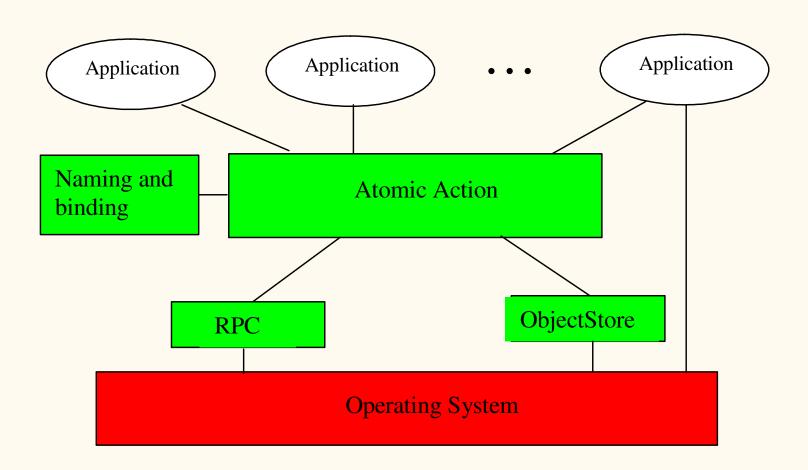
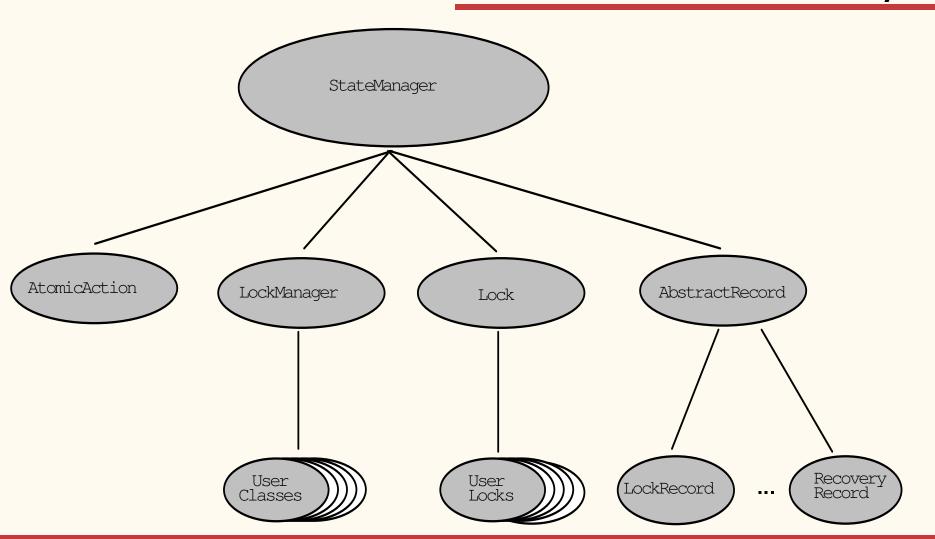
An Examination of the Transition of the Arjuna Distributed Transaction Processing Software from Research to Products


Mark Little

Head of Transactions Technology, Arjuna Technologies Ltd mark.little@arjuna.com


What is Arjuna and where did it all start?

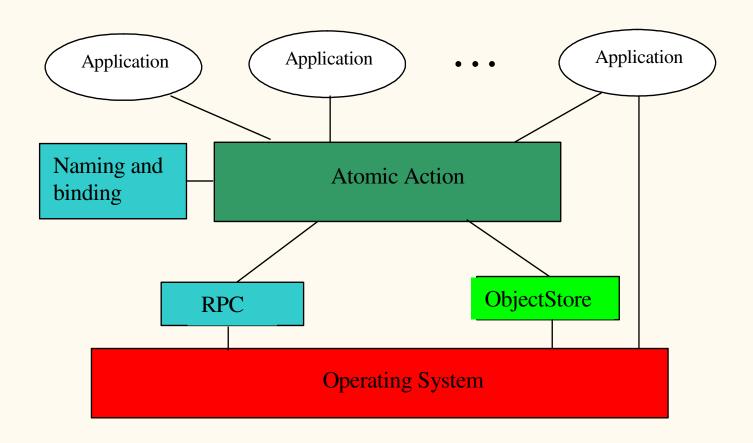
- Distributed transaction processing system
 - Began life in C++ back in 1986 at the University of Newcastle upon Tyne, England
 - Exploit object-oriented techniques
 - ▶ Pre-CORBA, DCE, COM, ...
 - Own RPC and stub-generation mechanisms
- Complete toolkit for development of faulttolerant applications
 - Persistent, concurrency control, replication, ...

