
Web Services Coordination Framework Specification July 28, 2003

 1

Web Services Coordination Framework (WS-CF) Ver1.0

July 28, 2003

Authors:

Doug Bunting (doug.bunting@sun.com)
Martin Chapman (martin.chapman@oracle.com)
Oisin Hurley (ohurley@iona.com)
Mark Little (mark.little@arjuna.com) (editor)
Jeff Mischkinsky (jeff.mischkinsky@oracle.com)
Eric Newcomer (eric.newcomer@iona.com) (editor)
Jim Webber (jim.webber@arjuna.com)
Keith Swenson (KSwenson@fsw.fujitsu.com)

Copyright Notice
© 2003 Arjuna Technologies Ltd., Fujitsu Limited, IONA Technologies Ltd., Oracle Corporation, and
Sun Microsystems, Inc.
All Rights Reserved.

This WS-CF Specification (the "Specification") is protected by copyright and the information
described therein and technology required to implement the Specification may be protected by one or
more U.S. patents, foreign patents, or pending applications. The copyright owners named above
("Owners") hereby grant you a fully-paid, non-exclusive, non-transferable, worldwide, limited license
under their copyrights to: (i) download, view, reproduce, and otherwise use the Specification for
internal purposes; (ii) distribute the Specification to third parties provided that the Specification is not
modified by you or such third parties; (iii) implement the Specification and distribute such
implementations, including the right to authorize others to do the same, provided however, that you
only distribute the Specification subject to a license agreement that protects the Owners' interests by
including the proprietary legend and terms set forth in this Copyright Notice.

Disclaimer of Warranties

THIS SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE
OWNERS). THE OWNERS MAKE NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT
THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY OR COPYRIGHT OWNER PATENTS, COPYRIGHTS, TRADE SECRETS
OR OTHER RIGHTS.

This document does not represent any commitment to release or implement any portion of the
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS, CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. THE OWNERS MAY MAKE IMPROVEMENTS
AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE
SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by

mailto:doug.bunting@sun.com
mailto:martin.chapman@oracle.com
mailto:ohurley@iona.com
mailto:mark.little@arjuna.com
mailto:jeff.mischkinsky@oracle.com
mailto:eric.newcomer@iona.com
mailto:jim.webber@arjuna.com
mailto:KSwenson@fsw.fujitsu.com

Web Services Coordination Framework Specification July 28, 2003

 2

the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE OWNERS OR THEIR
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF THE OWNERS
AND/OR LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend the Owners and their licensors from any claims based
on your use of the Specification for any purposes other than those of internal evaluation, and from any
claims that later versions or releases of any Specifications furnished to you are incompatible with the
Specification provided to you under this license.

Restricted Rights Legend

If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Specification and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for the non-DoD acquisitions).

Report

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection
with your evaluation of the Specification ("Feedback"). To the extent that you provide the Owners
with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and
non-confidential basis, and (ii) grant the Owners a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate,
disclose, and use without limitation the Feedback for any purpose related to the Specification and
future versions, implementations, and test suites thereof.

Web Services Coordination Framework Specification July 28, 2003

 3

Abstract
Coordination is a requirement present in a variety of different aspects of distributed applications. For
instance, workflow, atomic transactions, caching and replication, security, auctioning, and business-to-
business activities all require some level of what may be collectively referred to as “coordination.” For
example, coordination of multiple Web services in choreography may be required to ensure the correct
result of a series of operations comprising a single business transaction.
Whenever coordination occurs, the propagation of additional information (the coordination context) to
coordinated participants is required. The coordination context contains information such as a unique
ID that allows a series of operations to share a common outcome. The outcome is typically defined in
terms of coordinated state persistence operations. For example, in a Web services-based architecture, a
SOAP header block might contain context information that is propagated when interacting with a
coordinator, or when multiple participants exchange SOAP messages in order to create a larger
interaction such as a process flow or other aggregation of services.
A Web services coordinator maintains a repository of participants and ensures that each participant
receives a result of the coordinated interaction. A coordinator can also be a participant, creating a tree
of sub-coordinators or peer-coordinators that cooperate to further propagate the result. When one of
the participants generates a fault, for example, the coordinator ensures that all other participants are
notified. A Web services coordinator sends and receives SOAP encoded messages for interoperability
with any type of participant, regardless of operating system, programming language, or platform.
Context information flows as SOAP header blocks with application messages sent to
participants/endpoints. The important point is that this information is specific to the type of
coordination being performed, e.g., to identify the coordinator(s), the other participants, recovery
information in the event of a failure, etc.
Coordination is a fundamental requirement of many distributed systems, including Web Services.
However, the type of coordination protocol that is used may vary depending upon the circumstances
(e.g., two-phase versus three-phase). Therefore, what is needed is a standardization on a coordination
framework (coordination service) that allows users and services to register with it, and customize it on
a per service or per application basis. Such a coordination service would also support newly emerging
Web service standards such as workflow and transactions and builds on the Web services CTX
Service.

Status of this document
This specification is a draft document and may be updated, extended or replaced by other documents
if necessary. It is for review and evaluation only. The authors of this specification provide this
document as is and provide no warranty about the use of this document in any case. The authors
welcome feedback and contributions to be considered for updates to this document in the near future.

Web Services Coordination Framework Specification July 28, 2003

 5

Table of contents

1. Introduction... 7

Problem statement... 7

2. WS-CF architecture .. 8

Extended coordination models.. 8

Protocol configuration and negotiation... 10

Relationship to WSDL.. 11

3. Coordination and activities ... 12

Activity coordination and control ... 12

Coordination protocol definitions ... 13

4. WS-CF components .. 13

4.1 Participants.. 14

4.2 Qualifiers... 18

4.3 Coordinator ... 19

4.3.1 Service-to-coordinator interactions... 20

addParticipant ... 20

removeParticipant ... 20

getParentCoordinator .. 21

getQualifiers.. 21

4.3.2 Client-to-coordinator interactions ... 24

getStatus .. 25

Context enhancement.. 26

4.4 Interposition .. 28

State management and recovery ... 30

recover... 31

getStatus .. 32

5. Roles & Responsibilities... 33

Coordination Service Activity Lifecycle Service provider... 34

Coordination Service Provider.. 34

Web Service Provider ... 35

6. Example .. 36

Web Services Coordination Framework Specification July 28, 2003

 6

7. XML Schema and WSDL Interfaces .. 37

7.1 XML Schema for WS-CF Messages... 38

7.2 WSDL Interface for WS-CF Actors ... 43

7.3 Issues... 57

8. References... 61

9. Acknowledgements... 63

Web Services Coordination Framework Specification July 28, 2003

 7

1. Introduction

Coordination is the act of one agent (the coordinator) disseminating information to a
number of participants to guarantee that all participants obtain a specific message. A
coordinator can accept the responsibility, for example, of notifying all participants in an
Activity of a common outcome.

Coordination is a fundamental requirement in distributed systems that many applications
use either explicitly or implicitly, e.g., workflow, atomic transactions, caching and
replication, security, auctioning, and business-to-business activities. Coordination
propagates additional information (the coordination context) to the participants.

Context information can flow implicitly (transparently to the application) within normal
messages sent to the participants, or it may be an explicit action on behalf of the
client/service. This information is specific to the type of coordination being performed,
e.g., to identify the coordinator(s), the other participants in an Activity, recovery
information in the event of a failure, etc. Furthermore, it may be required that additional
application specific context information (e.g.. extra SOAP header information) flow to
these participants or the services which use them.

Coordination is an integral part of any distributed system, but there is no single type of
coordination protocol that can suffice for all problem domains. Therefore, what is needed
is a common Web Services Coordination Framework (WS-CF) that allows users and
services to tie into it and customize it on a per service or application basis. A suitably
designed coordination service should provide enough flexibility and extensibility to its
users that allow it to be tailored, statically or dynamically, to fit any requirement.

This service builds upon WS-CTX and supports WS-TXM, as well as other Web Service
standards in the area of choreography, workflow and transactions. In the case of
transactions, for example, unlike other attempts which are solutions to one specific
problem area and are therefore not applicable to others, different extended transaction
models can be relatively easily developed to suit specific domains, and interoperability
across transaction protocols supported.

