

WS-CAF: Contexts, Coordination and Transactions
for Web Services

Mark Little1, Eric Newcomer2 and Greg Pavlik3.
1 Arjuna Technologies Ltd,
2 IONA Technologies Ltd,

3 Oracle Corporation

Abstract
There is considerable discussion in the Web services

community about how to create composite applications for
business process automation. Until recently no one has
been focusing on a comprehensive solution to the difficult
system-level problems that arise when Web services are
combined. The OASIS Web Services-Composite
Application Framework (WS-CAF)

specifications provide

the means to solve common infrastructure related
problems found in typical composite applications such as
order entry, inventory management and distributed
transaction support.

As Web services have evolved as a means to integrate
processes and applications at an inter-enterprise level,
traditional transaction semantics and protocols have
proven to be inappropriate. Web services-based
transactions, colloquially termed Business Transactions,
differ from traditional transactions in that they execute
over long periods, they require commitments to the
transaction to be “negotiated” at runtime, and isolation
levels have to be relaxed.

A solution to this problem has to work over HTTP and
include existing transaction processing technologies of all
types: database management systems, application servers,
message queuing systems and packaged applications. The
solution needs to support a range of requirements
including lightweight applications in which the major goal
is to let Web services know when they’re in the same
application to complicated transactions that may take days
or weeks to complete across wide ranging geographies,
time zones, and enterprise boundaries. In this paper we’ll
look at the WS-CAF standardization effort and show how
it is attempting to address this important and difficult
subject. We’ll also consider how the architecture defined
by WS-CAF fits into the evolving architecture of Web
services and give an indication of where we think things
are going in the future.

1. Introduction

It is often said that Web services are immature and

missing some features compared to other distributed

computing development environments such as CORBA,

DCOM, and J2EE, but exactly what needs to be added is

the subject of considerable debate. Many proposals have

surfaced in the form of Web services specification drafts

and as the number of proposals and specifications grows,

confusion often grows rather than shrinks.

However, a common foundation exists underneath

many of these missing pieces: context management

(essentially the ability to associate disparate entities within

the same unit of distributed work). This fact, and the

problem that no such facility exists in Web services, came

to light soon after SOAP 1.1 was submitted to W3C, when

we first started work on mapping the Transaction Internet

Protocol (TIP) to SOAP back in mid-2000. Transactioning

is often mentioned as one of the major features for

distributed computing environments and CORBA,

DCOM/.NET, and J2EE all provide it, so it is a fairly

obvious requirement for Web services. However, we

quickly realized we had a larger problem than simply

adding a transaction context to the SOAP header and we

had to suspend the effort.

TIP was dependent on a session-oriented

communication protocol for exchanging two-phase

commit commands. Like most distributed transaction

protocols, TIP required a persistent transaction context to

be shared among the communicating parties in the

transactional operation so that a two-phase commit

protocol can be executed reliably. An abort (or rollback)

can be triggered automatically when a communication

connection is dropped. It is too risky to the health of the

resource managers being coordinated not to rollback when

communication is lost, but without a persistent session

mechanism, the client (the transaction root) is unable to

detect connection loss.

Unfortunately this type of behavior is in fact impossible

to define for a communication system based on HTTP,

where sessions are maintained only long enough to transfer

an HTML page and are dropped immediately afterward.

This behavior is tremendously helpful to support a system

of the scale of the World Wide Web, but it is not so helpful

when you need to support a classic transactioning protocol

such as two-phase commit.

Many other typical features and functions of distributed

systems also depend upon persistent sessions, including

secure sessions, conversations, and load balancing and

failover mechanisms. The way to think about the use of

what we are calling persistent sessions in general is the

ability to get back to the same place where you left off in a

remote program on a subsequent call. In the specific cases

of transactions, or secure conversations, for example, this

is the ability to maintain the context of the first operation

while waiting for the next to arrive.

