
24/01/2006 Page 1

The CORBA Activity Service Framework

for Supporting Extended Transactions

I. Houston1, M. C. Little2,3, I. Robinson1,
S. K. Shrivastava3 and S. M. Wheater2,3

1IBM Hursley Laboratories, Hursley, UK
2HP-Arjuna Laboratories, Newcastle-Upon-Tyne,UK

3Department of Computing Science, Newcastle University,
Newcastle-Upon-Tyne, UK

24/01/2006 Page 2

Problem statement

• Transactions imply all ACID properties

• Good for “short” durations

• Application specific

• Long-running transactions may impose constraints

• Hours, days, months, …

• Retain resources for duration of transaction

24/01/2006 Page 3

Structuring transactions

• Could structure transactional applications from short-
duration transactions

• Release locks early

• Resulting application may still be required to
appear to have “ACID” properties

– May require application specific means to restore

consistency

– Compensation may not be possible

• A transactional workflow system could be used to script
the composition of these transactions

• CORBA workflow standard

24/01/2006 Page 4

Example of structured transactions

t1

t2

t3

t4

time

Application

activity

t5 t6

24/01/2006 Page 5

Extended transaction models

• There are a number of such models

• Nested transactions

• Sagas

• Compensations

• Epsilon Serialisability

• Versioning Schemes

• Nested top-level transactions

• Open-nested transactions

• Glued transactions

• Coloured actions

24/01/2006 Page 6

Which model to use?

• One size does not fit all!

• Business domains will impose different requirements
on implementers

• Essentially construct domain-specific models

– E.g., realtime or telecoms

• The range and requirements for such extended models
are not yet known

24/01/2006 Page 7

What is the “activity service”?

• Additional Structuring mechanisms for the OTS

• OMG adopted specification (orbos/2000-06-19)

– IBM, University or Newcastle (Bluestone Arjuna

Labs), IONA, Inria, Alcatel, Vertel/Expersoft, Bank of

America

• Main work provided by IBM and Newcastle University

• 12+ months to develop and guide through OMG
process

• Inria and Bank of America provided an example of use

24/01/2006 Page 8

Basic assumptions

• Models share a basic underlying assumption of “event
signalling”

• Specific model maps event into its “domain”

– e.g., “prepare”, “rollback”

• OTS transactions may be used as building blocks

• Transactions may be ignored

• Context propagation

• Format of context may be different for each model

24/01/2006 Page 9

Activity Service Framework

• Defines a generic protocol engine

• Support basic infrastructure for many extended
models

• Pluggable coordination and control engine

• Activity service interfaces not typically for application
programmers

• Too low-level

• Requires high-level API on top (High Level Service)

24/01/2006 Page 10

Activities

• Activity is an entity that does some work

• Represented by an ActivityCoordinator

– Coordination can occur at arbitrary points in lifetime

• Activities can be nested

• May use transactions during parts of its lifetime

• In one of three states

– Success, Fail, or FailOnly

• Contexts flow between address spaces

• Recoverable

• Tree is recreated upon recovery

24/01/2006 Page 11

Activities and transactions

A1 A2

A3

A4

A5

time

A3’

24/01/2006 Page 12

Actions and signals

• Send Signal between entities (Actions)

• Some Signals are pre-defined

• Most are defined by the extended model and dealt
with at that level

• Different delivery guarantees possible

– E.g., at most once

• Signal factory (SignalSet) is plugable and adaptable

• Responsible for interpreting results of Signal
processing

• Infrastructure does not know how to interpret Signals or
responses (Outcomes) to them

24/01/2006 Page 13

Architecture

A ctio n S igna l S e t

A p p lica tion F ram ew o rk

Activ ity Serv ice Interfaces

Activ ity Serv ice Im p lem entation

P ersistence

S ervice

L ogg ing

S ervice

e tc .

U nd erlying Im p lem entatio n P latfo rm

A pp lica tion

C o m po nent

O R B

A ctio n

O T S

S ignal S e t A ctiv ity

C o ord ina to r

e tc .

24/01/2006 Page 14

Two Phase Completion
 2 P C S i g n a l S e t A c t i o n A c t i v i t y C o o r d i n a t o r

g e t _ s i g n a l ()

 A c t i o n

p r e p a r e

s e t _ r e s p o n s e ()

p r e p a r e

s e t _ r e s p o n s e ()

g e t _ s i g n a l ()

c o m m i t

s e t _ r e s p o n s e ()

c o m m i t

s e t _ r e s p o n s e ()

g e t _ o u t c o m e ()

24/01/2006 Page 15

Nested top-level transactions with

compensations

A

B

!B

time

24/01/2006 Page 16

Compensation Example

• Each enclosing activity has a CompletionSignalSet

• Success Signal

– Completes successfully, without dependencies

• Failure Signal

– Completes abnormally

• Propagate Signal

– Completes successfully, but has dependencies

– Encodes identity of Activity to be registered with

• Enlisted with B is an Action for !B

• !B Action enlisted with A if B sends Propagate Signal

• Fired on receipt of Failure Signal from A completion

24/01/2006 Page 17

Conclusions and future work

• ACID transactions are insufficient for structuring long-
lived applications

• Several different extended transaction models exist

– Address different problem domains

– “One size does not fit all”

– But do we really have to re-implement the wheel each
time?

• OMG Activity Service standardises middleware support
for these models

• Useful paradigm allowing programmers to
concentrate on event dispatch

• Work is going on into incorporating this into J2EE