This specification presents the outline of such a service.

Problem statement

Define a specification for a generic coordination service for a Web Services, to be known
as the WS-CF, utilizing the Web Services CTX Service specification for the definition of
basic activities (i.e., determining the scope of shared context). Outline the necessary
infrastructure and protocol requirements to support a coordination service for interacting
with the participants in one or more Activities. A coordinator can also be a participant to
another coordinator, extending the ability to interoperate across application domains.

Web Services Coordination Framework Specification July 28, 2003

 8

Coordinators are themselves modeled as Web services and can be combined into
multiple-coordinator patterns to extend and optimize the supported interaction patterns.

The WS-CF is designed to be used together with and to compliment other Web services
technologies such as reliable messaging, routing, inspection, security, and process flow.

The goals of the specification are to:

• Provide a basic definition of a core infrastructure service consisting of a
Coordinator Service for the Web Service environment. WS-CF that builds on the
Web Services CTX Service.

• Define the mappings onto the Web Service environment (SOAP message and
header definitions, context definition, endpoint address requirements, etc.).

• Define the required infrastructure support such as event mechanisms, etc.

• Define the roles and responsibilities of WS-CF subcomponents (e.g.,
Coordination Service Participants).

2. WS-CF architecture

The following sections outline the architecture of WS-CF, describing the components that
implementations provide and those that are required from users.

Extended coordination models

The WS-CF allows the management and coordination in a Web services interaction of a
number of activities related to an overall application. It builds on the Web Services CTX
Service (WS-CTX) specification and provides a coordination service that plugs into WS-
CTX. In particular WS-CF:

• Defines demarcation points which specify the start and end points of coordinated
activities; this is done automatically by invoking an Activity;

• Defines demarcation points where coordination of participants occurs (i.e., at
which points the appropriate SOAP messages are sent to participants);

• Registers participants for the activities that are associated with the application;

• Propagates coordination-specific information across the network by enhancing the
default context structure provided by WS-CTX;

The main components involved in using and defining the WS-CF are:
1) A Coordinator: Provides an interface for the registration of participants (such as

activities) triggered at coordination points. The coordinator is responsible for
communicating the outcome of the activity to the list of registered activities.
Importantly, coordination is not restricted to the end of an activity: an activity can
execute (different) coordination protocols at arbitrary points during its lifetime.

Web Services Coordination Framework Specification July 28, 2003

 9

Coordination extends the notion of an activity to represent a defined set of tasks with
a set of related coordination actions;

2) A Participant: The operation or operations that are performed as part of coordination
sequence processing

3) A Coordination Service: Defines the behaviour for a specific coordination model. The
Coordination Service provides a processing pattern that is used for outcome
processing. For example, an ACID transaction service is one implementation of a
Coordination Service that provides a two-phase protocol definition whose
coordination sequence processing includes Prepare, Commit and Rollback. Other
examples of Coordination Service implementations include extended transaction
patterns such as Sagas, Collaborations, Nested or Real-Time transactions and non-
transactional patterns such as Cohesions and Correlations. Coordination can also be
used to group related non-transactional activities. Multiple Coordination Service
implementations may co-exist within the same application and processing domain.
WS-CF does not specify how a Coordination Service is implemented. For example, a
given implementation may support multiple coordination protocols as in [1].

As we shall show, WS-CF uses the Coordinator and Participant roles to define
coordination protocols and associated message sets. However, in order to support existing
coordination services which may have already defined coordinator and participant
interfaces and message sets, a WS-CF compliant implementation is only required to
provide an implementation of the Activity Lifecycle Service. This allows the coordinator
to be tied to activities and to augment the basic WS-CTX context. It is assumed that in
the absence of WS-CF Coordinator Service and Participants, the interfaces to these
services and protocol message sets are defined elsewhere and known by users/services. In
the remainder of this specification we shall only consider the specific case of protocols
using all of the roles defined by WS-CF.

Figure 1 shows the various WS-CF services and their relationships to one another and
WS-CTX. Web services are shown as circles. The mandated WS-CF services are the
CoordinationServiceALS and the CTX Service, whereas the optional services which may
be provided through non-WS-CF routes are the Application Web Service, Coordination
Service and Participant.

Web Services Coordination Framework Specification July 28, 2003

 10

Context Service ALS members

Coordination
Service ALS

Activity
Service

JTA
coordinator

be
gin

/en
d o

f a
cti

vit
y

Application
Web

Service
Participant

Coordination
Service

en
ro

l/p
ro

to
co

l m
es

sa
ge

s

en
ro

l/p
ro

to
co

l m
es

sa
ge

s

context

Figure 1, WS-CF services.

Protocol configuration and negotiation

It is possible that Web Service components may support multiple different Coordination
Service models (possibly representing different qualities of service). Either when the
Web application is created, or when one component initially interacts with another, some
level of protocol negotiation will be necessary to determine which transaction model will
be used. If the component does not support the required Coordination Service model then
it will be up to the application to determine whether or not it makes sense to continue to
use the component. For example, it may make sense for a transactional application to
refuse to work with any service that does not support transactional semantics, i.e., does
not accept (and use) transaction contexts that may be sent to it.

Additionally, the operational service protocol message exchange includes the requirement
for a means to:

• Allow a protocol message exchange independent of normal message exchange.

• A means to perform outcome processing (an identity for direct communication
between coordinator and participant(s)).

Web Services Coordination Framework Specification July 28, 2003

 11

It is important that the negotiation and protocol exchange mechanisms not place any
additional requirement on the transport.

Note, such requirements do not preclude the reuse of existing product implementations.
However, it must be recognized that when using a common Web Service definition to
communicate between operational domains that messages exchanges may need to
decomposed into their constituent parts, i.e., a phase to establish and exchange service
information and context and a phase for the operational message.

In addition, we do not assume that a single remote invocation mechanism (e.g., HTTP)
will be the natural communication medium for all Web Services. How participants within
and between activities appear to each other is not central to this discussion. They may be
services communicating via HTTP with WS-CF information traveling via SMTP, for
example. We assume that they will use the most appropriate invocation protocol for the
application. This does not preclude a given application from using multiple object models
and communication protocols simultaneously.

Relationship to WSDL

Where WSDL is used in this specification we shall use a synchronous invocation style for
sending requests. In order to provide for loose-coupling of entities all responses are sent
using synchronous call-backs. However, this is not prescriptive and other binding styles
are possible.

For clarity WSDL is shown in an abbreviated form in the main body of the document:
only portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed
as per [2]. Complete WSDL is available at the end of the specification.

Web Services Coordination Framework Specification 24/07/2003

 12

3. Coordination and activities

In the WS-CTX specification it was shown how the framework manages the lifecycle of
Activities, which are used to scope application and service specific work, along with the
associated Activity contexts necessary for distributed invocations. It also described how
services can be plugged into this framework in order that they can enhance it at necessary
stages in the lifecycle of an Activity. In this section a specific service (coordination),
which is integral to the development of Web Services management, is presented. This
service is more accurately described as a framework that supports arbitrary coordination
protocols; the intention is that such protocols can be plugged into the framework to
customize it for other application and service requirements, e.g., by adding a two-phase
protocol for consensus or a three-phase protocol if operating in a particularly failure-
prone or untrustworthy environment. This is also the first high-level service to be added
to the core Context Service framework. It is our intention that other services can then use
coordination for their own purposes, e.g., transactions.

Coordination is the act of an entity (the coordinator) disseminating information to a
number of participants for a variety of reasons, e.g., in order to reach consensus on a
decision, or simply to guarantee that all participants obtain a specific message.
Coordination is a fundamental requirement in distributed systems that many applications
use either explicitly or implicitly, e.g., workflow, atomic transactions, caching and
replication, security, auctioning, and business-to-business activities. Whenever
coordination occurs, the propagation of additional information (the coordination context)
to coordinated participants is also required.

WS-CF defines the scope of an activity to be the scope of a coordinated interaction: upon
termination of an activity, the associated coordinator will be contacted in order that it can
execute the coordination protocol. Depending upon the coordination protocol,
coordination may also occur at arbitrary points during the lifetime of an individual
activity, but this need not be supported by all implementations.