As we shall see in the following sections, the OASIS

Web Services Composite Application Framework [2]

attempts to solve this problem by defining core support in

the Web services architecture for context management. It

also builds upon this to provide the necessary transaction

functionality that we were unable to accomplish back in

2000.

1.1 An overview of WS-CAF

In general, composite applications are increasing in

importance as companies combine off-the-shelf and

homegrown Web services into new applications. Various

mechanisms are being proposed and delivered to market

daily to help improve this process. New “fourth

generation” language development tools are emerging that

are specifically designed to stitch together Web services

from any source, regardless of the underlying

implementation.

A large number of vendors are starting to sell business

process management, workflow and orchestration tools for

use in combining Web services into automatic business

process execution flows. In addition, a growing number of

businesses find themselves creating new applications by

combining their own Web services with Web services

available from the Internet supplied by the likes of

Amazon.com and Google.com.

These types of composite applications represent a

variety of requirements, from needing a simple way to

share persistent data to the ability to manage recovery

scenarios that include various types of transactional

software. Composite applications therefore represent a

significant challenge for Web services standards since they

are intended to handle complex, potentially long-running

interactions among multiple Web services as well as

simple and short-lived interactions.

The WS-CAF suite includes three specifications that

can be implemented incrementally to address the range of

requirements needed to support a variety of simple to

complex composite applications:

• Web Service Context (WS-CTX), a lightweight

framework for simple context management.

• Web Service Coordination Framework (WS-CF),

which defines the behavior of a coordinator with

which Web services can register for context

augmentation and results propagation, and on top

of which can be plugged various transaction

protocols.

• Web Services Transaction Management (WS-

TXM), comprising three distinct protocols for

interoperability across multiple transaction

managers and supporting multiple transaction

models (two phase commit, long running actions

or compensation, and business process flows).

The overall aim of the combination of the parts of WS-

CAF is to provide a complete solution that supports

various transaction processing models and architectures.

Implementations of WS-CAF can start small and grow to

include more functionality over time. WS-CAF

specifications are designed to compliment Web services

orchestration and choreography technologies such as WS-

BPEL [3] and WSCI [4] and are compatible with other

Web services specifications. The emphasis of WS-CAF is

to define supporting services required by Web services

used in combination, including other specifications.

The parts of WS-CAF comprise a stack, starting from

WS-CTX, adding WS-CF, and finally WS-TXM to deliver

the complete features and functionality required by

composite applications. An implementation of WS-CAF

can start with WS-CTX for simple context management,

and later add WS-CF for its additional context

management features and context message delivery

guarantees, and finally add WS-TXM for managing a

variety of recovery protocols.

In the following sections we shall examine each of

these specifications in more detail and show how they

support the development of composite Web Service

applications.

1.2 Context management

WS-Context provides a mechanism for Web services to

share persistent state, which is required to support

conversational interactions, single sign-on, transaction

coordination, and other features dependent upon system-

level data items such as IDs, tokens etc. Context provides

a way to correlate a set of messages into a larger unit of

work by sharing common information such as a security

token exchanged within a single sign on session.

Because distributed computing systems depend upon a

variety of IDs, tokens, channels, and addresses, which are

a part of every software infrastructure, and because Web

services are independent of any particular execution

environment, this type of system level information needs

to be organized and managed in a persistent, shared

context structure. Applications need a service to manage

the lifecycle of the shared context, and to ensure the

context structure is kept up to date and accessible.

Through the use of shared context Web services from

different sources can effectively become part of the same

application because they share common system

information. A classic example is a single sign-on

mechanism that allows a user or an application to present

authentication credentials to access to a set of cooperating

Web services. Application level context, such as a shared

document, can also benefit from a generic context

management service.

WS-Context defines a context data structure that can be

arbitrarily augmented. By default, all the context defines is

a unique context identifier, the type of the context (e.g.,

transaction or security) and a timeout value (how long the

context can remain valid). Like SOAP headers, which WS-

Context can replace or combine for easier management,

the context data structure includes an attribute requiring

the context to be understood and/or propagated. For

example:

<ContextType> MyContext </ContextType>

 <context-identifier>

www.webservicestransactions.org/example/Middlewar

e2004ContextExample

 </context-identifier>

. . .

