
Fault tolerance with transactions: past, present
and future

Dr Mark Little
Technical Development Manager, Red Hat



 2                                                                                                  Red Hat

Overview

• Fault tolerance
• Transaction fundamentals

– What is a transaction?
– ACID properties

• Distributed transactions
• Web Services



 3                                                                                                  Red Hat

Fault tolerance

• Machines and software fail
– Fundamental universal law
– Things get better with each generation, but still statistically

significant
• Failures of centralized systems difficult to handle
• Failures of distributed systems are much more

difficult



 4                                                                                                  Red Hat

Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous

implementations
• Spheres of control

– “Guarantee” no partial completion of work in the presence of
failures



 5                                                                                                  Red Hat

Affect of time

• Fault tolerance has always been extremely
important

• Back in the 1980’s many different efforts
– Emerald, Argus, Arjuna, Camelot/Avalon, Isis, Horus etc.
– Mostly concentrated around distributed systems

• Centralized system as degenerate case

• 1990’s saw standardization of distributed
systems
– Ansa, DCE, COM/DCOM, CORBA, J2EE



 6                                                                                                  Red Hat

Is there still research potential?

• What we do is changing
• How we do it is changing
• Paradigm shifts occurring frequently

– Web Services
– Grid Computing
– Mobile Computing
– Large Scale Computing

• These often require new techniques for fault
tolerance
– Some research efforts in environments like these started

decades ago



 7                                                                                                  Red Hat

What is a transaction?

• Mechanistic aid to achieving correctness
• Provides an “all-or-nothing” property to work that

is conducted within its scope
– Even in the presence of failures

• Ensures that shared resources are protected
from multiple users



 8                                                                                                  Red Hat

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability



 9                                                                                                  Red Hat

Atomicity

• Within the scope of a transaction
– all changes occur together OR no changes occur

• Atomicity is the responsibility of the Transaction Manager

• For example - a money transfer
– debit removes funds
– credit add funds
– no funds are lost!



 10                                                                                                  Red Hat

Two-phase commit

• Required when there are more than one resource
managers (RM) in a transaction

• Managed by the transaction manager (TM)
• Uses a familiar, standard technique:

– marriage ceremony - Do you? I do. I now pronounce ..
• Two - phase process

– voting phase - can you do it?
• Attempt to reach a common decision

– action phase - if all vote yes, then do it.
• Implement the decision



 11                                                                                                  Red Hat

Two-phase commit

 

RDBMS A 

B RDBMS 

C 

Phase 1 

COMMIT ? 

COMMIT ? 

YES 

YES 

RDBMS A 

B RDBMS 

C 

COMMIT 

COMMIT 

Phase 2 



 12                                                                                                  Red Hat

Handling failures

• Presumed Abort Strategy
– can be stated as « when in doubt abort »
– any failure prior the commit phase lead to abort the transaction

• A coordinator or a participant can fail in two ways
– it stops running (crashes)
– it times out waiting for a message it was expecting

• A recovered coordinator or participant uses information on stable
storage to guide its recovery



 13                                                                                                  Red Hat

2PC: optimizations
• one phase commit

– no voting if transaction tree is single branch

One Phase Commit

• “read-only”
 resource doesn’t change any data
 can be ignored in second phase of commit



 14                                                                                                  Red Hat

Nested transactions
• a transaction is nested when

it executes within another
transaction

• nested transactions live in a
tree structure
– parents
– children

• implement modularity and
containment



 15                                                                                                  Red Hat

Consistency
• Transactions scope a set of operations
• Consistency can be violated within a transaction

- Allowing a debit for an empty account
- Debit without a credit during a Money Transfer
- Delete old file before creating new file in a copy

• transaction must be correct according to application rules
• Begin and commit are points of consistency

• Consistency preservation is a property of a transaction, not of the TP
system  (unlike the A, I, and D of ACID)

State transformationsState transformations
new state under constructionnew state under construction