Activity coordination and control

An activity may run for an arbitrary length of time and may need to use coordination at
any number of points during its lifetime. For example, consider Figure 2, which shows a
series of connected activities co-operating during the lifetime of an application. The
darker ellipses represent coordination boundaries, whereas the lighter ellipses delimit
activity boundaries. Activity A1 uses two coordination points during its execution,
whereas A2 uses none. Additionally, coordinated activity A3 has another coordinated
activity, A3’ nested within it. The activity service and coordination framework
combination is responsible for distributing both the activity and coordination contexts
between execution environments in order that the hierarchy can be fully distributed.

Web Services Coordination Framework Specification 24/07/2003

 13

Figure 2, Activity and Transaction Relationship.

The coordinator associated with an activity is allowed to change during the lifetime of the
activity, to reflect the changing requirements of activities. For example, in the diagram
above, at the first coordination point A1 may use a two-phase protocol to achieve
consensus, whereas when the activity terminates, a three phase protocol may be more
appropriate. How activities are coordinated is the domain of the Coordination Service. It
does this by utilizing the components described in the following sections.

Coordination protocol definitions

A coordination protocol is defined by the message interactions between the coordinator
and its participants, and the semantics that are imposed on those interactions. It is beyond
the scope of this specification to manage semantic information about individual protocol
types. Coordination protocols are unambiguously identified by a URI. It is also beyond
the scope of the specification to indicate how coordinator implementations are located or
associated with their URIs.

4. WS-CF components

The components are described in terms of their behaviour and the interactions that occur
between them. All interactions are described in terms of messages, which an
implementation may abstract at a higher level into request/response pairs or RPCs, for
example. As such, all communicated messages are required to contain response endpoint
addresses solely for the purposes of each interaction.

One consequence of these interactions is that faults and errors which may occur when a
service is invoked are communicated back to interested parties via messages which are
themselves part of the protocol. For example, if an operation might fail because no
activity is present when one is required, then it will be valid for the noActivityFault
message to be received by the response service. To accommodate other errors or faults,
all response service signatures have a generalFault operation.

Web Services Coordination Framework Specification 24/07/2003

 14

Note, in the rest of this section we will use the term “invokes operation X on service Y”
when referring to invoking services. This term does not imply a specific implementation
for performing such service invocations and is used merely as a short-hand for “sends
message X to service Y.” As long as implementations ensure that the on-the-wire
message formats are compliant with those defined in this specification, how the endpoints
are implemented and how they expose the various operations (e.g., via WSDL [2]) is not
mandated by this specification.

4.1 Participants

At coordination points defined by the application or service, messages are communicated
between a coordinator and registered participants through the exchange of protocol
specific messages. For example, the termination of one activity may initiate the
start/restart of other activities in a workflow-like environment. Messages can be used to
infer a flow of control during the execution of an application. The information encoded
within a message will depend upon the implementation of the coordination model.

A Participant (coordination participant) will use the message in a manner specific to the
Coordination Service and return a result of it having done so. For example, upon receipt
of a specific message, a Participant could start another activity running (e.g., a
compensation activity); another Participant could commit any modifications to a database
when it receives one type of message, or undo them if it receives another type.

Each participant supports a coordination protocol specific to the model implemented by
the coordinator (e.g., two-phase commit). In addition, the work that a participant
performs when it receives a message from the coordinator is dependent on the
participant’s implementation (e.g., to commit the reservation of the theatre ticket and
debit the user’s account).

Interactions for executing a coordination protocol are broken down into two distinct types
(these messages are all contextualized unless otherwise noted):

• Coordinator-to-participant, where the coordinator sends a protocol message to the
participant and will eventually get a response.

• Participant-to-coordinator, where the participant may autonomously communicate
protocol messages to the coordinator.

In order to perform the necessary interactions for coordinator-to-participant, two service
roles are defined (illustrated in Figure 3), with the following operations (messages):

• The Participant: this accepts getStatus, AssertionType and getIdentity messages.
The CoordinatorParticipant endpoint address is propagated on all of these
messages.

• The CoordinatorParticipant: this accepts status, AssertionType, identity,
wrongState and generalFault call-back messages. Other error or fault messages
are expected to be returned as specific instances of the AssertionType response.

Web Services Coordination Framework Specification 24/07/2003

 15

The coordinator sends an AssertionType message to the Participant with an
accompanying reference to a CoordinatorParticipant to which the Participant may
eventually call-back with the response. The Participant may then send back a specific
AssertionType message if successful, which will be interpreted in a manner specific to
the coordination protocol. The wrongState and generalFault messages are used to
indicate error conditions.

The getIdentity message is used to obtain the unique identification for the relevant
Participant.

Participant Coordinator
Participant

AssertionTy pe message

wrongState

AssertionTy pe message

identity

Coordinator generated

Participant generated

generalFault

getIdentity

getStatus

status

Figure 3, Coordinator-to-participant interactions.

The interactions depicted in Figure 3, are presented on a per-role basis in the WSDL
interface shown in Figure 4.

Web Services Coordination Framework Specification 24/07/2003

 16

<wsdl:portType name="ParticipantPortType">

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getIdentity">

 <wsdl:input message="tns:GetIdentityMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="Identity">

 <wsdl:input message="tns:IdentityMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 4, WSDL portType Declarations for Participant and CoordinatorParticipant Roles

In order to perform the necessary interactions for normal participant-to-coordination
interaction, two service roles are defined, with the following operations (message-
exchanges):

• ParticipantCoordinator: this accepts the setResponse message. The endpoint
address for the ParticipantCoordinator is returned to the Participant during the
registration process (see below). The ParticipantRespondant address is propagated
on all of these messages for call-back response messages.

• ParticipantRespondant: this accepts the responseSet, unknownCoordinator,
generalFault, protocolViolation and wrongState messages.

Figure 5 illustrates the interactions between Participant and coordinator.

The ParticipantCoordinator can send the setResponse message because some coordination
protocols will allow participants to make autonomous decisions based upon their current
state and assumptions about which notifications a coordinator may send them. This
operation is called to notify the coordinator identified in the associated context of the
response (the AssertionType) from the Participant. It is valid for the AssertionType
parameter to be nil. The identity of the message (the message URI) that triggered the
Participant and the Participant identity are also returned, as is a QName which represents
some coordination-specific response; this is to allow Participants to asynchronously send
responses to messages that the ActivityCoordinator has not yet (and may never) send: the

Web Services Coordination Framework Specification 24/07/2003

 17

coordinator is required to record both sets of data until the next coordination point where
it can determine, using the AssertionType provided by the Participant, whether or not it
should send coordination messages to the Participant. If the Participant sent a response to
a message the coordinator decided not to generate (e.g., it sent PREPARED assuming the
coordinator would prepare when in fact the coordinator rolls back), then it is up to the
implementation to determine what to do. Obviously if the Participant is allowed to make
an asynchronous response then the protocol should be able to deal with this eventuality.

Upon successfully receiving and recording the message, the coordinator will call-back
with the responseSet message. If the identity of the coordinator is invalid, then the
unknownCoordinator message will be sent to the ParticipantRespondant. If the message
sent by the Participant is incompatible with the current state of the coordinator, the
coordinator will send the protocolViolation message; if the coordinator refuses to accept
the message from the Participant then the wrongState message will be sent to the
ParticipantRespondant.

Figure 5, Participant-to-coordinator interactions.

The ParticipantCoordinator and ParticipantRespondant roles are presented in WSDL in
Figure 6.

Web Services Coordination Framework Specification 24/07/2003

 18

<wsdl:portType name="ParticipantCoordinatorPortType">

 <wsdl:operation name="setResponse">

 <wsdl:input message="tns:SetResponseMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="ParticipantRespondantPortType">

 <wsdl:operation name="responseSet">

 <wsdl:input message="tns:ResponseSetMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <wsdl:input message="asw:ProtocolViolationFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 6, WSDL portType Declarations for ParticipantCoordinator and ParticipantRespondant
Roles.