The original architecture

Class hierarchy

What does this provide?

- Easy to use API for constructing transactional applications.
- AbstractRecord forms the basic interface for all transaction participants
 - (nested) two-phase commit aware but does not imply a specific implementation.
 - Key to the longevity of Arjuna.
 - Many transaction systems then and today tie transaction participants to X/Open XA compliant resources (e.g., databases).


1994 student registration system

- No money to buy in (academic researchers are cheap!)
 - Must work on PCs, MACs, and various Unix workstations
 - 15000 students over 5 days
 - Cannot tolerate failure as student gets no money
 - Campus wide
 - 10 servers, with 120 front-ends
 - Network partition and recovery

When Arjuna met CORBA

- 1995 saw release of initial OTS specification from OMG
 - Shares many similarities with Arjuna transaction engine
 - Generic two-phase participants
 - Only a two-phase commit protocol engine
 - Persistence and concurrency control required from elsewhere
- Overlap in several other areas
 - Naming and binding
 - RPC

OTSArjuna

Required modifications

- Replace RPC and Naming and Binding modules
 - Slight modifications due to different distribution model
 - E.g., Arjuna had support for passing pointers and associated memory, CORBA IDL does not
- Transaction engine remained unchanged
 - Wrap OTS participants in AbstractRecords
 - Benefits from previous 10 years of testing and use

Crash recovery

- Crash recovery needed for ACID properties
 - May need to recreate distributed transaction tree (coordinators and participants)
 - Requires knowledge about participants, e.g., where do they reside?
- Original implementation was closely tied to Arjuna's RPC and stub-generator
 - Re-implementation tied to OTS
 - Pragmatic choice based on time constraints and view of future

Productising Arjuna

- JTSArjuna first Java transaction service
 - Marketed by Arjuna Solutions Limited
 - Acquired by Bluestone in 2000, later acquired by Hewlett-Packard in 2001
- Major investment in staff
 - QA (8 from 1 dedicated staff managing > 4000 individual tests)
 - Fewer bugs than might have been expected
 - ▶ Development (10 from 2)
 - ▼ Training, manuals and whitepapers

Was it worth it?

- What did we gain?
 - ∧ A wider audience for our product and ideas ②
 - More influence in the standards
 - More customer feedback
 - \$10 million
 - Interface changes are a no-no!
 - Stress!
 - Moving away from R&D ⊗
 - Shorter deadlines mean more focus
- Was it worth it?
 - Yes (I think!)

Where to now?

- Transactions show up in:
 - Web Services
 - Mobile/embedded devices
 - **▶** J2EE/CORBA
 - JTS
 - JMS
- Is there some commonality?
 - ▼ Two-phase commit

Continued application

- Factor out core transaction engine
 - ArjunaCore
 - Essentially the same engine that began life in 1986
 - Includes toolkit and ObjectStore module
 - Hooks for distribution are essentially the interfaces to the RPC, Naming/Binding and Crash Recovery modules
- Embedded within:

 - ▶ HP-MS
 - HP-WST

Conclusions and lessons learnt

- Modularity helped us a lot!
- Object-orientation (and specifically AbstractRecord)
 made it easier to customise
- QA in industry is more heavily emphasised than in academia
 - Important to convincing people to use and invest
- Make any configuration choices easier for nonexperts to use
 - ▼ E.g., transaction log location or size
- Being ahead of the curve may require stayingpower