. . . mustUnderstand=true

. . . mustPropagate=true

. . .

 <child-contexts>

 <child-context>

 <user-name> EricNewcomer </user-name>

 <password> ******** </password>

 </child-context>

 <child-context>

 <database-name> SQL-DB </database-name>

 <file-name> Index-S-file </file-name>

 <display-address> PocketPc25 </display-

address>

 </child-context>

 <child-context>

 <transaction-type> BusinessProcess

</transaction-type>

 <transaction-mode> Required </transaction-

mode>

 </child-context>

 </child-contexts>

The context structure shown above includes “children”

that can be used to share information needed to process a

request on behalf of the user of a composite Web service.

In this case, the context includes the mustUnderstand

attribute set to true to indicate that the context must be

understood in order to process the request, since it contains

information necessary for successful completion of the

request. The context has also been marked as

mustPropagate=true, meaning that each Web

service in the composite must receive or be able to access

the context to ensure proper execution.

The example illustrates user information that obtains a

security token and passes the token as a single sign-on

feature for the composite application. In other words, the

context could be provided as input to the first Web service

in a WS-BPEL defined flow. The first Web service in the

flow then could check the username and password (the

asterisks are used to indicate opaque data in the example)

and retrieve an authentication token to use in checking

whether the user is authorized to access each subsequent

Web service in the flow. Such an authentication token

would be placed back into the context data structure as an

augmentation to the original structure. For example:

 <child-context>

 <user-name> EricNewcomer </user-name>

 <password> ******** </password>

 <AuthToken> ******** </AuthToken>

 </child-context>

The AuthToken is added by the security system at the

end of the username and password information upon

execution of the initial Web service in the flow. The

context is a living data structure; the results of a security

sign on (or other operation pertinent to the contents of the

context) would typically be added for propagation to the

next Web service in the flow. For example, a single sign

on system bridging multiple security domains would add

another token to the context.

1.3 Coordination

A coordinator is a software entity responsible for

ensuring consensus is achieved between multiple parties.

Coordinators exist in CORBA, .NET, J2EE, and other

distributed computing environments to coordinate the

classic two-phase commit transaction protocol across

multiple data resources. However, coordination is a more

fundamental requirement: it is used in security, replication,

caching and other areas.

Therefore, the definition of a coordinator in WS-CAF is

extended for use with Web services by using a plug in

mechanism that supports multiple coordination protocols

such as the classic two-phase commit protocol, long

running actions with compensation, and complex business

process and orchestration flows.

Web services are designed to be multi-protocol and

therefore to map to multiple underlying technologies.

Instead of tying the coordinator to the two-phase commit

protocol, which is the way current coordinators are

defined, the WS-CF specification creates a general-

purpose coordinator capable of driving a variety of context

types and transaction protocols (such as those defined in

WS-TXM and others).

<env:Envelope

xmlns:env="http://www.w3.org/2002/12/soap-

envelope">

 <env:Header>

 <n:Composite

xmlns:n=”http://example.org/CompositeApplication”

>

 <n:Coordinator>

http://www.webservicestransactions.org/example/Co

ordinatorURI

 </Cooordinator>

 </n:Composite>

 </env:Header>

 <env:Body> ...

</env:Envelope>

In the above example, the coordinator URI points to a

Web service interface that defines the SOAP message

pattern for interactions between the coordinator and the

Web service execution. The coordinator then manages any

user defined context and generates and propagates any

context for use within the operations of the composite and

includes each registered Web service in the recovery

protocol. When multiple Web services register with the

coordinator to use the same context type, the message

exchange pattern includes all Web service executions

within the composite. In other words, the scope for a given

context type is determined by the Web services that

register with the coordinator to share it.