4.2 Qualifiers

Qualifiers are a feature of WS-CF that allows additional protocol specific and business
specific information to be exchanged by participating services. Typically qualifiers are
used by participants when enrolling with a coordinator to augment the enrolment or un-
enrolment operations (the addParticipant and removeParticipant operations) and thus
enhance the coordination protocol. For example, when enlisting a participant with a
transaction, it is possible to specify a caveat on enrolment via a suitable qualifier, such
that the coordinator knows that the participant will cancel the work if it does not hear
from the coordinator within 24 hours. The schema fragment for WS-CF qualifiers is
shown in Figure 7.
<xs:complexType name="QualifierType">

 <xs:sequence>

 <xs:element name="qualifier-name" type="xs:string"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Figure 7, Qualifier XML Schema Type

Web Services Coordination Framework Specification 24/07/2003

 19

4.3 Coordinator

An activity coordinator is associated with each activity; this happens implicitly through
the appropriate Activity Lifecycle Service (ALS) that is enlisted with the CTX Service
framework. This ALS is informed when the activity starts (and in which case it may
create a new coordinator) and when it is completing (and in which case it will execute the
coordination protocol across the registered participants). When a message is sent by the
activity (e.g., at termination time), the coordinator’s role is to forward this to all
registered Participants and to deal with the outcomes generated by the Participants.

The protocol that the coordinator implementation uses will depend upon the type of
activity, application or service using the coordination service. For example, if the
coordination service is being used for within an extended transaction infrastructure, then
one protocol implementation will not be sufficient. For example, if Saga model is in use
then a compensation message may be required to be sent to Participants if a failure has
happened, whereas a coordinator for a strict transactional model may be required to send
a message informing participants to rollback.

How an ALS for a specific coordination protocol(s) is located and ultimately registered
with the CTX Service is out of scope of this specification. An ALS may identify the type
of coordination protocol it supports via the ALS identify message, but other deployment
specific mechanisms may be used.

It is further envisaged that the Coordinator implementation can be a common/generic
infrastructure component that is neutral to a particular Coordination Service
implementation. The Coordinator is merely the registration point for interested
participants of an activity. Obviously each such registration point will be required to
publish the protocol it uses when performing coordination using the schema shown
earlier.

A Coordination Service implementation provides:

• Transmission of coordination specific messages over SOAP requires a
publish/subscribe or broadcast message interaction pattern;

• Support for the Participant service interface between CTX Service and
Participant.

All operations on the coordinator service are implicitly associated with the current
context, i.e., it is propagated to the coordinator service in order to identify which
coordinator is to be operated on.

In the following sections we shall discuss the different coordinator interactions and their
associated message exchanges.

Web Services Coordination Framework Specification 24/07/2003

 20

4.3.1 Service-to-coordinator interactions

These interactions define how a service may enlist or delist a participant with the
coordinator and perform other service-specific operations, and are illustrated in Figure 8.
They are factored into two different roles:

• ServiceCoordinator: this accepts the addParticipant, removeParticipant,
getQualifiers and getParentCoordinator messages. All messages contain the
ServiceRespondant endpoint for call-back messages. It is this call-back address
that is referenced in the extended context which is propagated between application
services. The ServiceRespondant endpoint address is propagated on all of these
messages.

• ServiceRespondant: this accepts the participantAdded, participantRemoved,
qualifiers, parentCoordinator, generalFault, unknownCoordinator, wrongState,
duplicateParticipant, invalidProtocol, invalidParticipant, participantNotFound
messages.

addParticipant

This message is sent to the coordinator in order to register the specified Participant with
the ActivityCoordinator identified in the context. If no coordinator can be located, then
the invalidCoordinator message is sent to the ServiceRespondant.

The coordinator may support multiple sub-protocols (e.g., synchronizations that are
executed prior to and after a two-phase commit protocol); in order to define with which
protocol to enlist the participant, the protocolType URI is propagated in the message. If
the protocol is not supported by this coordinator then the invalidProtocol message will be
sent to the ServiceRespondant.

Upon success, the coordinator calls back to the ServiceRespondant with the
participantAdded message, including in this message the ParticipantCoordinator address.

If the Activity has begun completion, or has already completed, then the wrongState
message is sent.

If the same participant has been enrolled with the coordinator more than once and the
coordination protocol does not allow this, then the duplicateParticipant message is sent
to the ServiceRespondant.

If the participant is invalid within the scope of the coordinator, the invalidParticipant
message is sent to the ServiceRespondant.

removeParticipant

This message causes the coordinator to remove the specified Participant from the
ActivityCoordinator identifier in the associated context. If the Participant has not

Web Services Coordination Framework Specification 24/07/2003

 21

previously been registered with the coordinator for the specified coordination protocol,
then it will send the participantNotFound message to the ServiceRespondant.

If no coordinator can be located, then the invalidCoordinator message is sent to the
ServiceRespondant.

Removal of a participant need not be supported by the specific coordination
implementation and obviously it may also be dependant upon where in the protocol the
coordinator is as to whether it will allow the participant to be removed.

If the Activity has begun completion, or has completed, then the wrongState message is
sent.

getParentCoordinator

This message causes the address of the parent coordinator of the coordinator referenced
in the associated context to be sent to the ServiceRespondant via the parentCoordinator
message. If there is no parent (i.e., this coordinator is top-level), then an empty address
will be sent.

If no coordinator can be located, then the invalidCoordinator message is sent to the
ServiceRespondant.

getQualifiers

This message causes the coordinator service to return the list of all qualifiers currently
registered with it via the qualifiers message on the ServiceRespondant. If no coordinator
can be located, then the invalidCoordinator message is sent to the ServiceRespondant.

Web Services Coordination Framework Specification 24/07/2003

 22

Figure 8, Service-to-coordinator interactions.

The ServiceRespondant and ServiceCoordinator roles are elucidated in WSDL form in
Figure 9.

Web Services Coordination Framework Specification 24/07/2003

 23

<wsdl:portType name="ServiceCoordinatorPortType">

 <wsdl:operation name="addParticipant">

 <wsdl:input message="tns:AddParticipantMessage"/>

 </wsdl:operation>

 <wsdl:operation name="removeParticipant">

 <wsdl:input message="tns:RemoveParticipantMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getQualifiers">

 <wsdl:input message="tns:GetQualifiersMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getParentCoordinator">

 <wsdl:input message="tns:GetParentCoordinatorMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="ServiceRespondantPortType">

 <wsdl:operation name="participantAdded">

 <wsdl:input message="tns:ParticipantAddedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="participantRemoved">

 <wsdl:input message="tns:ParticipantRemovedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="qualifiers">

 <wsdl:input message="tns:QualifiersMessage"/>

 </wsdl:operation>

 <wsdl:operation name="parentCoordinator">

 <wsdl:input message="tns:ParentCoordinatorMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="duplicateParticipant">

 <wsdl:input message="tns:DuplicateParticipantFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidProtocol">

 <wsdl:input message="tns:InvalidProtocolFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidParticipant">

 <wsdl:input message="tns:InvalidParticipantMessage"/>

 </wsdl:operation>

 <wsdl:operation name="participantNotFound">

 <wsdl:input message="tns:ParticipantNotFoundFaultMessage"/>

Web Services Coordination Framework Specification 24/07/2003

 24

 </wsdl:operation>

</wsdl:portType>

Figure 9, WSDL portType Declarations for ServiceRespondant and ServiceCoordinator Roles.

4.3.2 Client-to-coordinator interactions

These interactions (illustrated in Figure 10) essentially define how a client (user) of the
coordinator service can obtain the status of the coordinator or ask it to perform
coordination. They are factored into two different services:

• ClientCoordinator: supports the coordinate and getStatus messages. All messages
contain the ClientRespondant endpoint for call-back results. The
ClientRespondant endpoint address is propagated on all of these messages.

• ClientRespondant: supports the coordinated, status, wrongState, notCoordinated,
protocolViolation, invalidCoordinator, invalidActivity and generalFault
messages.

coordinate

If the coordination protocol supports it then the coordinator will execute a particular
coordination protocol (specified by a protocol URI) on the currently enlisted participants,
upon receiving the coordinate message at any time prior to the termination of the
coordination scope. This message instructs the ActivityCoordinator to send protocol
messages to all of the registered Participants; since the coordinator may be invoked
multiple times during the lifetime of an activity, it is possible that different protocol
messages may be sent each time coordinate is called. Once the Participants have
processed the messages and returned outcomes, it is up to the ActivityCoordinator to
consolidate these individual outcomes into a single result, which is sent to the
ClientRespondant via the coordinated message.

