
Transaction Processing in a Service Oriented
Architecture

Dr Mark Little
Technical Development Manager, Red Hat

 2 Red Hat

Overview

• Fault tolerance
• Transaction fundamentals

– What is a transaction?
– ACID properties

• Distributed transactions
• The SOA effect on transactions

 3 Red Hat

Fault tolerance

• Machines and software fail
– Fundamental universal law (entropy increases)
– Things get better with each generation, but still

statistically significant
• Failures of centralized systems difficult to

handle
• Failures of distributed systems are much

more difficult

 4 Red Hat

Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous

implementations
• Spheres of control

– “Guarantee” no partial completion of work in the presence of
failures

• Often a duality
– “Understanding the Role of Atomic Transactions and Group

Communications in Implementing Persistent Replicated”,
Proceedings of the 8th International Workshop on
Persistent Object Systems, California, USA,1998

 5 Red Hat

What is a transaction?

• Mechanistic aid to achieving correctness
• Provides an “all-or-nothing” property to

work that is conducted within its scope
– Even in the presence of failures

• Ensures that shared resources are
protected from multiple users

• “Guarantees” the notion of shared global
consensus
– Different parties in different locales have the same view of

the transaction outcome

 6 Red Hat

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

 7 Red Hat

Atomicity

• within the scope of a transaction
– all changes occur together or no changes occur

• atomicity is the responsibility of the transaction manager

• for example - a money transfer
– debit removes funds
– credit add funds
– no funds are lost!

 8 Red Hat

Two-phase commit

• Required when there are more than one resource
managers (RM) in a transaction

• Managed by the transaction manager (TM)
• Uses a familiar, standard technique:

– marriage ceremony - Do you? I do. I now pronounce ..
– It is only a consensus protocol

• Two - phase process
– voting phase - can you do it?

• Attempt to reach a common decision
– action phase - if all vote yes, then do it.

• Implement the decision

 9 Red Hat

Consistency
• Transactions scope a set of operations
• Consistency can be violated within a transaction

- Allowing a debit for an empty account
- Debit without a credit during a Money Transfer
- Delete old file before creating new file in a copy

• transaction must be correct according to application rules
• Begin and commit are points of consistency

• Consistency preservation is a property of a transaction, not of the TP
system (unlike the A, I, and D of ACID)

State transformationsState transformations
new state under constructionnew state under construction

B
eg

in
B

eg
in

C
om

m
it

C
om

m
it

 10 Red Hat

Isolation

• Running programs concurrently on same data can
create concurrency anomalies
– the shared checking account example

Begin()
read BAL
Subtract 100
write BAL
Commit()

Bal = 100

Bal = -100
Bal = 0

Bal = 100
Begin()
 read BAL
 Subtract 100
 write BAL
Commit()

 11 Red Hat

Isolation
• Transaction must operate as a black box to other

transactions
• Multiple programs sharing data requires

concurrency control
• When using transactions

– programs can be executed concurrently
– BUT programs appear to execute serially

 12 Red Hat

1010

Isolation

Begin()
 read BAL
 subract 100
 write BAL
Commit()

Bal = 100

Bal = 0 Bal = 0
Begin()
 read BAL
 Not Enough
Rollback()

Oh NO!!

 13 Red Hat

Durability

• When a transaction commits, its results must survive
failures
– must be durably recorded prior to commit
– system waits for disk ack before acking to user

• If a transaction rolls back, changes must be undone
– before images recorded
– undo processing after failure

 14 Red Hat

Transactions for SOA

• Business-to-business interactions may be
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an
individual indefinitely

• May need to undo only a subset of work
• So the search has been on, because …

 15 Red Hat

ACID-ic SOA?

• ACID transactions implicitly assume
– Closely coupled environment

• All entities involved in a transaction span a LAN, for
example.

– Short-duration activities
• Must be able to cope with resources being locked for

periods
• Therefore, do not work well in

– Loosely coupled environments!
– Long duration activities!