The message exchange pattern described for the Web

services in the application isn’t changed. By registering

with the coordinator, however, a separate message

exchange pattern is established as a secondary, system-

level interaction to handle the context propagation and

recovery operations. The two message exchange patterns

are linked using the context ID passed in the SOAP header

and given to the coordinator upon registration.

1.4 Transactions

Transaction processing is at the core of business. Every

exchange of money for goods is a transaction, as are most

other activities within commerce, military, and science.

Transaction processing technology ensures that any

activity’s operations on data are recorded consistently on

computer systems, so that the systems remain as reliable

indicators of the “real world” as their paper-based

antecedents did, or at least as closely as possible given the

vagaries of the electronic medium.

For example, a bookstore’s database must always

accurately reflect in store inventory of what’s on the

shelves. Manual processes to confirm inventory are costly,

as are errors in bank transfers, telephone billing, and

manufacturing line preparation. Transaction processing

technology helps all of these now automated activities run

smoothly and as expected, despite system failure, which

can be counted upon to regularly occur. Computers, being

basically unstable electronic devices, are subject to all

manner of problems.

Web services are loosely coupled XML interfaces to

computer systems comprised of programs, objects, and

databases. Web services are used to solve a variety of

interoperability and integration problems. Because many

of these existing systems are concerned with processing

transactions, it is critical to appropriately and correctly

include transaction-processing (TP) information within

Web services that are integrating TP systems, allowing

Web services to participate in a critical area.

However, up to this point in the evolution of Web

services standards, several attempts have been made to

meet the requirement for defining transactions for Web

services, but nothing as of yet has provided the complete

solution. WS-CAF is as close as anything has come to this

to date. Although some work remains to complete the

specifications, the initial work provides a very solid

foundation.

Two-phase commit is the most common distributed

transaction protocol in use today. While two-phase

commit is insufficient for long-running, widely-distributed

Web services flows, the protocol is well understood and in

particular its requirement for an independent coordinator

lays the foundation for some of the extended models such

as compensations and business process transactions that

are needed for Web services.

As such, the WS-TXM specification defines three

transaction models that can be plugged into WS-CF,

including a two-phase commit protocol. However, the

two-phase commit protocol in WS-TXM is designed

specifically to support interoperability across multiple

variations of the two-phase commit protocol that exist in

current and proposed systems.

The long running action model (LRA) is designed

specifically for those business interactions that occur over

a long duration. Within this model, an activity reflects

business interactions: all work performed within the scope

of an application is required to be compensatable.

Therefore, an application’s work is either performed

successfully or undone. How individual Web services

perform their work and ensure it can be undone if

compensation is required, are implementation choices and

not exposed to the LRA model. The LRA model simply

defines the triggers for compensation actions and the

conditions under which those triggers are executed.

In the LRA model, each application is bound to the

scope of a compensation interaction. For example, when a

user reserves a seat on a flight, the airline reservation

centre may take an optimistic approach and actually book

the seat and debit the users account, relying on the fact that

most of their customers who reserve seats later book them;

the compensation action for this activity would obviously

be to un-book the seat and credit the user’s account. Work

performed within the scope of a nested LRA must remain

compensatable until an enclosing service informs the

individual service(s) that it is no longer required.

 Let’s consider another example of a long running

business transaction. The application is concerned with

booking a taxi, reserving a table at a restaurant, reserving a

seat at the theatre, and then booking a room at a hotel. If

all of these operations were performed as a single

transaction then resources acquired during booking the taxi

(for example) would not be released until the top-level

transaction has terminated. If subsequent activities do not

require those resources, then they will be needlessly

unavailable to other clients.

Figure 1 shows how part of the night-out may be

mapped into LRAs. All of the individual activities are

compensatable. For example, this means that if LRA1 fails

or the user decides to not accept the booked taxi, the work

will be undone automatically. Because LRA1 is nested

within another LRA, once LRA1 completes successfully

any compensation mechanisms for its work may be passed

to LRA5: this is an implementation choice for the

Compensator. In the event that LRA5 completes

successfully, no work is required to be compensated,

otherwise all work performed within the scope of LRA5

(LRA1 to LRA4) will be compensated.