If there is no Activity associated with the context then the invalidCoordinator message
will be generated.

Because this operation can be used to cause messages to be sent to Participants at times
other than when the Activity completes, the implementation of the coordinator must
ensure that such messages clearly identify that the Activity is not completing. If the
Activity has begun completion, or has completed, then the invalidActivity message is sent
to the ClientRespondant.

The coordinator may also send the protocolViolation or wrongState messages to the
ClientRespondant to indicate appropriate error conditions that may occur while executing
the coordination protocol.

The notCoordinated response is used to indicate that the coordinator (and hence
coordination protocol) does not allow coordination to occur at any time other than the

Web Services Coordination Framework Specification 24/07/2003

 25

termination of the activity. Other, protocol specific errors are expected to be returned as
data encoded within the AssertionType.

getStatus

The status of the coordinator may be obtained by sending the getStatus message to the
coordinator. The status, which may be one of the status values specified by the CTX
Service, or may be specific to the coordination protocol, identified by its QName, is
returned to the ClientRespondant via the status message.

Figure 10, Client-to-coordinator interactions.

The ClientRespondant and ClientCoordinator roles are shown in WSDL form in Figure
11.

Web Services Coordination Framework Specification 24/07/2003

 26

<wsdl:portType name="ClientCoordinatorPortType">

 <wsdl:operation name="coordinate">

 <wsdl:input message="tns:CoordinateMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="coordinated">

 <wsdl:input message="tns:CoordinatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="notCoordinated">

 <wsdl:input message="tns:NotCoordinatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <wsdl:input message="asw:ProtocolViolationFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidCoordinator">

 <wsdl:input message="tns:InvalidCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidActivity">

 <wsdl:input message="tns:InvalidActivityFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 11, WSDL portType Declarations for ClientRespondant and ClientCoordinator Roles

Context enhancement

In order to perform coordination, it is necessary for the participants to be enrolled with
coordinators. In a distributed environment, this requires information about the
coordinator (essentially its network endpoint) to be available to remote participants. The
CTX Service is already responsible for propagating basic context information between
distributed activities. As we have seen, the information contained within this basic
activity context is simply the unique activity identity. However, it has been designed to
be extensible such that additional, service-specific information may be added to the

Web Services Coordination Framework Specification 24/07/2003

 27

context via Activity Lifecycle Services. In the case of the relevant coordination lifecycle
service, this information is the hierarchy of coordinator references.
<xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wsc4c:ContextType">

 <xs:sequence>

 <xs:element name="protocol-reference" type="tns:ProtocolReferenceType"/>

 <xs:element name="coordinator-reference" type="tns:CoordinatorReferenceType"

 maxOccurs="unbounded"/>

 <xs:any namespace="##any" processContents="lax" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Figure 12, WS-CF ContextType derives from the WS-CTX ContextType.

The XML below shows an example of a coordination context for a coordinator
implementation of a two-phase completion protocol.
<context xmlns="http://www.webservicestransactions.org/schemas/wsc4c/2003/03"

 timeout="100">

 <context-identifier>

 http://www.webservicestransactions.org/wsc4c/abcdef:012345

 </context-identifier>

 <activity-service>

 http://www.webservicestransactions.org/wsc4c/service

 </activity-service>

 <type>

 http://www.webservicestransactions.org/wsc4c/context/type1

 </type>

 <activity-list>

 <service>http://www.webservicestransactions.org/service1</service>

 <service>http://www.webservicestransactions.org/service2</service>

 </activity-list>

 <child-contexts>

 <child-context timeout="200">

 <context-identifier>

 http://www.webservicestransactions.org/wsc4c/5e4f2218b

 </context-identifier>

 <activity-service>

 http://www.webservicestransactions.org/wsc4c/service

 </activity-service>

 <type>http://www.webservicestransactions.org/wsc4c/context/type1</type>

 <activity-list mustUnderstand="true" mustPropagate="true">

 <service>http://www.webservicestransactions.org/service3</service>

 <service>http://www.webservicestransactions.org/service4</service>

 </activity-list>

http://www.webservicestransactions.org/wsas/abcdef:012345
http://www.webservicestransactions.org/wsas/service
http://www.webservicestransactions.org/wsas/context/type1
http://www.webservicestransactions.org/wsas/5e4f2218b
http://www.webservicestransactions.org/wsas/service

Web Services Coordination Framework Specification 24/07/2003

 28

 </child-context>

 </child-contexts>

 <protocol-reference protocolType="http://www.webservicestransactions.org/some-ref"/>

 <coordinator-reference coordinator="http://www.webservicestransactions.org/coord"

 activityIdentity="http://www.webservicestransactions.org/some-activity"/>

/context>

4.4 Interposition

Consider the situation depicted in Figure 13, where there is a coordinator and three
participants. If we assume that each of these participants is on a different machine to the
coordinator and each other then each of the lines connecting the coordinator to the
participants also represents the invocations from the coordinator to the participants and
vice versa.

Coordinator

Participant

Figure 13, Coordinator-participant distributed interactions.

The overhead involved in making these distributed invocations will depend upon a
number of factors, including how congested the network is, the load on the respective
machines and the size of the coordination domain In addition, as the number of
participants increase, so does the overhead involved in the coordinator executing the
coordination protocol.

A common approach to ameliorate this overhead is to first recognize the fact that as far as
a coordinator is concerned it does not matter what the participant implementation is:
although one participant may interact with a database to commit a transaction, another
may just as readily be responsible for forwarding the coordinators’ messages to a number
of databases: essentially acting as a coordinator itself, as shown in Figure 14.

Web Services Coordination Framework Specification 24/07/2003

 29

Participant/
proxy-coordinator

Coordinator

Participant

Figure 14, Participant coordinator.

In this case, the participant is acting like a proxy for the coordinator (the root
coordinator): in the example, the proxy coordinator is responsible for interacting with the
two participants when it receives an invocation from the coordinator and collating their
responses (and it’s own) for the coordinator. As far as the participants are concerned they
are invoked by a coordinator, whereas as far as the root coordinator is concerned it only
sees participants.

This technique of using proxy coordinators (or subordinate (sub-) coordinators) is known
as interposition. Each domain that imports a context may create a subordinate coordinator
that enrolls with the imported coordinator as though it were a participant. Interposition
obviously requires the domain to use a different context when communicating with
services and participants within the domain since at the very least the coordinator
endpoint will be different. Any participants that are required to enroll with the
coordinated activity within this domain actually enroll with the subordinate coordinator.
In a large distributed application, a tree of coordinators and participants may be created,
as illustrated in Figure 15. WS-CF does not mandate that interposition is supported by an
implementation.

Web Services Coordination Framework Specification 24/07/2003

 30

Root coordinator

Leaf
participant

Subordinate
coordinator

Figure 15, Interposition.

Because a subordinate coordinator must execute the coordination protocol on its enlisted
participants, it must have its own log and corresponding failure recovery subsystem. The
subordinate must record sufficient recovery information for any work it may do as a
participant and additional recovery information for its role as a coordinator.

State management and recovery

It is inherently complex to recover applications after failures (e.g., machine crashes). For
example, the states of objects in use prior to the failure may be corrupt. The advantage of
using transactions to control operations on persistent objects is that transaction systems
ensure the consistency of the objects, regardless of whether or not failures occur. A
transaction system guarantees that regardless of (non-catastrophic) failures, all
transactions that were in flight when the failure occurred will either be committed or
rolled back, making permanent or undoing any changes to objects.

Rather than mandate a particular means by which objects should make themselves
persistent, many transaction systems simply state the requirements they place on such
objects if they are to be made recoverable, and leave it up to the object implementers to
determine the best strategy for their object’s persistence. The transaction system itself
will have to make sufficient information persistent such that, in the event of a failure and
subsequent recovery, it can tell these objects whether to commit any state changes or roll
them back. However, it is typically not responsible for the application object’s
persistence.

