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Problem statement

• Transactions imply all ACID properties

• Good for “short” durations

• Application specific

• Long-running transactions may impose constraints

• Hours, days, months, …

• Retain resources for duration of transaction
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Structuring transactions

• Could structure transactional applications from short-
duration transactions

• Release locks early

• Resulting application may still be required to 
appear to have “ACID” properties

– May require application specific means to restore 

consistency

– Compensation may not be possible

• A transactional workflow system could be used to script 
the composition of these transactions

• CORBA workflow standard
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Example of structured transactions
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Extended transaction models

• There are a number of such models

• Nested transactions

• Sagas

• Compensations

• Epsilon Serialisability

• Versioning Schemes

• Nested top-level transactions

• Open-nested transactions

• Glued transactions

• Coloured actions
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Which model to use?

• One size does not fit all!

• Business domains will impose different requirements 
on implementers

• Essentially construct domain-specific models

– E.g., realtime or telecoms

• The range and requirements for such extended models 
are not yet known
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What is the “activity service”?

• Additional Structuring mechanisms for the OTS

• OMG adopted specification (orbos/2000-06-19)

– IBM, University or Newcastle (Bluestone Arjuna

Labs), IONA, Inria, Alcatel, Vertel/Expersoft, Bank of 

America

• Main work provided by IBM and Newcastle University

• 12+ months to develop and guide through OMG 
process

• Inria and Bank of America provided an example of use
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Basic assumptions

• Models share a basic underlying assumption of “event 
signalling”

• Specific model maps event into its “domain”

– e.g., “prepare”, “rollback”

• OTS transactions may be used as building blocks

• Transactions may be ignored

• Context propagation

• Format of context may be different for each model
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Activity Service Framework

• Defines a generic protocol engine

• Support basic infrastructure for many extended 
models

• Pluggable coordination and control engine

• Activity service interfaces not typically for application 
programmers

• Too low-level

• Requires high-level API on top (High Level Service)



24/01/2006 Page 10

Activities

• Activity is an entity that does some work

• Represented by an ActivityCoordinator

– Coordination can occur at arbitrary points in lifetime

• Activities can be nested

• May use transactions during parts of its lifetime

• In one of three states

– Success, Fail, or FailOnly

• Contexts flow between address spaces

• Recoverable

• Tree is recreated upon recovery
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Activities and transactions
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Actions and signals

• Send Signal between entities (Actions)

• Some Signals are pre-defined

• Most are defined by the extended model and dealt 
with at that level

• Different delivery guarantees possible

– E.g., at most once

• Signal factory (SignalSet) is plugable and adaptable

• Responsible for interpreting results of Signal 
processing

• Infrastructure does not know how to interpret Signals or 
responses (Outcomes) to them
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Architecture
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Two Phase Completion
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Nested top-level transactions with 

compensations
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Compensation Example

• Each enclosing activity has a CompletionSignalSet

• Success Signal

– Completes successfully, without dependencies

• Failure Signal

– Completes abnormally

• Propagate Signal

– Completes successfully, but has dependencies

– Encodes identity of Activity to be registered with

• Enlisted with B is an Action for !B

• !B Action enlisted with A if B sends Propagate Signal

• Fired on receipt of Failure Signal from A completion
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Conclusions and future work

• ACID transactions are insufficient for structuring long-
lived applications

• Several different extended transaction models exist

– Address different problem domains

– “One size does not fit all”

– But do we really have to re-implement the wheel each 
time?

• OMG Activity Service standardises middleware support 
for these models

• Useful paradigm allowing programmers to 
concentrate on event dispatch

• Work is going on into incorporating this into J2EE