Figure 1, LRA example.

In the business process transaction model (BP model)

all parties involved in a business process reside within

business domains, which may themselves use business

processes to perform work. Business process transactions

are responsible for managing interactions between these

domains. A business process (business-to-business

interaction) is split into business tasks and each task

executes within a specific business domain. A business

domain may itself be subdivided into other business

domains (business processes) in a recursive manner.

Each domain may represent a different transaction

model if such a federation of models is more appropriate to

the activity. Each business task (which may be modeled as

a scope) may provide implementation specific counter-

effects in the event that the enclosing scope must cancel.

In addition, periodically the controlling application may

request that all of the business domains checkpoint their

state such that they can either be consistently rolled back

to that checkpoint by the application, or restarted from the

checkpoint in the event of a failure.

An individual task may require multiple services to

work. Each task is assumed to be a compensatable unit of

work. However, as with the LRA model described earlier,

how compensation is provided is an implementation

choice for the task.

For example, consider the purchasing of a home

entertainment system example shown in Figure 2. The on-

line shop interacts with its specific suppliers, each of

which resides in its own business domain. The work

necessary to obtain each component is modeled as a

separate task, or Web service. In this example, the HiFi

task is actually composed of two sub-tasks.

Figure 2, Business processes and tasks.

In this example, the user may interact synchronously

with the shop to build up the entertainment system.

Alternatively, the user may submit an order (possibly with

a list of alternate requirements) to the shop which will

eventually call back when it has been filled; likewise, the

shop then submits orders to each supplier, requiring them

to call back when each component is available (or is

known to be unavailable).

2. Comparison with other specifications

The WS-CAF specifications are designed to work with

and complement other Web services specifications,

including WS-Security, WS-Reliability, WS-BPEL, and

others. The WS-CAF specifications define the SOAP

message exchange patterns and WSDL interfaces

necessary to accomplish the context management,

coordination, and transaction processing capabilities

needed to support composite application executions.

The question of compatibility with other Web services

specifications is a difficult one since so many

specifications are under progression at various standards

bodies and through private consortia. It’s often hard to

know where any particular Web services specification fits

within the overall picture. The W3C is producing a Web

Services Architecture specification on this topic [5], while

IBM and Microsoft have produced a whitepaper to reflect

their own view [6]. At this point in time neither seems

definitive, which is understandable given the rate of

change still occurring in Web services and the fact that no

single standards body is in control, and that so many

specifications remain under private copyright.

An important consideration with respect to Web

services specifications is the issue of intellectual property

rights and copyright ownership. The WS-Interoperability

organization [7] for example has debated to what extent

their profiles can or should reference private

specifications. The WS-I Basic Profile references SOAP

1.1, WSDL 1.1, and UDDI V2, all of which were produced

by private consortia but have since been submitted to a

standards body.

Some specifications under private copyright ownership

require royalty fees to be paid to the copyright owners for

the right to implement and sell software based upon them.

Web services vendors who are not copyright holders on a

given specification may be concerned about implementing

a specification that their competitors control, especially

when they are not allowed to participate in its definition or

evolution. When a specification is not under the control of

a single vendor of group of vendors, it’s said to be “open,”

meaning that anyone can participate in its definition and

evolution.

With respect to other Web services specifications, both

private and open, the WS-Context specification is unique.

No other specification exists that defines a generic context

management mechanism for Web services.

The OASIS WS-Coordination Framework specification

shares a common derivation with the private WS-

Coordination specification – both are based on the Object

Management Group’s (OMG) extended transaction

specification called Additional Structuring Mechanisms for

the OTS [8]. This specification was developed as an

extension of the Object Transaction Specification (OTS)

[9], which defines how coordination works for both the

CORBA and J2EE worlds.