In a similar way, the WS-CF specification does not mandate a specific persistence and
recovery mechanism. Rather it states what the requirements are on such a service in the
event of a failure, and leaves it to individual implementers to determine their own
recovery mechanisms. In a distributed application, where an individual activity may run
on different implementations of the WS-CF during its lifetime, recovery is the

Web Services Coordination Framework Specification 24/07/2003

 31

responsibility of these different implementations. Each implementation may perform
recovery in a completely different manner, forming recovery domains.

Note, failure recovery semantics are strongly tied to the protocol that the coordinator
supports. As such, information about for how long a coordinator must remember failures
and their participants cannot be mandated by this specification. It is important that the
contract that exists between coordinator and participant is defined by the implementer of
the coordination protocol, especially in the case of failures. It is this contract that will be
used by both the coordinator and participant to interpret responses to the recovery
protocol.

Unlike in a traditional transactional system, where crash recovery mechanisms are only
responsible for guaranteeing consistency of object data, applications that use
Coordination Service’s will typically also require the ability to recover the activity
structure that was present at the time of the failure, enabling the application to progress
onwards.

Some of the recovery requirements are outlined below:

• application logic: the logic required to drive the activities during normal runtime
is required during recovery in order to drive any in-flight activities to application
specific consistency. Since it is the application level that imposes meaning on
Participants and messages, it is predominately the application that is responsible
for driving recovery.

• application object consistency: the states of all application objects must be
returned to some form of application specific consistency after a failure.

The following roles are defined to assist in recovery; the message interactions are shown
in Figure 16:

• RecoveryCoordinator: this service is used to drive recovery on behalf of a
participant. It supports the recover and getStatus messages. The
RecoveryParticipant endpoint address is propagated on all of these messages for
call-back results.

• RecoveryParticipant: this service is used to return the recovery information to a
recovering participant via call-backs. It supports the recovered, status,
unknownCoordinator, wrongState and generalFault messages.

recover

This operation is used by participants that have previously successfully registered with a
coordinator. When a participant fails and subsequently recovers it may not be able to
recover at the same address that it used to enlist with the coordinator. The recover
operation allows the participant to inform that coordinator that the participant has moved
from the original address to a new address. It may also be used to start recovery
operations by the coordinator.

Web Services Coordination Framework Specification 24/07/2003

 32

If successful, the recoverResponse message is sent to the RecoveryParticipant along with
the current status of the transaction. This status may be used by the recovering participant
to perform recovery, although this will depend upon the coordination protocol in use. For
example, if the participant was enrolled in a presumed-abort transaction protocol and
recover indicated that the transaction no longer exists, then the participant can cancel any
work it may be controlling.

If the coordinator cannot be located, then the unknownCoordinator message is sent back.

If the status of the coordinator is such that recovery is not allowed at this time, the
wrongState message is sent to the RecoveryParticipant by the coordinator.

getStatus

The status of the coordinator may be obtained by sending the getStatus message to the
coordinator. The status, which may be one of the status values specified by the CTX
Service, or may be specific to the coordination protocol, identified by its QName, is
returned to the RecoveryParticipant via the status message.

Figure 16, Participant recovery.

The RecoveryCoordinator and RecoveryParticipant interfaces are presented in Figure 17.

Web Services Coordination Framework Specification 24/07/2003

 33

<wsdl:portType name="RecoveryCoordinatorPortType">

 <wsdl:operation name="recover">

 <wsdl:input message="tns:RecoverMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="RecoveryParticipantPortType">

 <wsdl:operation name="recovered">

 <wsdl:input message="tns:RecoveredMessage"/>

 </wsdl:operation>

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 17, WSDL portType Declarations for RecoveryParticipant and RecoveryCoordinator Roles

5. Roles & Responsibilities

With reference to Figure 18, the following section describes the roles and responsibilities
specific to the WS-CF architecture.

Web Services Coordination Framework Specification 24/07/2003

 34

 WSCF

Coordinator Participant

Coordination protocol messages Participants

 XML
Message Set

Coordination
Framework Coordination

Framework

Application WebService

Coordination Service

SOAPSOAP

WSDL for Coordination
Service and Activity Service
to communicate.

WSDL

XML -
Signal
Message
Definition

Context
(XML)
included on
application flow or
service flows

High Level Service
High Level Service

Demarcation API

Figure 18, WS-CF components.

Coordination Service Activity Lifecycle Service provider

This Web service ties into the WS-CTX and allows the application to define the
beginning and ending points of a coordinated activity and to direct the outcome. The
scope of an activity becomes the scope of a coordinated interaction. The relationship
between the ALS and the coordination service is not mandated by WS-CF.

Coordination Service Provider

The coordination service provider supplies an implementation of a completion processing
facility that provides a means to orchestrate a number of tasks that have a common
interest. Examples of such a coordination service include usage patterns for transactional
activity (e.g., an OMG/OTS or Java/JTS Transaction Service implementation),
extended/relaxed transactional activity (e.g., an OMG/OTS Additional Structuring
Mechanism implementation to support other forms of processing such as long-running,
collaboration or real-time activities) and other behaviors (including non-transactional
groupings).

The definition of a coordination service supplies the following:

Web Services Coordination Framework Specification 24/07/2003

 35

• Protocol: Defines the characteristics of a coordination service and the contracts &
obligations for the participants of an activity.

Web Service Provider

The Web Service provider (or the resources associated with the Web Service) need to
provide the following:

• A Participant implementation to respond to the coordination messages from a
Coordination Service implementation. It is envisaged that Participants are
interchangeable or pluggable to provide differing levels of Quality of Service
depending on the Coordination Service utilized for an activity.

• Support the Participant API’s (interface between CTX Service and Participant). It
is the Participant that is the coordinated counterpart for the service that enlisted it
with the coordinator. Obviously a service may act as a Participant, though this is
not a requirement.

Web Services Coordination Framework Specification 24/07/2003

 36

6. Example

Workflow systems with scripting facilities for expressing the composition of an activity
(a business process) offer a flexible way of building application specific extended
transactions. In this section we describe how WS-CF can be utilized for coordinating
workflow activities. In this example, the coordinator starts new activities to perform units
of work and eventually receives the results. As such, each Participant drives the lifecycle
of an activity.

The coordinator-participant interaction protocol three messages, “start”, “start_ack”,
“outcome”.

• start: the message is sent from a “parent” activity to a “child” activity, to indicate that
the “child” activity should start (via an AssertionType). The message may contain
additional information required to parameterize the starting of the activity (workflow
task).

• start_ack: this AssertionType is sent from a “child” activity to a “parent” activity, as
the result of a “start” message, to acknowledge that the “child” activity has started.

• outcome: this message is sent from a “child” activity to a “parent” activity, to indicate
that the “child” activity has completed (via setResponse). The AssertionType may
contain information about how the activity terminated, e.g., whether or not it
completed successfully.

The interaction depicted in fig. 10 is activity a coordinating the parallel execution of b
and c followed by d. Whenever a child activity is started the parent activity registers a
Participant with it that is used to deliver the “outcome” to the parent.

 a:Activity c:Activity d:Activity b:Activity

“start”

“start”

“start”

“outcome”

“outcome”

“outcome”

“start_ack”

“start_ack”

“start_ack”

Figure 19, Workflow coordination.

Web Services Coordination Framework Specification 24/07/2003

 37

7. XML Schema and WSDL Interfaces

The following sections describe the WSDL for the Web Services components of WS-CF
as well as the XML for contexts, message formats etc.

The WSDL interfaces presented here are more concrete than those presented earlier in
this document, and offer a straightforward SOAP binding (using document/literal) for
transporting WS-CF messages.

