
The evolution of a transaction

processing system

Mark Little

Chief Architect, Arjuna Technologies Ltd

mark.little@arjuna.com

1/25/2006 2

ATS background

• Distributed transaction processing system

– Began life in C++ back in 1986 at the

University of Newcastle upon Tyne, England

• Exploit object-oriented techniques

– Pre-CORBA, DCE, COM, …

• Own RPC and stub-generation mechanisms

• Complete toolkit for development of fault-
tolerant applications

– Persistence, concurrency control,…

1/25/2006 3

The architecture

Operating System

RPC ObjectStore

Atomic Action
Naming and

binding

Application Application Application
. . .

1/25/2006 4

Class hierarchy

StateManager

AtomicAction LockManager Lock AbstractRecord

User
 Classes

User
Locks LockRecord Recovery

Record ...

1/25/2006 5

AbstractRecords

• Forms the basic interface for all
transaction participants

– (nested) two-phase commit aware

• Does not imply a specific implementation.

• Key to the longevity of Arjuna.

– Many transaction systems then and today tie

transaction participants to X/Open XA

compliant resources (e.g., databases).

1/25/2006 6

Basics covered

• High availability

• Standards evolution

• Performance, performance, performance!

• Support for multiple models and protocols

1/25/2006 7

High availability

• Active replication

– Assumes determinism

– K+1 replicas to tolerate K failures

• 2K+1 if network can partition

– Group communication

• Typically ordered delivery

• Passive replication

– Does not require determinism

– K+1 replicas to tolerate K failures

– Slower fail-over time

1/25/2006 8

Replication

protocols

Passive Replication Active Replication

Replica group

1/25/2006 9

Student registration

• No money to buy
– Nothing available to by at that time

• Must work on PC, Mac and various Unix
workstations
– 20000 students over 5 days

• Cannot tolerate failure as student gets no money

• Campus wide
– 10 servers, with 150 front-ends

• Network can partition

1/25/2006 10

Standards evolution

• 1995 saw release of initial OTS specification

from OMG

– Shares many similarities with Arjuna

• Generic two-phase participants

• Optional support for nested transactions

– Only a two-phase commit protocol engine

• Persistence and concurrency control elsewhere

• Overlap in several areas

– Naming and binding

– RPC

1/25/2006 11

Modifications

• Replace RPC and Naming/Binding
modules

– Slight modifications due to different

distribution model

• E.g., Arjuna had support for passing pointers and

associated memory, CORBA IDL did not

• Transaction engine remained unchanged

– Wrap OTS participants in AbstractRecords

• Benefits from previous 10 years of testing and use

1/25/2006 12

Coordinator

performance

• Supported typical optimizations

– Presumed abort, one-phase commit, read-only

participants

• Also supports embedding of coordinator

– Small footprint

• Can run in less than 16 Meg

– Durability and recovery are loaded on demand

– Log structure is created on demand

• Implementation is flexible too (no requirement for db, for
example)

1/25/2006 13

Coordinator

performance

• Different types of participant
– Recoverable

• Two phase (and nesting) aware

• Do not have any persistent state representation

• Do not require recovery

• Do not require (transaction) log

– Durable recoverable
• Have persistent state representation

• Require recovery

• Require (transaction) log

1/25/2006 14

Multiple models and

protocols
• Factor out core transaction engine

– Essentially the same engine that began life in 1986
• No dependency on any distribution infrastructure
• Purely local transactions and recovery

– Hooks for distribution are essentially the interfaces to the
RPC, Naming/Binding and Crash Recovery modules

• Participant implementations are opaque to the transaction
engine

• Context information via XML+SOAP, IIOP, …

• Embedded within
– HP products (HP-TS, HP-MS, HP-WST)

• HP proof of concepts technologies (mobile devices)

– Arjuna products (A-TS, A-MS, A-XTS)

1/25/2006 15

Conclusions and

lessons learnt

• Modularity helped us a lot

• AbstractRecord made it easier to customise

• Customer feedback has been extremely useful
– “Transaction semantics are great, but relax the

properties.”

• Standards are good
– But their lifetimes and impact are sometimes over

hyped

• Transactions everywhere is a good idea
– Just make them cheap to use!