B
eg

in
B

eg
in

C
om

m
it

C
om

m
it



 16                                                                                                  Red Hat

Isolation

• Running programs concurrently on same data can
create concurrency anomalies
– the shared checking account example

Begin()
read BAL
Subtract 100
write BAL
Commit()

Bal = 100

Bal = -100
Bal = 0

Bal = 100
Begin()
  read BAL
  Subtract 100
  write BAL
Commit()



 17                                                                                                  Red Hat

Isolation
• Transaction must operate as a black box to other

transactions
• Multiple programs sharing data requires

concurrency control
• When using transactions

– programs can be executed concurrently
– BUT programs appear to execute serially



 18                                                                                                  Red Hat

1010

Isolation

Begin()
 read BAL
 subract 100
 write BAL
Commit()

Bal = 100

Bal = 0 Bal = 0
Begin()
 read BAL
 Not Enough
Rollback()

Oh NO!!



 19                                                                                                  Red Hat

Durability

• When a transaction commits, its results must survive
failures
– must be durably recorded prior to commit
– system waits for disk ack before acking to user

• If a transaction rolls back, changes must be undone
– before images recorded
– undo processing after failure



 20                                                                                                  Red Hat

Heuristics

• Two-phase commit protocol is blocking in order to guarantee
atomicity.
– Participants may be blocked for an indefinite period due to failures

• To break the blocking nature, prepared participants may make
autonomous decisions to commit or rollback
– Participant must durably record this decision in case it is eventually

contacted to complete the original transaction
– If the decision differs then the coordinator’s choice then a possibly non-

atomic outcome has happened: a heuristic outcome, with a corresponding
heuristic decision.



 21                                                                                                  Red Hat

Interposition

• Allows a subordinate coordinator to be created
• Interposed coordinator registers with transaction

originator
– Form tree with parent coordinator
– Application resources register locally



 22                                                                                                  Red Hat

Interposition

Root coordinator

Resource

Subordinate
coordinator



 23                                                                                                  Red Hat

Web Services and SOA

• Transactions today imply all ACID properties
• Good for “short” durations

– Application specific
• Long-running transactions may impose

constraints
– Hours, days, months, …
– Retain resources for duration of transaction



 24                                                                                                  Red Hat

Web Services transactions

• Business-to-business interactions may be
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an
individual indefinitely

• May need to undo only a subset of work



 25                                                                                                  Red Hat

Relaxing isolation

• Internal isolation or resources should be a
decision for the service provider

• E.g., commit early and define compensation activities
• However, it does impact applications

– Some users may want to know a priori what isolation policies are
used

• Undo can be whatever is required
• Before and after image
• Entirely new business processes



 26                                                                                                  Red Hat

Relaxing atomicity

• Sometimes it may be desirable to cancel some work without
affecting the remainder

– E.g., prefer to get airline seat now even without travel insurance
• Similar to nested transactions

– Work performed within scope of a nested transaction is provisional
– Failure does not affect enclosing transaction

• However, nested transactions may be too restrictive
– Relaxing isolation



 27                                                                                                  Red Hat

Structuring transactions

• Could structure transactional applications from
short-duration transactions
– Release locks early
– Resulting application may still be required to appear to have

“ACID” properties
• May require application specific means to restore consistency

• A transactional workflow system could be used
to script the composition of these transactions



 28                                                                                                  Red Hat

Structuring transactions

A1 A2

A3

A4

A5

time

A3’



 29                                                                                                  Red Hat

Extended transaction models

• There are a number of such models
– Sagas
– Compensations
– Epsilon Serialisability
– Versioning Schemes
– Nested top-level transactions
– Open-nested transactions
– Glued transactions
– Coloured actions



 30                                                                                                  Red Hat

Future directions

• One size does not fit all!
• Business domains will impose different

requirements on implementers
– Essentially construct domain-specific models
– Real-time

• The range and requirements for such extended
models are not yet known
– Do not restrict implementations because we don’t know what

we want yet
• Still a very active area of research and

development



 31                                                                                                  Red Hat

Any questions?