Web Services Coordination Framework Specification 24/07/2003

 38

7.1 XML Schema for WS-CF Messages
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.webservicestransactions.org/schemas/wscf/2003/03"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.webservicestransactions.org/schemas/wscf/2003/03"

xmlns:wsc4c="http://www.webservicestransactions.org/schemas/wsc4c/2003/03">

 <xs:import namespace="http://www.webservicestransactions.org/schemas/wsc4c/2003/03"

schemaLocation="../../WS-CTX/xml/wsc4c.xsd"/>

 <xs:complexType name="CoordinatorReferenceType">

 <xs:attribute name="coordinator" type="xs:anyURI" use="required"/>

 <xs:attribute name="activityIdentity" type="xs:anyURI" use="optional"/>

 </xs:complexType>

 <xs:complexType name="ProtocolReferenceType">

 <xs:attribute name="protocolType" type="xs:anyURI" use="required"/>

 </xs:complexType>

 <xs:complexType name="ContextType">

 <xs:complexContent>

 <xs:extension base="wsc4c:ContextType">

 <xs:sequence>

 <xs:element name="protocol-reference" type="tns:ProtocolReferenceType"/>

 <xs:element name="coordinator-reference" type="tns:CoordinatorReferenceType"

maxOccurs="unbounded"/>

 <xs:any namespace="##any" processContents="lax" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="StatusType">

 <xs:restriction base="wsc4c:StatusType"/>

 </xs:simpleType>

 <xs:element name="status" type="tns:StatusType" substitutionGroup="wsc4c:status"/>

 <xs:complexType name="CompletionStatusType">

 <xs:simpleContent>

 <xs:extension base="wsc4c:CompletionStatusType"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="QualifierType">

 <xs:sequence>

 <xs:element name="qualifier-name" type="xs:string"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="qualifier" type="tns:QualifierType" abstract="true"/>

 <xs:complexType name="QualifiersType">

 <xs:sequence>

 <xs:element name="qualifier" type="tns:QualifierType" maxOccurs="unbounded"/>

 </xs:sequence>

Web Services Coordination Framework Specification 24/07/2003

 39

 </xs:complexType>

 <xs:complexType name="AssertionType">

 <xs:complexContent>

 <xs:extension base="wsc4c:AssertionType">

 <xs:sequence>

 <xs:element name="qualifiers" type="tns:QualifiersType" minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="assertion" type="tns:AssertionType" abstract="true"/>

 <xs:complexType name="FaultType">

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="faultcode" type="xs:anyURI"/>

 <xs:element name="faultstring" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="fault" type="tns:FaultType" abstract="true"/>

 <xs:element name="context" type="tns:ContextType" substitutionGroup="wsc4c:context"/>

 <xs:element name="get-identity" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="identity" type="tns:AssertionType"/>

 <xs:element name="set-response" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="assumed-message" type="tns:AssertionType"/>

 <xs:element name="response" type="tns:AssertionType"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="response-set" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="recover" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="old-participant" type="xs:anyURI"/>

 </xs:sequence>

Web Services Coordination Framework Specification 24/07/2003

 40

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="recovered" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element ref="tns:status"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="add-participant" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="participant" type="xs:anyURI"/>

 <xs:element name="protocol" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="participant-added" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="remove-participant" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="participant" type="xs:anyURI"/>

 <xs:element name="protocol" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="participant-removed" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="get-qualifiers" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="qualifiers" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

Web Services Coordination Framework Specification 24/07/2003

 41

 <xs:element name="get-parent-coordinator" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="parent-coordinator">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="parent-coordinator" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="get-status" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="got-status" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element ref="tns:status"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="coordinate" substitutionGroup="tns:assertion">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:AssertionType">

 <xs:sequence>

 <xs:element name="sub-protocol" type="xs:anyURI"/>

 <xs:element name="completion-status" type="tns:CompletionStatusType"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="coordinated" type="tns:AssertionType"

substitutionGroup="tns:assertion"/>

 <xs:element name="unknown-coordinator-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="coordinator" type="xs:anyURI"/>

 </xs:sequence>

Web Services Coordination Framework Specification 24/07/2003

 42

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="duplicate-participant-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="duplicate-participant" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="participant-not-found-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="participant" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="invalid-participant-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="participant" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="invalid-protocol-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="protocol" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Web Services Coordination Framework Specification 24/07/2003

 43

 </xs:element>

 <xs:element name="general-fault" substitutionGroup="tns:fault">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tns:FaultType">

 <xs:sequence>

 <xs:element name="faulting-actor" type="xs:anyURI"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

7.2 WSDL Interface for WS-CF Actors
<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

targetNamespace="http://www.webservicestransactions.org/wsdl/wscf/2003/03"

xmlns:tns="http://www.webservicestransactions.org/wsdl/wscf/2003/03"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wscf="http://www.webservicestransactions.org/schemas/wscf/2003/03"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <wsdl:import namespace="http://www.webservicestransactions.org/schemas/wscf/2003/03"

location="wscf.xsd"/>

 <wsdl:message name="ContextMessage">

 <wsdl:part name="content" element="wscf:context"/>

 </wsdl:message>

 <wsdl:message name="GetIdentityMessage">

 <wsdl:part name="content" element="wscf:get-identity"/>

 </wsdl:message>

 <wsdl:message name="IdentityMessage">

 <wsdl:part name="content" element="wscf:identity"/>

 </wsdl:message>

 <wsdl:message name="SetResponseMessage">

 <wsdl:part name="content" element="wscf:set-response"/>

 </wsdl:message>

 <wsdl:message name="ResponseSetMessage">

 <wsdl:part name="content" element="wscf:response-set"/>

 </wsdl:message>

 <wsdl:message name="RecoverMessage">

 <wsdl:part name="content" element="wscf:recover"/>

 </wsdl:message>

 <wsdl:message name="RecoveredMessage">

 <wsdl:part name="content" element="wscf:recovered"/>

 </wsdl:message>

 <wsdl:message name="AddParticipantMessage">

 <wsdl:part name="content" element="wscf:add-participant"/>

Web Services Coordination Framework Specification 24/07/2003

 44

 </wsdl:message>

 <wsdl:message name="ParticipantAddedMessage">

 <wsdl:part name="content" element="wscf:participant-added"/>

 </wsdl:message>

 <wsdl:message name="RemoveParticipantMessage">

 <wsdl:part name="content" element="wscf:remove-participant"/>

 </wsdl:message>

 <wsdl:message name="ParticipantRemovedMessage">

 <wsdl:part name="content" element="wscf:participant-removed"/>

 </wsdl:message>

 <wsdl:message name="GetQualifiersMessage">

 <wsdl:part name="content" element="wscf:get-qualifiers"/>

 </wsdl:message>

 <wsdl:message name="QualifiersMessage">

 <wsdl:part name="content" element="wscf:qualifiers"/>

 </wsdl:message>

 <wsdl:message name="GetParentCoordinatorMessage">

 <wsdl:part name="content" element="wscf:get-parent-coordinator"/>

 </wsdl:message>

 <wsdl:message name="ParentCoordinatorMessage">

 <wsdl:part name="content" element="wscf:parent-coordinator"/>

 </wsdl:message>

 <wsdl:message name="GetStatusMessage">

 <wsdl:part name="content" element="wscf:get-status"/>

 </wsdl:message>

 <wsdl:message name="StatusMessage">

 <wsdl:part name="content" element="wscf:got-status"/>

 </wsdl:message>

 <wsdl:message name="CoordinateMessage">

 <wsdl:part name="content" element="wscf:coordinate"/>

 </wsdl:message>

 <wsdl:message name="CoordinatedMessage">

 <wsdl:part name="content" element="wscf:coordinated"/>

 </wsdl:message>

 <wsdl:message name="UnknownCoordinatorFaultMessage">

 <wsdl:part name="content" element="wscf:unknown-coordinator-fault"/>

 </wsdl:message>

 <wsdl:message name="DuplicateParticipantFaultMessage">

 <wsdl:part name="content" element="wscf:duplicate-participant-fault"/>

 </wsdl:message>

 <wsdl:message name="ParticipantNotFoundFaultMessage">

 <wsdl:part name="content" element="wscf:participant-not-found-fault"/>

 </wsdl:message>

 <wsdl:message name="InvalidParticipantFaultMessage">

 <wsdl:part name="content" element="wscf:invalid-participant-fault"/>

 </wsdl:message>

 <wsdl:message name="InvalidProtocolFaultMessage">

Web Services Coordination Framework Specification 24/07/2003

 45

 <wsdl:part name="content" element="wscf:invalid-protocol-fault"/>

 </wsdl:message>

 <wsdl:message name="GeneralFaultMessage">

 <wsdl:part name="content" element="wscf:general-fault"/>

 </wsdl:message>

 <wsdl:portType name="ParticipantPortType">

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getIdentity">

 <wsdl:input message="tns:GetIdentityMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CoordinatorParticipantPortType">

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="Identity">

 <wsdl:input message="tns:IdentityMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ParticipantCoordinatorPortType">

 <wsdl:operation name="setResponse">

 <wsdl:input message="tns:SetResponseMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ParticipantRespondantPortType">

 <wsdl:operation name="responseSet">

 <wsdl:input message="tns:ResponseSetMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <wsdl:input message="asw:ProtocolViolationFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

Web Services Coordination Framework Specification 24/07/2003

 46

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ServiceCoordinatorPortType">

 <wsdl:operation name="addParticipant">

 <wsdl:input message="tns:AddParticipantMessage"/>

 </wsdl:operation>

 <wsdl:operation name="removeParticipant">

 <wsdl:input message="tns:RemoveParticipantMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getQualifiers">

 <wsdl:input message="tns:GetQualifiersMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getParentCoordinator">

 <wsdl:input message="tns:GetParentCoordinatorMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ServiceRespondantPortType">

 <wsdl:operation name="participantAdded">

 <wsdl:input message="tns:ParticipantAddedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="participantRemoved">

 <wsdl:input message="tns:ParticipantRemovedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="qualifiers">

 <wsdl:input message="tns:QualifiersMessage"/>

 </wsdl:operation>

 <wsdl:operation name="parentCoordinator">

 <wsdl:input message="tns:ParentCoordinatorMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="duplicateParticipant">

 <wsdl:input message="tns:DuplicateParticipantFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidProtocol">

 <wsdl:input message="tns:InvalidProtocolFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidParticipant">

 <wsdl:input message="tns:InvalidParticipantMessage"/>

 </wsdl:operation>

Web Services Coordination Framework Specification 24/07/2003

 47

 <wsdl:operation name="participantNotFound">

 <wsdl:input message="tns:ParticipantNotFoundFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ClientCoordinatorPortType">

 <wsdl:operation name="coordinate">

 <wsdl:input message="tns:CoordinateMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="ClientRespondantPortType">

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="coordinated">

 <wsdl:input message="tns:CoordinatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="notCoordinated">

 <wsdl:input message="tns:NotCoordinatedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <wsdl:input message="asw:ProtocolViolationFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidCoordinator">

 <wsdl:input message="tns:InvalidCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidActivity">

 <wsdl:input message="tns:InvalidActivityFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="RecoveryCoordinatorPortType">

 <wsdl:operation name="recover">

 <wsdl:input message="tns:RecoverMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="RecoveryParticipantPortType">

Web Services Coordination Framework Specification 24/07/2003

 48

 <wsdl:operation name="recovered">

 <wsdl:input message="tns:RecoveredMessage"/>

 </wsdl:operation>

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <wsdl:input message="asw:WrongStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="ParticipantPortTypeSOAPBinding" type="tns:ParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="getStatus">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getStatus"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="getIdentity">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getIdentity"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="CoordinatorParticipantPortTypeSOAPBinding"

type="tns:CoordinatorParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="status">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/status"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

Web Services Coordination Framework Specification 24/07/2003

 49

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="Identity">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/Identity"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/wrongState"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/generalFault"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="ParticipantCoordinatorPortTypeSOAPBinding"

type="tns:ParticipantCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="setResponse">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/setResponse"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="ParticipantRespondantPortTypeSOAPBinding"

type="tns:ParticipantRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="responseSet">

Web Services Coordination Framework Specification 24/07/2003

 50

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/responseSet"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/unknownCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/generalFault"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/protocolViolation"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/wrongState"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="ServiceCoordinatorPortTypeSOAPBinding"

type="tns:ServiceCoordinatorPortType">

Web Services Coordination Framework Specification 24/07/2003

 51

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="addParticipant">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/addParticipant"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="removeParticipant">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/removeParticipant"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="getQualifiers">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getQualifiers"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="getParentCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getParentCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="ServiceRespondantPortTypeSOAPBinding"

type="tns:ServiceRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="participantAdded">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/participantAdded"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

Web Services Coordination Framework Specification 24/07/2003

 52

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="participantRemoved">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/participantRemoved"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="qualifiers">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/qualifiers"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="parentCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/parentCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/generalFault"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="unknownCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/unknownCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

Web Services Coordination Framework Specification 24/07/2003

 53

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/wrongState"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="duplicateParticipant">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/duplicateParticipant"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="invalidProtocol">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/invalidProtocol"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="invalidParticipant">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/invalidParticipant"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="participantNotFound">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/participantNotFound"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

Web Services Coordination Framework Specification 24/07/2003

 54

 <wsdl:binding name="ClientCoordinatorPortTypeSOAPBinding"

type="tns:ClientCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="coordinate">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/coordinate"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getStatus"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="ClientRespondantPortTypeSOAPBinding"

type="tns:ClientRespondantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="status">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/status"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="coordinated">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/coordinated"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="notCoordinated">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/notCoordinated"

style="document"/>

Web Services Coordination Framework Specification 24/07/2003

 55

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/wrongState"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="protocolViolation">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/protocolViolation"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="invalidCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/invalidCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="invalidActivity">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/invalidActivity"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/generalFault"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

Web Services Coordination Framework Specification 24/07/2003

 56

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="RecoveryCoordinatorPortTypeSOAPBinding"

type="tns:RecoveryCoordinatorPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="recover">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/recover"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/getStatus"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="RecoveryParticipantPortTypeSOAPBinding"

type="tns:RecoveryParticipantPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="recovered">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/recovered"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="status">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/status"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

Web Services Coordination Framework Specification 24/07/2003

 57

 <wsdl:operation name="unknownCoordinator">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/unknownCoordinator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="wrongState">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/wrongState"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <soap:operation

soapAction="http://www.webservicestransactions.org/wsdl/wscf/2003/03/generalFault"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 <soap:header use="literal" message="tns:ContextMessage"/>

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

7.3 Issues

Other issues that will need to be considered when implementing many business
transactions include:
1) Security and confidentiality: any business transaction involving buying or selling

items, whether they be hotel rooms or newspapers, requires guarantees that the
buyer/seller is who they appear to be, and that no one can “snoop” the connection and
obtain information they are not entitled to.

2) Audit trail: maintaining a log of the actions performed during a business transaction
can be useful for a number of reasons, not least that of non-repudiation in the case of
legal action.

3) Protocol completeness guarantee: even in the presence of failures, the correctness
guarantee for the application relies upon the structure of the application activity being
followed. The information about which activity to invoke when and under what
circumstances must reside in, for example, a highly available repository, such that

Web Services Coordination Framework Specification 24/07/2003

 58

failure of the original “controller” (that entity which was responsible for parsing and
driving the activities) does not cause the activity to stop, or for branches of it to be
ignored.

4) Quality of service: some Web Services may support different types of extended
transaction model as well as different communication protocols. The selection of
which model to use may depend upon quality of service requirements.

How these fit into the WS-CF will be one of the areas of future research and
development.

Web Services Coordination Framework Specification 24/07/2003

 59

Web Services Coordination Framework Specification 24/07/2003

 61

8. References

[1] OMG, Additional Structuring Mechanisms for the OTS Specification, September
2000, document orbos/2000-04-02.

[2] WSDL 1.1 Specification. See http://www.w3.org/TR/wsdl

http://www.w3.org/TR/wsdl

Web Services Coordination Framework Specification 24/07/2003

 63

9. Acknowledgements

The authors would like to thank the following people for their contributions to this
specification:

Dave Ingham, Arjuna Technologies Ltd.

Barry Hodgson, Arjuna Technologies Ltd.

Goran Olsson, Oracle Corporation.

Nickolas Kavantzas, Oracle Corporation.

Aniruddha Thankur, Oracle Corporation.

	I
	Introduction
	WS-CF architecture
	Relationship to WSDL
	Coordination and activities
	
	Coordination protocol definitions

	WS-CF components
	
	Service-to-coordinator interactions
	addParticipant
	removeParticipant
	getParentCoordinator
	getQualifiers
	Client-to-coordinator interactions
	coordinate

	getStatus
	Context enhancement
	recover
	getStatus

	Roles & Responsibilities
	Example
	XML Schema and WSDL Interfaces
	References
	A
	Acknowledgements

