

 <xs:element name="work-completed" type="tns:AssertionType"/>

 <xs:element name="work-cancelled" type="tns:AssertionType"/>

 <xs:element name="work-completed-qualifier">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:QualifierType"/>

 </xs:complexContent>

Web Services Transaction Management Specification 24/07/2003

109

 </xs:complexType>

 </xs:element>

 <xs:element name="work-cancelled-qualifier">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:QualifierType"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

Web Services Transaction Management Specification 24/07/2003

110

6. References
[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl
[2] J. N. Gray, “The transaction concept: virtues and limitations”, Proceedings of

the 7th VLDB Conference, September 1981, pp. 144-154.

Web Services Transaction Management Specification 24/07/2003

111

7. Acknowledgements
The authors would like to thank the following people for their contributions to this
specification:

Dave Ingham, Arjuna Technologies Ltd.

Barry Hodgson, Arjuna Technologies Ltd.

Goran Olsson, Oracle Corporation.

Nickolas Kavantzas, Oracle Corporation.

Aniruddha Thankur, Oracle Corporation.

	Introduction
	Architecture
	Relationship to WSDL
	Use case scenarios
	Web Services transaction management
	
	Restrictions imposed on using WS-CF
	Two-phase commit
	Coordinator state transitions for two-phase commit protocol
	Two-phase participant state transitions
	Two-phase commit message interactions
	Pre- and post- two-phase commit processing
	Coordinator state transitions for synchronization protocol
	Recovery and interposition
	The context
	Statuses
	Restrictions imposed on using WS-CF
	Context
	Services and Compensators
	Qualifiers
	Coordinator
	Independent LRAs and application structuring
	Status values
	Context
	Business domains and interposition
	Protocols
	From the business domain
	To the business domain
	Business process entities

	Qualifers
	Status values

	WSDL Interfaces and XML Schema Definitions
	
	WSDL
	Schema
	WSDL
	Schema
	WSDL
	Schema
	Schema
	WSDL
	Schema
	WSDL
	Schema
	WSDL
	Schema
	WSDL
	Schema
	WSDL
	Schema
	WSDL
	Schema

	References
	Acknowledgements