The Additional Structuring Mechanisms specification,

sometimes called the Activity Specification since it defines

generic activities, pioneered the concept of a pluggable

coordinator. The specification includes an example of an

open nested transaction model to validate the design of a

coordinator as a generic state machine capable of

supporting multiple transaction protocols, rather than tying

the coordinator to the two-phase commit protocol (as it is

in the base OTS specification). WS-CF, like WS-C, is

derived from this pioneering OMG work.

The base OTS specification also contains a precedent

for WS-CAF because it defines how multiple coordinators

can work together. The concept is called interposition, and

it means that a coordinator can act as a resource to another

coordinator on behalf of a set of local resources. The idea

was included in the OTS specification as a network

optimization, but it turns out to be useful for

interoperability as well.

In IONA’s Orbix Mainframe product [10], for example,

an interposed coordinator bridges the standard OTS two-

phase commit protocol from a CORBA object or EJB on

Unix or Windows to the proprietary Resource Recovery

Management Services (RRMS) two-phase commit

protocol on the mainframe. Bi-directional transactional

interoperability with CICS and IMS is achieved using an

interposed coordinator on the mainframe to map the

standard OTS two-phase commit commands into and out

of their RRMS equivalents. The standard OTS protocol is

used over the wire.

3. Conclusions

Specifications such as the Business Process Execution

Language (BPEL) and the Web Services Choreography

Interface (WSCI), focus on tying multiple Web services

together to create multi-step applications, such as filling a

purchase order or resolving an insurance claim. Therefore

these applications have the requirement to share context

across the steps.

The WS-CAF specifications define a standard

framework for use by a set of cooperating Web services so

that:

• Each Web service knows what application it’s

included in (or how many and which one it’s

currently in).

• The Web services in a composite have a way to

obtain results of another Web service’s

operations.

• A standard mechanism is available to share

needed system data such as security tokens, file

and device handles, or network addresses.

• The application can set rules and policies for

recovering from the failure of one or more of the

services.

While specifications such as BPEL and WSCI provide

the mechanism for extending the WSDL layer to identify a

series or sequence of execution for multiple Web services,

WS-CAF defines the complementary system layer

necessary to ensure that the multiple Web services achieve

the desired results of the application, and that the

cooperation of multiple Web services from whatever

source (local or remote) produces predictable behavior

despite system failure and leaves the system in a known

state.

As with most aspects of standardization, the value in

WS-CAF is derived from the potential for its features and

functions to be provided by Web services vendors,

therefore helping application developers solve composite

application problems more easily. Once adopted and

implemented, the functionality contained within WS-CAF

will not only be available as part of the platform (and

therefore not have to be coded as part of the application)

but also it will be available in a standard way across

platforms, allowing Web services from multiple

environments to interoperate more easily, efficiently, and

effectively than if the developers had to code all of the

equivalent features and functionality themselves in a non-

standard way.

4. References

[1] RFC 237, 1998

http://www.faqs.org/rfcs/rfc2371.html

[2] OASIS Web Services Composite Application

Framework Technical Committee,

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=w

s-caf

[3] OASIS Web Services Business Process Execution

Language Technical Committee,

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=w

sbpel

[4] The Web Services Choreography Interface,

August 2002, W3C Note,

http://www.w3.org/TR/2002/NOTE-wsci-

20020808/

[5] W3C Architecture Committee, see

http://www.w3.org/2002/ws/arch/

[6] http://www-

306.ibm.com/software/solutions/webservices/pdf/

SecureReliableTransactedWSAction.pdf

[7] See http://www.ws-i.org/Documents.aspx for

background on WS-I and information on WS-I

working group charters, including the recently-

formed requirements working group.

[8]

http://www.omg.org/technology/documents/form

al/add_struct.htm

[9]

http://www.omg.org/technology/documents/form

al/transaction_service.htm

[10] http://www.iona.com/products/appserv-

mainframe.htm

