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Overview

• Fault tolerance
• Transaction fundamentals

– What is a transaction?
– ACID properties

• Distributed transactions
• Web Services
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Fault tolerance

• Machines and software fail
– Fundamental universal law
– Things get better with each generation, but still statistically

significant
• Failures of centralized systems difficult to handle
• Failures of distributed systems are much more

difficult
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Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous

implementations
• Spheres of control

– “Guarantee” no partial completion of work in the presence of
failures
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Affect of time

• Fault tolerance has always been extremely
important

• Back in the 1980’s many different efforts
– Emerald, Argus, Arjuna, Camelot/Avalon, Isis, Horus etc.
– Mostly concentrated around distributed systems

• Centralized system as degenerate case

• 1990’s saw standardization of distributed
systems
– Ansa, DCE, COM/DCOM, CORBA, J2EE
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Is there still research potential?

• What we do is changing
• How we do it is changing
• Paradigm shifts occurring frequently

– Web Services
– Grid Computing
– Mobile Computing
– Large Scale Computing

• These often require new techniques for fault
tolerance
– Some research efforts in environments like these started

decades ago
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What is a transaction?

• Mechanistic aid to achieving correctness
• Provides an “all-or-nothing” property to work that

is conducted within its scope
– Even in the presence of failures

• Ensures that shared resources are protected
from multiple users
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ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability
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Atomicity

• Within the scope of a transaction
– all changes occur together OR no changes occur

• Atomicity is the responsibility of the Transaction Manager

• For example - a money transfer
– debit removes funds
– credit add funds
– no funds are lost!
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Two-phase commit

• Required when there are more than one resource
managers (RM) in a transaction

• Managed by the transaction manager (TM)
• Uses a familiar, standard technique:

– marriage ceremony - Do you? I do. I now pronounce ..
• Two - phase process

– voting phase - can you do it?
• Attempt to reach a common decision

– action phase - if all vote yes, then do it.
• Implement the decision
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Two-phase commit
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Handling failures

• Presumed Abort Strategy
– can be stated as « when in doubt abort »
– any failure prior the commit phase lead to abort the transaction

• A coordinator or a participant can fail in two ways
– it stops running (crashes)
– it times out waiting for a message it was expecting

• A recovered coordinator or participant uses information on stable
storage to guide its recovery
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2PC: optimizations
• one phase commit

– no voting if transaction tree is single branch

One Phase Commit

• “read-only”
 resource doesn’t change any data
 can be ignored in second phase of commit
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Nested transactions
• a transaction is nested when

it executes within another
transaction

• nested transactions live in a
tree structure
– parents
– children

• implement modularity and
containment
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Consistency
• Transactions scope a set of operations
• Consistency can be violated within a transaction

- Allowing a debit for an empty account
- Debit without a credit during a Money Transfer
- Delete old file before creating new file in a copy

• transaction must be correct according to application rules
• Begin and commit are points of consistency

• Consistency preservation is a property of a transaction, not of the TP
system  (unlike the A, I, and D of ACID)
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Isolation

• Running programs concurrently on same data can
create concurrency anomalies
– the shared checking account example

Begin()
read BAL
Subtract 100
write BAL
Commit()

Bal = 100

Bal = -100
Bal = 0

Bal = 100
Begin()
  read BAL
  Subtract 100
  write BAL
Commit()



 17                                                                                                  Red Hat

Isolation
• Transaction must operate as a black box to other

transactions
• Multiple programs sharing data requires

concurrency control
• When using transactions

– programs can be executed concurrently
– BUT programs appear to execute serially
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1010

Isolation

Begin()
 read BAL
 subract 100
 write BAL
Commit()

Bal = 100

Bal = 0 Bal = 0
Begin()
 read BAL
 Not Enough
Rollback()

Oh NO!!
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Durability

• When a transaction commits, its results must survive
failures
– must be durably recorded prior to commit
– system waits for disk ack before acking to user

• If a transaction rolls back, changes must be undone
– before images recorded
– undo processing after failure
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Heuristics

• Two-phase commit protocol is blocking in order to guarantee
atomicity.
– Participants may be blocked for an indefinite period due to failures

• To break the blocking nature, prepared participants may make
autonomous decisions to commit or rollback
– Participant must durably record this decision in case it is eventually

contacted to complete the original transaction
– If the decision differs then the coordinator’s choice then a possibly non-

atomic outcome has happened: a heuristic outcome, with a corresponding
heuristic decision.



 21                                                                                                  Red Hat

Interposition

• Allows a subordinate coordinator to be created
• Interposed coordinator registers with transaction

originator
– Form tree with parent coordinator
– Application resources register locally
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Interposition

Root coordinator

Resource

Subordinate
coordinator
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Web Services and SOA

• Transactions today imply all ACID properties
• Good for “short” durations

– Application specific
• Long-running transactions may impose

constraints
– Hours, days, months, …
– Retain resources for duration of transaction
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Web Services transactions

• Business-to-business interactions may be
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an
individual indefinitely

• May need to undo only a subset of work
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Relaxing isolation

• Internal isolation or resources should be a
decision for the service provider

• E.g., commit early and define compensation activities
• However, it does impact applications

– Some users may want to know a priori what isolation policies are
used

• Undo can be whatever is required
• Before and after image
• Entirely new business processes
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Relaxing atomicity

• Sometimes it may be desirable to cancel some work without
affecting the remainder

– E.g., prefer to get airline seat now even without travel insurance
• Similar to nested transactions

– Work performed within scope of a nested transaction is provisional
– Failure does not affect enclosing transaction

• However, nested transactions may be too restrictive
– Relaxing isolation
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Structuring transactions

• Could structure transactional applications from
short-duration transactions
– Release locks early
– Resulting application may still be required to appear to have

“ACID” properties
• May require application specific means to restore consistency

• A transactional workflow system could be used
to script the composition of these transactions
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Structuring transactions
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time

A3’
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Extended transaction models

• There are a number of such models
– Sagas
– Compensations
– Epsilon Serialisability
– Versioning Schemes
– Nested top-level transactions
– Open-nested transactions
– Glued transactions
– Coloured actions
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Future directions

• One size does not fit all!
• Business domains will impose different

requirements on implementers
– Essentially construct domain-specific models
– Real-time

• The range and requirements for such extended
models are not yet known
– Do not restrict implementations because we don’t know what

we want yet
• Still a very active area of research and

development
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Any questions?


