
Object replication in 

distributed systems

Mark C. Little,

Department of Computing Science,

University of Newcastle



Overview

– descriptions of replication protocols

• where these protocols can and cannot be used

– the Arjuna approach to supporting replication

– replica configuration issues

– the Replica Management System

– replicating composite objects

– implementation experience

– conclusions



Replication protocols

– there are essentially two categories of 

replication protocol:

• active replication

• single-copy passive replication

– strong and weak consistency



Active
Single-copy passive



Protocol descriptions

– active replication:

• assume objects are deterministic

• requires group communication mechanism to 

deliver the same set of messages to each active 

replica in the same order

• often the preferred choice where masking of 

replica failures with minimum time penalty is highly 
desirable

• can be used to mask K:

– permanent omission, value and omission, and timing 
failures with K+1 replicas

– arbitrary (Byzantine) failures with 2K+1 or 3K+1 replicas

• 2K+1 replicas to tolerate network partitions



Protocol descriptions

– passive replication:

• need not require complex, order preserving group 
communications protocols

– can be implemented using traditional RPC

– easily ported to other environments

• performance in the presence of primary failures 

can be substantially poorer than under no failures

• can be used to mask K:

– permanent omission failures with K+1 replicas

• tolerate network partitions with 2K+1 replicas



Providing replication

– although all objects could be replicated 

passively, performance and failure masking 

problems rule this out

– in general we require a suite of replication 

protocols:

• primary copy replication

• available copies

• weighted voting

• coordinator-cohort

– select protocol on a per-object (class) basis



Replication infrastructure

– it is possible to provide an infrastructure which 

supports all replication protocols

– separate object into methods and state, and 

provide appropriate naming and binding 

mechanisms

Methods State



Replication protocols

Passive Replication Active Replication

Replica group



Arjuna’s replication protocol

– default protocol is based upon single-copy 

passive replication

• multiple instances of an object’s methods, but only 

the primary is active

– primary failure requires action to abort and restart

• multiple instances of persistent state are updated

– action can commit as long as a single instance remains 
available

– naming service is implemented using active 

replication

• provides toleration of network partitions for all 
replica groups



Implementation

• class StateManager

{

public:

• virtual Boolean save_state (ObjectState&) = 0;

• virtual Boolean restore_state (ObjectState&) = 0;

• virtual Boolean hasRemoteState () const;

• Boolean setStoreInformation (“replica configuration”);

• const Uid& get_uid () const;

• const TypeName type () const;

• };



Active replication protocol

– experimented with active replication protocol

• K-resilient

– uses reliable group communications protocol

• replicated RPC

– atomic actions used to impose ordering only 

where required

• concurrency control allows multiple readers to be 

interleaved

– have client and server groups

– flow control and timeouts



Replica configuration issues

– how to arrive at the optimum number and 

location of replicas?

– availability is not necessarily proportional to 

the number of replicas

– replica configuration depends upon:

• failure characteristics of the distributed 

environment

– component inter-dependencies

• read/write ratio of interactions with the object

• desired quality of service

– trade-off between availability and performance

• object inter-dependencies



Replica management system

– measure attribute values:

• component reliability

– nodes

– communication links

• inter-dependencies

– components

– objects

• performance values

– nodes

– communication links



Replica management system

– system administrator

– monitor daemon

• MTTF and MTTR

– cause of “failure”

• performance

– architecture, configuration, etc.

– dependency tracker

• collate information from all monitor daemons

• determine node availability

• use common failures to infer dependencies

– more complex algorithms may yield better results

– object management module



Placement policy

– computes number and placement of replicas

• supply user’s desired QoS

• rank availability and performance in case of trade-

off

Placement Policy

Module

Node reliability values

Replication protocol

Read/write ratio

Availability requirement

Replication level

Replica placement



Replicating composite objects

– create two new types of group view at the 

naming service:

• clustered replica groups

– collections of group views are clustered together

– obtaining any one member of the cluster caches all 
cluster information at the client

• template replica groups

– common information is factored into a template

– only store unique information on a per group basis

– wildcard template



Clustered replica groups

– related replica groups can be clustered within 

the naming service

• Each cluster is managed by a separate Cluster 

Manager object

– appears as another group view within the naming service

– user’s cannot determine whether a group identifier 
belongs to a cluster or a single group

– replica groups can be accessed:

• directly, through their group identifier

• indirectly, through the Cluster Manager’s identifier

– all cluster members are cached within the 

client for the duration of the atomic action



Clustered replica groups

Bi-directional

Cluster Manager (C)

A B D

Cluster Manager (E)

BA B D

Group views



Template replica groups

– related objects are typically identically 

replicated, e.g., composite objects

• efficiency of the naming service can be improved 

by reducing the amount of information it must store

– factor common information into a template, 

and associate group specific information with 

it

• apply template to obtain group view at the client, 

rather than the naming service

– reduces amount of network traffic

– wildcard template can be used to replicate 

every object



Template replica groups

Bi-directional

Template Manager (C)

A B

BA

minimal group views

Template Object
T

A T+ = A



Implementation experience

– University’s student registration system

• has been used successfully since 1994

• 100+ simultaneous users

• 12,000+ students registered in 5 days

• each student record is a separate Arjuna object

– persistent states are replicated 3 times

– methods are replicated 5 times

• performance is well within the University’s 

requirements, even at peak load

• several machine crashes have occurred, and the 

system masked them without most users noticing



Future directions

– large-scale

• weak consistency

– merge cacheing with replication

– further modularisation

• state

• concurrency

• consistency

• input/output

– virtual synchrony



Conclusions

– systems require more than a replication 

protocol

• suite of replication protocols

• RMS

– object dependencies can improve availability 

and performance

– inheritence aids usability

– appropriate choice of default protocol

• performance is disk bound in the absence of 
failures

– useful in conjunction with atomic actions