 16 Red Hat

However …

• Web Services are as much about
interoperability as they are about the Web

• In the short term Web Services
transactions will be about interoperability
between existing TP systems rather than
running transactions over the Web

 17 Red Hat

OASIS WS-TX Goals

• 4th attempt at standardising
• Support range of use cases
• “One-size does not fit all”

– “Make each program do one thing well; to do a new job,
build afresh rather than complicate old programs by adding
new features”, Doug McIlroy, inventory Unix pipes

– Therefore a single protocol cannot cope with all
requirements

• Interoperability with existing transaction
infrastructures

 18 Red Hat

ACID transaction model

• Assume ACID transactions
– High degree of trust
– Isolation for duration of transaction
– Backward compensation techniques
– Does not allow heuristic outcomes

• Integration with existing transaction systems
– Important to leverage investments

• Interoperability between transaction systems

 19 Red Hat

What characteristics are right?

• Need to be able to relax the strict ACID properties
• Need to put control of some into hands of service

developer
– Is consistency (or consensus) important?

• May need a notion of a central coordinator
– But may not!
– Or something with a fuzzy idea of what’s going on

• “A comparison of Web services transaction
protocols”, IBM Developer Works, 2003.

 20 Red Hat

Relaxing isolation

• Internal isolation or resources should be a
decision for the service provider

– E.g., commit early and define compensation activities
– However, it does impact applications

• Some users may want to know a priori what isolation policies
are used

• Undo can be whatever is required
– Before and after image
– Entirely new business processes

 21 Red Hat

Relaxing atomicity

• Sometimes it may be desirable to cancel some
work without affecting the remainder

– E.g., prefer to get airline seat now even without travel
insurance

• Similar to nested transactions
– Work performed within scope of a nested transaction is

provisional
– Failure does not affect enclosing transaction

• However, nested transactions may be too
restrictive

 22 Red Hat

Structuring transactions

• Could structure transactional applications from
short-duration transactions
– Release locks early
– Resulting application may still be required to appear to have

“ACID” properties
• May require application specific means to restore consistency

• A transactional workflow system could be used
to script the composition of these transactions

 23 Red Hat

Relaxation of consistency

• ACID transactions (with two-phase commit) are
all about strong global consistency
– All participants remain in lock-step
– Same view of transaction outcome (atomic)

• But that does not scale
– Replication researchers have known about this for years

• Weak consistency replication protocols developed for large
scale (number of replicas and physical deployment)

• Merging of caching and replication protocols
– Local domains of consistency

• Cannot “stop the world” and enforce global consistency
– Some transaction research into this, but industry pushing

global consistency
• Starting to see a change

 24 Red Hat

Heisenberg’s Uncertainty
Principle

• Cannot accurately measure both position and
momentum of sub-atomic particles
– Can know one with certainty, but not the other
– Non-deterministic measurements

• Large-scale/loosely-coupled transactional
applications suffer the same effect
– Can know that all services will eventually see same state,

just not when
– Or at known time can determine state within

model/application specific degree of uncertainty
• Or another way of thinking about it …

– No such thing as simultaneity in data space as there isn't in
space-time

• “Data on the Outside vs. Data on the Inside”, by Pat Helland

 25 Red Hat

No global consensus

• Split transactions into domains of consistency
– Strong consistency within domains
– Some level of (known) consistency between domains

• See “A method for combining replication and caching”,
Proceedings of International Workshop on Reliable Middleware
Systems, October 1999.

• OASIS WS-BusinessProcess specification, part of OASIS WS-
CAF, 2003.

– Resolve inconsistencies at the business level
• Don’t try and run consensus protocols between domains

• Consistency related to isolation
– Put into the control of the service and application developers

 26 Red Hat

OASIS Business Process

• All parties reside within business domains
– Recursive structure is allowed
– May represent a different transaction model
– No required notion of consistency between domains

• Business process is split into business tasks
– Execute within domains
– Compensatable units of work

• Forward compensation during activity is allowed
– Keep business process making forward progress

• Consistency is application (service) dependent
• Atomicity (or lack thereof) in the “large” is taken

for granted

 27 Red Hat

SOA or scale?

• Problems with transactions pre-date SOA
• Current issues with database technologies are

not SOA specific either
• Problems are two-fold

– Scalability (size and geographic distributed nature)
– Control over the infrastructure/services

• Trust comes into this too

• Much research in the 1990’s
• SOA (and Web Services) bring this to the

foreground
– REST would be just as appropriate

 28 Red Hat

Future directions

• One size does not fit all!
• Business domains will impose different

requirements on implementers
– Essentially construct domain-specific models
– Real-time

• The range and requirements for such extended
models are not yet known
– Do not restrict implementations because we don’t know what

we want yet
• Still a very active area of research and

development

